EP3175123B1 - Hydraulic actuator system - Google Patents

Hydraulic actuator system Download PDF

Info

Publication number
EP3175123B1
EP3175123B1 EP15747138.4A EP15747138A EP3175123B1 EP 3175123 B1 EP3175123 B1 EP 3175123B1 EP 15747138 A EP15747138 A EP 15747138A EP 3175123 B1 EP3175123 B1 EP 3175123B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
piston
pump
hydraulic
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15747138.4A
Other languages
German (de)
French (fr)
Other versions
EP3175123A1 (en
Inventor
Andreas Guender
Johannes Schwacke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3175123A1 publication Critical patent/EP3175123A1/en
Application granted granted Critical
Publication of EP3175123B1 publication Critical patent/EP3175123B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1466Hollow piston sliding over a stationary rod inside the cylinder

Definitions

  • the invention is based on a hydraulic axis.
  • Such hydraulic axes are used, for example, in the power plant sector, in particular in gas and steam turbine plants. They can then be used, for example, when actuating a valve body which is used to regulate a pressure medium connection between a waste heat boiler and a steam turbine, with a quick closing being intended to be possible.
  • the trend in this area is towards self-sufficient and compact valve or linear drives with such an axis, which in addition to a cylinder has in particular an electric control unit, an electric motor, a hydraulic pump and a hydraulic control block with valves.
  • the usually bulky components are arranged on the cylinder housing of the stroke-executing cylinder, the valve actuator then having a high weight overall and still requiring a comparatively large amount of installation space.
  • the invention has for its object to provide a hydraulic axis that leads to a compact and small space requirement valve actuator.
  • a compact hydraulic axis has a cylinder. This can be operated via a pump (hydraulic pump).
  • the pump is advantageously installed in a cavity of the cylinder.
  • the cylinder is designed as a synchronous cylinder, which is designed in a differential design.
  • a synchronous cylinder in differential design with an integrated pump is provided.
  • This solution has the advantage that an autonomous valve drive with the hydraulic axis according to the invention is made possible for the regulation and for a quick closing of gas and steam turbines.
  • a housing of the pump By integrating the pump into the cavity of the cylinder, a housing of the pump, a control block together with valves and piping can be saved.
  • a hydraulic energy generated in the pump can be used to control the cylinder with little or no deflection and with little or no flow loss.
  • the synchronous cylinder is designed in a differential design, it is advantageously shorter in the axial direction than a conventional synchronous cylinder, since a piston rod extends from one piston only from one side and therefore no space must be provided or kept free for another piston rod of the synchronous cylinder.
  • the synchronous cylinder in differential design provides space for the integration of the pump.
  • the cylinder is volume-balanced, which means that, in contrast to a differential cylinder, no hydraulic accumulator is necessary for volume compensation.
  • the hydraulic axis according to the invention thus makes it possible to reduce the components by combining cylinder and pump functions.
  • the hydraulic axis is advantageously optimized in terms of weight and installation space and combines the advantages of the electrical with the advantages of the hydraulic linear drives if the pump is driven by an electric motor.
  • the cylinder has an outer cylinder tube which engages around an inner cylinder tube.
  • the inner cylinder tube is preferably firmly connected to the outer cylinder tube.
  • the cylinder tubes are preferably arranged coaxially with one another.
  • the cavity with the pump can be formed in the inner cylinder tube.
  • the cylinder tubes delimit an annular space.
  • A, in particular annular, piston is arranged axially displaceably in this.
  • An approximately hollow cylindrical piston rod extends from this, whereby the piston is connected on one side to a piston rod.
  • the piston rod asserts itself through a closing device of the cylinder and is closed on a side of the closing device facing away from the piston in order to delimit a first cylinder chamber.
  • the piston delimits a second cylinder chamber on the piston rod side on a side of the closure device facing the piston.
  • a pressure in one or both cylinder chambers can be limited by a pressure relief valve.
  • a pressure limiting valve can be provided that opens a pressure medium connection between the second cylinder chamber and the first cylinder chamber from a certain pressure in the second cylinder chamber.
  • a further pressure relief valve or the same pressure relief valve opens a pressure medium connection between the first cylinder chamber and the second cylinder chamber from a certain pressure in the first cylinder chamber.
  • the cylinder is additionally closed by a cylinder base.
  • a piston cover can be provided to close the piston rod.
  • the synchronous cylinder in differential design thus has an inner cylinder tube, an outer cylinder tube, a cylinder base and a locking device.
  • the piston is arranged with a piston rod and a piston cover.
  • two chamber sections are separated in the second cylinder chamber by the hollow cylindrical piston rod.
  • This preferably forms an outer annular chamber section and an inner annular chamber section.
  • the chamber sections can be connected via a flow path.
  • the chamber sections or the second can in the axial direction Cylinder chamber be limited by the piston and by the closure device.
  • the fluidic connection of the chamber sections takes place simply via at least one cutout made in the piston rod.
  • This is, for example, a bore, an elongated hole or a groove.
  • the recess is advantageously arranged adjacent to the piston, with which the fluidic connection of the chamber sections is not separated even when the piston rod is essentially fully extended.
  • an effective area of the piston delimiting the second cylinder chamber and an effective area of the piston rod delimiting the first cylinder chamber are approximately the same size.
  • pressure medium can simply be conveyed from the first cylinder chamber into the second cylinder chamber and vice versa via the pump. If pressure medium is conveyed from the first into the second cylinder chamber, the piston rod is retracted. The piston rod extends in the opposite direction.
  • the pump can also be driven in a simple manner via a drive shaft by a drive unit which, as already explained above, is preferably an electric motor.
  • the drive unit is preferably arranged at least in sections within the inner cylinder tube and can alternatively be flanged to the cylinder from the outside.
  • the hydraulic axis is thus essentially self-sufficient and only requires an energy supply, for example electrical energy, to drive the drive unit.
  • the drive shaft is coupled to the pump and guided to the drive unit and / or to the outside via the inner cylinder tube.
  • the drive shaft is coupled to the pump, for example, via a clutch.
  • the pump is preferably a piston pump. Alternatively, it is conceivable to provide a gear pump.
  • the piston pump is further preferably designed in a swashplate construction.
  • a drive shaft of the piston pump in particular passes axially through a swash plate, a cylinder drum and a distributor plate of the piston pump and is rotatable in the inner cylinder tube via bearings, in particular Rolling bearings, stored.
  • the drive shaft can be connected to the cylinder drum via a positive connection, for example via a feather key connection.
  • the cylinder drum is preferably supported on its side facing away from the swash plate on the distributor plate.
  • the closure device which is penetrated by the piston rod, can have an outer annular closure element, in particular an outer cylinder cover, which surrounds the piston rod, and an inner closure element, in particular an inner cylinder cover, arranged within the piston rod.
  • a first fluid channel can be formed in a space-saving manner in the inner closure element, which fluidically connects the first cylinder chamber to the pump.
  • a second fluid channel is preferably formed, which fluidly connects the second cylinder chamber to the pump.
  • the distributor plate rests on the inner closure element.
  • the inner closure element is preferably configured essentially in two stages, wherein it is inserted into the inner cylinder tube with a first smaller stage and is supported on the end face of the inner cylinder tube via a shoulder formed between the stages.
  • the pressure relief valve is preferably connected to the second fluid channel via a channel in the inner closure element. A pressure medium connection between the second fluid channel and the first cylinder chamber can then be opened via the pressure limiting valve.
  • the pressure relief valve is, for example, firmly connected to the closure element.
  • the fluid channels are, for example, simply designed as bores in terms of device technology.
  • the distributor plate of the pump has control kidneys, which continue in the inner closure element as control kidneys on the closure element side, each of which is connected to one of the fluid channels.
  • the distributor plate is preferably connected to the inner closure element in a rotationally fixed manner.
  • a, in particular small, hydraulic accumulator can be provided. This can also be designed in such a way that it can be used for prestressing the respective low-pressure region.
  • the hydraulic accumulator can be integrated in the inner closure element. So that the hydraulic accumulator can be connected to the respective low-pressure region, the first fluid channel is connected to the hydraulic accumulator via a first check valve that closes toward the hydraulic accumulator and the second fluid channel is connected to the hydraulic accumulator via a second check valve that closes towards the hydraulic accumulator.
  • the hydraulic accumulator can be designed as a piston accumulator with a spring-preloaded accumulator piston.
  • the pretensioning takes place, for example, in such a way that a respective low-pressure region is pretensioned.
  • a preload can be about 5 bar, for example.
  • the storage piston of the piston accumulator is guided axially, for example, in a blind hole in the inner closure element.
  • a cover element is provided which rests on the inner closure element.
  • a storage spring can be supported on the cover element and act on the storage piston with a spring force.
  • the hydraulic accumulator can also be connected to the pump for pump leakage via a leakage channel.
  • the leakage channel extends, for example, starting from the blind hole, in particular coaxially to it, towards the drive shaft of the pump and can continue therein.
  • An optical rangefinder can advantageously be provided in the cylinder base of the cylinder, which can also be designed redundantly.
  • a distance to the piston can preferably be measured via the range finder, since in the cylinder chamber, which is delimited by the piston and the cylinder base, no pressure medium, but instead, for example, a gas (air) can be provided.
