EP3178576B1 - Method for recycling the silver contained in a photovoltaic cell - Google Patents

Method for recycling the silver contained in a photovoltaic cell Download PDF

Info

Publication number
EP3178576B1
EP3178576B1 EP16202859.1A EP16202859A EP3178576B1 EP 3178576 B1 EP3178576 B1 EP 3178576B1 EP 16202859 A EP16202859 A EP 16202859A EP 3178576 B1 EP3178576 B1 EP 3178576B1
Authority
EP
European Patent Office
Prior art keywords
silver
foregoing
solution
ionic liquid
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16202859.1A
Other languages
German (de)
French (fr)
Other versions
EP3178576A1 (en
Inventor
Emmanuel BILLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3178576A1 publication Critical patent/EP3178576A1/en
Application granted granted Critical
Publication of EP3178576B1 publication Critical patent/EP3178576B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • C22B11/046Recovery of noble metals from waste materials from manufactured products, e.g. from printed circuit boards, from photographic films, paper or baths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • the invention relates to a process for recycling the silver present in a photovoltaic cell, and more particularly to a process for recycling by means of green chemistry.
  • Photovoltaic panels are mainly composed of glass (74% of the total weight), aluminum used to make the frame and often electrical connectors (10%), polymer (around 6.5%), silicon (around 3 %), other metals such as zinc, lead, copper and silver represent a small part of the mass.
  • the first way of recycling consists in non-selectively dissolving the various constituents of photovoltaic cells.
  • the total dissolution of the layers of oxide, silicon, and metallic elements (such as Cu, Ag, Sn, Pb, Al, ...) requires the use of harmful and dangerous solutions.
  • Treatment baths are conventionally composed of mixtures of concentrated acids, generally brought to the boil: mixture of nitric acid and hydrofluoric acid ( JP2005311178 ), mixture of HF, HNO 3 , H 2 SO 4 and CH 3 COOH ( KR101092259 and KR101256574 ).
  • a succession of different baths of organic solvent, oxidizing acid, hydrochloric acid makes it possible, respectively, to remove the conduction grid, the metal residues, and to complex the metal ions ( CN102343352 ).
  • the publication Yi et al. (Recovering valuable metals from recycled photovoltaics modules; Journal of the Air & Waste Management Association ) deals with the recovery of valuable metals from the recycling of photovoltaic modules.
  • the process provides for a grinding step, a leaching step which can be carried out either with acid solutions or with basic solutions.
  • Nitric acid is claimed to be effective in removing silver.
  • Nitric acid alone removes the silver and a second bath of sodium hydroxide is used to remove the aluminum.
  • the document ( CA 2 908 046 ) deals with a process for the selective recovery of metals from complex substrates that includes metals or these metals in a sulphidic form.
  • the sulfidic metal or metal oxide in the complex substrate is converted to a soluble form by means of an aqueous solution which includes an oxidant.
  • a first treatment is carried out to recover the lead.
  • it is proposed to treat this residue with an ammonia solution. Then it is possible to electrolytically deposit the silver.
  • the oxidative leachate can be electrochemically regenerated.
  • the aim of the invention is to remedy the drawbacks of the prior art and, in particular, to provide a process for recycling the silver present in a photovoltaic cell by means of green chemistry, which does not require the use of acids. highly concentrated.
  • the invention thus relates to a recycling process as defined in the appended claims.
  • the silver can thus be recycled, through a chemical dissolution step and an electrochemical deposition step, without using concentrated acids or bases. All of these steps b) to d) take place in the same solution containing at least one ionic liquid. The solution at the end of the process is regenerated and can be used to recover the money from another photovoltaic cell.
  • the method of the invention relates to the recycling of photovoltaic cells and couples, advantageously, both the dissolution and the electrolytic recovery of silver in the same ionic liquid, in the presence of a redox mediator.
  • This green chemistry process does not use sulfur compounds.
  • the recycling process is applicable to photovoltaic cells of crystalline type, in crystalline silicon for example, or of polycrystalline type, in polycrystalline silicon for example. It can also be used for any type of amorphous silicon substrate containing silver.
  • Photovoltaic cells come from a photovoltaic panel or module.
  • the photovoltaic cell is recovered after separation and separation of the photovoltaic cells of a photovoltaic panel and after elimination of the junction boxes, and of the metal frame of the photovoltaic panel. Once the photovoltaic cells have been disconnected, they are advantageously disconnected from each other and, optionally, from the electrical connectors not containing any money.
  • the silver present in photovoltaic cells, comes particularly from the electrodes, made for example with a silver metallization paste, as well as from the electrical connectors.
  • the connectors are for example formed from a copper core coated with Sn 62 Pb 36 Ag 2 .
  • a heat treatment is advantageously carried out so as to remove the polymer elements, for example ethyl vinyl acetate (EVA) present in the photovoltaic cell.
  • EVA ethyl vinyl acetate
  • the heat treatment can be carried out in an oven.
  • step a The remaining elements of the photovoltaic cell are then ground during step a), so as to obtain a ground material containing the silver particles.
  • silver particles By silver particles is meant silver in solid form.
  • the particles can have different dimensions depending on the grinding conditions chosen. They will nevertheless be small enough to have a large specific surface and to be dissolved in the dissolving solution more easily. They will advantageously have a size of less than 1 centimeter. The size is the largest dimension of the particle, usually the diameter or the length.
  • Some photovoltaic cells have an aluminum frame and / or aluminum connectors.
  • a dealuminization step in an aqueous medium is advantageously carried out.
  • the ground material is immersed in an acid solution, having a pH ranging from 0 to 4, to dissolve the aluminum present in the photovoltaic cell and to separate it from the ground material.
  • the solid / liquid ratio is between 1% and 45%, and preferably, the solid / liquid ratio is between 1% and 30%. This ratio is denoted S / L.
  • the S / L ratio is of the order of 10%. By 10% is meant 10% ⁇ 1%.
  • the solid phase corresponds to the aluminum to be dissolved.
  • the liquid phase corresponds to the acid solution.
  • This ratio corresponds to the mass of solid, i.e. the mass of metal oxide, in grams, divided by the volume of the solution, in milliliters.
  • an S / L ratio of between 1% and 30% corresponds to a mass concentration of the metal oxide in the acid solution of between 0.01g / mL and 0.3g / mL.
  • the temperature of the acid solution is advantageously between 20 ° C and 80 ° C. It is preferably of the order of 25 ° C. to minimize the toxicity and reduce the energy consumption of the process.
  • the silver is not or very little dissolved in the acid solution. It is considered that the dissolution of silver is negligible during this step.
  • the silver is dissolved in a solution containing at least one ionic liquid and a redox mediator and, optionally, water.
  • ionic liquid is meant a solvent comprising at least one cation and one anion, the association of which generates a liquid with a melting point. less than 100 ° C.
  • An ionic liquid is a non-volatile and non-flammable liquid.
  • the cation is advantageously chosen from the following families: imidazolium, pyrrolidinium, ammonium, piperidinium and phosphonium.
  • the cation is an imidazolium. This cation is stable up to a sufficiently high cathodic potential to be able to carry out an electrochemical deposit of silver, during step d).
  • ambient temperature is meant a temperature of the order of 20-25 ° C.
  • the anion can be organic or inorganic.
  • the anion is preferably a silver metal complexing agent. There is no need to introduce in addition, in solution, another complexing agent.
  • the solution is advantageously devoid of sulfur compounds. It has been discovered that the anion of the ionic liquid is sufficiently complexing not to use sulfur compounds, as in the prior art.
  • the complexing species can remain in solution throughout the process and the solution, after electrodeposition and regeneration, can be used again for a recycling process.
  • the anion is advantageously chosen from the halides (Cl - , Br - , I - ), thiocyanate, tricyanomethanide and dicyanamide.
  • the anion is a halide, and even more preferably, it is the chloride anion.
  • the anodic stability of the chlorides is greater than that of many other complexing agents. More powerful oxidants can therefore be used to improve the leaching kinetics.
  • An ionic liquid with chlorides, iodides or bromides will be soluble in a solution containing water, because this small anion can more easily form hydrogen bonds with water.
  • the chloride anion will be preferred for a green chemistry process.
  • BMIM represents the 1-butyl-3-methylimidazolium cation and DCA represents the dicyanamide anion.
  • the silver dissolution rates were established at room temperature for stirring at 400 rpm and under an inert atmosphere.
  • the ionic liquid has a concentration of between 0.1 mol / L and 10mol / L, preferably between 1mol / L and 10mol / L, and even more preferably between 1mol / L and 5mol / L.
  • Such concentrations represent a good compromise between the quantity of reagents necessary to promote the complexation of the silver in solution, and the obtaining of a solution having good transport properties. Such concentrations promote the kinetics of dissolution of silver.
  • the solution comprises two ionic liquids, the first ionic liquid playing the role of neutral support and the second ionic liquid playing the role of complexing agent.
  • the first ionic liquid is, for example, bis (trifluoromethane) sulfonide imide, also called NTf2.
  • such an ionic liquid does not present any hydrolysis problem with water, as is the case for example for ionic liquids comprising tetrafluoroborate anions, which lead, during hydrolysis to the formation of HF .
  • the solution contains a redox mediator.
  • redox mediator is intended to mean an ion in solution capable of being reduced during the leaching, or dissolution, of silver and of being oxidized during electrolysis.
  • the redox mediator is, advantageously, a metal salt dissolved in solution, chosen from iron, copper, ruthenium, silver, tin, cobalt, vanadium, chromium, cobalt, and manganese.
  • the metal salt is preferably an iron (III) salt, for example FeCl 3 , or a copper (II) salt, such as copper (II) sulfate.
  • salts are soluble in ionic liquids in their two oxidation states (Fe 2+ / Fe 3+ or Cu + / Cu 2+ ). They do not degrade ionic liquids and are not toxic, unlike conventional reducing agents which degrade during the dissolution reaction, such as HNO 3 , for example, which results in the generation and irreversible consumption of nitrates. with formation of NO x .
  • redox mediators have adequate redox potentials.
  • the term “adequate” is understood to mean that the redox potentials of the couples are sufficiently high without necessarily reaching the anode window of the ionic liquids.
  • the solution further comprises water.
  • the presence of water improves the transport conditions (viscosity, ionic conductivity) of the solution.
  • the solution may contain from 0% to 90 mol% of water.
  • the percentage of water relative to the ionic liquid is advantageously less than 50 mol%, and preferably of the order of 10 mol%.
  • the amount of water added depends on the nature of the ionic liquids. Water will be added to the ionic liquid, at most, until the ionic liquid is saturated with water.
  • the cation of the ionic liquid is advantageously an imidazolinium and the anion is a halide, and even more preferably a chloride anion.
  • this type of ionic liquid has a sufficiently strong complexing power to promote leaching while not requiring too much energy to be able to carry out the electrodeposition of silver.
  • the introduction of the silver particles into the solution containing at least the ionic liquid and the redox mediator leads to the immediate dissolution of the silver by a redox mechanism with the mediator - step b).
  • the dissolution step is carried out at a temperature between 15 ° C and 80 ° C, and preferably at room temperature, that is to say of the order of 25 ° C.
  • an increase in temperature can be advantageously carried out to improve the dissolution rate without degradation of the medium (for temperatures between 15 and 80 ° C.).
  • the process steps are also carried out at ambient pressure, that is to say at a pressure of the order of 1 bar.
  • the process is carried out in air.
  • the solid / liquid ratio, during the dissolution of the silver is between 1% and 45%, and preferably, the solid / liquid ratio is between 1% and 30%. Preferably, this ratio is of the order of 10%. By 10% is meant 10% ⁇ 1%.
  • the solid phase corresponds to silver.
  • the liquid phase corresponds to the solution.
  • the ground material devoid of silver, is extracted from the bath by solid-liquid separation - step c).
  • the silver can then be recovered and the redox mediator can be regenerated by electrolysis, during step d).
  • the negative electrode silver is deposited in metallic form.
  • the positive electrode is the site of an oxidation of the redox mediator which is regenerated.
  • the negative electrode is advantageously made of stainless steel, carbon, titanium, silver or a noble metal.
  • the positive electrode is advantageously made of steel, carbon or a noble metal.
  • the ionic liquid acts as an ionic conductor, thus avoiding the addition of conductive salt.
  • the energy input will advantageously be limited to electrodeposit silver in an ionic liquid whose anion is a chloride ion.
  • step d the solution containing the ionic liquid and the regenerated redox mediator can then be used for a new treatment.
  • the photovoltaic cells are first heat treated in order to burn off the EVA and separate the cells from the connectors. This step takes place in an oven under air at 500 ° C. for 1 hour.
  • step a The collected cells are then ground using a ball mill (step a).
  • the cells are immersed in a 1 mol.L -1 sulfuric acid solution with a solid / liquid ratio of 10% (g / mL) and with constant pH control.
  • the reaction lasted 24 hours at 25 ° C with stirring at 400 rpm.
  • the solid and liquid phases are then separated by centrifugation and filtration.
  • the volume of the liquid phase was adjusted in a volumetric flask then the solution was analyzed by plasma torch spectrometry coupled with optical emission spectrometry (or ICP-OES for "Inductively Coupled Plasma Optical-Emission Spectrometry" in English ).
  • the solid phase was placed in an oven.
  • the solid is then introduced into an ionic liquid medium of butyl-methyl-imidazolium chloride (BMIMCI) in which iron chloride (FeCl 3 ) is dissolved at a concentration of 0.15mol.L -1 with 10 mol% of ' water (step b).
  • BMIMCI butyl-methyl-imidazolium chloride
  • FeCl 3 iron chloride
  • the solution is liquid at room temperature.
  • the solid is immersed in the ionic liquid solution with a solid / liquid ratio of 10% (g / mL).
  • the reaction lasted 24 hours, at 25 ° C. with stirring at 400 rpm.
  • the solid (enriched in silicon) and liquid phases were then separated by filtration after complete dissolution of the silver (step c).
  • the liquid phase was then used to deposit silver on glassy carbon (step d).
  • a three-electrode arrangement is used.
  • the working electrode and the counter electrode are made of glassy carbon.
  • the potential is maintained at -1.2V for three hours (potentiostatic mode) with stirring at 100tours / min, this which makes it possible to preferentially reduce the silver on the glassy carbon electrode.
  • the deposit is directly analyzed by scanning electron microscopy (SEM) and by microanalysis by energy dispersive analysis (or EDX for “Energy-dispersive X-ray spectroscopy”).
  • the figure 2 represents a photograph of the microstructure of the deposit.
  • the structure of the silver deposit is of the “cauliflower” type.
  • EDX analysis of figure 3 confirms that it is indeed a deposit of money.
  • This silver deposit contains some impurities of lead, iron and chlorides. These residual impurities will mostly be removed after washing the silver deposit in water. The silver deposit is insoluble in water.
  • this process for upgrading silver by means of green chemistry does not use concentrated acid or concentrated base and can be carried out at room temperature, which reduces the energy input required for the process. realization of the different stages. There is no release of harmful gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Domaine technique de l'inventionTechnical field of the invention

