EP3176795B1 - Magnetspulenanordnung mit anisotropem supraleiter - Google Patents
Magnetspulenanordnung mit anisotropem supraleiter Download PDFInfo
- Publication number
- EP3176795B1 EP3176795B1 EP16200176.2A EP16200176A EP3176795B1 EP 3176795 B1 EP3176795 B1 EP 3176795B1 EP 16200176 A EP16200176 A EP 16200176A EP 3176795 B1 EP3176795 B1 EP 3176795B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coil
- symmetry
- axis
- windings
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002887 superconductor Substances 0.000 title claims description 72
- 238000004804 winding Methods 0.000 claims description 62
- 230000005291 magnetic effect Effects 0.000 claims description 54
- 239000004020 conductor Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 20
- 238000005457 optimization Methods 0.000 claims description 11
- 238000004904 shortening Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 5
- 238000009826 distribution Methods 0.000 claims description 4
- 230000004907 flux Effects 0.000 description 6
- 101100390736 Danio rerio fign gene Proteins 0.000 description 4
- 101100390738 Mus musculus Fign gene Proteins 0.000 description 4
- 235000012771 pancakes Nutrition 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical group [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/048—Superconductive coils
Definitions
- the invention relates to a superconductive, stepped magnetic coil arrangement with a hollow coil with a constant inner radius for generating an operating magnetic field in a working volume around an axis of symmetry, the coil comprising windings made of an anisotropic superconductor whose superconducting current-carrying capacity in a magnetic field perpendicular to the current direction in the conductor is Field amplitude as well as the field direction within a plane perpendicular to the direction of the current, the radially summed up number of turns along the axis of symmetry towards the edge being reduced in discrete steps or quasi-continuously.
- Superconducting magnetic coils enable extremely energy-efficient generation of strong and temporally constant magnetic fields, since they can be operated with no or at least very low ohmic losses.
- the electrical current carrying capacity of a superconductor is given c by its critical current I. If the electrical current in the conductor exceeds the value of I c , a phase transition to a normally conducting state takes place, in which the current no longer flows without resistance.
- the current carrying capacity depends on the strength of the magnetic field to which it is exposed, but not on the direction of the magnetic field.
- the current-carrying capacity is also influenced by the angle of the magnetic field to the conductor. This is the case, for example, with high-temperature superconductors (HTS) such as (RE)BCO or Bi-2223, whose underlying copper oxide structure has a two-dimensional character.
- HTS high-temperature superconductors
- RE RE
- Bi-2223 whose underlying copper oxide structure has a two-dimensional character.
- the critical current of an HTS ribbon conductor in a magnetic field perpendicular to the plane of the ribbon is typically lower than in a field parallel to the plane of the ribbon.
- “Wound in layers” means that along the superconductor successive windings are mainly wound next to one another in layers along the axis of symmetry, it being possible for a constant radius to be assigned to each layer. This is in contrast to so-called pancake coils in which successive turns are primarily wound radially one on top of the other.
- references [1] and [2] the current-carrying capacity of the coil is increased at the axial ends by using a superconductor with a higher current-carrying capacity (larger conductor cross-section, see reference [1]) for the corresponding windings. or superconductor type with higher critical current density see reference [2]) is used.
- a disadvantage of this solution is that it is not possible to use a uniform superconductor in the coil and that the different conductor sections must be connected in a low-impedance manner for operation in a series circuit.
- the cited references do not consider layer-wound coils, but rather those consisting of several sections or pancakes positioned axially along the axis.
- Reference [4] discloses an arrangement in which the number of turns at the axial coil ends is reduced.
- this known coil is an arrangement of several double “pancake” coils and not a layer-wound solenoid coil of the type defined in the opening paragraph. Furthermore, this arrangement is not intended to reduce the radial field component at the coil ends.
- Reference [5] discloses a superconductive magnet coil arrangement with at least one section made of superconductive strip conductors, which is continuously wound in multiple layers, like a solenoid, in a cylindrical winding chamber between two end flanges, and which is characterized in that the section has an axial area of reduced current density or notch area having.
- Reference [6] describes a superconducting homogeneous high-field magnetic coil in which the current density is reduced in the axial end area in such a way that the forces acting on the windings can be kept small.
- Reference [7] discloses a superconductive magnet coil assembly containing at least one section of superconductive strip conductor continuously wound in a multi-layer, solenoid-like manner in a cylindrical winding chamber between two end flanges.
- notch reduced current density
- Stepped superconductor coils are also known from reference [12], where however no part connected at the edge is disclosed, or from reference [13], where however no winding layer is replaced with the insulating tape.
- a generic stepped coil geometry with the characteristics defined above is known from reference [11] cited above, in which the inner diameter of the windings at the coil end is widened in order to reduce the influence of the vertical field component on the critical current density.
- the inner coil radius is varied axially, which is not particularly advantageous for various reasons and diametrically opposed to the corresponding feature of a generic coil is opposite.
- co-winding of non-superconducting material in a coil wound in layers with cylindrical symmetry in relation to the axis of symmetry z is not even hinted at.
- reference [0] also cited above, describes a superconductive, stepped magnet coil arrangement, but deals exclusively with pancake coils and not with coils wound in layers in a cylindrically symmetrical manner on the axis of symmetry z, with the co-winding of non-superconductive material also not being disclosed.
- the present invention is based on the object of modifying a superconductive magnet coil arrangement of the type defined at the beginning and a method for its design with particularly simple technical means in such a way that the limitations of such superconductive magnet coil arrangements discussed above, which typically occur at the axial ends of the coil , are significantly reduced and the current-carrying capacity of the coil is significantly increased.
- the invention seeks to provide a generic stepped superconductor coil that is easy to manufacture and has minimal layer changes.
- a superconductive magnet coil arrangement of the type defined at the outset, which is characterized in that the coil is wound in cylindrically symmetrical layers in relation to the axis of symmetry, with a axial coil end extending coherent part of a inner winding layer is wound with non-superconducting material.
- the current-carrying capacity of coils that are wound from anisotropic superconductors is limited at the axial ends by the magnetic field component in the radial direction.
- the present invention proposes a superconductive magnet coil arrangement which makes it possible to weaken this field component and increase the current-carrying capacity of the coil.
- the current carrying capacity of the superconductor at the axial ends of the coil is increased by weakening the radial component of the magnetic field. According to the invention, this is achieved by reducing the number of turns in areas at the coil ends, with both the cross section and the type of superconductor used remaining unchanged.
- the lower number of turns near the axial coil ends means that the radial magnetic flux is distributed axially over a larger area and the radial component of the magnetic field is locally smaller. This in turn increases the current-carrying capacity of the superconductor there and consequently of the entire coil.
- An advantage of this arrangement according to the invention is the more uniform distribution of the current-carrying capacity of the superconductor throughout the coil. As a result, the superconductor is better utilized for the current flow, and the coil can be operated at a higher current. The amount of superconductor material required and thus the production costs are consequently lower than in comparable conventional arrangements.
- the arrangement according to the invention is significantly more efficient due to the conscious choice of the winding distribution in the coil.
- no additional winding body is required to implement the arrangement, which saves space and material costs.
- the non-superconducting material wound towards the edge together with the superconducting material serves as filling material and contributes to the mechanical stability of the winding package.
- the coil can be designed in such a way that the magnetic field generated has a field component B r perpendicular to the current direction and to the axis of symmetry, the maximum of which in the coil volume is at least 5% smaller than if, with the same operating field of the coil in the center of the working volume, the expansions of the fourth and fifth coil area would be shortened along the direction of the axis of symmetry towards the coil center, the relative shortening of the extensions depending on the ratio of the first number of coil edge turns to the maximum number of coil edge turns in the fourth coil area and the ratio of the second number of coil edge turns to corresponds to the maximum number of coil edge turns in the fifth coil area, with the same number of turns of the anisotropic superconductor in the coil, that the minimum of the superconducting current carrying capacity of the anisotropic superconductor in the coil is at least 3% higher than if, with the same operating field of the coil in the working volume, the Extensions of the fourth and fifth coil area along the direction of the axis
- the radially total number of turns along the z-axis of symmetry is reduced in one or more discrete steps towards the edge in the fourth and/or fifth coil area of the magnet coil arrangement, the radial field component in the coil ends can be reduced and the current-carrying capacity can be significantly increased.
