EP3180287A1 - Microelectromechanical device sensitive to mechanical forces applied off-plane - Google Patents

Microelectromechanical device sensitive to mechanical forces applied off-plane

Info

Publication number
EP3180287A1
EP3180287A1 EP15767206.4A EP15767206A EP3180287A1 EP 3180287 A1 EP3180287 A1 EP 3180287A1 EP 15767206 A EP15767206 A EP 15767206A EP 3180287 A1 EP3180287 A1 EP 3180287A1
Authority
EP
European Patent Office
Prior art keywords
axis
rotation
attachment
mass
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15767206.4A
Other languages
German (de)
French (fr)
Inventor
François-Xavier BOILLOT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tronics Microsystems SA
Original Assignee
Tronics Microsystems SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tronics Microsystems SA filed Critical Tronics Microsystems SA
Publication of EP3180287A1 publication Critical patent/EP3180287A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0094Constitution or structural means for improving or controlling physical properties not provided for in B81B3/0067 - B81B3/0091
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Definitions

  • the present invention relates to microelectromechanical systems, also referred to in English by the acronym MEMS for "Micro-ElectroMechanical Systems".
  • MEMS Micro-ElectroMechanical Systems
  • the present invention relates to a transducer MEMS detection said "off plan”.
  • the invention is particularly suitable for the realization of magnetometer or accelerometer.
  • Micro-electromechanical force transducers such as accelerometers, gyrometers or magnetometers, are typically in the form of devices comprising a moving mass and detection means measuring the displacements of this mobile mass under the effect of a force applied to it.
  • a force may in particular be induced by an acceleration of the object on which the transducer is carried or by a magnetic field applied to the object.
  • the moving mass is made from a semiconductor substrate and is generally in the form of a layer of thickness of the order of one or more tens of microns, parallel to the plane of the substrate .
  • Deformable elements coupling the moving mass to fixed anchoring zones maintain the mobile mass in suspension while allowing its displacement under the effect of the force to be measured.
  • the mobile mass is coupled to means for detecting its displacements consecutive to the application of the force to be measured.
  • the architecture is such that these detecting means provide a signal proportional to the out-of-plane force to be measured, and a much smaller amplitude signal under the effect of a force in the plane of the substrate.
  • an objective of the present invention is to propose a solution for the production of a transducer with detection or displacement outside the reduced space plane, in which the mechanical stresses called "in the plane" of the moving mass are not not detected.
  • the proposed solution consists in making the variations of the detection means induced by parasitic displacements of the transducer virtually nil.
  • the present invention thus relates to a microelectromechanical device made in a semiconductor substrate whose layers are parallel to a plane of the substrate.
  • the device comprises in particular:
  • This main mass able to move in rotation about an axis of rotation parallel to the plane of the substrate under the effect of a first mechanical stress along an axis Z perpendicular to the plane of the substrate.
  • This main mass comprises two attachment zones symmetrical with respect to an axis X parallel to the plane of the substrate and perpendicular to the axis of rotation; and - Deformable elements connecting the two attachment zones to the anchoring zone, and allowing a displacement of the main mass around the axis of rotation.
  • the device further comprises at least one mechanical detection unit formed:
  • a strain gauge extending perpendicular to the axis of rotation, the gauge being secured to the main mass via a first point of attachment and being secured to the intermediate mass via a second point of attachment.
  • the architecture of the intermediate mass and the positioning of the gauge are such that the displacements of the first point of attachment and the second point of attachment are of substantially identical directions and different amplitudes under the effect of the first bias, and substantially identical directions and substantially equal amplitudes under the effect of the second bias.
  • the present invention proposes to integrate at least two sensitive masses each coupled to one end of the same strain gauge. One of the two masses is called the main mass, while the other is called the intermediate mass. These two masses are configured to have different sensitivities according to the mechanical stresses to which they may be subjected:
  • the first mechanical stress which is that which one wishes to measure, is in particular a pair oriented along the Y axis and tending to push the masses out of the plane.
  • the main mass is sensitive, the intermediate mass is resistant.
  • the gauge fixed between the two masses therefore undergoes constraints proportional to the amplitude of the displacement of the main mass, said displacement being itself proportional to the amplitude of the torque.
  • the second mechanical stress which is that which one does not wish to measure, is in particular an acceleration along the X axis which induces displacements of the masses in the plane.
  • the main mass and the intermediate mass are configured so that their displacements at the points of attachment of the gauge are of the same direction and same amplitude.
  • the gauge connecting the two masses is not subject to any constraint in response to the second mechanical stress.
  • the main mass is configured to be the most sensitive to the mechanical stresses to be measured, so that the resistance variation (in the case of a piezoresistive gauge) representative of these mechanical stresses to be measured is the largest.
  • the intermediate mass is itself configured to move with the main mass.
  • the intermediate mass is configured to ensure a virtually zero resistance variation in response to transducer displacements along the X axis, while allowing a non-zero resistance variation of the gauges representative of the out-of-plane mechanical forces experienced by the transducer. .
  • the intermediate mass and the connecting means provide an identical displacement, along the X axis, of the two points of attachment of the gauge.
  • the gauge is in particular positioned so that, when the main mass undergoes the second mechanical stress which induces a displacement of the device in the direction along the X axis:
  • the first point of attachment of the gauge moves in the same direction as the second point of attachment of the gauge, and in particular in the same direction of displacement along the axis X that the principal mass in the absence of the first strength;
  • the amplitude of displacement in this direction along the X axis of the first point of attachment of the gauge is substantially identical to the amplitude of displacement in this direction along the X axis of the second point of attachment of the gauge.
  • the gauge is not subjected to stress under the effect of the second mechanical stress, despite the movements of the main and intermediate masses under the effect of this second mechanical stress.
  • the device may further comprise two mechanical detection assemblies, the two gauges being subjected to opposite forces under the effect of the first mechanical stress, such as a force along an axis Z perpendicular to the plane of the substrate.
  • the first mechanical stress such as a force along an axis Z perpendicular to the plane of the substrate.
  • the main mass has a volume greater than that of the intermediate masses.
  • the intermediate masses are contained in the main mass, and the surface ratio between the main mass and the intermediate masses may be less than one third.
  • the weights of each of the intermediate masses and the connecting means must preferably be adapted to ensure optimum sensitivity to displacements along the X axis of the main mass.
  • the displacement of each of the intermediate masses under the effect of the second force may be a rotation in the plane around a pivot point defined by the connecting means. Because of this arrangement, the pivot point is fixed relative to the main mass.
  • the connecting means used may be springs arranged to limit or prohibit any translation of the intermediate masses perpendicular to the axis of rotation and to allow only the rotation of the intermediate masses around their point respective pivot under the effect of an acceleration along the X axis.
  • each of the intermediate masses may have two portions in the direction of the axis of rotation of the main mass, the dimensions along the X axis are different.
  • one of these portions, said thin portion has a width in the direction of the X axis less than that of the other portion.
  • the second point of attachment and the point of connection are preferably located on this thin portion.
  • each intermediate mass advantageously has a ream-like appearance having a most massive zone away from its point of attachment.
  • Such a shape allows a nesting head-to-tail of the two oars to limit the area occupied by these intermediate masses and the widest portion constituting the shovel of the train allows to increase the weight of the masses.
  • the displacement of each of the intermediate masses under the effect of the second force can be a translation along the X axis.
  • the device may comprise at least one stop capable of limiting the displacement of each of the intermediate masses in the direction along the X axis.
  • the gauges it is preferable for the gauges to be fixed to the main mass near its axis. rotation axis.
  • the two gauges can be arranged on either side of the axis of rotation of the main mass.
  • the first point of attachment and the second point of attachment may be arranged, along the X axis, on either side of the axis of rotation of the main mass.
  • the distance along the axis X between the axis of rotation of the main mass and one or other of the points of attachment of the gauge is less than five times the length of the gauge. for example substantially equal to twice the length of the gauge, for example substantially less than twice the thickness of the substrate.
  • the invention is particularly well suited for producing an off-plane detection accelerometer.
  • the first mechanical bias is a pair oriented along the axis of rotation resulting from a Z acceleration applied to the device and the second mechanical bias is an acceleration along the X axis applied to the device.
  • the two intermediate masses may be advantageous to arrange the two intermediate masses in a symmetry along an axis perpendicular to the axis of rotation, for example in axial symmetry along the X axis.
  • the invention is also well suited for the production of an off-plane detection magnetometer.
  • the first mechanical bias is a pair oriented along the axis of rotation induced by the presence of a magnetic field oriented along the Z axis