L'invention est relative à un procédé de recyclage de l'argent présent dans une cellule photovoltaïque, et, plus particulièrement, à un procédé de recyclage par voie de chimie verte.The invention relates to a process for recycling the silver present in a photovoltaic cell, and more particularly to a process for recycling by means of green chemistry.

État de la techniqueState of the art

Les panneaux photovoltaïques présentent une ou deux faces recevant le rayonnement solaire, et comprennent classiquement :

  • des cellules photovoltaïques, généralement en silicium,
  • des électrodes, par exemple en cuivre, permettant de collecter le courant électrique généré par les cellules photovoltaïques,
  • des connecteurs électriques reliant les électrodes à l'extérieur du panneau photovoltaïque,
  • un polymère, de type EVA (éthylène vinyle acétate), utilisé pour encapsuler les cellules photovoltaïques,
  • un cadre ainsi qu'un matériau de protection transparent, généralement en verre, recouvrant les cellules, les électrodes, et les connecteurs électriques.
Photovoltaic panels have one or two faces receiving solar radiation, and conventionally include:
  • photovoltaic cells, generally in silicon,
  • electrodes, for example made of copper, making it possible to collect the electric current generated by the photovoltaic cells,
  • electrical connectors connecting the electrodes to the outside of the photovoltaic panel,
  • a polymer, of the EVA (ethylene vinyl acetate) type, used to encapsulate photovoltaic cells,
  • a frame as well as a transparent protective material, generally glass, covering the cells, the electrodes, and the electrical connectors.

Les panneaux photovoltaïques sont majoritairement composé de verre (74% du poids total), d'aluminium servant à la réalisation du cadre et souvent de connecteurs électriques (10%), de polymère (environ 6,5%), de silicium (environ 3%), d'autres métaux tels que le zinc, le plomb, le cuivre et l'argent représentent une faible part de la masse.Photovoltaic panels are mainly composed of glass (74% of the total weight), aluminum used to make the frame and often electrical connectors (10%), polymer (around 6.5%), silicon (around 3 %), other metals such as zinc, lead, copper and silver represent a small part of the mass.

En raison du développement des panneaux photovoltaïques et de l'augmentation du coût des matières premières, la question de leur recyclage est devenue fondamentale, en particulier depuis que la Directive du 13 août 2012 relative aux Déchets d'Equipements Electriques et Electroniques (DEEE) a été étendue aux panneaux photovoltaïques.Due to the development of photovoltaic panels and the increase in the cost of raw materials, the question of their recycling has become fundamental, in particular since the Directive of August 13, 2012 relating to Waste Electrical and Electronic Equipment (WEEE) has been extended to photovoltaic panels.

Il est nécessaire de garantir un procédé de recyclage industriel et fiable qui répond aux enjeux économiques et environnementaux.It is necessary to guarantee an industrial and reliable recycling process that meets economic and environmental challenges.