- the radially totaled number of turns can be reduced quasi-continuously along the axis of symmetry z towards the edge. This enables even finer modeling of the radial field component along the axial coil ends and better optimization of the current-carrying capacity.
- inventions in which the windings in the first radially delimited rectangular coil area are wound from a single uninterrupted piece of superconductor, ie without so-called joints, which connect different conductor sections to each other. This keeps the electrical resistance in the coil very low. Joints between HTS superconductors typically exhibit some electrical resistance and result in magnetic field drift unless the coil is supported by a power source. Joints, which are housed in the winding package of the coil, can also worsen the field homogeneity in the working volume. Last but not least, the winding of a single piece of conductor also has advantages in terms of production technology.
- the second coil area is wound with at least 20%, in particular 40% to 60%, preferably about 50% fewer conductor turns than an axially adjoining coil area of the same geometry.
- a class of embodiments of the coil arrangement according to the invention is very particularly preferred in which the magnetic field generated by the coil has a field component B r perpendicular to the current direction and to the axis of symmetry z, the maximum of which in the coil volume is at least 10%, preferably up to 50% smaller is as if - with the same operating field of the coil in the center of the working volume - the extensions of the fourth and fifth coil area along the direction of the axis of symmetry towards the coil center were shortened, with the relative shortening of the extensions corresponding to the ratio of the first and second number of coil edge turns to the maximum number of coil edge turns at the same remaining number of turns of the anisotropic superconductor in the coil.
- the minimum of the superconducting current-carrying capacity of the anisotropic superconductor in the coil is at least 5%, in particular up to 30%, preferably up to 50% higher than if - with the same operating field of the coil in Center of the working volume - the extensions of the fourth and fifth coil area along the direction of the axis of symmetry towards the coil center would be shortened, with the relative shortening of the extensions corresponding to the ratio of the first and second number of coil edge turns to the maximum number of coil edge turns with the same number of turns of the anisotropic superconductor in the coil.
- the greater the current-carrying capacity of the coil the larger the magnetic fields that can be generated, or the less superconductor material is required to generate a given field strength in the working volume.
- non-superconducting material that is also wound includes foil inserts. Foils can be accommodated particularly well between the superconducting windings and can easily be cut to the desired geometry.
- the number of turns on the axial coil ends is reduced in that no turns are wound on the coil edges over a number of layers lying directly one on top of the other.
- the optimization areas can also protrude beyond the coil ends of the output coil, i.e. the optimized coil can definitely be longer axially than the output coil.
- the exact winding distribution in the optimization areas can also be selected in such a way that it is advantageous in relation to the forces in the winding package and/or in terms of winding technology.
- the advantage of this method is that it leads to a coil design that has an increased current-carrying capacity and that the coil requires a smaller total amount of superconductor than the output coil for operation at a given magnetic field strength.
- FIG. 1 schematically illustrates a first embodiment of the magnet coil arrangement according to the invention.
- the coil areas 1 to 5 can be defined within the rectangular coil cross section, which meet the specific requirements according to the invention, as will be described below.
- a first radially delimited rectangular coil area 1 can be defined, which partially covers the coil cross section radially and completely along the axis of symmetry z and does not contain a fully wound winding layer.
- the first coil area 1 also contains two sub-areas, which characterize the reduction in the number of turns at an axial end of the first coil area: a second coil area 2, which covers the first coil area 1 along the axis of symmetry over 10% of its length from the coil edge, and a third coil area 3, which adjoins the second coil area 2 and covers the first coil area 1 along the axis of symmetry over 40% of its length.
- the second and third areas 2, 3 are characterized in that the number of turns in the second coil area 2 is at least four and a half times smaller than that in the third coil area 3.
- the reduction in the number of turns at the axial coil ends leads to a reduction in the maximum radial field component and consequently to an increase in the current-carrying capacity, which is characterized by comparison with a modified arrangement.
- a fourth coil area 4 and a fifth coil area 5 are defined, which cover the coil cross section radially completely and axially from one of the two coil edges 10% along the axis of symmetry z.
- the fourth and fifth coil regions 4, 5 are shortened along the direction of the axis of symmetry towards the center of the coil, so that there would be no more space for the same number of superconductors.
- the arrangement according to the invention is characterized in that its maximum radial field component is at least 5% smaller and its current-carrying capacity is at least 3% larger than in the comparative arrangement.
- any position that is not fully wound can be defined as the first coil region 1 .
- the third coil area 3 contained therein then contains 84 and thus 7 times (ie more than four and a half times) as many turns as the second coil area 2 with 12 turns.
- the comparison coil is obtained, which is listed in the following table: conventional according to the invention comparison magnetic field 4.7d 4.7d 4.7d operating current 97.4A 122.0A 121.9A superconductor length 1351 m 1019 m 1019 m maximum radial field 1.8T 1.0 d 1.7 d ampacity 100.5A 125.2A 107.9A power usage 97% 97% 113%
- the maximum radial field of the coil arrangement according to the invention is around 40% smaller than that of the comparison coil. Accordingly, the current carrying capacity is increased by 16%.
- the coil according to the invention calculated in the example can be operated at a higher current thanks to the increased current-carrying capacity.
- the amount of superconductor required for winding is reduced by 25%.
- the Figures 2a to 2d show embodiments in which all turns in the first coil region are wound from a single continuous piece of superconductor.
- the continuous lines in the winding pack of the figures 2a and 2c schematically represent the superconductor, and the dashed lines non-superconducting filler material.
- the figures 2b and 2d are the the figures 2a and 2c corresponding coil areas 1';1"2';2"3';3" and 4 and 5, respectively.
- the coil area 1' ( Figure 2b ) contains, for example, the radially third innermost, not fully wound layer.
- the coil area 1" ( Fig. 2d ) includes the three radial according to the invention innermost, not fully wound layers.
- the Figures 3a and 3b show an embodiment in which the reduction in the number of turns at the axial coil ends is achieved in that no turns are wound on the coil edges over a number of directly superimposed layers.
- the continuous lines in the winding pack of the Figure 3a schematically represent the layer areas which are wound with superconductor.
- the Figure 3b are those in the Figure 3a corresponding coil areas 1′′′ 2′′′ 3′′′ and 4 and 5 are shown.
- coil regions 2 through 5 do not necessarily correspond to the boundaries between fully wound and non-fully wound regions in the coil.
- the Figures 4a and 4b show a comparison of the radial fields at the edge of a conventional magnet coil arrangement and a magnet coil arrangement modified according to the invention.
- Cylindrically symmetrical magnet coils are shown (section through a plane containing the axis of symmetry z) and the isofield lines of the radial component of the magnetic field. The outermost line corresponds to 0.25 T, and the field increases by 0.25 T with each line towards the maximum.
- the number of turns at the axial ends is reduced.
- the conventional arrangement shown in the prior art shows a reference coil with a homogeneous number of turns, which has the same inner and outer radius as the arrangement according to the invention, the coil length along the axis of symmetry being selected such that the same amount of conductors is wound as in the coil according to the invention.
- the maximum radial field reaches a strength of approximately 1.75 T, while in the case of the invention arrangement with the same magnetic field strength in the center of the working volume is only approx. 1.0 T.
- the coil according to the invention With the same current load but higher current, the coil according to the invention generates a larger magnetic field in its center than the conventional reference coil, since its current-carrying capacity is greater than that of the reference coil.
- the number of turns of the superconductor is reduced in the axial edge areas compared to the central area.
- the field lines represent the magnetic flux, with their density corresponding to the magnetic field strength. Due to the gradually reduced number of turns, the magnetic flux flowing around the coil ends is distributed over edge areas that are longer in the axial direction and is significantly diluted. Consequently, the magnetic field strength has a relatively small component in the radial direction (arrows).
- Figure 5b shows a cylindrically symmetrical coil with homogeneous (full) current density according to the prior art with a constant number of turns along the axis of symmetry.
- Figure 5a the axial ends are shortened towards the center of the coil so that the total number of turns of the coil is the same.
- the known coil generates the same field strength in the center as the coil according to the invention. Due to the abruptly decreasing number of turns, however, the magnetic flux is concentrated at the axial edges of the coil. This
- Flux concentration leads to a larger radial magnetic field component with a maximum at these locations (arrows).
- FIG. 1 shows a coil according to the invention in which the current density at the axial ends has been reduced.
- the magnetic field strength which corresponds to the density of the field lines, is significantly reduced at the ends of the coil according to the invention.