  • the second mechanical bias is an acceleration along the X axis applied to the axis. device.
  • the main mass may further comprise:
  • this intermediate region being insensitive to the first force and containing the intermediate masses, the attachment zones, as well as the gauges.
  • the two sensitive regions of the main mass are covered with a magnetic layer to form a permanent magnet.
  • the magnetic moment of this magnet must be oriented in a direction that allows the rotation of the main mass about its axis of rotation in the presence of a magnetic field oriented along the Z axis.
  • the two sensitive regions are the image of each other by central symmetry.
  • FIG. 1 is a diagrammatic view in the plane of the substrate of a device according to one embodiment of the invention adapted for producing a magnetometer;
  • FIG. 2 is a schematic view in the plane of the substrate of a device according to another embodiment of the invention also adapted for producing a magnetometer;
  • FIG. 3 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention
  • FIG. 4 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention
  • FIG. 5 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention
  • FIG. 6 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention
  • FIG. 7 is a diagrammatic view in the plane of the substrate of a device according to one embodiment of the invention adapted for producing an accelerometer
  • FIG. 8 is a schematic view in the plane of the substrate of a device according to another embodiment of the invention also suitable for producing an accelerometer.
  • FIGS. 1 and 2 A microelectromechanical device according to an embodiment suitable for producing an off-plane displacement magnetometer is illustrated in FIGS. 1 and 2.
  • This device or transducer generally produced in a semiconductor substrate formed of parallel layers, comprises in particular a main mass 1 extending at rest, that is to say in the absence of any external force, parallel to the layers of the substrate or a plane called "plane of the substrate".
  • This plane of the substrate is defined in particular by two perpendicular X and Y axes, and will be called later XY plane. One thus hears by displacements out-plan any displacement which is not contained in this plane XY.
  • the main mass is kept in suspension and is rotated about an axis of rotation 4 parallel to the Y axis via two deformable elements 31, 32 connecting two zones of fasteners 11, 12 of the main mass 1 to the less than a fixed anchoring zone 2.
  • deformable elements 31, 32 are, for example, silicon blades that deform in torsion under the effect of stresses out of the plane.
  • two regions are also identified called “sensitive regions" 13, 14 on either side of the axis of rotation of the main mass in the direction of the X axis separated from each other by an intermediate region 15 .
  • Each of these two sensitive regions 13, 14 is covered with a magnetic layer.
  • the magnetic moment of each of these magnetic field sources is oriented so as to cause the rotation of the main mass around the axis of rotation 4 in the presence of a magnetic field to be measured oriented along an axis Z perpendicular to the XY plane.
  • the intermediate region 15 contains two intermediate masses 51, 52 substantially structurally identical, and mounted head to tail so as to limit the occupied area.
  • Figures 1 and 2 illustrate two different ways of arranging the intermediate masses together.
  • each intermediate mass 51, 52 comprises two portions in the direction of the axis of rotation 4.
  • one of these portions called the thin portion 511, 521, has a width in the direction of the X axis less than that of the other portion, said wide portion 512, 522.
  • each connecting means 61, 62 is secured to the fixed anchoring zone 2 and to the one of the intermediate masses 51, 52 via a connection point 610, 620.
  • These connecting means 61, 62 are in particular chosen to allow displacement of the intermediate masses 51, 52 in the XY plane when an acceleration along the X axis is applied to the transducer.
  • connecting means 61, 62 are chosen and configured to allow a rotational movement of the intermediate masses 51, 52 around a pivot point formed by the connection point 610, 620. According to a variant, these connecting means 61, 62 may be chosen and configured to allow a displacement in translation of the intermediate masses 51, 52 in the direction of the X axis.
  • connection point 610, 620 is located on the thin portion 511, 521 of the corresponding intermediate mass 51, 52 and positioned so as to allow a maximum of clearance of the wide portion 512, 522.
  • the two gauges 71, 72 extend perpendicular to the axis of rotation 4.
  • Each of the gauges 71, 72 is secured to the main mass 1 via a first attachment point 711, 721 and is secured to one of the intermediate masses 51, 52 via a second point of attachment 712, 722.
  • the second attachment point 712, 722 is located and positioned on the thin portion 511, 521 of the corresponding intermediate mass 51, 52, so that its displacements (i.e. those of the second attachment point 712 , 722) reflect those of the first attachment point 711, 721.
  • the movements of the first attachment point 711, 721 and the second attachment point 712, 722 of the same gauge must be of substantially identical direction and of different amplitudes under the effect of a magnetic field oriented along the Z axis, and of substantially identical direction and substantially equal amplitudes under the effect of an acceleration along the X axis.
  • the positioning of the gauge is determined according to the theoretical calculations of displacement under an acceleration along the X axis of the main mass on the one hand, and the intermediate mass taken separately on the other hand, depending on the characteristics of these masses. and their springs.
  • the optimal positioning is chosen for a minimal difference of these displacements.
  • the gauges 71, 72 are fixed on the main mass near the axis of rotation 4.
  • the distance along the axis X between the axis of rotation 4 and the either of the points of attachment of the gauge is preferably less than five times the length of the gauge, for example substantially equal to twice the length of the gauge.
  • the two gauges 71, 72 can be arranged on either side of the axis of rotation 4.
  • the first attachment point 711, 721 can be positioned as close to the axis of rotation 4 relative to the second attachment point 712, 722 ( Figure 4), or be positioned further from the axis of rotation 4 relative to the second attachment point 712, 722 ( Figure 5).
  • the first attachment point 711, 721 and the second attachment point 712, 722 can be arranged along the X axis on either side of the axis of attachment. rotation 4.
  • FIGS. 7 and 8 Another micro-electromechanical device according to another embodiment adapted to the realization of an off-plane displacement accelerometer is illustrated in FIGS. 7 and 8. This device differs from the device presented above by the fact that the main mass 1 does not contain magnetic regions, and that its shape has been optimized to limit its size.
  • the device according to this other embodiment therefore comprises a main mass 1 and two intermediate masses 51, 52 contained in the main mass 1.
  • the main mass extends in the plane XY and is rotatable about the axis of rotation 4 parallel to the axis Y.
  • Two deformable elements 31, 32 connect two zones of fasteners 11, 12 of the main mass 1 to at least one fixed anchoring zone 2.
  • the two intermediate masses 51, 52 are also substantially structurally identical, and are also mounted head to tail so as to limit the area occupied.
  • Each of the intermediate masses has in particular an appearance in accordance with that illustrated in Figure 3 and already described above.
  • each of these intermediate masses 51, 52 is also coupled to a gauge 71, 72 and to a connecting means 61, 62 for detecting and measuring a possible parasitic displacement of the main mass in the direction of the X axis, due to the application of an acceleration along the X axis.
  • each connecting means 61, 62 is secured to the fixed anchoring zone 2 and to one of the intermediate masses 51, 52 via a connection point 610, 620.
  • These connecting means are also chosen to allow a displacement of the intermediate masses in the XY plane when an acceleration along the X axis is applied to the main mass.
  • the connecting means 61, 62 may be chosen and configured to allow displacement in translation of the intermediate masses or a displacement in rotation around the connection point located on the thin portion of the intermediate mass.
  • the two gauges 71, 72 extend perpendicular to the axis of rotation 4.
  • Each of the gauges 71, 72 is secured to the main mass 1 via a first point of attachment 711, 721 and is secured to the one of the intermediate masses 51, 52 via a second attachment point 712, 722 located on the thin portion of the intermediate mass.
  • first point of attachment 711, 721 is secured to the one of the intermediate masses 51, 52 via a second attachment point 712, 722 located on the thin portion of the intermediate mass.
  • the distance along the X axis between the axis of rotation Y and one or other of the points Attachment of the gauge is preferably less than five times the length of the gauge, for example substantially equal to twice the length of the gauge.
  • the operation is substantially similar.
  • the main mass moves in rotation about the axis of rotation of the main mass. This rotation causes an opposite deformation of the gauges (in tension for one and compression for the other) and therefore resistance variations proportional to the applied stresses representative of the mechanical stress to be measured.
  • the main mass moves in translation along the X axis.
  • each of the intermediate masses moves, in rotation or in translation according to the connecting means implemented, in the XY plane so as to follow the translational movement of the main mass so that each of the gauges is moved without suffering from deformation or stress representative of this parasitic mechanical stress.
  • the assembly is configured so that both ends of a gauge move identically along the X axis, in terms of direction and amplitude, for limit any deformation of the gauge due to displacements in the plane XY of the device.
  • the variation of the resistance of each of the strain gauges will be a function of the rotational displacements of the main mass about the axis of rotation, despite the presence of force inducing parasitic displacements along the X axis.
  • stops 8 (a single stop has been shown in the figures) to limit the displacement of each of the intermediate masses along the X axis if this proved necessary .
  • the present invention therefore makes it possible to produce off-plane detection type transducers incorporating in particular two or three mobile and sensitive masses, one of which is intended to detect, via strain gauges, the out-of-plane displacements induced by a force. to measure, the other mass or masses being intended to compensate for all the stresses exerted by the main mass on the gauges following its movements called "in the plane”.