Les objectifs minimaux de valorisation et de recyclage sont aisément atteints par la seule récupération du verre et du cadre en aluminium du panneau photovoltaïque.The minimum recovery and recycling objectives are easily achieved by simply recovering the glass and the aluminum frame of the photovoltaic panel.

Pour améliorer la quantité de composants recyclés, les procédés actuels se concentrent sur le démantèlement des modules par voie chimique ou thermique puis sur la valorisation d'un ou de plusieurs éléments du module par des voies de traitement des déchets spécialisées.To improve the quantity of recycled components, current methods focus on the dismantling of the modules by chemical or thermal means then on the recovery of one or more elements of the module by specialized waste treatment routes.

La première voie de recyclage consiste à dissoudre non sélectivement les différents constituants des cellules photovoltaïques. La dissolution totale des couches d'oxyde, de silicium, et des éléments métalliques (comme Cu, Ag, Sn, Pb, Al, ...) nécessite l'utilisation de solutions nocives et dangereuses. Les bains de traitement sont, classiquement, composés de mélanges d'acides concentrés, généralement portés à ébullition : mélange d'acide nitrique et d'acide fluorhydrique ( JP2005311178 ), mélange de HF, HNO3, H2SO4 et CH3COOH ( KR101092259 et KR101256574 ).The first way of recycling consists in non-selectively dissolving the various constituents of photovoltaic cells. The total dissolution of the layers of oxide, silicon, and metallic elements (such as Cu, Ag, Sn, Pb, Al, ...) requires the use of harmful and dangerous solutions. Treatment baths are conventionally composed of mixtures of concentrated acids, generally brought to the boil: mixture of nitric acid and hydrofluoric acid ( JP2005311178 ), mixture of HF, HNO 3 , H 2 SO 4 and CH 3 COOH ( KR101092259 and KR101256574 ).

Une succession de différents bains de solvant organique, d'acide oxydant, d'acide chlorhydrique permet, respectivement, de retirer la grille de conduction, les résidus métalliques, et de complexer les ions métalliques ( CN102343352 ).A succession of different baths of organic solvent, oxidizing acid, hydrochloric acid makes it possible, respectively, to remove the conduction grid, the metal residues, and to complex the metal ions ( CN102343352 ).

Ces différents procédés nécessitent une dissolution totale du module photovoltaïque, à travers des procédés complexes et onéreux. Les déchets (solvant organique, acide fort) résultants du procédé doivent, de plus, être traités.These different processes require total dissolution of the photovoltaic module, through complex and expensive processes. Waste (organic solvent, strong acid) resulting from the process must, in addition, be treated.

Il est, de plus, particulièrement important de pouvoir recycler l'argent présent dans les modules photovoltaïques. En effet, l'argent représente le métal constituant la plus forte valeur ajoutée, près de 90% de la valeur du module. Des procédés en plusieurs étapes sont nécessaires pour valoriser cet élément. Par exemple, le document CN102851506 décrit un procédé multi-étapes comprenant les étapes suivantes :

  • l'aluminium est retiré avec de l'acide chlorhydrique,
  • l'argent est mis en solution en présence d'eau,
  • le nitrure de silicium est retiré par ajout d'acide fluorhydrique,
  • l'argent est précipité en solution par ajout de poudre de fer.
It is, moreover, particularly important to be able to recycle the money present in the photovoltaic modules. Indeed, silver represents the metal constituting the highest added value, nearly 90% of the value of the module. Multi-step processes are necessary to enhance this element. For example, the document CN102851506 describes a multi-step process comprising the following steps:
  • aluminum is removed with hydrochloric acid,
  • the silver is dissolved in the presence of water,
  • the silicon nitride is removed by adding hydrofluoric acid,
  • the silver is precipitated in solution by adding iron powder.

Même si ce procédé permet de récupérer l'argent, le procédé nécessite l'utilisation de nombreuses étapes et donc de nombreux réactifs qui doivent ensuite être traités, afin de limiter l'impact environnemental.Even if this process makes it possible to recover the silver, the process requires the use of many steps and therefore many reagents which must then be treated, in order to limit the environmental impact.

Si une véritable voie de mise en solution et de valorisation de l'argent par voie de chimie verte ne semble pas avoir été considérée, elle semble judicieuse au vu des traitements actuels et des enjeux économiques et environnementaux concernant la valorisation de l'argent.If a real way of solution and valorization of silver by means of green chemistry does not seem to have been considered, it seems judicious in view of the current treatments and the economic and environmental issues concerning the valorization of silver.

La publication Yi et al. (Recovering valuable metals from recycled photovoltaics modules; Journal of the Air & Waste Management Association ) traite de la récupération des métaux de valeur à partir du recyclage des modules photovoltaïques. Le procédé prévoit une étape de broyage, une étape de lixiviation pouvant être réalisée soit avec des solutions acides, soit avec des solutions basiques. L'acide nitrique est présenté comme efficace pour retirer l'argent. L'acide nitrique seul permet de retirer l'argent et un deuxième bain d'hydroxyde de sodium est utilisé pour retirer l'aluminium.The publication Yi et al. (Recovering valuable metals from recycled photovoltaics modules; Journal of the Air & Waste Management Association ) deals with the recovery of valuable metals from the recycling of photovoltaic modules. The process provides for a grinding step, a leaching step which can be carried out either with acid solutions or with basic solutions. Nitric acid is claimed to be effective in removing silver. Nitric acid alone removes the silver and a second bath of sodium hydroxide is used to remove the aluminum.

Un autre procédé de recyclage de l'argent présent dans une cellule photovoltaïque est connu du document XP055292314.Another method of recycling the silver present in a photovoltaic cell is known from document XP055292314.

Le document ( CA 2 908 046 ) traite d'un procédé de récupération sélective de métaux à partir de substrats complexes qui comporte des métaux ou ces métaux sous une forme sulfidique. Le métal sulfidique ou l'oxyde métallique se trouvant dans le substrat complexe est transformé sous une forme soluble au moyen d'une solution aqueuse qui comporte un oxydant.The document ( CA 2 908 046 ) deals with a process for the selective recovery of metals from complex substrates that includes metals or these metals in a sulphidic form. The sulfidic metal or metal oxide in the complex substrate is converted to a soluble form by means of an aqueous solution which includes an oxidant.

Un premier traitement est réalisé pour récupérer le plomb. Afin de récupérer l'argent présent dans le résidu de ce premier traitement, il est proposé de traiter ce résidu avec une solution d'ammoniaque. Ensuite, il est possible de déposer électrolytiquement l'argent. Le lixiviat oxydant peut être électrochimiquement régénéré.A first treatment is carried out to recover the lead. In order to recover the silver present in the residue of this first treatment, it is proposed to treat this residue with an ammonia solution. Then it is possible to electrolytically deposit the silver. The oxidative leachate can be electrochemically regenerated.

La publication de Lee et al. (ressource recovery of scrap silicon solar battery cell ; Waste Management Ressource 2013 May 31(5 )) propose de récupérer des éléments à partir d'une batterie solaire en silicium. Les batteries sont transformées en poudre et cette poudre est analysée afin de déterminer sa composition. Un procédé de lixiviation est réalisé avec de l'acide nitrique, de l'acide chlorhydrique et de l'acide sulfurique ou de l'hydroxyde de sodium afin de récupérer de l'argent et de l'aluminium. L'argent est récupéré par précipitation, électrolyse ou un procédé de remplacement.The publication of Lee et al. (resource recovery of scrap silicon solar battery cell; Waste Management Resource 2013 May 31 (5 )) offers to recover elements from a silicon solar battery. The batteries are transformed into powder and this powder is analyzed to determine its composition. A leaching process is carried out with nitric acid, hydrochloric acid and sulfuric acid or sodium hydroxide in order to recover silver and aluminum. The silver is recovered by precipitation, electrolysis or a replacement process.

Objet de l'inventionObject of the invention

L'invention a pour but de remédier aux inconvénients de l'art antérieur et, en particulier, de proposer un procédé de recyclage de l'argent présent dans une cellule photovoltaïque par voie de chimie verte, ne nécessitant pas l'utilisation d'acides fortement concentrés.The aim of the invention is to remedy the drawbacks of the prior art and, in particular, to provide a process for recycling the silver present in a photovoltaic cell by means of green chemistry, which does not require the use of acids. highly concentrated.

L'invention porte ainsi sur un procédé de recyclage tel que défini dans les revendications annexées.The invention thus relates to a recycling process as defined in the appended claims.

Description sommaire des dessinsBrief description of the drawings

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux figures annexées dans lesquelles :

  • la figure 1, représente des graphiques donnant la densité de courant en fonction du potentiel vs Ag/AgCl, lors de l'électrodéposition de l'argent dans un liquide ionique pour différents anions : DCA, Cl, Br, I,
  • la figure 2 représente une image, obtenue au microscope électronique à balayage, d'argent électrodéposé, selon le procédé de l'invention ; l'échelle représente 20µm,
  • la figure 3 représente un spectre, obtenu par analyse dispersive en énergie, du dépôt d'argent de la figure 2.
Other advantages and characteristics will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting examples and shown in the appended figures in which:
  • the figure 1 , represents graphs giving the current density as a function of potential vs Ag / AgCl, during the electrodeposition of silver in an ionic liquid for different anions: DCA, Cl, Br, I,
  • the figure 2 represents an image, obtained with a scanning electron microscope, of electroplated silver, according to the method of the invention; the scale represents 20 µm ,
  • the figure 3 represents a spectrum, obtained by energy dispersive analysis, of the silver deposit of the figure 2 .