- a major advantage of the arrangement according to the invention is, among other things, the more uniform distribution of the current-carrying capacity of the superconductor throughout the coil. As a result, the superconductor is better utilized and the coil can be operated at a higher current. The amount of superconductor required and thus the material costs are lower, or a higher magnetic field can be generated in the center of the coil with the same amount of superconductor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Description
- Die Erfindung betrifft eine supraleitfähige, gestufte Magnetspulenanordnung mit einer hohlen Spule mit konstantem Innenradius zur Erzeugung eines Betriebsmagnetfeldes in einem Arbeitsvolumen um eine Symmetrieachse, wobei die Spule Wicklungen aus einem anisotropen Supraleiter umfasst, dessen supraleitende Stromtragfähigkeit in einem Magnetfeld senkrecht zur Stromrichtung im Leiter sowohl von der Feldamplitude als auch von der Feldrichtung innerhalb einer Ebene senkrecht zur Stromrichtung abhängt, wobei die radial aufsummierte Anzahl der Windungen entlang der Symmetrieachse zum Rand hin in diskreten Stufen oder quasi-kontinuierlich reduziert ist.
- Eine solche Magnetspulenanordnung ist bekannt aus Referenz [11].
- Speziell kann eine derartige Magnetspulenanordnung ausgestaltet sein mit einer Schnittebene, welche die Symmetrieachse enthält und die Spule schneidet, wobei die Spule einen rechteckigen Spulenquerschnitt in der Schnittebene aufweist, der definiert ist durch einen radial inneren und radial äußeren sowie einen axial ersten und axial zweiten Spulenrand, definiert durch die Position einer radial innersten und einer radial äußersten Windung der Spule mit dem kleinsten bzw. größten Abstand zur Symmetrieachse, und durch die Position einer axial ersten und einer axial letzten Windung der Spule mit der kleinsten bzw. größten Koordinate entlang der Symmetrieachsenrichtung, und wobei die Spule aufweist:
- einen ersten radial begrenzten rechteckigen Spulenbereich, welcher den Spulenquerschnitt entlang der Symmetrieachsenrichtung vollständig überdeckt und keine in axialer Richtung vollgewickelte Lage enthält,
- einen zweiten radial begrenzten rechteckigen Spulenbereich innerhalb des ersten Spulenbereichs, welcher den ersten Spulenbereich radial vollständig und entlang der Symmetrieachsenrichtung zu 10% überdeckt und den axial ersten oder zweiten Spulenrand einschließt,
- einen dritten radial begrenzten rechteckigen Spulenbereich innerhalb des ersten Spulenbereichs, welcher den ersten Spulenbereich radial vollständig und entlang der Symmetrieachsenrichtung zu 40% überdeckt und an den zweiten Spulenbereich anschließt, wobei die Anzahl der Windungen des anisotropen Supraleiters im dritten Spulenbereich mehr als das Viereinhalbfache der Anzahl der Windungen des anisotropen Supraleiters im zweiten Spulenbereich beträgt, einen vierten und fünften rechteckigen Spulenbereich innerhalb des Spulenquerschnitts, welche den Spulenquerschnitt radial vollständig und entlang der Symmetrieachsenrichtung je zu 10 % überdecken und den axial ersten bzw. zweiten Spulenrand einschließen mit einer ersten und zweiten Spulenrandwindungszahl, gegeben durch die Anzahl Windungen des anisotropen Supraleiters im vierten bzw. im fünften Spulenbereich und mit einer maximalen Spulenrandwindungszahl, gegeben durch den Quotienten aus der Querschnittfläche des vierten oder fünften Spulenbereichs und der Querschnittfläche des anisotropen Supraleiters.
- Supraleitende Magnetspulen ermöglichen eine äußerst energieeffiziente Erzeugung von starken und zeitlich konstanten Magnetfeldern, da sie völlig ohne oder zumindest mit sehr geringen ohmschen Verlusten betrieben werden können.
- Die elektrische Stromtragfähigkeit eines Supraleiters ist durch seinen kritischen Strom Ic gegeben. Übersteigt der elektrische Strom im Leiter den Wert von Ic, so findet ein Phasenübergang zu einem normalleitenden Zustand statt, in welchem der Strom nicht mehr widerstandslos fließt.
- In einem isotropen Supraleiter hängt die Stromtragfähigkeit von der Stärke des Magnetfeldes ab, welchem er ausgesetzt ist, nicht aber von der Richtung des Magnetfeldes. Bei einem anisotropen Supraleiter hingegen wird die Stromtragfähigkeit auch vom Winkel des Magnetfeldes zum Leiter beeinflusst. Dies ist beispielsweise bei Hochtemperatursupraleitern (HTS) wie (RE)BCO oder Bi-2223 der Fall, deren zugrunde liegende Kupferoxidstruktur einen zweidimensionalen Charakter hat. So ist der kritische Strom eines HTS-Bandleiters in einem Magnetfeld, welches senkrecht zur Bandebene steht, typischerweise niedriger als in einem Feld parallel zur Bandebene.
- In einer aus HTS-Bandleiter gewickelten zylindersymmetrischen Magnetspule führt dies normalerweise dazu, dass die Stromtragfähigkeit der Spule an den axialen Enden limitiert ist, da dort die Radialkomponente des Magnetfeldes am größten ist.
- Im Folgenden betrachten wir eine aus anisotropem Supraleiter lagengewickelte zylindersymmetrische Magnetspule, deren Stromtragfähigkeit durch die von der Spule erzeugte Feldkomponente in radialer Richtung stärker unterdrückt ist als durch diejenige in axialer Richtung. Mit "lagengewickelt" ist gemeint, dass entlang des Supraleiters aufeinanderfolgende Windungen hauptsächlich lagenweise entlang der Symmetrieachse nebeneinander gewickelt sind, wobei einer Lage jeweils ein konstanter Radius zugeordnet werden kann. Diessteht im Gegensatz zu sogenannten Pancake-Spulen, bei denen aufeinanderfolgende Windungen hauptsächlich radial übereinander gewickelt sind.
- In den Referenzen [1] und [2] wird die Stromtragfähigkeit der Spule an den axialen Enden erhöht, indem für die entsprechenden Wicklungen ein Supraleiter mit höherer Stromtragfähigkeit (größerer Leiterquerschnitt, siehe Referenz [1] oder Supraleiterart mit höherer kritischer Stromdichte siehe Referenz [2]) verwendet wird. Ein Nachteil dieser Lösung liegt darin, dass in der Spule kein einheitlicher Supraleiter verwendet werden kann und dass die unterschiedlichen Leiterstücke für einen Betrieb in Serienschaltung gezwungenermaßen niederohmig verbunden werden müssen. Außerdem werden in den genannten Referenzen keine lagengewickelten Spulen betrachtet, sondern solche, die aus mehreren entlang der Achse axial positionierten Sektionen oder Pancakes bestehen.
- Eine weitere bekannte Möglichkeit, die Stromtragfähigkeit zu erhöhen, ist in Referenz [3] beschrieben: Ferromagnetische Flansche an den Spulenenden leiten den magnetischen Fluss um den Supraleiter herum und reduzieren dort die maximale Radialkomponente des Magnetfeldes. Die relativ schwache Magnetisierung von Ferromagneten schränkt die Effizienz dieser Methode jedoch deutlich ein.
- In Referenz [4] ist eine Anordnung offenbart, bei welcher die Windungszahl an den axialen Spulenenden reduziert ist. Allerdings handelt es sich bei dieser bekannten Spule um eine Anordnung aus mehreren Doppel-"Pancake"-Spulen und nicht um eine lagengewickelte Solenoid-Spule der eingangs definierten Art. Außerdem wird mit dieser Anordnung nicht beabsichtigt, die radiale Feldkomponente an den Spulenenden zu verringern.