  • the optical range finder is, for example, a laser range finder, with which a distance measuring system can be integrated in a simple manner.
  • a hydraulic axis with a cylinder 1 is provided.
  • This has an outer cylinder tube 2, which encompasses an inner cylinder tube 4.
  • the cylinder 1 is fixed in position via a flange 6.
  • An annular space 12 is delimited by an outer lateral surface 8 of the inner cylinder tube 4 and an inner lateral surface 10 of the outer cylinder tube 2.
  • an annular piston 14 is axially displaceably guided.
  • the annular space 12 is axially delimited on the one hand by the cylinder base 16 and on the other hand by the cylinder cover 18.
  • a hollow cylindrical piston rod 20 extends on one side.
  • the piston rod 20 is closed on its side axially facing away from the piston 14 by a piston cover 26.
  • the piston rod 20 When viewed in the radial direction, the piston rod 20 extends approximately centrally starting from the piston 14.
  • a second cylinder chamber 30 is provided by the piston 14 on the piston rod side via an active surface 29 limited.
  • the piston rod 20 axially penetrates the cylinder chamber 30, whereby the piston rod 20 separates the second cylinder chamber into an inner chamber section 32 and an outer chamber section 34.
  • a bore 36 is made in the piston rod 20 which is formed adjacent to the piston 14.
  • a pump 40 is inserted into a cavity 38 of the cylinder 1, which is delimited by the inner cylinder tube 4.
  • a drive unit 42 (electric motor) is provided for driving the pump, which is also inserted into the inner cylinder tube 4.
  • the pump 40 is thus seen in the axial direction between the drive unit 42 and the Cylinder cover 18 arranged.
  • the pump 40 is fluidly connected to both cylinder chambers 28 and 30. It can thus convey pressure medium from the cylinder chamber 28 into the cylinder chamber 30 and vice versa from the cylinder chamber 30 into the cylinder chamber 28 in order to axially move the piston 14 together with the piston rod 20.
  • the in Figure 1 The cylinder shown is designed as a synchronous cylinder in a differential design, with which only a single piston rod 20 is required.
  • the piston 14 can then, with its side 44 facing away from the piston rod 20, delimit a further cylinder chamber 46 which is connected, for example, to an atmosphere. Since no pressure medium has to be provided in the cylinder chamber 46, an optical distance meter for measuring the distance of the piston 14 can preferably be integrated in this area.
  • FIG. 2 Another embodiment of the cylinder 1 is shown.
  • a drive unit 48 in the form of an electric motor is arranged outside the cylinder tubes 2 and 4.
  • the drive unit 48 is flanged to the cylinder base 16 coaxially to the cylinder tubes 2 and 4.
  • a drive shaft 50 of the drive unit 48 plunges from the outside into the inner cylinder tube 4 and extends up to a drive shaft 52 of the pump 40.
  • the drive shaft 52 and the drive shaft 50 are coupled to one another via a coupling.
  • the piston 14 has a slide ring and a seal on the outside and inside.
  • the piston rod 20 is different from Figure 1 seen in the radial direction not centrally located on the piston 14, but offset inwards in the radial direction.
  • the piston cover 26 is stepped back radially and is therefore of two stages. With its smaller step 54, it is inserted into the piston rod 20 and rests with its shoulder 56 formed at the step transition on an end face of the piston rod 20. The piston cover 26 is screwed to the piston rod 20 via a screw connection. A seal is introduced between the small step 54 and an inner lateral surface 58 of the piston rod 20.
  • the outer cylinder cover 22 is designed in a ring shape and is also stepped radially backwards, with which it is designed in a step-like manner. With its small step 60, it dips into the annular space 12 and delimits the outer chamber section 34 at the end. A sealant is provided between an inner lateral surface 8 of the outer cylinder tube 2 and an outer lateral surface of the step 60.
  • the outer cylinder cover 22 also has a cylindrical inner jacket surface 62, which extends approximately coaxially to the cylinder 1 and serves to guide the piston rod 20. Seen in series in the axial direction, sealants are introduced into the inner lateral surface 62. Viewed in the axial direction, a slide ring is arranged between the sealing means.
  • a diameter of the outer cylinder cover 22 is selected to be larger than a diameter of the outer cylinder tube 2, with which it projects beyond the outer cylinder tube 2 in the radial direction.
  • the cylinder cover 22 is screwed to the outer cylinder tube 2 via a screw connection.
  • the inner cylinder cover 24 is cylindrical and radially stepped back, with which it has a first small step 64 and a second large step 66.
  • the first stage 64 is inserted into the inner cylinder tube 4.
  • the inner cylinder cover 24 bears against an end face of the inner cylinder tube 4 via a shoulder 68 formed between the steps 64 and 66.
  • inner cylinder cover 24 has a second fluid passage 70 that connects inner chamber portion 32 to pump 40. Furthermore, a first fluid channel 72 is formed in the inner cylinder cover 24, which also has the first cylinder chamber 28 Figure 3 , connects to the pump 40.
  • the second fluid channel 70 is formed by a radial bore 74 which is introduced radially from the outside into the cylinder cover 24 and opens into an axial blind hole 76 which is introduced into the cylinder cover 24 from a side pointing away from the pump 40.
  • the blind hole 76 is connected at the end to a control kidney 78 formed in the cylinder cover 24.
  • the axial blind hole 76 is formed parallel to a longitudinal axis of the cylinder 1.
  • an axially extending blind bore 80 is introduced from the first cylinder chamber 28, which opens into a radial bore 82.
  • the radial bore 82 is also introduced radially from the outside into the cylinder cover 24 and extends approximately coaxially with the other radial bore 74.
  • the radial bore 82 is closed to the outside by a closure element. It also opens into an axially extending blind hole 84, which accordingly the blind hole 76 is configured and is arranged at a parallel distance from this and from the longitudinal axis of the cylinder 1.
  • the blind hole 84 then opens into a further control kidney 86.
  • the cylinder cover 24 is stepped back radially in order to connect the radial bore 74 to the inner chamber section 32.
  • An outer circumferential surface 88 of the second stage 66 serves as a guide surface for the piston rod 20 and also has sealing means lying opposite the sealing means of the outer cylinder cover 22, a sliding ring being provided between the sealing means as seen in the axial direction.
  • a further large blind hole 90 is made coaxially with the cylinder cover 24, the bottom 92 of which is spaced axially from the radial bores 74 and 82.
  • the blind hole 90 serves to form a hydraulic accumulator, which is designed as a piston accumulator 94. This has an axially displaceably guided in the blind bore 90 storage piston 96.
  • the sleeve-shaped storage piston 96 can be acted upon by a spring force of a storage spring 98, which is supported on a cover element 100 screwed to the cylinder cover 24 and immersed in the storage piston 96.
  • the cover element 100 closes the blind hole 90 here.
  • the blind holes 76 and 84 for the fluid channels 70 and 72, which intersect the radial holes 74 and 82, are made from the bottom 92 of the hole.
  • a check valve 102 or 104 is inserted in each of the blind holes 76 and 84, seen in the axial direction, between the radial holes 74 and 82 and the bottom 92 of the hole. These each close in a flow direction towards the blind hole 90.
  • the blind hole 80 of the first fluid channel 72 is connected to a through hole through the cover element 100 for fluid communication with the first cylinder chamber 28.
  • a through hole 106 is made in the center of the cylinder cover 24 starting from the bottom 92 of the hole. This is widened radially at the end and serves to receive a first roller bearing 108 for a drive shaft 110 of the pump 40.
  • a leakage channel 112 is introduced into the drive shaft 110, into which at least one transverse bore 113 opens, via which the leakage channel 112 with the leakage side of the pump 40 connected is.
  • the leakage channel 112 opens into the through bore 106 and is connected to the piston accumulator 94 via this.
  • the pump 40 is designed as a swash plate pump. It has a cylinder drum 114 which is connected in a rotationally fixed manner to the drive shaft 110.
  • Pistons 116 are axially guided in cylinder bores in the cylinder drum 114. These are supported on a swash plate 118 firmly inserted into the inner cylinder tube 4.
  • the rotatable cylinder drum 114 is supported with its end face facing the inner cylinder cover 24 on a distributor plate 120, which in turn abuts an end face of the inner cylinder cover 24.
  • the distributor plate 120 is arranged in a rotationally fixed manner in the inner cylinder tube 4 and has control kidneys, which have a respective control kidney 78 or 86, see Figure 4 , are connected.
  • a radial shaft sealing ring 122 is provided in the swash plate 118, which surrounds the drive shaft 110. Furthermore, a second roller bearing 124 is arranged in the swash plate 118 for mounting the drive shaft 110.
  • a bore 36 is shown which radially penetrates the piston rod 20 and thereby connects the two chamber sections 32, 34 of the second cylinder chamber 30 to one another.
  • the cylinder chambers 28, 30 can be connected via a pressure relief valve 126 that opens from a certain pressure in a respective cylinder chamber 28, 30. It would also be conceivable to limit the pressure in one of the cylinder chambers 28, 30 via a pressure relief valve or to provide a pressure relief valve for a respective cylinder chamber 28, 30.
  • the pressure relief valve 126 is connected to the radial bore 74 of the second fluid channel 70 via an axial bore 128 extending parallel to the longitudinal axis of the cylinder 1.
  • the axial bore 128 extends from the cover element 100 into the inner cylinder cover 24, completely penetrating the cover element 100 and opening into the radial bore 74 in the inner cylinder cover 24.
  • the pressure limiting valve 126 is then connected to the axial bore 128 and is preferably fixed on the cover element 100 and is therefore preferably arranged in the first cylinder chamber 28.
  • the pump 40 If the pump 40 is driven by the drive unit 48 in a first direction of rotation, it pumps pressure medium from the first cylinder chamber 28, see Figure 3 , via the first fluid channel 72, see Figure 4 , in the second fluid channel 70.
  • the second fluid channel 70 the pressure medium is further conveyed to the inner chamber section 32 and via the bore 36, see Figure 3 , into the outer chamber section 34.
  • the pump 40 If the pump 40 is driven in the opposite direction of rotation, it conveys pressure medium from the chamber sections 32 and 34 via the second fluid channel 70 into the first fluid channel 72 and further into the first cylinder chamber 28.
  • a compact hydraulic axle with a cylinder In this a pump for controlling the cylinder is arranged.
  • the pump is provided in a cavity of the cylinder.
  • the cylinder is designed as a synchronous cylinder in a differential design.