Abstract

Microelectromechanical device made from a semiconductor substrate and comprising at least a main mass (1) able to move rotationally about an axis of rotation (4) parallel to the plane of the substrate under the effect of a first mechanical force applied. The device further comprises at least one mechanical detection assembly formed by: - an intermediate mass (51, 52) connected to an anchor zone (2) via mechanical connection means (61, 62) allowing the intermediate mass (51, 52) a movement parallel to the plane of the substrate under the effect of a second mechanical force applied inducing a movement of the device along an axis X parallel to the plane of the substrate and perpendicular to the axis of rotation (4); and - of a strain gauge (71, 72) secured to the main mass (1) via a first attachment point (711, 721) and secured to the intermediate mass (51, 52) via a second attachment point (712, 722), the movements of the first attachment point (711, 721) and of the second attachment point (712, 722) being in substantially identical directions with different amplitudes under the effect of the first force applied, and in substantially identical directions with substantially equal amplitudes under the effect of the second force applied.

Description

DISPOSITIF MICROELECTROMECANIOUE PRESENTANT UNE SENSIBILITE VIS-A-VIS DES SOLLICITATIONS MECANIQUES HORS PLAN  MICROELECTROMECHANICAL DEVICE HAVING SENSITIVITY TO OUTSTANDING MECHANICAL SOLICITATION
DOMAINE DE L'INVENTION FIELD OF THE INVENTION
La présente invention se rapporte à des systèmes micro-électromécaniques, également désignés en anglais par l'acronyme MEMS pour « Micro-ElectroMechanical Systems ». En particulier, la présente invention concerne un transducteur MEMS à détection dit « hors plan ». L'invention est notamment adaptée pour la réalisation de magnétomètre ou d'accéléromètre. The present invention relates to microelectromechanical systems, also referred to in English by the acronym MEMS for "Micro-ElectroMechanical Systems". In particular, the present invention relates to a transducer MEMS detection said "off plan". The invention is particularly suitable for the realization of magnetometer or accelerometer.
ETAT ANTERIEUR DE LA TECHNIQUE PRIOR STATE OF THE TECHNIQUE
Les transducteurs micro-électromécaniques de force, tels que les accéléromètres, les gyromètres ou les magnétomètres, se déclinent typiquement sous la forme de dispositifs comprenant une masse mobile et des moyens de détection mesurant les déplacements de cette masse mobile sous l'effet d'une force qui lui est appliquée. Une telle force peut notamment être induite par une accélération de l'objet sur lequel le transducteur est reporté ou encore par un champ magnétique appliqué à l'objet. Micro-electromechanical force transducers, such as accelerometers, gyrometers or magnetometers, are typically in the form of devices comprising a moving mass and detection means measuring the displacements of this mobile mass under the effect of a force applied to it. Such a force may in particular be induced by an acceleration of the object on which the transducer is carried or by a magnetic field applied to the object.
En pratique, la masse mobile est réalisée à partir d'un substrat semi-conducteur et se présente généralement sous la forme d'une couche d'épaisseur de l'ordre d'une ou de plusieurs dizaines de microns, parallèle au plan du substrat. Des éléments déformables couplant la masse mobile à des zones d'ancrages fixes maintiennent la masse mobile en suspension tout en autorisant son déplacement sous l'effet de la force à mesurer. En outre, la masse mobile est couplée à des moyens permettant de détecter ses déplacements consécutifs à l'application de la force à mesurer. En particulier, dans le cas d'un transducteur à détection dit « hors plan », l'architecture est telle que ces moyens de détections fournissent un signal proportionnel à la force hors plan à mesurer, et un signal d'amplitude bien plus faible sous l'effet d'une force dans le plan du substrat. Dans le cas par exemple des transducteurs utilisant des jauges de contraintes, il est avantageux que les déplacements hors plan de la masse mobile engendrent des contraintes maximales sur chacune des jauges, et qu'à l'inverse les déplacements parasites dans le plan de la masse mobile exercent sur chacune des jauges des contraintes parasites minimales, qu'on ne peut toutefois négliger lors des mesures. In practice, the moving mass is made from a semiconductor substrate and is generally in the form of a layer of thickness of the order of one or more tens of microns, parallel to the plane of the substrate . Deformable elements coupling the moving mass to fixed anchoring zones maintain the mobile mass in suspension while allowing its displacement under the effect of the force to be measured. In addition, the mobile mass is coupled to means for detecting its displacements consecutive to the application of the force to be measured. In particular, in the case of a so-called "out-of-plane" detection transducer, the architecture is such that these detecting means provide a signal proportional to the out-of-plane force to be measured, and a much smaller amplitude signal under the effect of a force in the plane of the substrate. In the case, for example, of transducers using strain gauges, it is advantageous for off-plane displacements of the moving mass to generate maximum stresses on each of the gauges and, conversely, parasitic displacements in the plane of the mass. mobile device exert on each of the gauges minimal parasitic stresses, which can not be may, however, be neglected during measurements.
En pratique, il est donc avantageux de s'affranchir de ces bruits de mesure résultant des contraintes parasites exercées sur ces jauges, en rendant le système de détection du transducteur le moins sensible aux sollicitations mécaniques non désirées, telles que des accélérations ou des chocs, engendrant des déplacements parasites de la masse mobile parallèlement au plan du substrat. In practice, it is therefore advantageous to overcome these measurement noises resulting from the parasitic stresses exerted on these gauges, making the transducer detection system the least sensitive to unwanted mechanical stresses, such as accelerations or shocks, generating parasitic displacements of the moving mass parallel to the plane of the substrate.
Ainsi, pour réduire la sensibilité du système de détection à ces déplacements parasites dans le plan, il est courant, notamment dans le cas des accéléromètres, d'intégrer des moyens de découplage de la masse mobile, sous la forme par exemple de bras de liaison ou de ressorts, afin de limiter tout déplacement non désiré de la masse mobile. Un exemple de tels moyens de découplage est décrit dans le document WO 2014/102507. Cependant, l'ajout de ces moyens de découplage peut présenter l'inconvénient d'augmenter l'encombrement global du transducteur, ainsi que de diminuer sa sensibilité. Thus, in order to reduce the sensitivity of the detection system to these parasitic displacements in the plane, it is common, particularly in the case of accelerometers, to integrate means for decoupling the mobile mass, in the form of, for example, link arms or springs, to limit any unwanted movement of the moving mass. An example of such decoupling means is described in WO 2014/102507. However, the addition of these decoupling means may have the disadvantage of increasing the overall size of the transducer, as well as reducing its sensitivity.
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
Dans ce contexte, un objectif de la présente invention est de proposer une solution pour la réalisation d'un transducteur à détection ou déplacement hors plan d'encombrement réduit, dans lequel les sollicitations mécaniques dites « dans le plan » de la masse mobile ne sont pas détectées. La solution proposée consiste notamment à rendre quasiment nulles les variations des moyens de détection induites par les déplacements parasites du transducteur. In this context, an objective of the present invention is to propose a solution for the production of a transducer with detection or displacement outside the reduced space plane, in which the mechanical stresses called "in the plane" of the moving mass are not not detected. The proposed solution consists in making the variations of the detection means induced by parasitic displacements of the transducer virtually nil.
La présente invention a ainsi pour objet un dispositif micro-électromécanique réalisé dans un substrat semi- conducteur dont les couches sont parallèles à un plan du substrat. Le dispositif comprend notamment : The present invention thus relates to a microelectromechanical device made in a semiconductor substrate whose layers are parallel to a plane of the substrate. The device comprises in particular:
- au moins une zone d'ancrage fixe ; at least one fixed anchoring zone;
- une masse principale apte à se déplacer en rotation autour d'un axe de rotation parallèle au plan du substrat sous l'effet d'une première sollicitation mécanique suivant un axe Z perpendiculaire au plan du substrat. Cette masse principale comprend deux zones d'attache symétriques par rapport à un axe X parallèle au plan du substrat et perpendiculaire à l'axe de rotation; et - des éléments déformables reliant les deux zones d'attache à la zone d'ancrage, et autorisant un déplacement de la masse principale autour de l'axe de rotation. a main mass able to move in rotation about an axis of rotation parallel to the plane of the substrate under the effect of a first mechanical stress along an axis Z perpendicular to the plane of the substrate. This main mass comprises two attachment zones symmetrical with respect to an axis X parallel to the plane of the substrate and perpendicular to the axis of rotation; and - Deformable elements connecting the two attachment zones to the anchoring zone, and allowing a displacement of the main mass around the axis of rotation.
Selon l'invention, le dispositif comprend en outre au moins un ensemble mécanique de détection formé : According to the invention, the device further comprises at least one mechanical detection unit formed:
- d'une masse intermédiaire reliée à la zone d'ancrage via des moyens de liaison mécanique, autorisant un déplacement de la masse intermédiaire parallèlement au plan du substrat sous l'effet d'une deuxième sollicitation mécanique induisant un déplacement du dispositif suivant l'axe X ; et  - An intermediate mass connected to the anchoring zone via mechanical connection means, allowing a displacement of the intermediate mass parallel to the plane of the substrate under the effect of a second mechanical stress inducing a displacement of the device according to the X axis; and
- d'une jauge de contraintes s'étendant perpendiculairement à l'axe de rotation, cette jauge étant solidarisée à la masse principale via un premier point d'attache et étant solidarisée à la masse intermédiaire via un second point d'attache. - A strain gauge extending perpendicular to the axis of rotation, the gauge being secured to the main mass via a first point of attachment and being secured to the intermediate mass via a second point of attachment.