Description d'un mode de réalisation préférentiel de l'inventionDescription of a preferred embodiment of the invention

Le procédé de recyclage de l'argent présent dans une cellule photovoltaïque comme défini dans la revendication 1 comprend les étapes successives suivantes :

  1. a) broyer la cellule photovoltaïque, de manière à former un broyat contenant des particules d'argent,
  2. b) dissoudre l'argent contenu dans le broyat dans une solution contenant :
    • ∘ au moins un liquide ionique,
    • ∘ un médiateur redox,
    • ∘ éventuellement de l'eau,
    la dissolution conduisant à la formation d'ions argent en solution,
  3. c) séparer le broyat de la solution,
  4. d) réaliser une électrolyse de la solution pour réduire les ions argent et pour régénérer le médiateur redox.
The process for recycling the silver present in a photovoltaic cell as defined in claim 1 comprises the following successive steps:
  1. a) grind the photovoltaic cell, so as to form a ground material containing silver particles,
  2. b) dissolve the silver contained in the ground material in a solution containing:
    • ∘ at least one ionic liquid,
    • ∘ a redox mediator,
    • ∘ possibly water,
    dissolution leading to the formation of silver ions in solution,
  3. c) separate the ground material from the solution,
  4. d) carrying out an electrolysis of the solution to reduce the silver ions and to regenerate the redox mediator.

L'argent peut ainsi être recyclé, à travers une étape de dissolution chimique et une étape de dépôt électrochimique, sans utiliser d'acides ou de bases concentrés. Toutes ces étapes b) à d) ont lieu dans une même solution contenant au moins un liquide ionique. La solution à la fin du procédé est régénérée et peut servir pour valoriser l'argent d'une autre cellule photovoltaïque.The silver can thus be recycled, through a chemical dissolution step and an electrochemical deposition step, without using concentrated acids or bases. All of these steps b) to d) take place in the same solution containing at least one ionic liquid. The solution at the end of the process is regenerated and can be used to recover the money from another photovoltaic cell.

La dissolution de minerais contenant de l'or et de l'argent dans un liquide ionique de type bmim+(X-) (avec X- = Cl-, HSO4 -, CH3SO3 -, N(CN)2 -) en présence de thiourée, ou d'un autre composé soufré, et de sulfate de fer (III) a été étudiée précédemment ( Whitehead et al., Green Chem., 2004, 6, 313-315 et Whitehead et al., Hydrometallurgy, 2007, 88, 109-120 ).The dissolution of ores containing gold and silver in an ionic liquid of the bmim + (X - ) type (with X - = Cl - , HSO 4 - , CH 3 SO 3 - , N (CN) 2 - ) in the presence of thiourea, or another sulfur compound, and iron (III) sulfate has been studied previously ( Whitehead et al., Green Chem., 2004, 6, 313-315 and Whitehead et al., Hydrometallurgy, 2007, 88, 109-120 ).

Quelques articles concernent la récupération de l'argent par électrodéposition dans des liquides ioniques de type chloroaluminate ( Xu et al., J. Electrochem. Soc., 1992, 139, 5, 1295-1300 ), et dans des liquides ioniques à base de chlorure de choline ( Abbott et al., Phys. Chem. Chem. Phys., 2007, 9, 3735-3743 ).Some articles concern the recovery of silver by electrodeposition in ionic liquids of the chloroaluminate type ( Xu et al., J. Electrochem. Soc., 1992, 139, 5, 1295-1300 ), and in ionic liquids based on choline chloride ( Abbott et al., Phys. Chem. Chem. Phys., 2007, 9, 3735-3743 ).

Ces articles concernent soit la dissolution de l'argent soit l'électrodéposition de l'argent mais aucun ne divulgue un procédé combinant ces deux étapes.These articles relate either to the dissolution of silver or to the electroplating of silver, but none disclose a process combining these two steps.

Le procédé de l'invention concerne le recyclage de cellules photovoltaïques et couple, avantageusement, à la fois la dissolution et la récupération électrolytique de l'argent dans un même liquide ionique, en présence d'un médiateur rédox. Ce procédé par voie de chimie verte n'utilise pas de composés soufrés.The method of the invention relates to the recycling of photovoltaic cells and couples, advantageously, both the dissolution and the electrolytic recovery of silver in the same ionic liquid, in the presence of a redox mediator. This green chemistry process does not use sulfur compounds.

Le procédé de recyclage est applicable aux cellules photovoltaïques de type cristallin, en silicium cristallin par exemple, ou de type polycristallin, en silicium polycristallin par exemple. Il peut, également, être utilisé pour tout type de substrat en silicium amorphe contenant de l'argent.The recycling process is applicable to photovoltaic cells of crystalline type, in crystalline silicon for example, or of polycrystalline type, in polycrystalline silicon for example. It can also be used for any type of amorphous silicon substrate containing silver.

Les cellules photovoltaïques proviennent d'un panneau ou module photovoltaïque.Photovoltaic cells come from a photovoltaic panel or module.

La cellule photovoltaïque est récupérée après séparation et désolidarisation des cellules photovoltaïques d'un panneau photovoltaïque et après élimination des boîtes de jonction, et du cadre métallique du panneau photovoltaïque. Une fois les cellules photovoltaïques désolidarisées, elles sont avantageusement déconnectées les unes des autres et, éventuellement, des connecteurs électriques ne contenant pas d'argent.The photovoltaic cell is recovered after separation and separation of the photovoltaic cells of a photovoltaic panel and after elimination of the junction boxes, and of the metal frame of the photovoltaic panel. Once the photovoltaic cells have been disconnected, they are advantageously disconnected from each other and, optionally, from the electrical connectors not containing any money.

L'argent, présent dans les cellules photovoltaïques, provient particulièrement des électrodes, réalisées par exemple avec une pâte de métallisation en argent, ainsi que des connecteurs électriques. Les connecteurs sont par exemple formés d'un cœur en cuivre enrobé de Sn62Pb36Ag2.The silver, present in photovoltaic cells, comes particularly from the electrodes, made for example with a silver metallization paste, as well as from the electrical connectors. The connectors are for example formed from a copper core coated with Sn 62 Pb 36 Ag 2 .

Avant l'étape a), un traitement thermique est, avantageusement, réalisé de manière à éliminer les éléments en polymère, par exemple en éthyle vinyle acétate (EVA) présents dans la cellule photovoltaïque. Le traitement thermique peut être réalisé dans un four.Before step a), a heat treatment is advantageously carried out so as to remove the polymer elements, for example ethyl vinyl acetate (EVA) present in the photovoltaic cell. The heat treatment can be carried out in an oven.

Les éléments restants de la cellule photovoltaïque sont ensuite broyés lors de l'étape a), de manière à obtenir un broyat contenant les particules d'argent.The remaining elements of the photovoltaic cell are then ground during step a), so as to obtain a ground material containing the silver particles.

Par particules d'argent, on entend de l'argent sous forme solide. Les particules peuvent avoir différentes dimensions selon les conditions de broyage choisies. Elles seront néanmoins suffisamment petites pour avoir une grande surface spécifique et être dissoutes dans la solution de dissolution plus facilement. Elles auront, avantageusement, une taille inférieure à 1 centimètre. La taille correspond à la dimension la plus importante de la particule, généralement le diamètre ou la longueur.By silver particles is meant silver in solid form. The particles can have different dimensions depending on the grinding conditions chosen. They will nevertheless be small enough to have a large specific surface and to be dissolved in the dissolving solution more easily. They will advantageously have a size of less than 1 centimeter. The size is the largest dimension of the particle, usually the diameter or the length.

Certaines cellules photovoltaïques comportent un cadre en aluminium et/ou des connecteurs en aluminium.Some photovoltaic cells have an aluminum frame and / or aluminum connectors.

Dans ce mode de réalisation particulier, après l'étape a) et avant l'étape b), une étape de désaluminisation en milieu aqueux est, avantageusement, réalisée. Pour cela, le broyat est plongé dans une solution acide, ayant un pH allant de 0 à 4, pour dissoudre l'aluminium présent dans la cellule photovoltaïque et le séparer du broyat.In this particular embodiment, after step a) and before step b), a dealuminization step in an aqueous medium is advantageously carried out. For this, the ground material is immersed in an acid solution, having a pH ranging from 0 to 4, to dissolve the aluminum present in the photovoltaic cell and to separate it from the ground material.