- Referenzen [8] bis [10]:
Bei diesen Publikationen wurde zwar erkannt, dass durch Reduzieren des Radialfeldes am Rand einer HTS Spule das Betriebsfeld im Arbeitsvolumen erhöht werden kann, doch wurden als Lösung zur Reduktion des Radialfeldes jeweils Spulen unterschiedlicher Längen vorgeschlagen. Die Erhöhung der Betriebsfelder im Arbeitsvolumen aufgrund dieser Maßnahme ist jedoch gering. Zudem sind bei den bekannten Anordnungen notwendigerweise jeweils zusätzliche Wickelkörper erforderlich. - Referenz [5] offenbart eine supraleitfähige Magnetspulenanordnung mit mindestens einer Sektion aus supraleitfähigem Bandleiter, die in einer zylindrischen Wickelkammer zwischen zwei Endflanschen mehrlagig, solenoidartig durchgehend gewickelt ist, und die sich dadurch auszeichnet, dass die Sektion einen axialen Bereich reduzierter Stromdichte bzw. Notch-Bereich aufweist.
- Referenz [6] beschreibt eine supraleitende homogene Hochfeldmagnetspule, bei der im axialen Endbereich die Stromdichte derart verringert ist, dass die auf die Windungen wirkenden Kräfte klein gehalten werden können.
- Die Referenz [7] offenbart eine supraleitfähige Magnetspulenanordnung, die zumindest eine Sektion aus supraleitfähigem Bandleiter enthält, welche in einer zylindrischen Wickelkammer zwischen zwei Endflanschen mehrlagig, solenoidartig durchgehend gewickelt ist. Die bekannte Anordnung zeichnet sich dadurch aus, dass die Sektion einen axialen Bereich reduzierter Stromdichte (= "Notch"-Bereich) aufweist. Allerdings ist die Windungszahl an den Spulenrändern gegenüber dem Inneren dieses axialen Bereichs nicht reduziert, wodurch keine Reduktion des Radialfeldes erreicht wird.
- Gestufte Supraleiterspulen sind auch bekannt aus Referenz [12], wo jedoch kein randständig zusammenhängender Teil offenbart ist, oder aus Referenz [13], wo aber mit dem isolierenden Tape keine Wickellage ersetzt wird.
- Aus der bereits oben zitierten Referenz [11] ist eine gattungsgemäße gestufte Spulengeometrie mit den eingangs definierten Merkmalen bekannt, bei welcher der Innendurchmesser der Wicklungen am Spulenende aufgeweitet wird, um den Einfluss der vertikalen Feldkomponente auf die kritische Stromdichte zu vermindern. Bei dieser Anordnung wird unter anderem der innere Spulenradius axial variiert, was aus verschiedenen Gründen nicht besonders vorteilhaft ist und dem entsprechenden Merkmal einer gattungsgemäßen Spule diametral entgegengesetzt ist. Außerdem ist ein Mitwickeln von nicht-supraleitendem Material in einer bezogen auf die Symmetrieachse z zylindersymmetrisch lagengewickelten Spule nicht einmal andeutungsweise offenbart.
- Die ebenfalls bereits oben zitierte Referenz [0] schließlich beschreibt eine supraleitfähige, gestufte Magnetspulenanordnung, handelt aber ausschließlich von Pancake-Spulen, nicht jedoch von auf die Symmetrieachse z zylindersymmetrisch lagengewickelten Spulen, wobei auch ein Mitwickeln von nicht-supraleitendem Material nicht offenbart ist.
- Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, eine supraleitfähige Magnetspulenanordnung der eingangs definierten Art sowie ein Verfahren zu deren Design mit besonders einfachen technischen Mitteln so zu modifizieren, dass die oben diskutierten Einschränkungen von derartigen supraleitfähigen Magnetspulenanordnungen, welche typischerweise an den axialen Enden der Spule auftreten, deutlich abgemildert werden und die Stromtragfähigkeit der Spule erheblich erhöht wird. Insbesondere soll mit der Erfindung eine generische gestufte Supraleiterspule bereitgestellt werden, die einfach herzustellen ist und minimale Lagenwechsel aufweist.
- Diese Aufgabe wird auf einfach zu realisierende, wirkungsvolle Weise mit ohne Weiteres zur Verfügung stehenden technischen Mitteln durch eine supraleitfähige Magnetspulenanordnung der eingangs definierten Art gelöst, welche sich dadurch auszeichnet, dass die Spule bezogen auf die Symmetrieachse zylindersymmetrisch lagengewickelt ist, wobei ein sich nur von einem axialen Spulenende erstreckender zusammenhängender Teil einer innenliegenden Wickellage mit nicht-supraleitendem Material gewickelt ist.
- Unter gewissen Umständen ist die Stromtragfähigkeit von Spulen, die aus anisotropem Supraleiter gewickelt sind, an den axialen Enden durch die Magnetfeldkomponente in radialer Richtung limitiert. Die vorliegende Erfindung schlägt eine supraleitfähige Magnetspulenanordnung vor, welche es ermöglicht, diese Feldkomponente abzuschwächen und die Stromtragfähigkeit der Spule zu erhöhen.
- Die Stromtragfähigkeit des Supraleiters an den axialen Spulenenden wird erhöht, indem die radiale Komponente des Magnetfeldes abgeschwächt wird. Dies wird erfindungsgemäß durch eine Absenkung der Windungszahl in Bereichen an den Spulenenden erreicht, wobei sowohl der Querschnitt als auch die Art des verwendeten Supraleiters unverändert bleiben können.
- Die geringere Windungszahl in der Nähe der axialen Spulenenden führt dazu, dass der radiale magnetische Fluss axial über einen größeren Bereich verteilt wird und die Radialkomponente des Magnetfeldes lokal kleiner wird. Dadurch wiederum wird dort die Stromtragfähigkeit des Supraleiters und folglich der gesamten Spule erhöht.
- Ein Vorteil dieser erfindungsgemäßen Anordnung besteht in der gleichmäßigeren Verteilung der Stromtragfähigkeit des Supraleiters in der gesamten Spule. Dadurch wird der Supraleiter für den Stromfluss besser ausgenutzt, die Spule kann bei einem höheren Strom betrieben werden. Die benötigte Menge an Supraleitermaterial und somit die Herstellungskosten sind folglich geringer als bei vergleichbaren herkömmlichen Anordnungen.
- Andererseits kann mit derselben Supraleitermenge ein höheres Magnetfeld im Spulenzentrum erzeugt werden.
- Im Gegensatz zu Anordnungen, bei welchen das Radialfeld passiv, also beispielsweise mit ferromagnetischen Elementen, beeinflusst wird, ist die erfindungsgemäße Anordnung durch die bewusste Wahl der Windungsverteilung in der Spule deutlich effizienter. Außerdem sind zur Realisierung der Anordnung keine zusätzlichen Wickelkörper notwendig, was räumlichen Platz und Materialkosten spart.
- Besonders vorteilhaft gegenüber dem Stand der Technik ist die Möglichkeit der Verwendung eines einheitlichen Supraleiters in der gesamten Spule. Sind nämlich verschiedene Supraleiter notwendig, z.B. aus unterschiedlichem supraleitenden Material oder verschiedener Geometrie, so müssen diese zwangsläufig untereinander verbunden sein, damit der elektrische Strom die Leiterstücke in Serie durchfließen kann. Das Verbinden verschiedener Supraleiter kann technisch sehr herausfordernd und aufwändig sein.
- Das zusammen mit dem Supraleitermaterial zum Rand hin mitgewickelte nicht-supraleitende Material dient als Füllmaterial und trägt zur mechanischen Stabilität des Wickelpakets bei.
- Insbesondere kann die Spule derart ausgelegt sein, dass das erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse aufweist, deren Maximum im Spulenvolumen mindestens um 5% kleiner ist als wenn, bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens, die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im vierten Spulenbereich sowie dem Verhältnis von zweiter Spulenrandwindungszahl zur maximalen Spulenrand-windungszahl im fünften Spulenbereich entspricht, bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters in der Spule mindestens 3% höher ist als wenn, bei gleichem Betriebsfeld der Spule im Arbeitsvolumen, die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im vierten Spulenbereich sowie dem Verhältnis von zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl im fünften Spulenbereich entspricht, bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule, und dass im ersten Spulenbereich entlang der Symmetrieachse zum Rand hin zusammen mit dem Supraleitermaterial auch
- Wenn bei der Magnetspulenanordnung im vierten und/oder im fünften Spulenbereich die radial aufsummierte Anzahl der Windungen entlang der Symmetrieachse z zum Rand hin in einer oder mehreren diskreten Stufen reduziert ist, kann die Radialfeldkomponente in den Spulenenden reduziert und die Stromtragfähigkeit deutlich gesteigert werden.