Description

Die Erfindung geht aus von einer hydraulischen Achse.The invention is based on a hydraulic axis.

Derartige hydraulische Achsen, wie z.B. in dem Dokument JP2001182716 gezeigt, werden beispielsweise im Kraftwerksbereich, insbesondere bei Gas- und Dampfturbinenanlagen eingesetzt. Sie können dann beispielsweise bei Betätigung eines Ventilkörpers verwendet werden, der zum Regeln einer Druckmittelverbindung zwischen einem Abhitzekessel und einer Dampfturbine dient, wobei ein Schnellschluss möglich sein soll. Der Trend in diesem Bereich geht zu autarken und kompakten Armaturen- beziehungsweise Linearantrieben mit einer derartigen Achse, die neben einem Zylinder insbesondere eine elektrische Steuereinheit, einen Elektromotor, eine Hydropumpe und einen hydraulischen Steuerblock mit Ventilen aufweist. Die meist sperrigen Komponenten werden bei einer bekannten und vergleichsweise kompakten Lösung an das Zylindergehäuse des hubausführenden Zylinders angeordnet, wobei der Armaturenantrieb dann insgesamt ein hohes Gewicht und immer noch einen vergleichsweise hohen Bauraumbedarf aufweist.Such hydraulic axes, such as in the document JP2001182716 are used, for example, in the power plant sector, in particular in gas and steam turbine plants. They can then be used, for example, when actuating a valve body which is used to regulate a pressure medium connection between a waste heat boiler and a steam turbine, with a quick closing being intended to be possible. The trend in this area is towards self-sufficient and compact valve or linear drives with such an axis, which in addition to a cylinder has in particular an electric control unit, an electric motor, a hydraulic pump and a hydraulic control block with valves. In a known and comparatively compact solution, the usually bulky components are arranged on the cylinder housing of the stroke-executing cylinder, the valve actuator then having a high weight overall and still requiring a comparatively large amount of installation space.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, eine hydraulische Achse zu schaffen, die zu einem kompakten und geringen Bauraumbedarf aufweisenden Armaturenantrieb führt.In contrast, the invention has for its object to provide a hydraulic axis that leads to a compact and small space requirement valve actuator.

Die Aufgabe wird gelöst mit einer hydraulischen Achse gemäß den Merkmalen des Anspruchs 1.The object is achieved with a hydraulic axis according to the features of claim 1.

Sonstige vorteilhafte Weiterbildungen der Erfindung sind Gegenstand weiterer Unteransprüche.Other advantageous developments of the invention are the subject of further dependent claims.

Erfindungsgemäß hat eine kompakte hydraulische Achse einen Zylinder. Dieser ist über eine Pumpe (Hydropumpe) betätigbar. Vorteilhafterweise ist die Pumpe in einem Hohlraum des Zylinders eingebaut. Der Zylinder ist hierbei als Gleichgangzylinder ausgebildet, der in Differentialbauweise ausgestaltet ist. Somit ist ein Gleichgangzylinder in Differentialbauart mit einer integrierten Pumpe vorgesehen.According to the invention, a compact hydraulic axis has a cylinder. This can be operated via a pump (hydraulic pump). The pump is advantageously installed in a cavity of the cylinder. The cylinder is designed as a synchronous cylinder, which is designed in a differential design. Thus, a synchronous cylinder in differential design with an integrated pump is provided.

Diese Lösung hat den Vorteil, dass ein autarker Armaturenantrieb mit der erfindungsgemäßen hydraulischen Achse bei der Regelung und bei einem Schnellschluss von Gas- und Dampfturbinen ermöglicht ist. Durch die Integration der Pumpe in den Hohlraum des Zylinders kann ein Gehäuse der Pumpe, ein Steuerblock zusammen mit Ventilen und eine Verrohrung eingespart werden. Eine in der Pumpe erzeugte hydraulische Energie kann ohne oder mit geringen Umlenkungen und ohne oder geringen Strömungsverlusten zum Ansteuern des Zylinders eingesetzt werden. Da der Gleichgangzylinder in Differentialbauart ausgebildet ist, ist er in Axialrichtung gesehen vorteilhafterweise kürzer als ein üblicher Gleichgangzylinder, da sich von einem Kolben nur von einer Seite aus eine Kolbenstange erstreckt und somit kein Freiraum für eine weitere Kolbenstange des Gleichgangzylinders vorgesehen bzw. freigehalten werden muss. Somit ist durch den Gleichgangzylinder in Differentialbauart Bauraum für die Integration der Pumpe zur Verfügung gestellt. Des Weiteren ist vorteilhaft, dass der Zylinder volumenausgeglichen ist, womit im Unterschied zu einem Differentialzylinder kein Hydrospeicher zum Volumenausgleich notwendig ist. Somit ist durch die erfindungsgemäße hydraulische Achse eine Reduzierung der Komponenten durch Kombination von Zylinder- und Pumpenfunktionen ermöglicht. Hierdurch wird die hydraulische Achse vorteilhafterweise gewichts- und bauraumoptimiert und kombiniert Vorteile der elektrischen mit Vorteilen der hydraulischen Linearantriebe, wenn der Antrieb der Pumpe über einen Elektromotor erfolgt.This solution has the advantage that an autonomous valve drive with the hydraulic axis according to the invention is made possible for the regulation and for a quick closing of gas and steam turbines. By integrating the pump into the cavity of the cylinder, a housing of the pump, a control block together with valves and piping can be saved. A hydraulic energy generated in the pump can be used to control the cylinder with little or no deflection and with little or no flow loss. Since the synchronous cylinder is designed in a differential design, it is advantageously shorter in the axial direction than a conventional synchronous cylinder, since a piston rod extends from one piston only from one side and therefore no space must be provided or kept free for another piston rod of the synchronous cylinder. Thus, the synchronous cylinder in differential design provides space for the integration of the pump. It is also advantageous that the cylinder is volume-balanced, which means that, in contrast to a differential cylinder, no hydraulic accumulator is necessary for volume compensation. The hydraulic axis according to the invention thus makes it possible to reduce the components by combining cylinder and pump functions. As a result, the hydraulic axis is advantageously optimized in terms of weight and installation space and combines the advantages of the electrical with the advantages of the hydraulic linear drives if the pump is driven by an electric motor.

Gemäß der Erfindung hat der Zylinder ein äußeres Zylinderrohr, das ein inneres Zylinderrohr umgreift. Das innere Zylinderrohr ist vorzugsweise fest mit dem äußeren Zylinderrohr verbunden. Des Weiteren sind die Zylinderrohre vorzugsweise koaxial zueinander angeordnet. Vorrichtungstechnisch einfach kann in dem inneren Zylinderrohr der Hohlraum mit der Pumpe ausgebildet sein.According to the invention, the cylinder has an outer cylinder tube which engages around an inner cylinder tube. The inner cylinder tube is preferably firmly connected to the outer cylinder tube. Furthermore, the cylinder tubes are preferably arranged coaxially with one another. In terms of device technology, the cavity with the pump can be formed in the inner cylinder tube.