Le rapport solide/liquide est compris entre 1% et 45%, et de préférence, le rapport solide/liquide est compris entre 1% et 30%. Ce ratio est noté S/L. Préférentiellement, le ratio S/L est de l'ordre de 10%. Par 10%, on entend 10%±1%.The solid / liquid ratio is between 1% and 45%, and preferably, the solid / liquid ratio is between 1% and 30%. This ratio is denoted S / L. Preferably, the S / L ratio is of the order of 10%. By 10% is meant 10% ± 1%.

La phase solide correspond à l'aluminium à dissoudre. La phase liquide correspond à la solution acide.The solid phase corresponds to the aluminum to be dissolved. The liquid phase corresponds to the acid solution.

Ce ratio correspond à la masse de solide, i.e. la masse d'oxyde métallique, en grammes, divisée par le volume de la solution, en millilitres.This ratio corresponds to the mass of solid, i.e. the mass of metal oxide, in grams, divided by the volume of the solution, in milliliters.

Ainsi, un ratio S/L compris entre 1% et 30% correspond à une concentration massique de l'oxyde métallique dans la solution acide compris entre 0,01g/mL et 0,3g/mL.Thus, an S / L ratio of between 1% and 30% corresponds to a mass concentration of the metal oxide in the acid solution of between 0.01g / mL and 0.3g / mL.

Pour des valeurs S/L inférieures à 1%, le rendement de dissolution est également élevé. Cependant, la quantité d'acide utilisée est considérablement élevée par rapport à la quantité de métal à dissoudre, et la quantité de réactifs perdus est conséquente.For S / L values less than 1%, the dissolution yield is also high. However, the amount of acid used is considerably high relative to the amount of metal to be dissolved, and the amount of reagents lost is substantial.

La température de la solution acide est, avantageusement, comprise entre 20°C et 80°C. Elle est, de préférence, de l'ordre de 25°C pour minimiser la toxicité et réduire la consommation énergétique du procédé.The temperature of the acid solution is advantageously between 20 ° C and 80 ° C. It is preferably of the order of 25 ° C. to minimize the toxicity and reduce the energy consumption of the process.

L'argent n'est pas ou très peu dissous dans la solution acide. On considère que la dissolution de l'argent est négligeable lors de cette étape.The silver is not or very little dissolved in the acid solution. It is considered that the dissolution of silver is negligible during this step.

Lors de l'étape b), l'argent est dissous dans une solution contenant au moins un liquide ionique et un médiateur redox et, éventuellement, de l'eau.During step b), the silver is dissolved in a solution containing at least one ionic liquid and a redox mediator and, optionally, water.

On entend par liquide ionique un solvant comprenant au moins un cation et un anion dont l'association génère un liquide avec une température de fusion inférieure à 100°C. Un liquide ionique est un liquide non-volatile et ininflammable.By ionic liquid is meant a solvent comprising at least one cation and one anion, the association of which generates a liquid with a melting point. less than 100 ° C. An ionic liquid is a non-volatile and non-flammable liquid.

Le cation est, avantageusement, choisi parmi les familles suivantes : imidazolium, pyrrolidinium, ammonium, pipéridinium et phosphonium.The cation is advantageously chosen from the following families: imidazolium, pyrrolidinium, ammonium, piperidinium and phosphonium.

De préférence, le cation est un imidazolium. Ce cation est stable jusqu'à un potentiel cathodique suffisamment important pour pouvoir réaliser un dépôt électrochimique d'argent, lors de l'étape d).Preferably, the cation is an imidazolium. This cation is stable up to a sufficiently high cathodic potential to be able to carry out an electrochemical deposit of silver, during step d).

Son association avec différents anions répond aux exigences de stabilité thermique (supérieure à 200°C) et chimique (pas d'hydrolyse). Il est liquide à température ambiante avec de nombreuses associations d'anions. Sa conductivité est satisfaisante pour un grand nombre d'anions.Its association with different anions meets the requirements of thermal (greater than 200 ° C) and chemical (no hydrolysis) stability. It is liquid at room temperature with many associations of anions. Its conductivity is satisfactory for a large number of anions.

Par température ambiante, on entend une température de l'ordre de 20-25°C.By ambient temperature is meant a temperature of the order of 20-25 ° C.

L'anion peut être organique ou inorganique.The anion can be organic or inorganic.

L'anion est, de préférence, un complexant du métal argent. Il n'y a pas besoin d'introduire en plus, en solution, un autre complexant.The anion is preferably a silver metal complexing agent. There is no need to introduce in addition, in solution, another complexing agent.

La solution est, avantageusement, dépourvue de composés soufrés. Il a été découvert que l'anion du liquide ionique est suffisamment complexant pour ne pas utiliser de composés soufrés, comme dans l'art antérieur.The solution is advantageously devoid of sulfur compounds. It has been discovered that the anion of the ionic liquid is sufficiently complexing not to use sulfur compounds, as in the prior art.

L'espèce complexante peut rester en solution tout au long du procédé et la solution, après électrodéposition et régénération, peut servir une nouvelle fois pour un procédé de recyclage.The complexing species can remain in solution throughout the process and the solution, after electrodeposition and regeneration, can be used again for a recycling process.

L'anion est, avantageusement, choisi parmi les halogénures (Cl-, Br-, I-) le thiocyanate, le tricyanomethanide et le dicyanamide.The anion is advantageously chosen from the halides (Cl - , Br - , I - ), thiocyanate, tricyanomethanide and dicyanamide.

Ces complexants particuliers, présents intrinsèquement, dans le liquide ionique présentent, avantageusement, une solubilité et une stabilité chimique améliorée par rapport à des complexants soufrés comme la thiourée ou le thiosulfate. Préférentiellement, l'anion est un halogénure, et encore plus préférentiellement, il s'agit de l'anion chlorure.These particular complexing agents, intrinsically present in the ionic liquid, advantageously exhibit improved solubility and chemical stability compared with sulfur complexing agents such as thiourea or thiosulfate. Preferably, the anion is a halide, and even more preferably, it is the chloride anion.

Avantageusement, la stabilité anodique des chlorures est supérieure à celle de nombreux autres complexants. Des oxydants plus puissants peuvent donc être utilisés pour améliorer les cinétiques de lixiviation.Advantageously, the anodic stability of the chlorides is greater than that of many other complexing agents. More powerful oxidants can therefore be used to improve the leaching kinetics.

Un liquide ionique comportant des chlorures, des iodures ou des bromures sera soluble dans une solution contenant de l'eau, car cet anion de petite taille peut former plus facilement des liaisons hydrogène avec l'eau. L'anion chlorure sera préféré pour un procédé par voie de chimie verte.An ionic liquid with chlorides, iodides or bromides will be soluble in a solution containing water, because this small anion can more easily form hydrogen bonds with water. The chloride anion will be preferred for a green chemistry process.

De l'argent métallique de haute pureté (99.99%) a été chimiquement dissous dans les liquides ioniques BMIM[X] ([X]=[DCA], [Cl], [Br] et [I]). BMIM représente le cation 1-butyl-3-méthylimidazolium et DCA représente l'anion dicyanamide.High purity metallic silver (99.99%) has been chemically dissolved in BMIM [X] ionic liquids ([X] = [DCA], [Cl], [Br] and [I]). BMIM represents the 1-butyl-3-methylimidazolium cation and DCA represents the dicyanamide anion.

Les vitesses de dissolution de l'argent ont été établies à température ambiante pour une agitation de 400 rpm et sous atmosphère inerte.The silver dissolution rates were established at room temperature for stirring at 400 rpm and under an inert atmosphere.

La connaissance de la surface des fils d'argent immergés a permis de définir une vitesse de dissolution moyenne de l'argent sur une période de 5h (en mgAg.h-1.cm-2) en supposant que la variation de surface est négligeable. Les résultats de dissolution indiquent que la vitesse décroît suivant l'anion du liquide ionique tel que :
I- (8,15 mgAg.cm-2 Ag.h-1) > Cl- (5,45) ≈ Br- (5,40) > DCA- (1,55)
Knowledge of the surface of the immersed silver wires made it possible to define an average speed of dissolution of silver over a period of 5 hours (in mg Ag .h -1 .cm -2 ), assuming that the variation in surface is negligible. The dissolution results indicate that the rate decreases according to the anion of the ionic liquid such as:
I - (8.15 mg Ag .cm -2 Ag .h -1 )> Cl - (5.45) ≈ Br - (5.40)> DCA - (1.55)

A titre comparatif, des essais en milieu HNO3 ont été réalisés à 1 mol.L-1 et 4 mol.L-1 dans les mêmes conditions opératoires. Les résultats montrent qu'à température ambiante la dissolution de l'argent est nulle dans ces milieux.By way of comparison, tests in HNO 3 medium were carried out at 1 mol.L -1 and 4 mol.L -1 under the same operating conditions. The results show that at room temperature the dissolution of silver is zero in these media.

Le liquide ionique a une concentration comprise entre 0,1 mol/L et 10mol/L, de préférence entre 1mol/L et 10mol/L, et encore plus préférentiellement entre 1mol/L et 5mol/L.The ionic liquid has a concentration of between 0.1 mol / L and 10mol / L, preferably between 1mol / L and 10mol / L, and even more preferably between 1mol / L and 5mol / L.