- Alternativ kann im vierten und/oder im fünften Spulenbereich die radial aufsummierte Windungszahl entlang der Symmetrieachse z zum Rand hin quasi-kontinuierlich reduziert sein. Dies ermöglicht eine noch feinere Modellierung der Radialfeldkomponente entlang den axialen Spulenenden und eine bessere Optimierung der Stromtragfähigkeit.
- Besonders bevorzugt sind Ausführungsformen der Erfindung, bei denen die Wicklungen im ersten radial begrenzten rechteckigen Spulenbereich aus einem einzigen ununterbrochenen Supraleiterstück gewickelt sind, d.h. ohne sogenannte Joints, welche verschiedene Leiterstücke untereinander verbinden. Somit wird der elektrische Widerstand in der Spule sehr gering gehalten. Joints zwischen HTS-Supraleitern weisen normalerweise einen gewissen elektrischen Widerstand auf und führen zu einer Drift des Magnetfeldes, wenn die Spule nicht mit einer Stromquelle gestützt wird. Joints, welche im Wickelpaket der Spule untergebracht sind, können außerdem die Feldhomogenität im Arbeitsvolumen verschlechtern. Nicht zuletzt hat das Wickeln eines einzigen Leiterstücks auch produktionstechnische Vorteile.
- Weitere vorteilhafte Ausführungsformen der erfindungsgemäßen Magnetspulenanordnung zeichnen sich dadurch aus, dass der zweite Spulenbereich mit mindestens 20%, insbesondere mit 40% bis 60%, vorzugsweise mit etwa 50% weniger Leiterwindungen gewickelt ist als ein axial anschließender Spulenbereich gleicher Geometrie. Durch eine Reduktion der Windungszahl in diesem Größenbereich ist die Radialfeldkomponente an den axialen Spulenenden besonders stark reduziert und die Stromtragfähigkeit der Spule deutlich erhöht.
- Ganz besonders bevorzugt ist eine Klasse von Ausführungsformen der erfindungsgemäßen Spulenanordnung, bei denen das von der Spule erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse z aufweist, deren Maximum im Spulenvolumen mindestens um 10%, vorzugsweise um bis zu 50%, kleiner ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule. Bei einer solch starken Reduktion der Radialkomponente Br ist die Erhöhung der Stromtragfähigkeit der Spule besonders lohnenswert.
- Vorteilhaft sind auch Ausführungsformen der Erfindung, die sich dadurch auszeichnen, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters in der Spule mindestens 5%, insbesondere bis 30%, vorzugsweise bis zu 50% höher ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule. Je größer die Stromtragfähigkeit der Spule ist, umso größere Magnetfelder können erzeugt werden, bzw. umso weniger Supraleitermaterial wird zur Erzeugung einer gegebenen Feldstärke im Arbeitsvolumen benötigt.
- Vorteilhafte Weiterbildungen dieser Ausführungsformen sind dadurch gekennzeichnet, dass das mitgewickelte nicht-supraleitende Material Folieneinlagen umfasst. Folien lassen sich besonders gut zwischen den supraleitenden Windungen unterbringen und können auf einfache Weise in der gewünschten Geometrie zugeschnitten werden.
- In einer weiteren vorteilhaften Ausführungsform wird die Reduktion der Windungszahl an den axialen Spulenenden dadurch bewerkstelligt, dass an den Spulenrändern über mehrere direkt übereinanderliegende Lagen keine Windungen gewickelt werden.
- In den Rahmen der vorliegenden Erfindung fällt auch ein Verfahren zur Auslegung einer supraleitfähigen Magnetspulenanordnung der oben beschriebenen, erfindungsgemäßen Art, welches sich dadurch auszeichnet, dass eine aus anisotropem Supraleiter bezogen auf die Symmetrieachse zylindersymmetrisch gewickelte Spule, bei welcher im ersten Spulenbereich entlang der Symmetrieachse zum Rand hin zusammen mit dem Supraleitermaterial auch nicht-supraleitendes Material mitgewickelt wird, wobei die Stromtragfähigkeit der Spule, welche anfänglich an den axialen Enden durch die radiale Magnetfeldkomponente begrenzt wird, durch Verringerung der Windungszahl in den axialen Endbereichen derart optimiert wird, dass ihre supraleitende Stromtragfähigkeit erhöht wird. Bei der Optimierung wird die maximale radiale Magnetfeldkomponente reduziert, indem folgende Parameter variiert werden:
- die Größe der Optimierungsbereiche an den axialen Spulenenden, in welchen die Windungszahl verringert wird
- die Anzahl Windungen in den Optimierungsbereichen und
- die Verteilung der Windungen innerhalb der Optimierungsbereiche.
- Die Optimierungsbereiche können dabei auch über die Spulenenden der Ausgangsspule hinausragen, d.h. die optimierte Spule kann axial durchaus länger sein als die Ausgangsspule. Die genaue Windungsverteilung in den Optimierungsbereichen kann ferner so gewählt werden, dass sie in Bezug auf die Kräfte im Wickelpaket und/oder wickeltechnisch vorteilhaft ist.
- Der Vorteil dieses Verfahrens besteht darin, dass es zu einem Spulendesign führt, welches eine erhöhte Stromtragfähigkeit aufweist und dass die Spule für den Betrieb bei einer gegebenen Magnetfeldstärke eine insgesamt geringere Supraleitermenge benötigt wird als für die Ausgangsspule.
- Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
- Fig. 1
- eine schematische Schnitt-Darstellung durch eine erste Ausführungsform der erfindungsgemäßen Magnetspulenanordnung in einer die Symmetrieachse z enthaltenden Ebene mit der relativen geometrischen Anordnung der fünf definierten Spulenbereiche in einer ersten Ausführungsform (aus Symmetriegründen ist nur eine Hälfte der Spule dargestellt);
- Fign. 2a-d
- schematische Schnittdarstellungen weiterer Ausführungsformen von Magnetspulenanordnungen; wobei
Fig. 2a ,Fig.2c jeweils die Wickel-Anordnung undFig. 2b ,Fig.2d jeweils die zugehörigen die Spulenbereiche einer zweiten beziehungsweise dritten Ausführungsform zeigen und nur - Fig. 2c+d
- die erfindungsgemäße Magnetspulenanordnung darstellen;
- Fign. 3a,b
- eine schematische Wickelanordnung (
Fig. 3a ) sowie die zugehörigen Spulenbereiche (Fig. 3b ) einer vierten Ausführungsform; - Fign. 4a,b
- einen schematischen Vergleich der randseitigen Radial-Felder bei einer herkömmlichen (
Fig. 4a ) und bei einer erfindungsgemäß modifizierten (Fig. 4b ) Magnetspulenanordnung; und - Fign. 5a,b
- einen schematischen Vergleich des Verlaufs der magnetischen Feldlinien bei einer erfindungsgemäßen (
Fig. 5a ) und bei einer herkömmlichen (Fig. 5b ) Magnetspulenanordnung nach dem Stand der Technik. -
Figur 1 veranschaulicht schematisch eine erste Ausführungsform der erfindungsgemäßen Magnetspulenanordnung. - Im Wickelpaket der Spule sind die Spulenbereiche 1 bis 5 innerhalb des rechteckigen Spulenquerschnitts definierbar, die den bestimmten, erfindungsgemäßen Anforderungen genügen, wie im Folgenden beschrieben wird.
- Die Windungszahl an den axialen Enden der Spule ist reduziert, daher ist mindestens eine Wickellage nicht mit Supraleiter vollgewickelt. Folglich lässt sich ein erster radial begrenzter rechteckiger Spulenbereich 1 definieren, welcher den Spulenquerschnitt radial teilweise und entlang der Symmetrieachse z vollständig überdeckt und keine vollgewickelte Wickellage enthält. Der erste Spulenbereich 1 enthält zudem zwei Unterbereiche, welche die Reduktion der Windungszahl an einem axialen Ende des ersten Spulenbereichs charakterisieren: Ein zweiter Spulenbereich 2, der vom Spulenrand her den ersten Spulenbereich 1 entlang der Symmetrieachse auf 10% seiner Länge überdeckt, und ein dritter Spulenbereich 3, der an den zweiten Spulenbereich 2 anschließt und den ersten Spulenbereich 1 entlang der Symmetrieachse auf 40% seiner Länge überdeckt. Der zweite und dritte Bereich 2, 3 sind dadurch ausgezeichnet, dass die Anzahl Windungen im zweiten Spulenbereich 2 mindestens viereinhalbmal kleiner ist als jene im dritten Spulenbereich 3.