Die Zylinderrohre, insbesondere das äußere Zylinderrohr mit seiner Innenmantelfläche und das innere Zylinderrohr mit seiner Außenmantelfläche, begrenzen einen Ringraum. In diesem ist ein, insbesondere ringförmiger, Kolben axial verschiebbar angeordnet. Von diesem erstreckt sich eine etwa hohlzylindrische Kolbenstange, womit der Kolben an einer Seite mit einer Kolbenstange verbunden ist. Die Kolbenstange setzt sich durch eine Verschlussvorrichtung des Zylinders durch und ist auf einer vom Kolben wegweisenden Seite der Verschlussvorrichtung zum Begrenzen einer ersten Zylinderkammer verschlossen. Des Weiteren begrenzt der Kolben kolbenstangenseitig auf einer zum Kolben weisenden Seite der Verschlussvorrichtung eine zweite Zylinderkammer.The cylinder tubes, in particular the outer cylinder tube with its inner lateral surface and the inner cylinder tube with its outer lateral surface, delimit an annular space. A, in particular annular, piston is arranged axially displaceably in this. An approximately hollow cylindrical piston rod extends from this, whereby the piston is connected on one side to a piston rod. The piston rod asserts itself through a closing device of the cylinder and is closed on a side of the closing device facing away from the piston in order to delimit a first cylinder chamber. Furthermore, the piston delimits a second cylinder chamber on the piston rod side on a side of the closure device facing the piston.

Ein Druck in einer oder in beiden Zylinderkammern kann jeweils über ein Druckbegrenzungsventil begrenzt sein. Beispielsweise kann ein Druckbegrenzungsventil vorgesehen sein, dass ab einen bestimmten Druck in der zweiten Zylinderkammer eine Druckmittelverbindung zwischen der zweiten Zylinderkammer und der ersten Zylinderkammer aufsteuert. Alternativ oder zusätzlich ist denkbar, dass ein weiteres Druckbegrenzungsventil oder das gleiche Druckbegrenzungsventil ab einen bestimmten Druck in der ersten Zylinderkammer eine Druckmittelverbindung zwischen der ersten Zylinderkammer und der zweiten Zylinderkammer aufsteuert.A pressure in one or both cylinder chambers can be limited by a pressure relief valve. For example, a pressure limiting valve can be provided that opens a pressure medium connection between the second cylinder chamber and the first cylinder chamber from a certain pressure in the second cylinder chamber. Alternatively or additionally, it is conceivable that a further pressure relief valve or the same pressure relief valve opens a pressure medium connection between the first cylinder chamber and the second cylinder chamber from a certain pressure in the first cylinder chamber.

Diametral zur Verschlussvorrichtung ist der Zylinder zusätzlich von einem Zylinderboden verschlossen. Zum Verschließen der Kolbenstange kann ein Kolbendeckel vorgesehen sein. Der Gleichgangzylinder in Differentialbauart weist somit ein inneres Zylinderrohr, ein äußeres Zylinderrohr, einen Zylinderboden und eine Verschlussvorrichtung auf. Darin ist der Kolben mit einer Kolbenstange und einem Kolbendeckel angeordnet.Diametrically to the locking device, the cylinder is additionally closed by a cylinder base. A piston cover can be provided to close the piston rod. The synchronous cylinder in differential design thus has an inner cylinder tube, an outer cylinder tube, a cylinder base and a locking device. The piston is arranged with a piston rod and a piston cover.

In weiterer Ausgestaltung der Erfindung sind durch die hohlzylindrische Kolbenstange zwei Kammerabschnitte in der zweiten Zylinderkammer getrennt. Vorzugsweise sind hierdurch ein äußerer ringförmiger Kammerabschnitt und ein innerer ringförmiger Kammerabschnitt ausgebildet. Eine Verbindung der Kammerabschnitte kann über einen Strömungspfad erfolgen. In Axialrichtung können die Kammerabschnitte bzw. kann die zweite Zylinderkammer von dem Kolben und von der Verschlussvorrichtung begrenzt sein.In a further embodiment of the invention, two chamber sections are separated in the second cylinder chamber by the hollow cylindrical piston rod. This preferably forms an outer annular chamber section and an inner annular chamber section. The chamber sections can be connected via a flow path. The chamber sections or the second can in the axial direction Cylinder chamber be limited by the piston and by the closure device.

Die fluidische Verbindung der Kammerabschnitte erfolgt vorrichtungstechnisch einfach über zumindest eine in die Kolbenstange eingebrachte Aussparung. Bei dieser handelt es sich beispielsweise um eine Bohrung, um ein Langloch oder um eine Nut. Mit Vorteil ist die Aussparung hierbei benachbart zum Kolben angeordnet, womit selbst bei einer im Wesentlichen vollständig ausgefahrenen Kolbenstange die fluidische Verbindung der Kammerabschnitte nicht getrennt ist.In terms of device technology, the fluidic connection of the chamber sections takes place simply via at least one cutout made in the piston rod. This is, for example, a bore, an elongated hole or a groove. The recess is advantageously arranged adjacent to the piston, with which the fluidic connection of the chamber sections is not separated even when the piston rod is essentially fully extended.

Damit die Zylinderkammern volumenausgeglichen sind, sind eine die zweite Zylinderkammer begrenzende Wirkfläche des Kolbens und eine die erste Zylinderkammer begrenzende Wirkfläche der Kolbenstange etwa gleich groß.So that the cylinder chambers are volume-balanced, an effective area of the piston delimiting the second cylinder chamber and an effective area of the piston rod delimiting the first cylinder chamber are approximately the same size.

Zum Ansteuern des Kolbens kann einfach über die Pumpe Druckmittel von der ersten Zylinderkammer in die zweite Zylinderkammer und umgekehrt förderbar sein. Wird Druckmittel von der ersten in die zweite Zylinderkammer gefördert, so wird die Kolbenstange eingefahren. In umgekehrter Richtung fährt die Kolbenstange aus.To actuate the piston, pressure medium can simply be conveyed from the first cylinder chamber into the second cylinder chamber and vice versa via the pump. If pressure medium is conveyed from the first into the second cylinder chamber, the piston rod is retracted. The piston rod extends in the opposite direction.

Die Pumpe kann auch auf einfache Weise über eine Antriebswelle von einer Antriebseinheit, bei der es sich vorzugsweise, wie oben stehend bereits erläutert, um einen Elektromotor handelt, angetrieben werden. Die Antriebseinheit ist vorzugsweise innerhalb des inneren Zylinderrohrs zumindest abschnittsweise angeordnet und kann alternativ von außen an den Zylinder angeflanscht sein. Somit ist die hydraulische Achse im Wesentlichen autark und benötigt lediglich eine Energiezufuhr, beispielsweise elektrische Energie, zum Antreiben der Antriebseinheit.The pump can also be driven in a simple manner via a drive shaft by a drive unit which, as already explained above, is preferably an electric motor. The drive unit is preferably arranged at least in sections within the inner cylinder tube and can alternatively be flanged to the cylinder from the outside. The hydraulic axis is thus essentially self-sufficient and only requires an energy supply, for example electrical energy, to drive the drive unit.

Die Antriebswelle ist mit der Pumpe gekoppelt und über das innere Zylinderrohr zur Antriebseinheit und/oder nach außen geführt. Die Antriebswelle ist beispielsweise über eine Kupplung mit der Pumpe gekoppelt.The drive shaft is coupled to the pump and guided to the drive unit and / or to the outside via the inner cylinder tube. The drive shaft is coupled to the pump, for example, via a clutch.

Bei der Pumpe handelt es sich vorzugsweise um eine Kolbenpumpe. Alternativ ist denkbar eine Zahnradpumpe vorzusehen. Die Kolbenpumpe ist weiter vorzugsweise in Schrägscheibenbauweise ausgebildet. Eine Triebwelle der Kolbenpumpe durchsetzt insbesondere eine Schrägscheibe, eine Zylindertrommel und eine Verteilerplatte der Kolbenpumpe axial und ist in dem inneren Zylinderrohr drehbar über Lager, insbesondere Wälzlager, gelagert. Über einen Formschluss, beispielsweise über eine Passfederverbindung, kann die Triebwelle mit der Zylindertrommel verbunden sein. Die Zylindertrommel stützt sich vorzugsweise auf ihrer von der Schrägscheibe wegweisenden Seite an der Verteilerplatte ab.The pump is preferably a piston pump. Alternatively, it is conceivable to provide a gear pump. The piston pump is further preferably designed in a swashplate construction. A drive shaft of the piston pump in particular passes axially through a swash plate, a cylinder drum and a distributor plate of the piston pump and is rotatable in the inner cylinder tube via bearings, in particular Rolling bearings, stored. The drive shaft can be connected to the cylinder drum via a positive connection, for example via a feather key connection. The cylinder drum is preferably supported on its side facing away from the swash plate on the distributor plate.