Par ailleurs, selon l'invention, l'architecture de la masse intermédiaire et le positionnement de la jauge sont tels que les déplacements du premier point d'attache et du second point d'attache sont de directions sensiblement identiques et d'amplitudes différentes sous l'effet de la première sollicitation, et de directions sensiblement identiques et d'amplitudes sensiblement égales sous l'effet de la deuxième sollicitation. En d'autres termes, la présente invention propose d'intégrer au moins deux masses sensibles couplées chacune à une extrémité d'une même jauge de contrainte. L'une des deux masses est appelée masse principale, tandis que l'autre est appelée masse intermédiaire. Ces deux masses sont configurées pour avoir des sensibilités différentes selon les sollicitations mécaniques auxquelles elles peuvent être soumises : Furthermore, according to the invention, the architecture of the intermediate mass and the positioning of the gauge are such that the displacements of the first point of attachment and the second point of attachment are of substantially identical directions and different amplitudes under the effect of the first bias, and substantially identical directions and substantially equal amplitudes under the effect of the second bias. In other words, the present invention proposes to integrate at least two sensitive masses each coupled to one end of the same strain gauge. One of the two masses is called the main mass, while the other is called the intermediate mass. These two masses are configured to have different sensitivities according to the mechanical stresses to which they may be subjected:
· la première sollicitation mécanique, qui est celle que l'on souhaite mesurer, est notamment un couple orienté suivant l'axe Y et ayant tendance à faire sortir les masses hors du plan. La masse principale y est sensible, la masse intermédiaire y est résistante. La jauge fixée entre les deux masses subit donc des contraintes proportionnelles à l'amplitude du déplacement de la masse principale, ledit déplacement étant lui-même proportionnel à l'amplitude du couple.  · The first mechanical stress, which is that which one wishes to measure, is in particular a pair oriented along the Y axis and tending to push the masses out of the plane. The main mass is sensitive, the intermediate mass is resistant. The gauge fixed between the two masses therefore undergoes constraints proportional to the amplitude of the displacement of the main mass, said displacement being itself proportional to the amplitude of the torque.
• la seconde sollicitation mécanique, qui est celle que l'on ne souhaite pas mesurer, est notamment une accélération suivant l'axe X qui induit des déplacements des masses dans le plan. La masse principale et la masse intermédiaire sont configurées de telle sorte que leurs déplacements au niveau des points de fixation de la jauge sont de même direction et même amplitude. Ainsi la jauge reliant les deux masses n'est soumise à aucune contrainte en réponse à la seconde sollicitation mécanique. The second mechanical stress, which is that which one does not wish to measure, is in particular an acceleration along the X axis which induces displacements of the masses in the plane. The main mass and the intermediate mass are configured so that their displacements at the points of attachment of the gauge are of the same direction and same amplitude. Thus the gauge connecting the two masses is not subject to any constraint in response to the second mechanical stress.
· pour tout autre type de sollicitation mécanique, les masses principale et intermédiaire sont également insensibles, donc aucun signal n'est mesuré par les jauges.  · For all other types of mechanical stress, the main and intermediate masses are also insensitive, so no signal is measured by the gauges.
Ainsi, la masse principale est configurée pour être la plus sensible aux sollicitations mécaniques à mesurer, de sorte que la variation de résistance (dans le cas d'une jauge piezorésistive) représentative de ces sollicitations mécaniques à mesurer soit la plus importante. La masse intermédiaire est quant à elle configurée pour se déplacer avec la masse principale. En particulier, la masse intermédiaire est configurée pour assurer une variation de résistance quasi nulle en réponse à des déplacements du transducteur suivant l'axe X, tout en autorisant une variation de résistance non nulle des jauges représentative des sollicitations mécaniques hors plan subies par le transducteur. Thus, the main mass is configured to be the most sensitive to the mechanical stresses to be measured, so that the resistance variation (in the case of a piezoresistive gauge) representative of these mechanical stresses to be measured is the largest. The intermediate mass is itself configured to move with the main mass. In particular, the intermediate mass is configured to ensure a virtually zero resistance variation in response to transducer displacements along the X axis, while allowing a non-zero resistance variation of the gauges representative of the out-of-plane mechanical forces experienced by the transducer. .
Plus précisément, la masse intermédiaire et les moyens de liaison assurent un déplacement identique, suivant l'axe X, des deux points d'attache de la jauge. La jauge est notamment positionnée de sorte que, lorsque la masse principale subit la deuxième sollicitation mécanique qui induit un déplacement du dispositif dans la direction suivant l'axe X : More specifically, the intermediate mass and the connecting means provide an identical displacement, along the X axis, of the two points of attachment of the gauge. The gauge is in particular positioned so that, when the main mass undergoes the second mechanical stress which induces a displacement of the device in the direction along the X axis:
- le premier point d'attache de la jauge se déplace dans la même direction que le second point d'attache de la jauge, et notamment dans la même direction de déplacement suivant l'axe X que la masse principale en l'absence de la première force; et  the first point of attachment of the gauge moves in the same direction as the second point of attachment of the gauge, and in particular in the same direction of displacement along the axis X that the principal mass in the absence of the first strength; and
- l'amplitude de déplacement dans cette direction suivant l'axe X du premier point d'attache de la jauge est sensiblement identique à l'amplitude de déplacement dans cette direction suivant l'axe X du second point d'attache de la jauge. Ainsi, au final, la jauge n'est pas soumise à des contraintes sous l'effet de la deuxième sollicitation mécanique, malgré les déplacements des masses principale et intermédiaire sous l'effet de cette deuxième sollicitation mécanique.  - The amplitude of displacement in this direction along the X axis of the first point of attachment of the gauge is substantially identical to the amplitude of displacement in this direction along the X axis of the second point of attachment of the gauge. Thus, in the end, the gauge is not subjected to stress under the effect of the second mechanical stress, despite the movements of the main and intermediate masses under the effect of this second mechanical stress.
Sur le même principe, il est possible d'utiliser un résonateur mécanique en lieu et place de la jauge de contraintes piezorésistive, les variations de fréquences de résonances du résonateur changeant en fonction des contraintes qui lui sont appliquées. On the same principle, it is possible to use a mechanical resonator in place of the piezoresistive stress gauge, the resonant frequency variations of the resonator changing according to the constraints applied to it.
Selon un mode de réalisation, le dispositif peut en outre comprendre deux ensembles mécaniques de détection, les deux jauges étant soumises à des efforts opposés sous l'effet de la première sollicitation mécanique, telle qu'une force selon un axe Z perpendiculaire au plan du substrat. En d'autres termes, si l'une des jauges subit un effort en tension entre ses deux points d'attache, l'autre jauge subit un effort en compression entre ses deux points d'attache. Ce mode de réalisation permet notamment de réaliser une détection différentielle et d'obtenir ainsi une meilleure précision de mesure. According to one embodiment, the device may further comprise two mechanical detection assemblies, the two gauges being subjected to opposite forces under the effect of the first mechanical stress, such as a force along an axis Z perpendicular to the plane of the substrate. In other words, if one of the gauges undergoes a tension in tension between its two points of attachment, the other gauge undergoes a compressive force between its two points of attachment. This embodiment makes it possible in particular to perform a differential detection and thus to obtain a better measurement accuracy.
Le positionnement des points d'attache de chaque jauge dépendra notamment des caractéristiques des masses principales et intermédiaires ainsi que des moyens de liaison mis en œuvre. The positioning of the attachment points of each gauge will depend in particular on the characteristics of the main and intermediate masses as well as the connection means used.
Tout d'abord, il est avantageux que la masse principale présente un volume supérieur à celui des masses intermédiaires. En pratique, les masses intermédiaires sont contenues dans la masse principale, et le ratio surfacique entre la masse principale et les masses intermédiaire peut être inférieur à un tiers. First, it is advantageous that the main mass has a volume greater than that of the intermediate masses. In practice, the intermediate masses are contained in the main mass, and the surface ratio between the main mass and the intermediate masses may be less than one third.
Par ailleurs, les poids de chacune des masses intermédiaires ainsi que les moyens de liaisons doivent de préférence être adaptés pour garantir une sensibilité optimale aux déplacements suivant l'axe X de la masse principale. Selon une variante, le déplacement de chacune des masses intermédiaires sous l'effet de la deuxième force peut être une rotation dans le plan autour d'un point de pivot défini par les moyens de liaison. Du fait de cet agencement, le point de pivot est fixe par rapport à la masse principale. Par ailleurs, les moyens de liaison mis en œuvre peuvent être des ressorts agencés de manière à limiter, voire interdire, toute translation des masses intermédiaires perpendiculairement à l'axe de rotation et à n'autoriser que la rotation des masses intermédiaires autour de leur point de pivot respectif sous l'effet d'une accélération suivant l'axe X. En outre, dans cette variante, chacune des masses intermédiaires peut présenter deux portions dans la direction de l'axe de rotation de la masse principale, dont les dimensions suivant l'axe X sont différentes. En particulier, l'une de ces portions, dite portion fine, présente une largeur dans la direction de l'axe X inférieure à celle de l'autre portion. Ainsi, le second point d'attache et le point de liaison sont de préférence localisés sur cette portion fine. Moreover, the weights of each of the intermediate masses and the connecting means must preferably be adapted to ensure optimum sensitivity to displacements along the X axis of the main mass. According to a variant, the displacement of each of the intermediate masses under the effect of the second force may be a rotation in the plane around a pivot point defined by the connecting means. Because of this arrangement, the pivot point is fixed relative to the main mass. Furthermore, the connecting means used may be springs arranged to limit or prohibit any translation of the intermediate masses perpendicular to the axis of rotation and to allow only the rotation of the intermediate masses around their point respective pivot under the effect of an acceleration along the X axis. In addition, in this variant, each of the intermediate masses may have two portions in the direction of the axis of rotation of the main mass, the dimensions along the X axis are different. In particular, one of these portions, said thin portion, has a width in the direction of the X axis less than that of the other portion. Thus, the second point of attachment and the point of connection are preferably located on this thin portion.