- Die Reduktion der Windungszahl an den axialen Spulenenden führt in der erfindungsgemäßen Magnetspulenanordnung zu einer Reduktion der maximalen Radialfeldkomponente und infolgedessen zu einer Erhöhung der Stromtragfähigkeit, welche durch den Vergleich mit einer modifizierten Anordnung charakterisiert sind. Dazu werden ein vierter Spulenbereich 4 und ein fünfter Spulenbereich 5 definiert, welche den Spulenquerschnitt radial komplett und axial von je einem der beiden Spulenränder her 10% entlang der Symmetrieachse z überdecken. In der Vergleichsanordnung sind der vierte und der fünfte Spulenbereich 4, 5 entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt, sodass bei gleichbleibender Supraleitermenge keine weiteren Windungen mehr Platz finden würden. Die erfindungsgemäße Anordnung zeichnet sich nun dadurch aus, dass ihre maximale Radialfeldkomponente mindestens um 5% kleiner und ihre Stromtragfähigkeit um mindestens 3% größer ist als in der Vergleichsanordnung.
- Im folgenden Ausführungsbeispiel wird eine erfindungsgemäße Spulenanordnung beschrieben und mit einer herkömmlichen Spule mit folgenden Eigenschaften verglichen:
- Geometrie des anisotropen Supraleiters: 2 mm x 0.2 mm (Querschnitt)
- Radius des radial inneren Spulenrandes: 20 mm
- Radius des radial äußeren Spulenrandes: 36 mm
- Spulenlänge in axialer Richtung: 192 mm (96 Windungen pro Wickellage)
- Anzahl Wickellagen: 80; alle Lagen sind vollgewickelt.
- Die erfindungsgemäße Spulenanordnung ist aus demselben Supraleiter gewickelt und durch folgende Eigenschaften charakterisiert:
- Radius des radial inneren / äußeren Spulenrandes: 20 mm / 32.8 mm Spulenlänge 240 mm
- 64 Lagen alternierend vollgewickelt (120 Windungen) - nicht vollgewickelt (z.B. gemäß schematischer Darstellung
Fig. 2a ), wobei jede nicht vollgewickelte Lage beginnend vom einen Spulenrand entlang der Symmetrieachse wie folgt aufgebaut ist:
48 mm ohne Windungen, 144 mm mit 72 Windungen, 48 mm ohne Windungen. - Zur Überprüfung der Eigenschaften der erfindungsgemäßen Spulenanordnung kann als erster Spulenbereich 1 eine beliebige nicht vollgewickelte Lage (z.B. die radial innerste) definiert werden. Der darin enthaltene dritte Spulenbereich 3 beinhaltet dann 84 und somit 7mal (also mehr als viereinhalbmal) so viele Windungen wie der zweite Spulenbereich 2 mit 12 Windungen. Weiter erhält man nach Verkürzung des vierten bzw. fünften Spulenbereichs 4,5 gemäß der Erfindungsbeschreibung die Vergleichsspule, welche in der folgenden Tabelle aufgeführt ist:
herkömmlich erfindungsgemäß Vergleich Magnetfeld 4.7 T 4.7 T 4.7 T Betriebsstrom 97.4 A 122.0 A 121.9 A Supraleiterlänge 1351 m 1019 m 1019 m max. Radialfeld 1.8 T 1.0 T 1.7 T Stromtragfähigkeit 100.5 A 125.2 A 107.9 A Stromauslastung 97% 97% 113% - Das maximale Radialfeld der erfindungsgemäßen Spulenanordnung ist um rund 40% kleiner als dasjenige der Vergleichsspule. Entsprechend ist die Stromtragfähigkeit um 16% erhöht.
- Im Vergleich zur herkömmlichen Spule kann die im Beispiel berechnete erfindungsgemäße Spule dank der erhöhten Stromtragfähigkeit bei einem höheren Strom betrieben werden. Für die Erzeugung desselben Feldes im Arbeitsvolumen (4.7 T) und bei gleicher Stromauslastung (Verhältnis Betriebsstrom zu Stromtragfähigkeit) reduziert sich die zum Wickeln benötigte Supraleitermenge um 25%.
- Die
Figuren 2a bis 2d zeigen Ausführungsformen, bei welchen alle Windungen im ersten Spulenbereich aus einem einzigen ununterbrochenen Supraleiterstück gewickelt sind. Die kontinuierlichen Linien im Wickelpaket derFiguren 2a und2c stellen schematisch den Supraleiter dar, und die gestrichelten Linien nicht-supraleitendes Füllmaterial. In denFiguren 2b und2d sind die denFiguren 2a und2c entsprechenden Spulenbereiche 1';1" 2';2" 3';3" sowie 4 und 5, respektive, dargestellt. - Der Spulenbereich 1' (
Fig. 2b ) beinhaltet beispielsweise die radial drittinnerste, nicht vollgewickelte Lage. - Der Spulenbereich 1" (
Fig. 2d ) beinhaltet erfindungsgemäß die drei radial innersten, nicht vollgewickelten Lagen. - Die
Figuren 3a und 3b zeigen eine Ausführungsform, bei welcher die Reduktion der Windungszahl an den axialen Spulenenden dadurch erreicht wird, dass an den Spulenrändern über mehrere direkt übereinanderliegende Lagen keine Windungen gewickelt werden. Die kontinuierlichen Linien im Wickelpaket derFigur 3a stellen schematisch die Lagenbereiche dar, welche mit Supraleiter gewickelt sind. In derFigur 3b sind die in derFigur 3a entsprechenden Spulenbereiche 1‴ 2‴ 3‴ sowie 4 und 5 dargestellt. - Es ist zu beachten, dass die axialen Grenzen der Spulenbereiche 2 bis 5 nicht unbedingt den Grenzen zwischen vollgewickelten und nicht vollgewickelten Bereichen in der Spule entsprechen müssen.
- Die
Figuren 4a und 4b zeigen in einer Gegenüberstellung die randseitigen Radial-Felder bei einer herkömmlichen und bei einer erfindungsgemäß modifizierten Magnetspulenanordnung. Dargestellt sind jeweils zylindersymmetrische Magnetspulen (Schnitt durch eine die Symmetrieachse z enthaltende Ebene) sowie die Isofeldlinien der Radialkomponente des Magnetfeldes. Die äußerste Linie entspricht 0.25 T, und mit jeder Linie Richtung Maximum nimmt das Feld um 0.25 T zu. - Bei der erfindungsgemäß modifizierten Anordnung in
Fig. 4b ist die Windungszahl an den axialen Enden reduziert. Bei der inFig. 4a gezeigten herkömmlichen Anordnung nach dem Stand der Technik ist eine Referenzspule mit homogener Windungszahl dargestellt, die den gleichen Innen- und Außenradius wie die erfindungsgemäße Anordnung aufweist, wobei die Spulenlänge entlang der Symmetrieachse so gewählt ist, dass dieselbe Leitermenge wie bei der erfindungsgemäßen Spule gewickelt ist. In der herkömmlichen Magnetspulenanordnung erreicht das maximale Radialfeld eine Stärke von ungefähr 1.75 T, während dieses bei der erfindungsgemäßen Anordnung bei gleicher Magnetfeldstärke im Zentrum des Arbeitsvolumens nur ca. 1.0 T beträgt. - Bei gleicher Stromauslastung, aber höherem Strom, erzeugt die erfindungsgemäße Spule in ihrem Zentrum ein größeres Magnetfeld als die herkömmliche Referenzspule, da ihre Stromtragfähigkeit größer ist als diejenige der Referenzspule.