Die Verschlussvorrichtung, die von der Kolbenstange durchsetzt ist, kann ein äußeres ringförmiges, die Kolbenstange umgreifendes Verschlusselement, insbesondere einen äußeren Zylinderdeckel, und ein inneres, innerhalb der Kolbestange angeordnetes Verschlusselement, insbesondere ein inneren Zylinderdeckel, aufweisen.The closure device, which is penetrated by the piston rod, can have an outer annular closure element, in particular an outer cylinder cover, which surrounds the piston rod, and an inner closure element, in particular an inner cylinder cover, arranged within the piston rod.

In weiterer Ausgestaltung der Erfindung kann bauraumsparend in dem inneren Verschlusselement ein erster Fluidkanal ausgebildet sein, der die erste Zylinderkammer mit der Pumpe fluidisch verbindet. Vorzugsweise ist ein zweiter Fluidkanal ausgebildet, der die zweite Zylinderkammer mit der Pumpe fluidisch verbindet. Zum fluidischen Verbinden der Fluidkanäle mit der Pumpe liegt beispielsweise die Verteilerplatte an dem inneren Verschlusselement an. Das innere Verschlusselement ist vorzugsweise im Wesentlichen zweistufig ausgestaltet, wobei es mit einer ersten kleineren Stufe in das innere Zylinderrohr eingesetzt ist und sich über eine zwischen den Stufen ausgebildete Schulter stirnseitig des inneren Zylinderrohrs abstützt.In a further embodiment of the invention, a first fluid channel can be formed in a space-saving manner in the inner closure element, which fluidically connects the first cylinder chamber to the pump. A second fluid channel is preferably formed, which fluidly connects the second cylinder chamber to the pump. For the fluidic connection of the fluid channels to the pump, for example, the distributor plate rests on the inner closure element. The inner closure element is preferably configured essentially in two stages, wherein it is inserted into the inner cylinder tube with a first smaller stage and is supported on the end face of the inner cylinder tube via a shoulder formed between the stages.

Das Druckbegrenzungsventil ist vorzugsweise über einen Kanal im inneren Verschlusselement mit dem der zweite Fluidkanal verbunden. Über das Druckbegrenzungsventil kann dann eine Druckmittelverbindung zwischen dem zweiten Fluidkanal und der ersten Zylinderkammer aufgesteuert werden. Das Druckbegrenzungsventil ist beispielsweise mit dem Verschlusselement fest verbunden.The pressure relief valve is preferably connected to the second fluid channel via a channel in the inner closure element. A pressure medium connection between the second fluid channel and the first cylinder chamber can then be opened via the pressure limiting valve. The pressure relief valve is, for example, firmly connected to the closure element.

Die Fluidkanäle sind beispielsweise vorrichtungstechnisch einfach als Bohrungen ausgebildet.The fluid channels are, for example, simply designed as bores in terms of device technology.

In weiterer Ausgestaltung der Erfindung hat die Verteilerplatte der Pumpe Steuernieren, die sich in dem inneren Verschlusselement als verschlusselementseitige Steuernieren fortsetzen, die jeweils mit einem der Fluidkanäle verbunden sind. Hierbei ist die Verteilerplatte vorzugsweise drehfest mit dem inneren Verschlusselement verbunden.In a further embodiment of the invention, the distributor plate of the pump has control kidneys, which continue in the inner closure element as control kidneys on the closure element side, each of which is connected to one of the fluid channels. Here, the distributor plate is preferably connected to the inner closure element in a rotationally fixed manner.

Zum Ausgleich einer Volumenänderung eines Druckmittels im Zylinder bei Temperaturänderungen kann ein, insbesondere kleiner, Hydrospeicher vorgesehen sein. Dieser kann zusätzlich derart ausgestaltet sein, dass er zum Vorspannen des jeweiligen Niederdruckbereichs einsetzbar ist. Vorrichtungstechnisch einfach kann der Hydrospeicher in dem inneren Verschlusselement integriert sein. Damit der Hydrospeicher mit dem jeweiligen Niederdruckbereich verbindbar ist, ist der erste Fluidkanal über ein erstes sich hin zum Hydrospeicher schließendes Rückschlagventil mit diesem verbunden und der zweite Fluidkanal über ein zweites sich hin zum Hydrospeicher schließendes Rückschlagventil mit diesem verbunden.To compensate for a change in volume of a pressure medium in the cylinder in the event of temperature changes, a, in particular small, hydraulic accumulator can be provided. This can also be designed in such a way that it can be used for prestressing the respective low-pressure region. In terms of device technology, the hydraulic accumulator can be integrated in the inner closure element. So that the hydraulic accumulator can be connected to the respective low-pressure region, the first fluid channel is connected to the hydraulic accumulator via a first check valve that closes toward the hydraulic accumulator and the second fluid channel is connected to the hydraulic accumulator via a second check valve that closes towards the hydraulic accumulator.

Der Hydrospeicher kann in weiterer Ausgestaltung der Erfindung als ein Kolbenspeicher mit einem federvorgespannten Speicherkolben ausgebildet sein. Die Vorspannung erfolgt hierbei beispielsweise derart, dass ein jeweiliger Niederdruckbereich vorgespannt ist. Eine Vorspannung kann hier beispielsweise etwa 5 bar betragen. Der Speicherkolben des Kolbenspeichers ist beispielsweise in einer Sacklochbohrung des inneren Verschlusselements axial geführt. Zum Verschließen der Sacklochbohrung gegenüber der ersten Zylinderkammer ist ein Deckelelement vorgesehen, das auf dem inneren Verschlusselement anliegt. An dem Deckelelement kann sich eine Speicherfeder abstützen und den Speicherkolben mit einer Federkraft beaufschlagen. Über einen Leckagekanal kann der Hydrospeicher zusätzlich mit der Pumpe für eine Pumpenleckage verbunden sein. Der Leckagekanal erstreckt sich beispielsweise ausgehend von der Sacklochbohrung, insbesondere koaxial zu dieser, hin zur Triebwelle der Pumpe und kann sich darin fortsetzen.In a further embodiment of the invention, the hydraulic accumulator can be designed as a piston accumulator with a spring-preloaded accumulator piston. The pretensioning takes place, for example, in such a way that a respective low-pressure region is pretensioned. A preload can be about 5 bar, for example. The storage piston of the piston accumulator is guided axially, for example, in a blind hole in the inner closure element. To close the blind hole with respect to the first cylinder chamber, a cover element is provided which rests on the inner closure element. A storage spring can be supported on the cover element and act on the storage piston with a spring force. The hydraulic accumulator can also be connected to the pump for pump leakage via a leakage channel. The leakage channel extends, for example, starting from the blind hole, in particular coaxially to it, towards the drive shaft of the pump and can continue therein.

Mit Vorteil kann im Zylinderboden des Zylinders ein optischer Entfernungsmesser vorgesehen sein, der auch redundant ausgebildet sein kann. Über den Entfernungsmesser ist vorzugsweise eine Entfernung zum Kolben messbar, da in der Zylinderkammer, die vom Kolben und dem Zylinderboden begrenzt ist, kein Druckmittel, sondern beispielsweise ein Gas (Luft) vorgesehen sein kann. Bei dem optischen Entfernungsmesser handelt es sich beispielsweise um einen Laserentfernungsmesser, womit auf einfache Weise ein Wegmesssystem integriert werden kann.An optical rangefinder can advantageously be provided in the cylinder base of the cylinder, which can also be designed redundantly. A distance to the piston can preferably be measured via the range finder, since in the cylinder chamber, which is delimited by the piston and the cylinder base, no pressure medium, but instead, for example, a gas (air) can be provided. The optical range finder is, for example, a laser range finder, with which a distance measuring system can be integrated in a simple manner.

Im Folgenden werden bevorzugte Ausführungsformen der Erfindung anhand von Zeichnungen näher erläutert. Es zeigen:

  • Figur 1 in einer schematischen Darstellung die erfindungsgemäße hydraulische Achse gemäß einer ersten Ausführungsform,
  • Figur 2 in einer perspektivischen Darstellung die hydraulische Achse in einem Längsschnitt gemäß einer zweiten Ausführungsform,
  • Figur 3 in einem Längsschnitt einen Abschnitt der hydraulischen Achse aus Figur 2 im Bereich der Pumpe und des Kolbens und
  • Figur 4 einen vergrößerten Ausschnitt aus Figur 3.
Preferred embodiments of the invention are explained in more detail below with reference to drawings. Show it:
  • Figure 1 In a schematic representation, the hydraulic axis according to the invention according to a first embodiment,
  • Figure 2 a perspective view of the hydraulic axis in a longitudinal section according to a second embodiment,
  • Figure 3 in a longitudinal section a section of the hydraulic axis Figure 2 in the area of the pump and the piston and
  • Figure 4 an enlarged section Figure 3 .