En d'autres termes, chaque masse intermédiaire présente avantageusement une apparence en forme de rame ayant une zone la plus massive éloignée de son point d'accroché. Une telle forme autorise une imbrication tête-bêche des deux rames afin de limiter la surface occupée par ces masses intermédiaires et la portion la plus large constituant la pelle de la rame permet d'augmenter le poids des masses. In other words, each intermediate mass advantageously has a ream-like appearance having a most massive zone away from its point of attachment. Such a shape allows a nesting head-to-tail of the two oars to limit the area occupied by these intermediate masses and the widest portion constituting the shovel of the train allows to increase the weight of the masses.
Selon une autre variante, le déplacement de chacune des masses intermédiaires sous l'effet de la deuxième force peut être une translation suivant l'axe X. According to another variant, the displacement of each of the intermediate masses under the effect of the second force can be a translation along the X axis.
Optionnellement, le dispositif peut comprendre au moins une butée apte à limiter le déplacement de chacune des masses intermédiaires dans la direction suivant l'axe X. Dans tous les cas, il est préférable que les jauges soient fixées sur la masse principale à proximité de son axe de rotation. Optionally, the device may comprise at least one stop capable of limiting the displacement of each of the intermediate masses in the direction along the X axis. In all cases, it is preferable for the gauges to be fixed to the main mass near its axis. rotation axis.
Diverses configurations sont envisageables. Par exemple, selon une configuration, les deux jauges peuvent être agencées de part et d'autre de l'axe de rotation de la masse principale. Various configurations are possible. For example, in one configuration, the two gauges can be arranged on either side of the axis of rotation of the main mass.
Selon une autre configuration, pour chacune des jauges, le premier point d'attache et le second point d'attache peuvent être disposés, suivant l'axe X, de part et d'autre de l'axe de rotation de la masse principale. According to another configuration, for each of the gauges, the first point of attachment and the second point of attachment may be arranged, along the X axis, on either side of the axis of rotation of the main mass.
En outre, il est préférable que la distance suivant l'axe X entre l'axe de rotation de la masse principale et l'un ou l'autre des points d'attache de la jauge soit inférieure à cinq fois la longueur de la jauge, par exemple sensiblement égale à deux fois la longueur de la jauge, par exemple sensiblement inférieure à deux fois l'épaisseur du substrat. L'invention est notamment bien adaptée pour la réalisation d'un accéléromètre à détection hors-plan. Dans ce cas particulier, la première sollicitation mécanique est un couple orienté suivant l'axe de rotation résultant d'une accélération suivant Z appliquée au dispositif et la deuxième sollicitation mécanique est une accélération suivant l'axe X appliquée au dispositif. En outre, il peut être avantageux de disposer les deux masses intermédiaires selon une symétrie suivant un axe perpendiculaire à l'axe de rotation, par exemple suivant une symétrie axiale suivant l'axe X. L'invention est également bien adaptée pour la réalisation d'un magnétomètre à détection hors-plan. Dans ce cas particulier, la première sollicitation mécanique est un couple orienté suivant l'axe de rotation induite par la présence d'un champ magnétique orienté suivant l'axe Z, et la deuxième sollicitation mécanique est une accélération suivant l'axe X appliquée au dispositif. En outre, il peut également être avantageux de disposer les deux masses intermédiaires selon une symétrie suivant un axe perpendiculaire à l'axe de rotation. Par exemple, selon une symétrie centrale autour du centre de gravité de la masse principale. In addition, it is preferable that the distance along the axis X between the axis of rotation of the main mass and one or other of the points of attachment of the gauge is less than five times the length of the gauge. for example substantially equal to twice the length of the gauge, for example substantially less than twice the thickness of the substrate. The invention is particularly well suited for producing an off-plane detection accelerometer. In this particular case, the first mechanical bias is a pair oriented along the axis of rotation resulting from a Z acceleration applied to the device and the second mechanical bias is an acceleration along the X axis applied to the device. In addition, it may be advantageous to arrange the two intermediate masses in a symmetry along an axis perpendicular to the axis of rotation, for example in axial symmetry along the X axis. The invention is also well suited for the production of an off-plane detection magnetometer. In this particular case, the first mechanical bias is a pair oriented along the axis of rotation induced by the presence of a magnetic field oriented along the Z axis, and the second mechanical bias is an acceleration along the X axis applied to the axis. device. In addition, it may also be advantageous to arrange the two intermediate masses in a symmetry along an axis perpendicular to the axis of rotation. For example, according to a central symmetry around the center of gravity of the main mass.
En particulier, dans le cas d'un magnétomètre, la masse principale peut en outre comprendre : In particular, in the case of a magnetometer, the main mass may further comprise:
- deux régions sensibles de part et d'autre de l'axe de rotation de la masse principale, ces deux régions étant sensibles à la première force ; et  two sensitive regions on either side of the axis of rotation of the main mass, these two regions being sensitive to the first force; and
- une région intermédiaire entre les deux régions sensibles, cette région intermédiaire étant insensible à la première force et contenant les masses intermédiaires, les zones d'attaches, ainsi que les jauges.  an intermediate region between the two sensitive regions, this intermediate region being insensitive to the first force and containing the intermediate masses, the attachment zones, as well as the gauges.
En pratique, les deux régions sensibles de la masse principale sont recouvertes d'une couche magnétique pour former un aimant permanent. Bien entendu, le moment magnétique de cet aimant devra être orienté dans une direction qui autorise la rotation de la masse principale autour de son axe de rotation en présence d'un champ magnétique orientée suivant l'axe Z. In practice, the two sensitive regions of the main mass are covered with a magnetic layer to form a permanent magnet. Of course, the magnetic moment of this magnet must be oriented in a direction that allows the rotation of the main mass about its axis of rotation in the presence of a magnetic field oriented along the Z axis.
De préférence, les deux régions sensibles sont l'image l'une de l'autre par symétrie centrale. BREVE DESCRIPTION DES FIGURES Preferably, the two sensitive regions are the image of each other by central symmetry. BRIEF DESCRIPTION OF THE FIGURES
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et réalisée en relation avec les dessins annexés dans lesquels : The invention will be better understood on reading the description which will follow, given solely by way of example, and made with reference to the appended drawings in which:
- la figure 1 est une vue schématique dans le plan du substrat d'un dispositif selon un mode de réalisation de l'invention adapté pour la réalisation d'un magnétomètre ;  FIG. 1 is a diagrammatic view in the plane of the substrate of a device according to one embodiment of the invention adapted for producing a magnetometer;
- la figure 2 est une vue schématique dans le plan du substrat d'un dispositif selon un autre mode de réalisation de l'invention également adapté pour la réalisation d'un magnétomètre ;  - Figure 2 is a schematic view in the plane of the substrate of a device according to another embodiment of the invention also adapted for producing a magnetometer;
- la figure 3 est une vue schématique dans le plan du substrat d'une masse intermédiaire couplée à une jauge selon une variante de l'invention ;  - Figure 3 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention;
- la figure 4 est une vue schématique dans le plan du substrat d'une masse intermédiaire couplée à une jauge selon une variante de l'invention ;  - Figure 4 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention;
- la figure 5 est une vue schématique dans le plan du substrat d'une masse intermédiaire couplée à une jauge selon une variante de l'invention ;  - Figure 5 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention;
- la figure 6 est une vue schématique dans le plan du substrat d'une masse intermédiaire couplée à une jauge selon une variante de l'invention ;  - Figure 6 is a schematic view in the plane of the substrate of an intermediate mass coupled to a gauge according to a variant of the invention;
- la figure 7 est une vue schématique dans le plan du substrat d'un dispositif selon un mode de réalisation de l'invention adapté pour la réalisation d'un accéléromètre; et  FIG. 7 is a diagrammatic view in the plane of the substrate of a device according to one embodiment of the invention adapted for producing an accelerometer; and
- la figure 8 est une vue schématique dans le plan du substrat d'un dispositif selon un autre mode de réalisation de l'invention également adapté pour la réalisation d'un accéléromètre.  - Figure 8 is a schematic view in the plane of the substrate of a device according to another embodiment of the invention also suitable for producing an accelerometer.
On notera que dans ces figures, des références identiques sont utilisées pour désigner des éléments identiques ou analogues. Par ailleurs, les différentes structures présentées ne sont pas à l'échelle exacte, et seuls les éléments indispensables à la compréhension de l'invention sont représentés sur ces figures pour des raisons de clarté. DESCRIPTION DÉTAILLÉE DE DIFFÉRENTS MODES DE RÉALISATION PARTICULIERS Note that in these figures, identical references are used to designate identical or similar elements. Moreover, the various structures presented are not at the exact scale, and only the elements essential for understanding the invention are shown in these figures for the sake of clarity. DETAILED DESCRIPTION OF DIFFERENT PARTICULAR EMBODIMENTS
Un dispositif micro-électromécanique selon un mode de réalisation adapté à la réalisation d'un magnétomètre à déplacement hors-plan est illustré aux figures 1 et 2. A microelectromechanical device according to an embodiment suitable for producing an off-plane displacement magnetometer is illustrated in FIGS. 1 and 2.