- In den
Figuren 5a und 5b schließlich sind die Feldlinien des jeweils erzeugten Magnetfeldes bei einer zylindersymmetrischen erfindungsgemäßen Magnetspulenanordnung (Fig. 5a ) beziehungsweise bei einer Anordnung nach dem Stand der Technik (Fig. 5b ) in einem schematischen Schnitt durch eine die Symmetrieachse z enthaltende Ebene dargestellt. - Bei der in
Fig. 5a dargestellten erfindungsgemäßen Anordnung, ist die Windungszahl des Supraleiters an den axialen Randbereichen gegenüber dem zentralen Bereich reduziert. Die Feldlinien stellen den magnetischen Fluss dar, wobei deren Dichte der magnetischen Feldstärke entspricht. Aufgrund der stufenweise reduzierten Windungszahl verteilt sich der um die Spulenenden fließende magnetische Fluss über in axialer Richtung längere Randbereiche und ist deutlich verdünnt. Die magnetische Feldstärke weist folglich eine relativ kleine Komponente in radialer Richtung auf (Pfeile). -
Fig. 5b zeigt eine zylindersymmetrische Spule mit homogener (voller) Stromdichte nach dem Stand der Technik mit einer konstanten Windungszahl entlang der Symmetrieachse. Im Vergleich zur erfindungsgemäßen Anordnung gemäßFig. 5a sind die axialen Enden zur Spulenmitte hin verkürzt, so dass die Gesamtwindungszahl der Spule gleich groß ist. Außerdem erzeugt die bekannte Spule im Zentrum dieselbe Feldstärke wie die erfindungsgemäße Spule. Wegen der abrupt abfallenden Windungszahl konzentriert sich der magnetische Fluss jedoch an den axialen Spulenrändern. Diese - Flusskonzentration führt zu einer größeren radialen Magnetfeldkomponente mit einem Maximum an diesen Stellen (Pfeile).
-
Fig. 5a zeigt im Vergleich dazu eine erfindungsgemäße Spule, bei welcher die Stromdichte an den axialen Enden reduziert wurde. Die Magnetfeldstärke, die der Dichte der Feldlinien entspricht, ist an den Enden der erfindungsgemäßen Spule deutlich reduziert. - Ein wesentlicher Vorteil der erfindungsgemäßen Anordnung besteht unter anderem in der gleichmäßigeren Verteilung der Stromtragfähigkeit des Supraleiters in der gesamten Spule. Dadurch wird der Supraleiter besser ausgenutzt und die Spule kann bei einem höheren Strom betrieben werden. Die benötigte Supraleitermenge und damit die Materialkosten sind geringer bzw. mit derselben Supraleitermenge kann ein höheres Magnetfeld im Spulenzentrum erzeugt werden.
- Besonders vorteilhaft gegenüber dem Stand der Technik ist die Verwendung eines einheitlichen Supraleitermaterials in der gesamten Spule.
-
- 1; 1′; 1ʺ; 1‴
- erster radial begrenzter rechteckiger Spulenbereich
- 2; 2′; 2ʺ; 2‴
- zweiter radial begrenzter rechteckiger Spulenbereich
- 3; 3′; 3ʺ; 3‴
- dritter radial begrenzter rechteckiger Spulenbereich
- 4
- vierter rechteckiger Spulenbereich
- 5
- fünfter rechteckiger Spulenbereich
- z
- Symmetrieachse der Magnetspulenanordnung
- Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften
- [0] CHEN, X.Y., JIN, J.X.: Evaluation of Step-Shaped Solenoidal Coils for Current-Enhanced SMES Applications. IEEE Transactions an Applied Superconductivity, Vol. 24, 2014, No. 5, S. 1-4. IEEE Xplore [online]. D01: 10.1109/TASC.2014.2356572
- [1]
US-A 5,525,583 - [2]
US 2015/0213930 A1 - [3]
US-A 5,659,277 - [4]
US-A 5,581,220 . - [5]
DE 102004043987 B3 - [6]
DE 39 23 456 C2 - [7]
DE 10 2004 043 988 B3 - [8] " Factors determining the magnetic field generated by a solenoid made with a superconductor having current anisotropy", M. Däumling and R. Flükiger, (1995) Cryogenics, Vol. 35. pp. 867-870
- [9] " Effects of conductor anisotropy on the design of BiSCCO sections of 25 T solenoids", H.W. Weijers et al. (2003), Supercond. Sci. Technol. Vol. 16, pp. 672-681
- [10] " Radial magnetic field reduction to improve critical current of HTS solenoid", J. Kang et al, Physica. C., 2002, vol. 372-76 (3), pp. 1368-1372.
- [11]
JP H06- 5 414 A - [12]
JP S61 65411 A - [13]
US 5914647 A
Claims (11)
- Supraleitfähige, gestufte Magnetspulenanordnung mit einer hohlen Spule mit konstantem Innenradius zur Erzeugung eines Betriebsmagnetfeldes in einem Arbeitsvolumen um eine Symmetrieachse (z), wobei die Spule Wicklungen aus einem anisotropen Supraleiter umfasst, dessen supraleitende Stromtragfähigkeit in einem Magnetfeld senkrecht zur Stromrichtung im Leiter sowohl von der Feldamplitude als auch von der Feldrichtung innerhalb einer Ebene senkrecht zur Stromrichtung abhängt, wobei die radial aufsummierte Anzahl der Windungen entlang der Symmetrieachse (z) zum Rand hin in diskreten Stufen oder quasi-kontinuierlich reduziert ist,
dadurch gekennzeichnet,
dass die Spule bezogen auf die Symmetrieachse (z) zylindersymmetrisch in mehreren Lagen gewickelt ist, wobei ein sich nur von einem axialen Spulenende erstreckender zusammenhängender Teil einer innenliegenden Wickellage mit nicht-supraleitendem Material gewickelt ist. - Spulenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass sie einen ersten radial begrenzten rechteckigen Spulenbereich (1; 1′ 1ʺ; 1‴) enthält, welcher den Spulenquerschnitt entlang der Symmetrieachsenrichtung vollständig überdeckt und keine in axialer Richtung vollgewickelte Lage enthält, und die Wicklungen im ersten radial begrenzten rechteckigen Spulenbereich (1; 1′; 1ʺ; 1‴) aus einem einzigen ununterbrochenen Supraleiterstück gewickelt sind.
- Spulenanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie einen zweiten radial begrenzten rechteckigen Spulenbereich (2; 2′; 2ʺ; 2‴) innerhalb des ersten Spulenbereichs (1; 1′ 1ʺ; 1‴) enthält, welcher den ersten Spulenbereich (1; 1′; 1ʺ; 1‴) radial vollständig und entlang der Symmetrieachsenrichtung zu 10% überdeckt und den axial ersten oder zweiten Spulenrand einschließt, und der zweite Spulenbereich (2; 2′; 2ʺ; 2‴) mit mindestens 20% weniger Leiterwindungen gewickelt ist als ein axial anschließender Spulenbereich gleicher Geometrie.
- Spulenanordnung nach Anspruch 3, dadurch gekennzeichnet, dass der zweite Spulenbereich (2; 2′; 2ʺ; 2‴) mit 40% bis 60% weniger Leiterwindungen gewickelt ist als ein axial anschließender Spulenbereich gleicher Geometrie.
- Spulenanordnung nach Anspruch 4, dadurch gekennzeichnet, dass der zweite Spulenbereich (2; 2'; 2"; 2‴) mit etwa 50% weniger Leiterwindungen gewickelt ist als ein axial anschließender Spulenbereich gleicher Geometrie.
- Spulenanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie einen vierten und fünften rechteckigen Spulenbereich (4 bzw. 5) enthält, innerhalb des Spulenquerschnitts, welche den Spulenquerschnitt radial vollständig und entlang der Symmetrieachsenrichtung je zu 10 % überdecken und den axial ersten bzw. zweiten Spulenrand einschließen mit einer ersten und zweiten Spulenrandwindungszahl, gegeben durch die Anzahl Windungen des anisotropen Supraleiters im vierten bzw. im fünften Spulenbereich (4 bzw. 5) und mit einer maximalen Spulenrandwindungszahl, gegeben durch den Quotienten aus der Querschnittfläche des vierten oder fünften Spulenbereichs (4 bzw. 5) und der Querschnittfläche des anisotropen Supraleiters, und das von der Spule erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse (z) aufweist, deren Maximum im Spulenvolumen mindestens um 10% kleiner ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule.
- Spulenanordnung nach Anspruch 6, dadurch gekennzeichnet, dass das von der Spule erzeugte Magnetfeld eine Feldkomponente Br senkrecht zur Stromrichtung und zur Symmetrieachse (z) aufweist, deren Maximum im Spulenvolumen um bis zu 50%, kleiner ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule.
- Spulenanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters entlang der Leitertrajektorie in der Spule mindestens 5% höher ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule.
- Spulenanordnung nach Anspruch 8, dadurch gekennzeichnet, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters entlang der Leitertrajektorie in der Spule bis 30% höher ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule.