Gemäß Figur 1 ist eine hydraulische Achse mit einem Zylinder 1 vorgesehen. Dieser hat ein äußeres Zylinderrohr 2, das ein inneres Zylinderrohr 4 umgreift. Über eine Anflanschung 6 ist der Zylinder 1 lagefixiert. Über eine Außenmantelfläche 8 des inneren Zylinderrohrs 4 und einer Innenmantelfläche 10 des äußeren Zylinderrohrs 2 ist ein Ringraum 12 begrenzt. In diesem ist ein ringförmiger Kolben 14 axial verschiebbar geführt. Axial ist der Ringraum 12 einerseits vom Zylinderboden 16 und andererseits vom Zylinderdeckel 18 begrenzt. Ausgehend vom Kolben 14 erstreckt sich einseitig eine hohlzylindrische Kolbenstange 20. Diese durchsetzt den Zylinderdeckel 18 und teilt diesen in einen ringförmigen äußeren Zylinderdeckel 22 bzw. ein äußeres Verschlusselement und einen inneren ringförmigen Zylinderdeckel 24 bzw. ein inneres Verschlusselement. Die Kolbenstange 20 ist auf ihrer vom Kolben 14 axial wegweisenden Seite von einem Kolbendeckel 26 verschlossen.According to Figure 1 a hydraulic axis with a cylinder 1 is provided. This has an outer cylinder tube 2, which encompasses an inner cylinder tube 4. The cylinder 1 is fixed in position via a flange 6. An annular space 12 is delimited by an outer lateral surface 8 of the inner cylinder tube 4 and an inner lateral surface 10 of the outer cylinder tube 2. In this an annular piston 14 is axially displaceably guided. The annular space 12 is axially delimited on the one hand by the cylinder base 16 and on the other hand by the cylinder cover 18. Starting from the piston 14, a hollow cylindrical piston rod 20 extends on one side. It passes through the cylinder cover 18 and divides it into an annular outer cylinder cover 22 or an outer closure element and an inner annular cylinder cover 24 or an inner closure element. The piston rod 20 is closed on its side axially facing away from the piston 14 by a piston cover 26.

Gemäß Figur 1 erstreckt sich die Kolbenstange 20 in Radialrichtung gesehen etwa mittig ausgehend vom Kolben 14. Die Kolbenstange 20 begrenzt zusammen mit dem Kolbendeckel 26 und dem Zylinderdeckel 18 über eine Wirkfläche 27 eine erste Zylinderkammer 28. Eine zweite Zylinderkammer 30 wird vom Kolben 14 kolbenstangenseitig über eine Wirkfläche 29 begrenzt. Die Zylinderkammer 30 ist axial von der Kolbenstange 20 durchsetzt, womit die Kolbenstange 20 die zweite Zylinderkammer in einen inneren Kammerabschnitt 32 und einen äußeren Kammerabschnitt 34 trennt. Zur fluidischen Verbindung der Kammerabschnitte 32 und 34 ist in der Kolbenstange 20 eine Bohrung 36 eingebracht, die benachbart zum Kolben 14 ausgebildet ist.According to Figure 1 When viewed in the radial direction, the piston rod 20 extends approximately centrally starting from the piston 14. The piston rod 20, together with the piston cover 26 and the cylinder cover 18, delimits a first cylinder chamber 28 via an active surface 27. A second cylinder chamber 30 is provided by the piston 14 on the piston rod side via an active surface 29 limited. The piston rod 20 axially penetrates the cylinder chamber 30, whereby the piston rod 20 separates the second cylinder chamber into an inner chamber section 32 and an outer chamber section 34. For the fluidic connection of the chamber sections 32 and 34, a bore 36 is made in the piston rod 20 which is formed adjacent to the piston 14.

In einen Hohlraum 38 des Zylinders 1, der von dem inneren Zylinderrohr 4 begrenzt ist, ist eine Pumpe 40 eingesetzt. Zum Antreiben der Pumpe ist eine Antriebseinheit 42 (Elektromotor) vorgesehen, die ebenfalls in das innere Zylinderrohr 4 eingesetzt ist. Die Pumpe 40 ist somit in Axialrichtung gesehen zwischen der Antriebseinheit 42 und dem Zylinderdeckel 18 angeordnet. Die Pumpe 40 ist fluidisch mit beiden Zylinderkammern 28 und 30 verbunden. Sie kann somit Druckmittel von der Zylinderkammer 28 in die Zylinderkammer 30 und umgekehrt von der Zylinderkammer 30 in die Zylinderkammer 28 fördern, um den Kolben 14 zusammen mit der Kolbestange 20 axial zu verfahren.A pump 40 is inserted into a cavity 38 of the cylinder 1, which is delimited by the inner cylinder tube 4. A drive unit 42 (electric motor) is provided for driving the pump, which is also inserted into the inner cylinder tube 4. The pump 40 is thus seen in the axial direction between the drive unit 42 and the Cylinder cover 18 arranged. The pump 40 is fluidly connected to both cylinder chambers 28 and 30. It can thus convey pressure medium from the cylinder chamber 28 into the cylinder chamber 30 and vice versa from the cylinder chamber 30 into the cylinder chamber 28 in order to axially move the piston 14 together with the piston rod 20.

Der in Figur 1 gezeigte Zylinder ist als Gleichgangzylinder in Differentialbauweise ausgestaltet, womit nur eine einzige Kolbenstange 20 erforderlich ist. Der Kolben 14 kann dann mit seiner von der Kolbenstange 20 wegweisenden Seite 44 eine weitere Zylinderkammer 46 begrenzen, die beispielsweise mit einer Atmosphäre verbunden ist. Da in der Zylinderkammer 46 kein Druckmittel vorgesehen sein muss, kann vorzugsweise in diesem Bereich ein optischer Entfernungsmesser zur Abstandsmessung des Kolbens 14 integriert werden.The in Figure 1 The cylinder shown is designed as a synchronous cylinder in a differential design, with which only a single piston rod 20 is required. The piston 14 can then, with its side 44 facing away from the piston rod 20, delimit a further cylinder chamber 46 which is connected, for example, to an atmosphere. Since no pressure medium has to be provided in the cylinder chamber 46, an optical distance meter for measuring the distance of the piston 14 can preferably be integrated in this area.

Gemäß Figur 2 ist eine weitere Ausführungsform des Zylinders 1 dargestellt. Hierbei ist eine Antriebseinheit 48 in Form eines Elektromotors außerhalb der Zylinderrohre 2 und 4 angeordnet. Die Antriebseinheit 48 ist hierbei an den Zylinderboden 16 koaxial zu den Zylinderrohren 2 und 4 angeflanscht. Eine Antriebswelle 50 der Antriebseinheit 48 taucht von außen her in das innere Zylinderrohr 4 ein und erstreckt sich bis zu einer Triebwelle 52 der Pumpe 40. Über eine Kupplung sind die Triebwelle 52 und die Antriebswelle 50 miteinander gekoppelt.According to Figure 2 Another embodiment of the cylinder 1 is shown. Here, a drive unit 48 in the form of an electric motor is arranged outside the cylinder tubes 2 and 4. The drive unit 48 is flanged to the cylinder base 16 coaxially to the cylinder tubes 2 and 4. A drive shaft 50 of the drive unit 48 plunges from the outside into the inner cylinder tube 4 and extends up to a drive shaft 52 of the pump 40. The drive shaft 52 and the drive shaft 50 are coupled to one another via a coupling.

Gemäß Figur 3 hat der Kolben 14 außen und innen jeweils einen Gleitring und eine Dichtung. Die Kolbenstange 20 ist im Unterschied zur Figur 1 in Radialrichtung gesehen nicht mittig am Kolben 14 angeordnet, sondern in Radialrichtung gesehen nach innen versetzt.According to Figure 3 the piston 14 has a slide ring and a seal on the outside and inside. The piston rod 20 is different from Figure 1 seen in the radial direction not centrally located on the piston 14, but offset inwards in the radial direction.

Der Kolbendeckel 26 ist radial zurückgestuft und somit zweistufig ausgebildet. Mit seiner kleineren Stufe 54 ist er in die Kolbenstange 20 eingesetzt und liegt mit seiner am Stufenübergang ausgebildeten Schulter 56 an einer Stirnfläche der Kolbenstange 20 an. Über eine Schraubverbindung ist der Kolbendeckel 26 mit der Kolbenstange 20 verschraubt. Zwischen der kleinen Stufe 54 und einer Innenmantelfläche 58 der Kolbenstange 20 ist eine Dichtung eingebracht.The piston cover 26 is stepped back radially and is therefore of two stages. With its smaller step 54, it is inserted into the piston rod 20 and rests with its shoulder 56 formed at the step transition on an end face of the piston rod 20. The piston cover 26 is screwed to the piston rod 20 via a screw connection. A seal is introduced between the small step 54 and an inner lateral surface 58 of the piston rod 20.