Ce dispositif ou transducteur, généralement réalisé dans un substrat semi-conducteur formé de couches parallèles, comprend notamment une masse principale 1 s'étendant au repos, c'est-à-dire en l'absence de toute force extérieure, parallèlement aux couches du substrat ou à un plan dit « plan du substrat ». Ce plan du substrat est notamment défini par deux axes X et Y perpendiculaires, et sera appelé par la suite plan XY. On entend ainsi par déplacements hors-plan tout déplacement qui n'est pas contenu dans ce plan XY. This device or transducer, generally produced in a semiconductor substrate formed of parallel layers, comprises in particular a main mass 1 extending at rest, that is to say in the absence of any external force, parallel to the layers of the substrate or a plane called "plane of the substrate". This plane of the substrate is defined in particular by two perpendicular X and Y axes, and will be called later XY plane. One thus hears by displacements out-plan any displacement which is not contained in this plane XY.
La masse principale est maintenue en suspension et est rendue mobile en rotation autour d'un axe de rotation 4 parallèle à l'axe Y via deux éléments déformables 31, 32 reliant deux zones d'attaches 11, 12 de la masse principale 1 à au moins une zone d'ancrage fixe 2. Ces éléments déformables 31, 32 sont par exemple des lames de silicium se déformant en torsion sous l'effet de sollicitations hors du plan. The main mass is kept in suspension and is rotated about an axis of rotation 4 parallel to the Y axis via two deformable elements 31, 32 connecting two zones of fasteners 11, 12 of the main mass 1 to the less than a fixed anchoring zone 2. These deformable elements 31, 32 are, for example, silicon blades that deform in torsion under the effect of stresses out of the plane.
On identifie en outre dans la masse principale deux régions appelées « régions sensibles » 13, 14 de part et d'autres de l'axe de rotation de la masse principale suivant la direction de l'axe X séparées entre elles par une région intermédiaire 15. In the main mass, two regions are also identified called "sensitive regions" 13, 14 on either side of the axis of rotation of the main mass in the direction of the X axis separated from each other by an intermediate region 15 .
Chacune de ces deux régions sensibles 13, 14 est recouverte d'une couche magnétique. En particulier, le moment magnétique de chacune de ces sources de champ magnétique est orienté de manière à provoquer la rotation de la masse principale autour de l'axe de rotation 4 en présence d'un champ magnétique à mesurer orienté suivant un axe Z perpendiculaire au plan XY. Each of these two sensitive regions 13, 14 is covered with a magnetic layer. In particular, the magnetic moment of each of these magnetic field sources is oriented so as to cause the rotation of the main mass around the axis of rotation 4 in the presence of a magnetic field to be measured oriented along an axis Z perpendicular to the XY plane.
Ainsi, lorsque le dispositif est plongé dans le champ magnétique à mesurer, un couple mécanique, fonction notamment du moment magnétique de chacune des sources, de l'amplitude du champ magnétique à mesurer et de l'angle entre le moment magnétique et la direction du champ à mesurer, apparaît, et induit une rotation de la masse principale autour de l'axe de rotation 4 jusqu'à ce que le couple induit et le couple de rappel des ressorts s'égalisent. La région intermédiaire 15 contient deux masses intermédiaires 51, 52 sensiblement identiques structurellement, et montées tête-bêche de manière à limiter la surface occupée. Les figures 1 et 2 illustrent deux façons différentes d'agencer les masses intermédiaires entre elles. Thus, when the device is immersed in the magnetic field to be measured, a mechanical torque, in particular a function of the magnetic moment of each of the sources, the amplitude of the magnetic field to be measured and the angle between the magnetic moment and the direction of the field to be measured, appears, and induces a rotation of the main mass about the axis of rotation 4 until the induced torque and the spring return torque equalize. The intermediate region 15 contains two intermediate masses 51, 52 substantially structurally identical, and mounted head to tail so as to limit the occupied area. Figures 1 and 2 illustrate two different ways of arranging the intermediate masses together.
Comme illustré à la figure 3, chaque masse intermédiaire 51, 52 comprend deux portions dans la direction de l'axe de rotation 4. En particulier, l'une de ces portions, dite portion fine 511, 521, présente une largeur dans la direction de l'axe X inférieure à celle de l'autre portion, dite portion large 512, 522. As illustrated in FIG. 3, each intermediate mass 51, 52 comprises two portions in the direction of the axis of rotation 4. In particular, one of these portions, called the thin portion 511, 521, has a width in the direction of the X axis less than that of the other portion, said wide portion 512, 522.
Ces deux masses intermédiaires 51, 52 sont en outre couplées à des moyens de liaisons 61, 62 et à des jauges 71, 72. Plus précisément, chaque moyen de liaison 61, 62 est solidarisé à la zone d'ancrage fixe 2 et à l'une des masses intermédiaires 51, 52 via un point de liaison 610, 620. Ces moyens de liaisons 61, 62 sont notamment choisis pour autoriser un déplacement des masses intermédiaires 51, 52 dans le plan XY lorsqu'une accélération suivant l'axe X est appliquée au transducteur. These two intermediate masses 51, 52 are also coupled to connecting means 61, 62 and gauges 71, 72. More specifically, each connecting means 61, 62 is secured to the fixed anchoring zone 2 and to the one of the intermediate masses 51, 52 via a connection point 610, 620. These connecting means 61, 62 are in particular chosen to allow displacement of the intermediate masses 51, 52 in the XY plane when an acceleration along the X axis is applied to the transducer.
Ces moyens de liaison 61, 62 sont choisis et configurés pour autoriser un déplacement en rotation des masses intermédiaires 51, 52 autour d'un point de pivot formé par le point de liaison 610, 620. Selon une variante, ces moyens de liaison 61, 62 peuvent être choisis et configurés pour autoriser un déplacement en translation des masses intermédiaires 51, 52 dans la direction de l'axe X. These connecting means 61, 62 are chosen and configured to allow a rotational movement of the intermediate masses 51, 52 around a pivot point formed by the connection point 610, 620. According to a variant, these connecting means 61, 62 may be chosen and configured to allow a displacement in translation of the intermediate masses 51, 52 in the direction of the X axis.
En pratique, le point de liaison 610, 620 est localisé sur la portion fine 511, 521 de la masse intermédiaire 51, 52 correspondante et positionnée de manière à autoriser un maximum de débattement de la portion large 512, 522. In practice, the connection point 610, 620 is located on the thin portion 511, 521 of the corresponding intermediate mass 51, 52 and positioned so as to allow a maximum of clearance of the wide portion 512, 522.
Les deux jauges 71, 72, quant à elles, s'étendent perpendiculairement à l'axe de rotation 4. Chacune des jauges 71, 72 est solidarisée à la masse principale 1 via un premier point d'attache 711, 721 et est solidarisée à l'une des masses intermédiaires 51, 52 via un second point d'attache 712, 722. Le second point d'attache 712, 722 est localisé et positionné sur la portion fine 511, 521 de la masse intermédiaire 51, 52 correspondante, de sorte que ses déplacements (c'est-à- dire ceux du second point d'attache 712, 722) reflètent ceux du premier point d'attache 711, 721. En particulier, les déplacements du premier point d'attache 711, 721 et du second point d'attache 712, 722 d'une même jauge devront être de direction sensiblement identique et d'amplitudes différentes sous l'effet d'un champ magnétique orienté suivant l'axe Z, et de direction sensiblement identique et d'amplitudes sensiblement égales sous l'effet d'une accélération suivant l'axe X. The two gauges 71, 72, in turn, extend perpendicular to the axis of rotation 4. Each of the gauges 71, 72 is secured to the main mass 1 via a first attachment point 711, 721 and is secured to one of the intermediate masses 51, 52 via a second point of attachment 712, 722. The second attachment point 712, 722 is located and positioned on the thin portion 511, 521 of the corresponding intermediate mass 51, 52, so that its displacements (i.e. those of the second attachment point 712 , 722) reflect those of the first attachment point 711, 721. In particular, the movements of the first attachment point 711, 721 and the second attachment point 712, 722 of the same gauge must be of substantially identical direction and of different amplitudes under the effect of a magnetic field oriented along the Z axis, and of substantially identical direction and substantially equal amplitudes under the effect of an acceleration along the X axis.
Le positionnement de la jauge se détermine en fonction des calculs théoriques du déplacement sous une accélération selon l'axe X de la masse principale d'une part, et de la masse intermédiaire prise isolément d'autre part, en fonction des caractéristiques de ces masses et de leurs ressorts. Le positionnement optimal est choisi pour une différence minimale de ces déplacements. The positioning of the gauge is determined according to the theoretical calculations of displacement under an acceleration along the X axis of the main mass on the one hand, and the intermediate mass taken separately on the other hand, depending on the characteristics of these masses. and their springs. The optimal positioning is chosen for a minimal difference of these displacements.
Dans tous les cas, il est important que les jauges 71, 72 soient fixées sur la masse principale à proximité de l'axe de rotation 4. En particulier, la distance suivant l'axe X entre l'axe de rotation 4 et l'un ou l'autre des points d'attache de la jauge est de préférence inférieure à cinq fois la longueur de la jauge, par exemple sensiblement égale à deux fois la longueur de la jauge. In all cases, it is important that the gauges 71, 72 are fixed on the main mass near the axis of rotation 4. In particular, the distance along the axis X between the axis of rotation 4 and the either of the points of attachment of the gauge is preferably less than five times the length of the gauge, for example substantially equal to twice the length of the gauge.
Différentes configurations répondant à ces critères sont possibles. Par exemple, comme illustré aux figures 4 et 5, les deux jauges 71, 72 peuvent être agencées de part et d'autre de l'axe de rotation 4. Le premier point d'attache 711, 721 peut être positionné au plus près de l'axe de rotation 4 par rapport au second point d'attache 712, 722 (figure 4), ou être positionné plus loin de l'axe de rotation 4 par rapport au second point d'attache 712, 722 (figure 5). Selon une autre configuration illustrée à la figure 6, le premier point d'attache 711, 721 et le second point d'attache 712, 722 peuvent être disposés, suivant l'axe X, de part et d'autre de l'axe de rotation 4. Un autre dispositif micro-électromécanique selon un autre mode de réalisation adapté à la réalisation d'un accéléromètre à déplacement hors-plan est illustré aux figures 7 et 8. Ce dispositif diffère du dispositif présenté ci-avant par le fait que la masse principale 1 ne contient pas de régions aimantées, et que sa forme a été optimisée pour limiter son encombrement. Different configurations meeting these criteria are possible. For example, as illustrated in FIGS. 4 and 5, the two gauges 71, 72 can be arranged on either side of the axis of rotation 4. The first attachment point 711, 721 can be positioned as close to the axis of rotation 4 relative to the second attachment point 712, 722 (Figure 4), or be positioned further from the axis of rotation 4 relative to the second attachment point 712, 722 (Figure 5). According to another configuration illustrated in FIG. 6, the first attachment point 711, 721 and the second attachment point 712, 722 can be arranged along the X axis on either side of the axis of attachment. rotation 4. Another micro-electromechanical device according to another embodiment adapted to the realization of an off-plane displacement accelerometer is illustrated in FIGS. 7 and 8. This device differs from the device presented above by the fact that the main mass 1 does not contain magnetic regions, and that its shape has been optimized to limit its size.