De telles concentrations représentent un bon compromis entre la quantité de réactifs nécessaire pour favoriser la complexation de l'argent en solution, et l'obtention d'une solution présentant de bonnes propriétés de transport. De telles concentrations favorisent la cinétique de dissolution de l'argent.Such concentrations represent a good compromise between the quantity of reagents necessary to promote the complexation of the silver in solution, and the obtaining of a solution having good transport properties. Such concentrations promote the kinetics of dissolution of silver.

Selon un mode de réalisation particulier, la solution comporte deux liquides ioniques, le premier liquide ionique jouant le rôle de support neutre et le second liquide ionique jouant le rôle de complexant.According to a particular embodiment, the solution comprises two ionic liquids, the first ionic liquid playing the role of neutral support and the second ionic liquid playing the role of complexing agent.

Le premier liquide ionique est, par exemple, le bis(trifluorométhane) sulfonide imide, aussi nommé NTf2.The first ionic liquid is, for example, bis (trifluoromethane) sulfonide imide, also called NTf2.

Avantageusement, un tel liquide ionique ne présente pas de problème d'hydrolyse avec l'eau, comme c'est le cas par exemple pour les liquides ioniques comportant des anions de tétrafluoroborate, qui conduisent, lors de l'hydrolyse à la formation de HF.Advantageously, such an ionic liquid does not present any hydrolysis problem with water, as is the case for example for ionic liquids comprising tetrafluoroborate anions, which lead, during hydrolysis to the formation of HF .

En plus du liquide ionique, la solution comporte un médiateur redox.In addition to the ionic liquid, the solution contains a redox mediator.

Par médiateur redox, on entend un ion en solution capable d'être réduit lors de la lixiviation, ou dissolution, de l'argent et d'être oxydé lors de l'électrolyse.The term “redox mediator” is intended to mean an ion in solution capable of being reduced during the leaching, or dissolution, of silver and of being oxidized during electrolysis.

Le médiateur redox est, avantageusement, un sel métallique dissous en solution, choisi parmi le fer, le cuivre, le ruthénium, l'argent, l'étain, le cobalt, le vanadium, le chrome, le cobalt, et le manganèse.The redox mediator is, advantageously, a metal salt dissolved in solution, chosen from iron, copper, ruthenium, silver, tin, cobalt, vanadium, chromium, cobalt, and manganese.

Le sel métallique est, de préférence, un sel de fer (III), par exemple du FeCl3, ou un sel de cuivre (II), comme du sulfate de cuivre (II).The metal salt is preferably an iron (III) salt, for example FeCl 3 , or a copper (II) salt, such as copper (II) sulfate.

Ces sels sont solubles dans les liquides ioniques dans leurs deux états d'oxydation (Fe2+/Fe3+ ou Cu+/Cu2+). Ils ne dégradent pas les liquides ioniques et ne sont pas toxiques, à la différence des réducteurs conventionnels qui se dégradent durant la réaction de dissolution, comme c'est le cas, par exemple de HNO3 qui entraîne la génération et la consommation irréversible des nitrates avec formation de NOx.These salts are soluble in ionic liquids in their two oxidation states (Fe 2+ / Fe 3+ or Cu + / Cu 2+ ). They do not degrade ionic liquids and are not toxic, unlike conventional reducing agents which degrade during the dissolution reaction, such as HNO 3 , for example, which results in the generation and irreversible consumption of nitrates. with formation of NO x .

Ces médiateurs redox ont des potentiels redox adéquats. Par adéquat, on entend que les potentiels redox des couples sont suffisamment élevés sans pour autant atteindre la fenêtre anodique des liquides ioniques.These redox mediators have adequate redox potentials. The term “adequate” is understood to mean that the redox potentials of the couples are sufficiently high without necessarily reaching the anode window of the ionic liquids.

Ces médiateurs redox ne se déposent pas avec l'argent lors de l'électrodéposition. Ils restent en solution, ce qui autorise une récupération complète de l'argent sous forme pure.These redox mediators do not deposit with silver during electroplating. They remain in solution, which allows complete recovery of the silver in pure form.

Selon un mode de réalisation préférentiel, la solution comporte, en outre, de l'eau. La présence d'eau améliore les conditions de transport (viscosité, conductivité ionique) de la solution.According to a preferred embodiment, the solution further comprises water. The presence of water improves the transport conditions (viscosity, ionic conductivity) of the solution.

La solution peut comporter de 0% à 90% molaire d'eau.The solution may contain from 0% to 90 mol% of water.

Le pourcentage de l'eau par rapport au liquide ionique est, avantageusement, inférieur à 50% molaire, et de préférence de l'ordre de 10% molaire.The percentage of water relative to the ionic liquid is advantageously less than 50 mol%, and preferably of the order of 10 mol%.

La quantité d'eau ajoutée dépend de la nature des liquides ioniques. L'eau sera ajoutée dans le liquide ionique, au maximum, jusqu'à saturation en eau du liquide ionique.The amount of water added depends on the nature of the ionic liquids. Water will be added to the ionic liquid, at most, until the ionic liquid is saturated with water.

Pour une solution contenant de l'eau, le cation du liquide ionique est, avantageusement, un imidazolinium et l'anion est un halogénure, et encore plus préférentiellement, un anion chlorure.For a solution containing water, the cation of the ionic liquid is advantageously an imidazolinium and the anion is a halide, and even more preferably a chloride anion.

Ces éléments sont, avantageusement, solubles dans l'eau. De plus, ce type de liquide ionique présente un pouvoir complexant suffisamment fort pour favoriser la lixiviation tout en ne nécessitant pas trop d'énergie pour pouvoir réaliser l'électrodéposition de l'argent.These elements are advantageously soluble in water. In addition, this type of ionic liquid has a sufficiently strong complexing power to promote leaching while not requiring too much energy to be able to carry out the electrodeposition of silver.

L'introduction des particules d'argent dans la solution contenant au moins le liquide ionique et le médiateur redox entraîne la dissolution immédiate de l'argent par un mécanisme redox avec le médiateur - étape b). L'étape de dissolution est réalisée à une température entre 15°C et 80°C, et de préférence à température ambiante, c'est-à-dire de l'ordre de 25°C. Il n'y a, avantageusement, pas besoin d'apport d'énergie thermique pour réaliser la dissolution de l'argent. Toutefois, une augmentation de la température peut être, avantageusement, réalisée pour améliorer la vitesse de dissolution sans dégradation du milieu (pour des températures comprises entre 15 et 80°C).The introduction of the silver particles into the solution containing at least the ionic liquid and the redox mediator leads to the immediate dissolution of the silver by a redox mechanism with the mediator - step b). The dissolution step is carried out at a temperature between 15 ° C and 80 ° C, and preferably at room temperature, that is to say of the order of 25 ° C. There is advantageously no need for thermal energy input to dissolve the silver. However, an increase in temperature can be advantageously carried out to improve the dissolution rate without degradation of the medium (for temperatures between 15 and 80 ° C.).

Les étapes du procédé sont également réalisées à pression ambiante, c'est-à-dire à une pression de l'ordre de 1bar.The process steps are also carried out at ambient pressure, that is to say at a pressure of the order of 1 bar.

Le procédé est réalisé sous air.The process is carried out in air.

Le rapport solide/liquide, lors de la dissolution de l'argent, est compris entre 1% et 45%, et de préférence, le rapport solide/liquide est compris entre 1% et 30%. Préférentiellement, ce rapport est de l'ordre de 10%. Par 10%, on entend 10%±1%.The solid / liquid ratio, during the dissolution of the silver, is between 1% and 45%, and preferably, the solid / liquid ratio is between 1% and 30%. Preferably, this ratio is of the order of 10%. By 10% is meant 10% ± 1%.

La phase solide correspond à l'argent. La phase liquide correspond à la solution.The solid phase corresponds to silver. The liquid phase corresponds to the solution.

Après dissolution de l'argent, le broyat, dépourvu d'argent, est extrait du bain par séparation solide-liquide - étape c).After dissolution of the silver, the ground material, devoid of silver, is extracted from the bath by solid-liquid separation - step c).

L'argent peut alors être récupéré et le médiateur redox peut être régénéré par électrolyse, lors de l'étape d). A l'électrode négative, l'argent est déposé sous forme métallique. Simultanément, l'électrode positive est le siège d'une oxydation du médiateur redox qui est régénéré.The silver can then be recovered and the redox mediator can be regenerated by electrolysis, during step d). At the negative electrode, silver is deposited in metallic form. At the same time, the positive electrode is the site of an oxidation of the redox mediator which is regenerated.

L'électrode négative est, avantageusement, en acier inoxydable, en carbone, en titane, en argent ou en un métal noble.The negative electrode is advantageously made of stainless steel, carbon, titanium, silver or a noble metal.

L'électrode positive est, avantageusement, en acier, en carbone ou en un métal noble.The positive electrode is advantageously made of steel, carbon or a noble metal.