- Spulenanordnung nach Anspruch 9, dadurch gekennzeichnet, dass das Minimum der supraleitenden Stromtragfähigkeit des anisotropen Supraleiters entlang der Leitertrajektorie in der Spule bis zu 50% höher ist, als wenn -bei gleichem Betriebsfeld der Spule im Zentrum des Arbeitsvolumens- die Ausdehnungen des vierten und fünften Spulenbereichs (4 bzw. 5) entlang der Symmetrieachsenrichtung zur Spulenmitte hin verkürzt wären, wobei die relative Verkürzung der Ausdehnungen dem Verhältnis von erster und zweiter Spulenrandwindungszahl zur maximalen Spulenrandwindungszahl entspricht bei gleich bleibender Anzahl Windungen des anisotropen Supraleiters in der Spule.
- Verfahren zur Auslegung einer supraleitfähigen Magnetspulenanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ausgehend von einer supraleitfähigen Magnetspulenanordnung mit einer aus anisotropem Supraleiter bezogen auf die Symmetrieachse (z) zylindersymmetrisch lagengewickelten Spule, bei welcher im ersten Spulenbereich (1; 1′; 1ʺ; 1‴) entlang der Symmetrieachse (z) zum Rand hin zusammen mit dem Supraleitermaterial auch nicht-supraleitendes Material mitgewickelt wird, wobei die Stromtragfähigkeit der Spule an den axialen Enden durch die radiale Magnetfeldkomponente begrenzt wird, durch Verringerung der Windungszahl in den axialen Endbereichen der Spule (="Optimierungsbereiche") die maximale radiale Magnetfeldkomponente reduziert wird, wobei durch Variation der Parameter- Größe der Optimierungsbereiche, in welchen die Windungszahl verringert wird- Anzahl Windungen in den Optimierungsbereichen- Verteilung der Windungen innerhalb der Optimierungsbereiche die supraleitende Stromtragfähigkeit der Spule erhöht wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015223991.8A DE102015223991A1 (de) | 2015-12-02 | 2015-12-02 | Magnetspulenanordnung mit anisotropem Supraleiter und Verfahren zu deren Auslegung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3176795A1 EP3176795A1 (de) | 2017-06-07 |
EP3176795B1 true EP3176795B1 (de) | 2022-01-26 |
Family
ID=57394404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16200176.2A Active EP3176795B1 (de) | 2015-12-02 | 2016-11-23 | Magnetspulenanordnung mit anisotropem supraleiter |
Country Status (3)
Country | Link |
---|---|
US (1) | US10332665B2 (de) |
EP (1) | EP3176795B1 (de) |
DE (1) | DE102015223991A1 (de) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914647A (en) * | 1994-01-24 | 1999-06-22 | American Superconductor Corporation | Superconducting magnetic coil |
GB2519811A (en) * | 2013-10-31 | 2015-05-06 | Siemens Plc | Superconducting magnet assembly |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6165411A (ja) * | 1984-09-07 | 1986-04-04 | Mitsubishi Electric Corp | 超電導装置 |
DE3923456A1 (de) | 1989-07-15 | 1991-01-24 | Bruker Analytische Messtechnik | Supraleitende homogene hochfeldmagnetspule |
JP3340152B2 (ja) * | 1992-06-22 | 2002-11-05 | 株式会社東芝 | 超電導マグネット |
US5659277A (en) | 1994-09-07 | 1997-08-19 | American Superconductor Corporation | Superconducting magnetic coil |
US5581220A (en) | 1994-10-13 | 1996-12-03 | American Superconductor Corporation | Variable profile superconducting magnetic coil |
DE102004043987B3 (de) | 2004-09-11 | 2006-05-11 | Bruker Biospin Gmbh | Supraleitfähige Magnetspulenanordnung |
DE102004043988B3 (de) | 2004-09-11 | 2006-05-11 | Bruker Biospin Gmbh | Supraleitfähige Magnetspulenanrordnung |
ES2533225T3 (es) * | 2010-07-30 | 2015-04-08 | Babcock Noell Gmbh | Sistema magnético superconductor de alta temperatura |
US9117578B2 (en) | 2012-03-13 | 2015-08-25 | Massachusetts Institute Of Technology | No-insulation multi-width winding for high temperature superconducting magnets |
US20160351310A1 (en) * | 2013-05-29 | 2016-12-01 | Christopher Mark Rey | Low Temperature Superconductive and High Temperature Superconductive Amalgam Magnet |
-
2015
- 2015-12-02 DE DE102015223991.8A patent/DE102015223991A1/de not_active Ceased
-
2016
- 2016-11-23 EP EP16200176.2A patent/EP3176795B1/de active Active
- 2016-12-02 US US15/368,325 patent/US10332665B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5914647A (en) * | 1994-01-24 | 1999-06-22 | American Superconductor Corporation | Superconducting magnetic coil |
GB2519811A (en) * | 2013-10-31 | 2015-05-06 | Siemens Plc | Superconducting magnet assembly |
Also Published As
Publication number | Publication date |
---|---|
US10332665B2 (en) | 2019-06-25 |
US20170162310A1 (en) | 2017-06-08 |
DE102015223991A1 (de) | 2017-06-08 |
EP3176795A1 (de) | 2017-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10260246B4 (de) | Spulenanordnung mit veränderbarer Induktivität | |
WO2006111527A1 (de) | Sattelförmige spulenwicklung unter verwendung von supraleitern und verfahren zu ihrer herstellung | |
DE69517186T2 (de) | Supraleitende magnetspule | |
DE102010042598A1 (de) | Supraleitende MR-Magnetanordnung mit filamentlosem Supraleiter-Band | |
DE3923456C2 (de) | ||
EP3772071B1 (de) | Magnetspulensektion mit integrierten joints, insbesondere hts-lts-joints, und zugehörige magnetanordnung | |
DE10157590A1 (de) | Wicklung für einen Transformator oder eine Spule | |
EP2614510B1 (de) | Stromkompensierte drossel mit erhöhter streuinduktivität | |
EP3336568B1 (de) | Magnetanordnung mit supraleitend geschlossenen hts-shims | |
DE10260728B4 (de) | Verfahren zur Berechnung des Leiterverlaufs eines Supraleiters vom Spulenkörper zum Joint sowie zugehörige Vorrichtungen | |
DE10225531B4 (de) | Supraleitende Hochfeld-Magnetspule mit supraleitenden Übergangsstellen | |
EP3399528B1 (de) | Supraleitfähige magnetspulenanordnung mit mehreren lagenweise gewickelten bandförmigen supraleitern | |
DE102015210655A1 (de) | Elektrische Spuleneinrichtung zur induktiv-resistiven Strombegrenzung | |
DE10202372B4 (de) | Supraleitfähiges NMR-Hochfeld-Magnetspulensystem mit herausragender innerer Spulensektion | |
EP1589347B1 (de) | Hochfrequenz-Resonatorsystem mit optimierter Stromverteilung in den Leiterelementen | |
DE69531693T2 (de) | Supraleitende magnetspule mit variablem profil | |
EP3176795B1 (de) | Magnetspulenanordnung mit anisotropem supraleiter | |
DE19719738B4 (de) | AC-Oxid-Supraleiterkabel und Verfahren zur Herstellung eines AC-Oxid-Supraleiterbanddrahtes und eines AC-Oxid-Supraleiterrunddrahts | |
DE102009013318A1 (de) | Supraleitender Strombegrenzer mit Magnetfeldtriggerung | |
DE3108161A1 (de) | Wicklung fuer eine statische induktionsvorrichtung | |
DE1242265B (de) | Leistungskryotron | |
DE102015208470A1 (de) | Elektrische Spuleneinrichtung zur Strombegrenzung | |
DE3531322C2 (de) | ||
WO2020011625A1 (de) | Supraleitendes magnetspulensystem | |
WO2014009009A1 (de) | Supraleitende magnetanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171117 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BRUKER SWITZERLAND AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210216 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211012 |
|
INTG | Intention to grant announced |
Effective date: 20211028 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1465916 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016014450 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220427 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220526 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016014450 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1465916 Country of ref document: AT Kind code of ref document: T Effective date: 20221123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231123 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221123 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231124 Year of fee payment: 8 Ref country code: CH Payment date: 20231202 Year of fee payment: 8 Ref country code: DE Payment date: 20231120 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20161123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220126 |