Ainsi, de façon similaire au dispositif précédent, le dispositif selon cet autre mode de réalisation comprend donc une masse principale 1 ainsi que deux masses intermédiaires 51, 52 contenues dans la masse principale 1. Thus, similarly to the previous device, the device according to this other embodiment therefore comprises a main mass 1 and two intermediate masses 51, 52 contained in the main mass 1.
Comme précédemment, la masse principale s'étend dans le plan XY et est mobile en rotation autour de l'axe de rotation 4 parallèle à l'axe Y. Deux éléments déformables 31, 32 relient deux zones d'attaches 11, 12 de la masse principale 1 à au moins une zone d'ancrage fixe 2. Ainsi, une accélération suivant l'axe Z appliquée au dispositif induit une rotation de la masse principale 1 autour de l'axe de rotation 4. As before, the main mass extends in the plane XY and is rotatable about the axis of rotation 4 parallel to the axis Y. Two deformable elements 31, 32 connect two zones of fasteners 11, 12 of the main mass 1 to at least one fixed anchoring zone 2. Thus, an acceleration along the Z axis applied to the device induces a rotation of the main mass 1 around the axis of rotation 4.
Les deux masses intermédiaires 51, 52 sont également sensiblement identiques structurellement, et sont également montées tête-bêche de manière à limiter la surface occupée. Chacune des masses intermédiaires présente notamment une apparence conforme à celle illustrée à la figure 3 et déjà décrite ci-avant. The two intermediate masses 51, 52 are also substantially structurally identical, and are also mounted head to tail so as to limit the area occupied. Each of the intermediate masses has in particular an appearance in accordance with that illustrated in Figure 3 and already described above.
De même, chacune de ces masses intermédiaires 51, 52 est également couplée à une jauge 71, 72 et à un moyen de liaison 61, 62 pour détecter et mesurer un éventuel déplacement parasite de la masse principale dans la direction de l'axe X, due à l'application d'une accélération suivant l'axe X. Similarly, each of these intermediate masses 51, 52 is also coupled to a gauge 71, 72 and to a connecting means 61, 62 for detecting and measuring a possible parasitic displacement of the main mass in the direction of the X axis, due to the application of an acceleration along the X axis.
Tout comme précédemment, chaque moyen de liaison 61, 62 est solidarisé à la zone d'ancrage 2 fixe et à l'une des masses intermédiaires 51, 52 via un point de liaison 610, 620. Ces moyens de liaison sont également choisis pour autoriser un déplacement des masses intermédiaires dans le plan XY lorsqu'une accélération suivant l'axe X est appliquée à la masse principale. Par ailleurs, les moyens de liaison 61, 62 peuvent être choisis et configurés pour autoriser un déplacement en translation des masses intermédiaires ou un déplacement en rotation autour du point de liaison localisé sur la portion fine de la masse intermédiaire. De même, les deux jauges 71, 72 s'étendent perpendiculairement à l'axe de rotation 4. Chacune des jauges 71, 72 est solidarisée à la masse principale 1 via un premier point d'attache 711, 721 et est solidarisée à l'une des masses intermédiaires 51, 52 via un second point d'attache 712, 722 localisé sur la portion fine de la masse intermédiaire. Bien entendu, les différents critères de positionnement du second point d'attache ainsi que les différentes configurations de positionnement des jauges présentés ci-avant restent valables pour ce mode de réalisation particulier. As previously, each connecting means 61, 62 is secured to the fixed anchoring zone 2 and to one of the intermediate masses 51, 52 via a connection point 610, 620. These connecting means are also chosen to allow a displacement of the intermediate masses in the XY plane when an acceleration along the X axis is applied to the main mass. Furthermore, the connecting means 61, 62 may be chosen and configured to allow displacement in translation of the intermediate masses or a displacement in rotation around the connection point located on the thin portion of the intermediate mass. Similarly, the two gauges 71, 72 extend perpendicular to the axis of rotation 4. Each of the gauges 71, 72 is secured to the main mass 1 via a first point of attachment 711, 721 and is secured to the one of the intermediate masses 51, 52 via a second attachment point 712, 722 located on the thin portion of the intermediate mass. Of course, the different positioning criteria of the second attachment point and the different positioning configurations of the gauges presented above remain valid for this particular embodiment.
Par exemple, pour assurer un déplacement similaire dans la direction X des premier et second points d'attaches de la jauge, la distance suivant l'axe X entre l'axe de rotation Y et l'un ou l'autre des points d'attache de la jauge est de préférence inférieure à cinq fois la longueur de la jauge, par exemple sensiblement égale à deux fois la longueur de la jauge. For example, to ensure a similar displacement in the X direction of the first and second attachment points of the gauge, the distance along the X axis between the axis of rotation Y and one or other of the points Attachment of the gauge is preferably less than five times the length of the gauge, for example substantially equal to twice the length of the gauge.
Dans les modes de réalisation présentés ci-dessus le fonctionnement est sensiblement similaire. Ainsi, en pratique, sous l'effet d'une sollicitation mécanique à mesurer induite par exemple par la présence d'un champ magnétique ou par une accélération suivant l'axe Z, la masse principale se déplace en rotation autour de l'axe de rotation de la masse principale. Cette rotation provoque une déformation opposée des jauges (en tension pour l'une et en compression pour l'autre) et donc des variations de résistance proportionnelles aux contraintes appliquées représentatives de la sollicitation mécanique à mesurer. Par ailleurs, sous l'effet d'une sollicitation mécanique parasite suivant l'axe X, induite notamment par une accélération suivant l'axe X, la masse principale se déplace en translation suivant l'axe X. Simultanément à la translation de la masse principale, chacune des masses intermédiaires se déplace, en rotation ou en translation suivant les moyens de liaison mis en œuvre, dans le plan XY de manière à suive le mouvement de translation de la masse principale de sorte que chacune des jauges est déplacée sans subir de déformation ou de contrainte représentative de cette sollicitation mécanique parasite. Autrement dit, l'ensemble est configuré de sorte que les deux extrémités d'une jauge se déplacent de façon identique suivant l'axe X, en termes de direction et d'amplitude, pour limiter toute déformation de la jauge due à des déplacements dans le plan XY du dispositif. Ainsi, la variation de la résistance de chacune des jauges de contraintes ne sera fonction que des déplacements en rotation de la masse principale autour de l'axe de rotation et ce malgré la présence de force induisant des déplacements parasites suivant l'axe X. In the embodiments presented above the operation is substantially similar. Thus, in practice, under the effect of a mechanical stress to be measured induced for example by the presence of a magnetic field or by an acceleration along the Z axis, the main mass moves in rotation about the axis of rotation of the main mass. This rotation causes an opposite deformation of the gauges (in tension for one and compression for the other) and therefore resistance variations proportional to the applied stresses representative of the mechanical stress to be measured. Furthermore, under the effect of a parasitic mechanical stress along the X axis, induced in particular by an acceleration along the X axis, the main mass moves in translation along the X axis. Simultaneously with the translation of the mass main, each of the intermediate masses moves, in rotation or in translation according to the connecting means implemented, in the XY plane so as to follow the translational movement of the main mass so that each of the gauges is moved without suffering from deformation or stress representative of this parasitic mechanical stress. In other words, the assembly is configured so that both ends of a gauge move identically along the X axis, in terms of direction and amplitude, for limit any deformation of the gauge due to displacements in the plane XY of the device. Thus, the variation of the resistance of each of the strain gauges will be a function of the rotational displacements of the main mass about the axis of rotation, despite the presence of force inducing parasitic displacements along the X axis.
Pour finir, dans les deux modes de réalisations présentés, il est possible de prévoir des butées 8 (une seule butée a été représentée sur les figures) pour limiter le déplacement de chacune des masses intermédiaires suivant l'axe X si cela s'avérait nécessaire. Finally, in the two embodiments presented, it is possible to provide stops 8 (a single stop has been shown in the figures) to limit the displacement of each of the intermediate masses along the X axis if this proved necessary .
Par ailleurs, bien que des modes de réalisation mettant en œuvre deux masses intermédiaires aient été présentés ci-dessus pour un fonctionnement en mode différentiel, il est bien évident que la solution de l'invention peut également être mise en œuvre avec une seule masse intermédiaire et une seule jauge, pour un fonctionnement en mode commun. Moreover, although embodiments implementing two intermediate masses have been presented above for differential mode operation, it is obvious that the solution of the invention can also be implemented with a single intermediate mass. and a single gauge, for common mode operation.
L'invention présentée permet donc de réaliser des transducteurs de type à détection hors- plan intégrant notamment deux ou trois masses mobiles et sensibles, l'une étant destinée à détecter, via des jauges de contrainte, les déplacement hors-plan induits par une force à mesurer, la ou les autres masses étant destinées à compenser toutes les contraintes exercées par la masse principale sur les jauges consécutivement à ses déplacements dits « dans le plan ». The present invention therefore makes it possible to produce off-plane detection type transducers incorporating in particular two or three mobile and sensitive masses, one of which is intended to detect, via strain gauges, the out-of-plane displacements induced by a force. to measure, the other mass or masses being intended to compensate for all the stresses exerted by the main mass on the gauges following its movements called "in the plane".