Der äußere Zylinderdeckel 22 ist ringförmig ausgestaltet und ebenfalls radial zurückgestuft, womit er stufenförmig ausgestaltet ist. Mit seiner kleinen Stufe 60 taucht er in den Ringraum 12 ein und begrenzt stirnseitig den äußeren Kammerabschnitt 34. Zwischen einer Innenmantelfläche 8 des äußeren Zylinderrohrs 2 und einer Außenmantelfläche der Stufe 60 ist ein Dichtmittel vorgesehen. Der äußere Zylinderdeckel 22 hat des Weiteren eine zylindrische, etwa sich koaxial zum Zylinder 1 erstreckende Innenmantelfläche 62, die zur Führung der Kolbenstange 20 dient. In Axialrichtung gesehen in Reihe sind in die Innenmantelfläche 62 Dichtmittel eingebracht. In Axialrichtung gesehen ist zwischen den Dichtmitteln ein Gleitring angeordnet. Ein Durchmesser des äußeren Zylinderdeckels 22 ist größer gewählt als ein Durchmesser des äußeren Zylinderrohrs 2, womit dieser das äußere Zylinderrohr 2 in Radialrichtung überragt. Über eine Schraubverbindung ist der Zylinderdeckel 22 mit dem äußeren Zylinderrohr 2 verschraubt.The outer cylinder cover 22 is designed in a ring shape and is also stepped radially backwards, with which it is designed in a step-like manner. With its small step 60, it dips into the annular space 12 and delimits the outer chamber section 34 at the end. A sealant is provided between an inner lateral surface 8 of the outer cylinder tube 2 and an outer lateral surface of the step 60. The outer cylinder cover 22 also has a cylindrical inner jacket surface 62, which extends approximately coaxially to the cylinder 1 and serves to guide the piston rod 20. Seen in series in the axial direction, sealants are introduced into the inner lateral surface 62. Viewed in the axial direction, a slide ring is arranged between the sealing means. A diameter of the outer cylinder cover 22 is selected to be larger than a diameter of the outer cylinder tube 2, with which it projects beyond the outer cylinder tube 2 in the radial direction. The cylinder cover 22 is screwed to the outer cylinder tube 2 via a screw connection.

Der innere Zylinderdeckel 24 ist zylindrisch ausgebildet und radial zurückgestuft, womit er eine erste kleine Stufe 64 und eine zweite große Stufe 66 aufweist. Die erste Stufe 64 ist hierbei in das innere Zylinderrohr 4 eingesetzt. Über eine zwischen den Stufen 64 und 66 ausgebildete Schulter 68 liegt der innere Zylinderdeckel 24 an einer Stirnfläche des inneren Zylinderrohrs 4 an.The inner cylinder cover 24 is cylindrical and radially stepped back, with which it has a first small step 64 and a second large step 66. The first stage 64 is inserted into the inner cylinder tube 4. The inner cylinder cover 24 bears against an end face of the inner cylinder tube 4 via a shoulder 68 formed between the steps 64 and 66.

Gemäß Figur 4 hat der innere Zylinderdeckel 24 einen zweiten Fluidkanal 70, der den inneren Kammerabschnitt 32 mit der Pumpe 40 verbindet. Des Weiteren ist in dem inneren Zylinderdeckel 24 ein erster Fluidkanal 72 ausgebildet, der die erste Zylinderkammer 28, siehe auch Figur 3, mit der Pumpe 40 verbindet. Der zweite Fluidkanal 70 ist durch eine Radialbohrung 74 gebildet, die radial von außen in den Zylinderdeckel 24 eingebracht ist und in einer axialen Sacklochbohrung 76 mündet, die von einer von der Pumpe 40 wegweisenden Seite her in den Zylinderdeckel 24 eingebracht ist. Die Sacklochbohrung 76 ist endseitig mit einer in dem Zylinderdeckel 24 ausgebildeten Steuerniere 78 verbunden. Die axiale Sacklochbohrung 76 ist hierbei im Parallelabstand zu einer Längsachse des Zylinders 1 ausgebildet. Für den ersten Fluidkanal 72 ist von der ersten Zylinderkammer 28 her eine sich axial erstreckende Sacklochbohrung 80 eingebracht, die in einer Radialbohrung 82 mündet. Die Radialbohrung 82 ist ebenfalls radial von außen in den Zylinderdeckel 24 eingebracht und erstreckt sich etwa koaxial zur anderen Radialbohrung 74. Die Radialbohrung 82 ist hierbei nach außen über ein Verschlusselement verschlossen. Sie mündet ebenfalls in einer sich axial erstreckenden Sacklochbohrung 84, die entsprechend der Sacklochbohrung 76 ausgestaltet ist und im Parallelabstand zu dieser und zur Längsachse des Zylinders 1 angeordnet ist. Die Sacklochbohrung 84 mündet dann in einer weiteren Steuerniere 86. Im Bereich der zweiten Stufe 66 und im Bereich der Radialbohrungen 82 und 74 ist der Zylinderdeckel 24 radial zurückgestuft, um die Radialbohrung 74 mit dem inneren Kammerabschnitt 32 zu verbinden. Eine Außenmantelfläche 88 der zweiten Stufe 66 dient als Führungsfläche für die Kolbenstange 20 und weist gegenüber liegend zu den Dichtmitteln des äußeren Zylinderdeckels 22 ebenfalls Dichtmittel auf, wobei in Axialrichtung gesehen zwischen den Dichtmitteln ein Gleitring vorgesehen ist.According to Figure 4 inner cylinder cover 24 has a second fluid passage 70 that connects inner chamber portion 32 to pump 40. Furthermore, a first fluid channel 72 is formed in the inner cylinder cover 24, which also has the first cylinder chamber 28 Figure 3 , connects to the pump 40. The second fluid channel 70 is formed by a radial bore 74 which is introduced radially from the outside into the cylinder cover 24 and opens into an axial blind hole 76 which is introduced into the cylinder cover 24 from a side pointing away from the pump 40. The blind hole 76 is connected at the end to a control kidney 78 formed in the cylinder cover 24. The axial blind hole 76 is formed parallel to a longitudinal axis of the cylinder 1. For the first fluid channel 72, an axially extending blind bore 80 is introduced from the first cylinder chamber 28, which opens into a radial bore 82. The radial bore 82 is also introduced radially from the outside into the cylinder cover 24 and extends approximately coaxially with the other radial bore 74. The radial bore 82 is closed to the outside by a closure element. It also opens into an axially extending blind hole 84, which accordingly the blind hole 76 is configured and is arranged at a parallel distance from this and from the longitudinal axis of the cylinder 1. The blind hole 84 then opens into a further control kidney 86. In the region of the second stage 66 and in the region of the radial bores 82 and 74, the cylinder cover 24 is stepped back radially in order to connect the radial bore 74 to the inner chamber section 32. An outer circumferential surface 88 of the second stage 66 serves as a guide surface for the piston rod 20 and also has sealing means lying opposite the sealing means of the outer cylinder cover 22, a sliding ring being provided between the sealing means as seen in the axial direction.

Koaxial zum Zylinderdeckel 24 ist in diesen eine weitere große Sacklochbohrung 90 eingebracht, deren Bohrungsgrund 92 in Axialrichtung zu den Radialbohrungen 74 und 82 beabstandet ist. Die Sacklochbohrung 90 dient zum Ausbilden eines Hydrospeichers, der als Kolbenspeicher 94 ausgebildet ist. Dieser hat einen axial verschiebbar in der Sacklochbohrung 90 geführten Speicherkolben 96. Der büchsenförmige Speicherkolben 96 ist von einer Federkraft einer Speicherfeder 98 beaufschlagbar, die sich an einem mit dem Zylinderdeckel 24 verschraubten Deckelelement 100 abstützt und in den Speicherkolben 96 eintaucht. Das Deckelelement 100 verschließt hierbei die Sacklochbohrung 90.A further large blind hole 90 is made coaxially with the cylinder cover 24, the bottom 92 of which is spaced axially from the radial bores 74 and 82. The blind hole 90 serves to form a hydraulic accumulator, which is designed as a piston accumulator 94. This has an axially displaceably guided in the blind bore 90 storage piston 96. The sleeve-shaped storage piston 96 can be acted upon by a spring force of a storage spring 98, which is supported on a cover element 100 screwed to the cylinder cover 24 and immersed in the storage piston 96. The cover element 100 closes the blind hole 90 here.