Avantageusement, lors de cette étape, le liquide ionique joue le rôle de conducteur ionique, évitant ainsi l'apport de sel conducteur.Advantageously, during this step, the ionic liquid acts as an ionic conductor, thus avoiding the addition of conductive salt.

Comme représenté à la figure 1, de l'argent a été électrodéposé dans les liquides ioniques BMIM[X] ([X]=[DCA], [Cl], [Br] et [I]). Tous ces liquides ioniques sont adaptés au dépôt électrochimique d'argent. Les potentiels diffèrent suivant la nature de l'anion du liquide ionique :
EDCA (0,1V vs. Ag/AgCl) > ECl (-0,25V) > EBr (-0,60V) > EI (-0,80V)
As shown in the figure 1 , silver was electrodeposited in the ionic liquids BMIM [X] ([X] = [DCA], [Cl], [Br] and [I]). All these ionic liquids are suitable for electrochemical silver deposition. The potentials differ depending on the nature of the anion of the ionic liquid:
E DCA (0.1V vs. Ag / AgCl)> E Cl (-0.25V)> E Br (-0.60V)> E I (-0.80V)

L'apport énergétique sera, avantageusement, limité pour électrodéposer de l'argent dans un liquide ionique dont l'anion est un ion chlorure.The energy input will advantageously be limited to electrodeposit silver in an ionic liquid whose anion is a chloride ion.

Après l'étape d), la solution contenant le liquide ionique et le médiateur redox régénéré est alors utilisable pour un nouveau traitement.After step d), the solution containing the ionic liquid and the regenerated redox mediator can then be used for a new treatment.

Le procédé va maintenant être décrit à l'aide de l'exemple suivant donné à titre illustratif et non limitatif.The process will now be described with the aid of the following example given by way of illustration and not by way of limitation.

Les cellules photovoltaïques sont d'abord traitées thermiquement afin de brûler l'EVA et séparer les cellules des connecteurs. Cette étape a lieu dans un four sous air à 500°C pendant 1h.The photovoltaic cells are first heat treated in order to burn off the EVA and separate the cells from the connectors. This step takes place in an oven under air at 500 ° C. for 1 hour.

Les cellules collectées sont ensuite broyées à l'aide d'un broyeur à boulet (étape a). Les cellules sont immergées dans une solution d'acide sulfurique à 1 mol.L-1 avec un ratio solide/liquide de 10% (g/mL) et avec un asservissement constant du pH. La réaction a duré 24h, à 25°C avec une agitation à 400 tours/min.The collected cells are then ground using a ball mill (step a). The cells are immersed in a 1 mol.L -1 sulfuric acid solution with a solid / liquid ratio of 10% (g / mL) and with constant pH control. The reaction lasted 24 hours at 25 ° C with stirring at 400 rpm.

Les phases solide et liquide sont ensuite séparées par centrifugation et filtration.The solid and liquid phases are then separated by centrifugation and filtration.

Le volume de la phase liquide a été ajusté dans une fiole jaugée puis la solution a été analysée par spectrométrie par torche à plasma couplée à la spectrométrie d'émission optique (ou ICP-OES pour « Inductively Coupled Plasma Optical-Emission Spectrometry » en anglais).The volume of the liquid phase was adjusted in a volumetric flask then the solution was analyzed by plasma torch spectrometry coupled with optical emission spectrometry (or ICP-OES for "Inductively Coupled Plasma Optical-Emission Spectrometry" in English ).

A l'issu du traitement, l'aluminium, le zinc et le bore ont été intégralement dissous.At the end of the treatment, the aluminum, zinc and boron were completely dissolved.

La phase solide a été mise à l'étuve. Le solide est ensuite introduit dans un milieu liquide ionique de chlorure de butyl-methyl-imidazolium (BMIMCI) dans lequel est dissous du chlorure de fer (FeCl3) à une concentration de 0,15mol.L-1 avec 10% molaire d'eau (étape b). La solution est liquide à température ambiante. Le solide est immergé dans la solution liquide ionique avec un ratio solide/liquide de 10% (g/mL). La réaction a duré 24h, à 25°C avec une agitation à 400 tours/min. Les phases solide (enrichie en silicium) et liquide ont ensuite été séparées par filtration après dissolution complète de l'argent (étape c).The solid phase was placed in an oven. The solid is then introduced into an ionic liquid medium of butyl-methyl-imidazolium chloride (BMIMCI) in which iron chloride (FeCl 3 ) is dissolved at a concentration of 0.15mol.L -1 with 10 mol% of ' water (step b). The solution is liquid at room temperature. The solid is immersed in the ionic liquid solution with a solid / liquid ratio of 10% (g / mL). The reaction lasted 24 hours, at 25 ° C. with stirring at 400 rpm. The solid (enriched in silicon) and liquid phases were then separated by filtration after complete dissolution of the silver (step c).

La phase liquide a ensuite été utilisée pour faire un dépôt d'argent sur carbone vitreux (étape d). Un montage à trois électrodes est utilisé. L'électrode de travail et la contre électrode sont en carbone vitreux. Le potentiel est maintenu à -1,2V pendant trois heures (mode potentiostatique) sous agitation à 100tours/min, ce qui permet de, préférentiellement, réduire l'argent sur l'électrode en carbone vitreux. Le dépôt est directement analysé par microscopie électronique à balayage (MEB) et par microanalyse par analyse dispersive en énergie (ou EDX pour « Energy-dispersive X-ray spectroscopy »). La figure 2 représente un cliché de la microstructure du dépôt. La structure du dépôt d'argent est de type « chou-fleur ».The liquid phase was then used to deposit silver on glassy carbon (step d). A three-electrode arrangement is used. The working electrode and the counter electrode are made of glassy carbon. The potential is maintained at -1.2V for three hours (potentiostatic mode) with stirring at 100tours / min, this which makes it possible to preferentially reduce the silver on the glassy carbon electrode. The deposit is directly analyzed by scanning electron microscopy (SEM) and by microanalysis by energy dispersive analysis (or EDX for “Energy-dispersive X-ray spectroscopy”). The figure 2 represents a photograph of the microstructure of the deposit. The structure of the silver deposit is of the “cauliflower” type.

L'analyse EDX de la figure 3 permet de confirmer qu'il s'agit bien d'un dépôt d'argent. Ce dépôt d'argent contient quelques impuretés de plomb, de fer et de chlorures. Ces impuretés résiduelles seront majoritairement retirées après un lavage du dépôt d'argent dans de l'eau. Le dépôt d'argent est insoluble dans l'eau.EDX analysis of figure 3 confirms that it is indeed a deposit of money. This silver deposit contains some impurities of lead, iron and chlorides. These residual impurities will mostly be removed after washing the silver deposit in water. The silver deposit is insoluble in water.

Avant lavage, l'analyse semi-quantitative par EDX indique que la teneur en argent est supérieure à 90% pour atteindre un grade supérieur, après lavage des éléments piégés dans le dépôt d'argent. On constate également l'absence de cuivre et d'aluminium dans le dépôt.Before washing, semi-quantitative analysis by EDX indicates that the silver content is greater than 90% to reach a higher grade, after washing of the elements trapped in the silver deposit. There is also the absence of copper and aluminum in the deposit.

A la différence des procédés existants, ce procédé de valorisation de l'argent par voie de chimie verte n'utilise pas d'acide concentré ou de base concentrée et peut être réalisé à température ambiante, ce qui diminue l'apport énergétique nécessaire à la réalisation des différentes étapes. Il n'y a pas de dégagement de gaz nocifs.Unlike the existing processes, this process for upgrading silver by means of green chemistry does not use concentrated acid or concentrated base and can be carried out at room temperature, which reduces the energy input required for the process. realization of the different stages. There is no release of harmful gases.