Claims

REVENDICATIONS
1. Dispositif micro-électromécanique réalisé dans un substrat semi-conducteur dont les couches sont parallèles à un plan du substrat, ledit dispositif comprenant : A microelectromechanical device made in a semiconductor substrate whose layers are parallel to a plane of the substrate, said device comprising:
- au moins une zone d'ancrage (2) fixe ; at least one anchoring zone (2) fixed;
- une masse principale (1) apte à se déplacer en rotation autour d'un axe de rotation (4) parallèle au plan du substrat sous l'effet d'une première sollicitation mécanique, ladite masse principale (1) comprenant deux zones d'attache (11, 12) symétriques par rapport à un axe X parallèle au plan du substrat et perpendiculaire à l'axe de rotation (4) ;  a main mass (1) able to move in rotation about an axis of rotation (4) parallel to the plane of the substrate under the effect of a first mechanical stress, said main mass (1) comprising two zones of fastener (11, 12) symmetrical about an axis X parallel to the plane of the substrate and perpendicular to the axis of rotation (4);
- des éléments déformables (31, 32) reliant les deux zones d'attache (11, 12) à la zone d'ancrage (2), et autorisant un déplacement de la masse principale (1) autour de l'axe de rotation (4) ; - deformable elements (31, 32) connecting the two attachment zones (11, 12) to the anchoring zone (2), and allowing movement of the main mass (1) about the axis of rotation ( 4);
caractérisé en ce qu'il comprend en outre au moins un ensemble mécanique de détection formé :  characterized in that it further comprises at least one mechanical detection unit formed:
- d'une masse intermédiaire (51, 52) reliée à la zone d'ancrage (2) via des moyens de liaison (61, 62) mécanique, autorisant un déplacement de la masse intermédiaire (51, 52) parallèlement au plan du substrat sous l'effet d'une deuxième sollicitation mécanique induisant un déplacement du dispositif suivant l'axe X ; et - An intermediate mass (51, 52) connected to the anchoring zone (2) via mechanical connection means (61, 62), allowing displacement of the intermediate mass (51, 52) parallel to the plane of the substrate under the effect of a second mechanical stress inducing a displacement of the device along the X axis; and
- d'une jauge de contraintes (71, 72) s'étendant perpendiculairement à l'axe de rotation (4), ladite jauge étant solidarisée à la masse principale (1) via un premier point d'attache a strain gauge (71, 72) extending perpendicularly to the axis of rotation (4), said gauge being secured to the main mass (1) via a first point of attachment
(711, 721) et étant solidarisée à la masse intermédiaire (51, 52) via un second point d'attache (712, 722), les deux points d'attaches (711, 712, 721, 722) étant configurés de sorte que les déplacements du premier point d'attache (711, 721) et du second point d'attache (712, 722) sont de directions sensiblement identiques et d'amplitudes différentes sous l'effet de la première sollicitation, et de directions sensiblement identiques et d'amplitudes sensiblement égales sous l'effet de la deuxième sollicitation. (711, 721) and being secured to the intermediate mass (51, 52) via a second point of attachment (712, 722), the two points of attachment (711, 712, 721, 722) being configured so that the displacements of the first point of attachment (711, 721) and of the second point of attachment (712, 722) are of substantially identical directions and of different amplitudes under the effect of the first bias, and of substantially identical directions and of substantially equal amplitude under the effect of the second bias.
2. Dispositif selon la revendication 1, comprenant deux ensembles mécaniques de détection, les jauges des deux ensembles mécaniques de détection étant respectivement soumises à des efforts de tension et de compression sous l'effet de la première sollicitation mécanique. 2. Device according to claim 1, comprising two mechanical detection assemblies, the gauges of the two mechanical detection assemblies being respectively subjected to tension and compression forces under the effect of the first mechanical stress.
3. Dispositif selon la revendication 1 ou 2, dans lequel chaque masse intermédiaire (51, 52) présente deux portions dans la direction de l'axe de rotation (4), l'une desdites portions (511, 521), dite portion fine, présentant une largeur dans la direction de l'axe X inférieure à celle de l'autre portion (512, 522), le second point d'attache (712, 722) et le point de liaison (610, 620) étant localisés sur cette portion fine (511, 521). 3. Device according to claim 1 or 2, wherein each intermediate mass (51, 52) has two portions in the direction of the axis of rotation (4), one of said portions (511, 521), said thin portion. , having a width in the direction of the X axis less than that of the other portion (512, 522), the second attachment point (712, 722) and the point of connection (610, 620) being located on this fine portion (511, 521).
4. Dispositif selon la revendication 2 ou 3, dans lequel les masses intermédiaires (51, 52) des deux ensembles mécaniques de détection sont symétriques l'une de l'autre suivant un axe perpendiculaire à l'axe de rotation. 4. Device according to claim 2 or 3, wherein the intermediate masses (51, 52) of the two sets of mechanical detection are symmetrical to each other along an axis perpendicular to the axis of rotation.
5. Dispositif selon l'une des revendications 1 à 4, dans lequel le déplacement de la ou des masses intermédiaires (51, 52) sous l'effet de la deuxième sollicitation est une rotation autour d'un point de pivot fixe défini par les moyens de liaison (61, 62). 5. Device according to one of claims 1 to 4, wherein the displacement of the intermediate mass or masses (51, 52) under the effect of the second bias is a rotation about a fixed pivot point defined by the connecting means (61, 62).
6. Dispositif selon l'une des revendications 1 ou 4, dans lequel le déplacement de la ou des masses intermédiaires (51, 52) sous l'effet de la deuxième sollicitation est une translation suivant l'axe X. 6. Device according to one of claims 1 or 4, wherein the displacement of the intermediate mass or masses (51, 52) under the effect of the second bias is a translation along the axis X.
7. Dispositif selon l'une des revendications 1 à 6, dans lequel la masse principale (1) comprend en outre au moins une butée (8) apte à limiter le déplacement de chacune des masses intermédiaires (51, 52) dans la direction suivant l'axe X et/ou l'axe Z. 7. Device according to one of claims 1 to 6, wherein the main mass (1) further comprises at least one stop (8) capable of limiting the displacement of each of the intermediate masses (51, 52) in the following direction the X axis and / or the Z axis.
8. Dispositif selon l'une des revendications 2 à 7, dans lequel les deux jauges (71, 72) sont de part et d'autre de l'axe de rotation (4). 8. Device according to one of claims 2 to 7, wherein the two gauges (71, 72) are on either side of the axis of rotation (4).
9. Dispositif selon l'une des revendications 1 à 8, dans lequel pour chaque jauge (71, 72), le premier point d'attache (711, 721) et le second point d'attache (712, 722) sont disposés, suivant l'axe X, de part et d'autre de l'axe de rotation (4). 9. Device according to one of claims 1 to 8, wherein for each gauge (71, 72), the first point of attachment (711, 721) and the second point of attachment (712, 722) are arranged, along the X axis, on either side of the axis of rotation (4).
10. Dispositif selon l'une des revendications 1 à 9, dans lequel pour chaque jauge (71, 72), la distance suivant l'axe X entre le premier point d'attache (711, 721) et l'axe de rotation (4) est sensiblement égale à deux fois la longueur de la jauge. 10. Device according to one of claims 1 to 9, wherein for each gauge (71, 72), the distance along the X axis between the first point of attachment (711, 721) and the axis of rotation ( 4) is substantially equal to twice the length of the gauge.
11. Dispositif selon l'une des revendications 1 à 10, dans lequel pour chaque masse intermédiaire (51, 52), la distance suivant l'axe X entre l'axe de rotation (4) et l'un ou l'autre des points d'attache de la jauge est sensiblement inférieure à deux fois l'épaisseur du substrat. 11. Device according to one of claims 1 to 10, wherein for each intermediate mass (51, 52), the distance along the axis X between the axis of rotation (4) and one or the other of Gauge attachment points are substantially less than twice the thickness of the substrate.
12. Dispositif selon l'une des revendications 1 à 11, dans lequel : 12. Device according to one of claims 1 to 11, wherein:
- la première sollicitation résulte d'une accélération suivant l'axe Z ou d'un champ magnétique suivant l'axe Z ; et  the first bias results from an acceleration along the Z axis or from a magnetic field along the Z axis; and
- la deuxième sollicitation résulte d'une accélération suivant l'axe X.  the second bias results from an acceleration along the X axis.
13. Dispositif selon l'une des revendications 1 à 12, dans lequel la masse principale (1) comprend : 13. Device according to one of claims 1 to 12, wherein the main mass (1) comprises:
- deux régions sensibles (13, 14) de part et d'autre de l'axe de rotation (4), lesdites deux régions étant sensibles à la première force ; et  - two sensitive regions (13, 14) on either side of the axis of rotation (4), said two regions being responsive to the first force; and
- une région intermédiaire (15) entre les deux régions sensibles (13, 14), ladite région intermédiaire étant insensible à la première sollicitation et contenant les deux zones d'attaches (11, 12) et les premiers points d'attache (711, 721) des jauges (71, 72). an intermediate region (15) between the two sensitive regions (13, 14), said intermediate region being insensitive to the first bias and containing the two zones of fasteners (11, 12) and the first attachment points (711, 721) of the gauges (71, 72).
14. Dispositif selon la revendication 13, dans lequel les deux régions sensibles (13, 14) sont l'image l'une de l'autre par symétrie centrale. 14. Device according to claim 13, wherein the two sensitive regions (13, 14) are the image of each other by central symmetry.
EP15767206.4A 2014-08-13 2015-08-07 Microelectromechanical device sensitive to mechanical forces applied off-plane Withdrawn EP3180287A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1457785A FR3024872A1 (en) 2014-08-13 2014-08-13 MICROELECTROMECHANICAL DEVICE HAVING SENSITIVITY TO OUTSTANDING MECHANICAL SOLICITATION
US201462038541P 2014-08-18 2014-08-18
PCT/FR2015/052183 WO2016024064A1 (en) 2014-08-13 2015-08-07 Microelectromechanical device sensitive to mechanical forces applied off-plane

Publications (1)

Publication Number Publication Date
EP3180287A1 true EP3180287A1 (en) 2017-06-21

Family

ID=52692712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15767206.4A Withdrawn EP3180287A1 (en) 2014-08-13 2015-08-07 Microelectromechanical device sensitive to mechanical forces applied off-plane

Country Status (3)

Country Link
EP (1) EP3180287A1 (en)
FR (1) FR3024872A1 (en)
WO (1) WO2016024064A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951826B1 (en) * 2009-10-23 2012-06-15 Commissariat Energie Atomique SENSOR WITH PIEZORESISTIVE DETECTION IN THE PLAN
FR2983844B1 (en) * 2011-12-12 2014-08-08 Commissariat Energie Atomique PIVOT MECHANICAL BONDING FOR MEMS AND NEMS MECHANICAL STRUCTURES
FR3000484B1 (en) 2012-12-27 2017-11-10 Tronic's Microsystems MICROELECTROMECHANICAL DEVICE COMPRISING A MOBILE MASS THAT IS ABLE TO MOVE OUT OF THE PLAN

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016024064A1 *

Also Published As

Publication number Publication date
WO2016024064A1 (en) 2016-02-18
FR3024872A1 (en) 2016-02-19

Similar Documents

Publication Publication Date Title
EP2541222B1 (en) Pressure-measurement device with optimised sensitivity
EP2367015B1 (en) Force sensor with reduced noise
EP2791048B1 (en) Mechanical connection forming a pivot for mems and nems mechanical structures
EP2607907B1 (en) Micro/nano multiaxial inertial motion sensor device
EP2211185B1 (en) Inertial sensor unit or resonant sensor with surface technology, with out-of-plane detection by strain gauge
EP2520940B1 (en) Inertial unit with a plurality of detection axes
EP2938569B1 (en) Micro-electromechanical device comprising a mobile mass that can move out-of-plane
EP2815210B1 (en) Compact dection device for at least one acceleration and one rotational speed
FR2969278A1 (en) PLANAR STRUCTURE FOR TRI-AXIS GYROMETER
EP3599469B1 (en) Accelerometer with detection by strain gauge with improved precision
EP3394564B1 (en) System for suspending a mobile mass comprising means for linking the mobile mass with optimised linearity
EP3766830B1 (en) Mechanical link for mechanical mems and nems structure, and mems and nems structure comprising such a mechanical link
FR2962532A1 (en) INERTIAL SENSOR OF OSCILLATING DISC ROTATIONS
EP3722253B1 (en) Out-of-plane hinge for micromechanical and/or nanomechanical structure with reduced sensitivity to internal constraints
EP3498661B1 (en) Microelectromechanical and/or nanoelectromechanical device providing increased sturdiness
WO2014096655A1 (en) Microelectromechanical device possessing at least two deformable elements of different dimensions
FR3094709A1 (en) HINGE OFFERING REDUCED SENSITIVITY TO INTERNAL CONSTRAINTS
EP3180287A1 (en) Microelectromechanical device sensitive to mechanical forces applied off-plane
EP1235074B1 (en) Miniaturized accelerometer with two mass-frames
EP3707522B1 (en) Magnetic field gradient sensor with reduced vibrations sensitivity
FR3031639A1 (en) ELECTROMECHANICAL TRANSDUCER INTEGRATING A DEFORMABLE ELEMENT OF RESONATOR OR MEMBRANE TYPE, AND MEASUREMENT SENSOR INTEGRATING SUCH TRANSDUCER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190912

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200123