Claims (18)

  1. Method for recycling the silver present in a solar cell comprising the following successive steps:
    a) grinding the solar cell so as to form a ground material containing particles of silver,
    b) dissolving the silver contained in the ground material in a solution containing:
    ∘ at least one ionic liquid in the form of a solvent comprising at least one cation and one anion the association of which generates a liquid with a melting temperature of less than 100°C,
    ∘ a redox mediator in the form of an ion in solution able to be reduced in a leaching or dissolution step of the silver and to be oxidised in an electrolysis step,
    ∘ possibly water,
    the dissolution leading to the formation of silver ions in solution,
    c) separating the ground material from the solution,
    d) performing electrolysis of the solution to reduce the silver ions and to regenerate the redox mediator.
  2. Method according to the foregoing claim, characterized in that the dissolution step is performed at a temperature between 15°C and 80°C, and preferably at about 25°C.
  3. Method according to either one of the foregoing claims, characterized in that the redox mediator is a metal salt chosen from iron, copper, ruthenium, silver, tin, cobalt, vanadium, chromium and manganese.
  4. Method according to the foregoing claim, characterized in that the metal salt is an iron (III) salt or a copper (II) salt.
  5. Method according to any one of the foregoing claims, characterized in that the ionic liquid is formed by a cation and an anion,
    the cation being chosen from imidazolium, pyrrolidinium, ammonium, piperidinium and phosphonium,
    the anion being chosen from halogenides, thiocyanate, tricyanomethanide and dicyanamide.
  6. Method according to the foregoing claim, characterized in that the cation is an imidazolium and in that the anion is a halogenide.
  7. Method according to any one of the foregoing claims, characterized in that the solution is devoid of sulphur compounds.
  8. Method according to any one of the foregoing claims, characterized in that in step d), the negative electrode is made from stainless steel, carbon, titanium, silver or a noble metal.
  9. Method according to any one of the foregoing claims, characterized in that in step d), the positive electrode is made from steel, carbon, or a noble metal.
  10. Method according to any one of the foregoing claims, characterized in that in the solar cell is a cell made from crystalline silicon or from polycrystalline silicon.
  11. Method according to any one of the foregoing claims, characterized in that, before step a), a heat treatment is performed so as to eliminate the polymer elements present in the solar cell.
  12. Method according to any one of the foregoing claims, characterized in that, after step a), the ground material is immersed in an acid solution having a pH in the 0 to 4 range to dissolve the aluminium present in the solar cell and separate it from the ground material.
  13. Method according to the foregoing claim, characterized in that the temperature of the acid solution is comprised between 20°C and 80°C.
  14. Method according to one of claims 12 and 13, characterized in that the solid/liquid ratio is comprised between 1% and 30%, and preferably the solid/liquid ratio is about 10%.
  15. Method according to any one of the foregoing claims, characterized in that the percentage of water in the solution compared with the ionic liquid is less than 50% molar, preferably about 10% molar.
  16. Method according to any one of the foregoing claims, characterized in that the ionic liquid has a concentration comprised between 0.1mol/L and 10mol/L, preferably between 1mol/L and 10mol/L, and even more preferentially between 1mol/L and 5mol/L.
  17. Method according to any one of the foregoing claims, characterized in that the solution comprises two ionic liquids, the first ionic liquid acting as neutral support and the second ionic liquid acting as complexing agent.
  18. Method according to the foregoing claim, characterized in that the first ionic liquid is bis(trifluoromethane)sulfonimide.
EP16202859.1A 2015-12-11 2016-12-08 Method for recycling the silver contained in a photovoltaic cell Active EP3178576B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1562252A FR3044941B1 (en) 2015-12-11 2015-12-11 PROCESS FOR RECYCLING SILVER PRESENT IN A PHOTOVOLTAIC CELL

Publications (2)

Publication Number Publication Date
EP3178576A1 EP3178576A1 (en) 2017-06-14
EP3178576B1 true EP3178576B1 (en) 2020-09-30

Family

ID=55361743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16202859.1A Active EP3178576B1 (en) 2015-12-11 2016-12-08 Method for recycling the silver contained in a photovoltaic cell

Country Status (3)

Country Link
EP (1) EP3178576B1 (en)
ES (1) ES2828980T3 (en)
FR (1) FR3044941B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110376A1 (en) * 2022-11-23 2024-05-30 SOLAR MATERIALS GmbH Method and device for processing a solar module

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312942B (en) * 2017-07-04 2018-10-23 东北大学 The method of extraction and separation vanadium and chromium from vanadium chromium slag pickle liquor
CN108893602A (en) * 2018-07-12 2018-11-27 汉能新材料科技有限公司 The separation method of the solar battery of de- envelope
CN111621648B (en) * 2019-02-28 2021-08-31 中国科学院化学研究所 Silver solution and preparation method thereof
FR3102679B1 (en) * 2019-10-31 2022-10-14 Commissariat Energie Atomique METHOD FOR RECOVERING PLATINOID PARTICLES CONTAINED IN AN ELECTRICALLY INSULATING SUPPORT
CN111719050B (en) * 2020-07-07 2021-11-05 昆明理工大学 Method for comprehensively recovering water-soluble zinc and silver in zinc leaching residues
CN112662884B (en) * 2020-12-16 2022-08-09 中国科学院电工研究所 Method for recycling metallic silver in crystalline silicon heterojunction solar cell
CN113337718A (en) * 2021-06-23 2021-09-03 江西思远再生资源有限公司 Method for recovering cobalt from lithium ion battery anode material
FR3127760A1 (en) 2021-10-01 2023-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR RECOVERING THE SILVER CONTAINED IN THE PARTICLES ORIGINATING, FOR EXAMPLE, FROM PHOTOVOLTAIC CELLS
FR3133789A1 (en) 2022-03-24 2023-09-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR RECOVERING INDIUM FROM A SUBTRATE COMPRISING INDIUM-TIN OXIDE AND A METAL LAYER USING GREEN CHEMISTRY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2025211A1 (en) * 1970-05-23 1971-12-02 Kraft J Selective anodic recovery of silver - from scrap by electro - -deposition from aq soln
FR2323766A1 (en) * 1975-04-21 1977-04-08 Penarroya Miniere Metallurg HYDROMETALLURGIC PROCESS FOR TREATING SULPHIDE ORES
JP2005311178A (en) 2004-04-23 2005-11-04 Sharp Corp Extraction method of solar cell board material, regenerating method of solar cell, and formation method of ingot for solar cell
KR101092259B1 (en) 2009-12-18 2011-12-12 한국화학연구원 Methode for recycling silicon from waste solar cell
CN102343352B (en) 2010-07-26 2014-03-12 比亚迪股份有限公司 Recovery method for solar silicon slice
KR101256574B1 (en) 2011-11-14 2013-04-19 한국화학연구원 Method for recycling silicon from waste solar module
CN102851506A (en) 2012-08-12 2013-01-02 安阳市凤凰光伏科技有限公司 Method for extracting and recovering silver from waste solar cell
CA2908046C (en) * 2013-03-28 2021-08-03 Yava Technologies Inc. Integrated recovery of metals from complex substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024110376A1 (en) * 2022-11-23 2024-05-30 SOLAR MATERIALS GmbH Method and device for processing a solar module

Also Published As

Publication number Publication date
EP3178576A1 (en) 2017-06-14
ES2828980T3 (en) 2021-05-28
FR3044941A1 (en) 2017-06-16
FR3044941B1 (en) 2018-02-02

Similar Documents

Publication Publication Date Title
EP3178576B1 (en) Method for recycling the silver contained in a photovoltaic cell
EP3023158B1 (en) Method for recovering silver contained in a silicon substrate
US8308933B2 (en) Method of recovering valuable metals from IZO scrap
US20100101964A1 (en) Method of Recovering Valuable Metal from Scrap Containing Conductive Oxide
US20100288646A1 (en) Method of Recovering Valuable Metals from IZO Scrap
WO2017100443A1 (en) Recovery of valuable or toxic metals from silicon solar cells
US20040262166A1 (en) Low temperature refining and formation of refractory metals
CH679158A5 (en)
EP3263744B1 (en) Process for the recovery of platinum, electrochemically, from a material which contains same
FR2590277A1 (en) PROCESS FOR DESULFURIZING THE PASTE FROM SINKED BATTERIES
EP3388555B1 (en) Process for selective recovery of silver in the presence of aluminium, electrochemically and in aqueous solution
FR3065230B1 (en) PROCESS FOR RECOVERING SILVER PRESENT ON A SUBSTRATE, ELECTROCHEMICALLY, IN THE PRESENCE OF AN IONIC LIQUID
Niazi et al. Electrochemical removal of Cu, Fe and Mn from molten ZnCl2: KCl: NaCl
CN110629253B (en) Method for electrorefining lead bullion by using ionic liquid and method for recovering metal bismuth and silver
JP2011106010A (en) Method for separating indium from tin by using organic solvent
EP4159882A1 (en) Method for recovering silver from particles, for example, of photovoltaic cells
JP5780230B2 (en) Gallium recovery method
EP4151763A1 (en) Method for selective recovery of gold by green chemistry from an element containing gold and a platinoid
JP6234160B2 (en) Method for producing rare earth metal
US20070034521A1 (en) Low temperature refining and formation of refractory metals
EP3388556A1 (en) Method for recovering silver present on a substrate, electrochemically and in aqueous solution
FR3099492A1 (en) PROCESS FOR RECOVERING RHODIUM BY ELECTROCHEMICAL
EP3458622B1 (en) New composite material enriched with si, production method thereof and use as electrode
Deferm Development of a hydrometallurgical route for the production of high-purity indium
CA1193996A (en) Process and apparatus for the recuperation of zinc from industrial wastes containing zinc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200309

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016044878

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B09B0003000000

Ipc: C22B0003440000

INTC Intention to grant announced (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/18 20060101ALI20200715BHEP

Ipc: C22B 7/00 20060101ALI20200715BHEP

Ipc: C22B 3/00 20060101ALI20200715BHEP

Ipc: B09B 3/00 20060101ALI20200715BHEP

Ipc: C22B 3/44 20060101AFI20200715BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20200824

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1318864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016044878

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201231

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1318864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210201

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2828980

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016044878

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

26N No opposition filed

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 8

Ref country code: DE

Payment date: 20231219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 8