Vom Bohrungsgrund 92 her sind die Sacklochbohrungen 76 und 84 für die Fluidkanäle 70 bzw. 72 eingebracht, die die Radialbohrungen 74 bzw. 82 schneiden. In die Sacklochbohrungen 76 und 84 ist in Axialrichtung gesehen zwischen den Radialbohrungen 74 und 82 und den Bohrungsgrund 92 jeweils ein Rückschlagventil 102 bzw. 104 eingesetzt. Diese schließen jeweils in einer Strömungsrichtung hin zur Sacklochbohrung 90.The blind holes 76 and 84 for the fluid channels 70 and 72, which intersect the radial holes 74 and 82, are made from the bottom 92 of the hole. A check valve 102 or 104 is inserted in each of the blind holes 76 and 84, seen in the axial direction, between the radial holes 74 and 82 and the bottom 92 of the hole. These each close in a flow direction towards the blind hole 90.

Die Sacklochbohrung 80 des ersten Fluidkanals 72 ist mit einer Durchgangsbohrung durch das Deckelelement 100 zur fluidischen Verbindung mit der ersten Zylinderkammer 28 verbunden.The blind hole 80 of the first fluid channel 72 is connected to a through hole through the cover element 100 for fluid communication with the first cylinder chamber 28.

Mittig des Zylinderdeckels 24 ausgehend vom Bohrungsgrund 92 ist eine Durchgangsbohrung 106 eingebracht. Diese ist endseitig radial verbreitert und dient zur Aufnahme eines ersten Wälzlagers 108 für eine Triebwelle 110 der Pumpe 40. In der Triebwelle 110 ist ein Leckagekanal 112 eingebracht, in den zumindest eine Querbohrung 113 mündet, über die der Leckagekanal 112 mit der Leckageseite der Pumpe 40 verbunden ist. Der Leckagenkanal 112 mündet in der Durchgangsbohrung 106 und ist über diese mit dem Kolbenspeicher 94 verbunden. Gemäß Figur 3 ist die Pumpe 40 als Schrägscheibenpumpe ausgestaltet. Sie hat eine Zylindertrommel 114, die drehfest mit der Triebwelle 110 verbunden ist. In der Zylindertrommel 114 sind in Kolbenbohrungen Kolben 116 axial geführt. Diese stützen sich an einer fest in das innere Zylinderrohr 4 eingesetzten Schrägscheibe 118 ab. Die drehbare Zylindertrommel 114 wiederum stützt sich mit ihrer zum inneren Zylinderdeckel 24 weisenden Stirnfläche an einer Verteilerplatte 120 ab, die wiederum an einer Stirnfläche des inneren Zylinderdeckels 24 anliegt. Die Verteilerplatte 120 ist drehfest in dem inneren Zylinderrohr 4 angeordnet und hat Steuernieren, die mit einer jeweiligen Steuerniere 78 bzw. 86, siehe Figur 4, verbunden sind.A through hole 106 is made in the center of the cylinder cover 24 starting from the bottom 92 of the hole. This is widened radially at the end and serves to receive a first roller bearing 108 for a drive shaft 110 of the pump 40. A leakage channel 112 is introduced into the drive shaft 110, into which at least one transverse bore 113 opens, via which the leakage channel 112 with the leakage side of the pump 40 connected is. The leakage channel 112 opens into the through bore 106 and is connected to the piston accumulator 94 via this. According to Figure 3 the pump 40 is designed as a swash plate pump. It has a cylinder drum 114 which is connected in a rotationally fixed manner to the drive shaft 110. Pistons 116 are axially guided in cylinder bores in the cylinder drum 114. These are supported on a swash plate 118 firmly inserted into the inner cylinder tube 4. The rotatable cylinder drum 114, in turn, is supported with its end face facing the inner cylinder cover 24 on a distributor plate 120, which in turn abuts an end face of the inner cylinder cover 24. The distributor plate 120 is arranged in a rotationally fixed manner in the inner cylinder tube 4 and has control kidneys, which have a respective control kidney 78 or 86, see Figure 4 , are connected.

In der Schrägscheibe 118 ist ein Radialwellendichtring 122 vorgesehen, der die Triebwelle 110 umgreift. Des Weiteren ist ein zweites Wälzlager 124 in der Schrägscheibe 118 zur Lagerung der Triebwelle 110 angeordnet.
In Figur 3 ist eine Bohrung 36 dargestellt, die die Kolbenstange 20 radial durchdringt und dabei die beiden Kammerabschnitte 32, 34 der zweiten Zylinderkammer 30 miteinander verbindet.
A radial shaft sealing ring 122 is provided in the swash plate 118, which surrounds the drive shaft 110. Furthermore, a second roller bearing 124 is arranged in the swash plate 118 for mounting the drive shaft 110.
In Figure 3 A bore 36 is shown which radially penetrates the piston rod 20 and thereby connects the two chamber sections 32, 34 of the second cylinder chamber 30 to one another.

Die Zylinderkammern 28, 30 können über ein Druckbegrenzungsventils 126 verbindbar sein, dass ab einem bestimmten Druck in einer jeweiligen Zylinderkammer 28, 30 öffnet. Denkbar wäre auch nur den Druck in einer der Zylinderkammern 28, 30 über ein Druckbegrenzungsventil zu begrenzen oder für eine jeweilige Zylinderkammer 28, 30 ein Druckbegrenzungsventil vorzusehen. Das Druckbegrenzungsventil 126 ist über eine sich im Parallelabstand zur Längsachse des Zylinders 1 erstreckende Axialbohrung 128 mit der Radialbohrung 74 des zweiten Fluidkanals 70 verbunden. Die Axialbohrung 128 erstreckt sich ausgehend vom Deckelelement 100 in den inneren Zylinderdeckel 24, wobei sie das Deckelelement 100 vollständig durchsetzt und im inneren Zylinderdeckel 24 in der Radialbohrung 74 mündet. Das Druckbegrenzungsventil 126 ist dann mit der Axialbohrung 128 verbunden und vorzugsweise am Deckelelement 100 festgelegt und somit vorzugsweise in der ersten Zylinderkammer 28 angeordnet.The cylinder chambers 28, 30 can be connected via a pressure relief valve 126 that opens from a certain pressure in a respective cylinder chamber 28, 30. It would also be conceivable to limit the pressure in one of the cylinder chambers 28, 30 via a pressure relief valve or to provide a pressure relief valve for a respective cylinder chamber 28, 30. The pressure relief valve 126 is connected to the radial bore 74 of the second fluid channel 70 via an axial bore 128 extending parallel to the longitudinal axis of the cylinder 1. The axial bore 128 extends from the cover element 100 into the inner cylinder cover 24, completely penetrating the cover element 100 and opening into the radial bore 74 in the inner cylinder cover 24. The pressure limiting valve 126 is then connected to the axial bore 128 and is preferably fixed on the cover element 100 and is therefore preferably arranged in the first cylinder chamber 28.

Wird die Pumpe 40 von der Antriebseinheit 48 in eine erste Drehrichtung angetrieben, so fördert sie Druckmittel von der ersten Zylinderkammer 28, siehe Figur 3, über den ersten Fluidkanal 72, siehe Figur 4, in den zweiten Fluidkanal 70. Vom zweiten Fluidkanal 70 wird das Druckmittel weiter zum inneren Kammerabschnitt 32 gefördert und über die Bohrung 36, siehe Figur 3, in den äußeren Kammerabschnitt 34. Wird die Pumpe 40 in entgegengesetzter Drehrichtung angetrieben, so fördert sie Druckmittel von den Kammerabschnitten 32 und 34 über den zweiten Fluidkanal 70 in den ersten Fluidkanal 72 und weiter in die erste Zylinderkammer 28.If the pump 40 is driven by the drive unit 48 in a first direction of rotation, it pumps pressure medium from the first cylinder chamber 28, see Figure 3 , via the first fluid channel 72, see Figure 4 , in the second fluid channel 70. The second fluid channel 70 the pressure medium is further conveyed to the inner chamber section 32 and via the bore 36, see Figure 3 , into the outer chamber section 34. If the pump 40 is driven in the opposite direction of rotation, it conveys pressure medium from the chamber sections 32 and 34 via the second fluid channel 70 into the first fluid channel 72 and further into the first cylinder chamber 28.

Offenbart ist eine kompakte hydraulische Achse mit einem Zylinder. In diesem ist eine Pumpe zum Ansteuern des Zylinders angeordnet. Die Pumpe ist hierbei in einem Hohlraum des Zylinders vorgesehen. Der Zylinder ist als Gleichgangzylinder in Differentialbauweise ausgebildet.What is disclosed is a compact hydraulic axle with a cylinder. In this a pump for controlling the cylinder is arranged. The pump is provided in a cavity of the cylinder. The cylinder is designed as a synchronous cylinder in a differential design.

BezugszeichenlisteReference list

11
Zylindercylinder
22nd
äußeres Zylinderrohrouter cylinder tube
44th
inneres Zylinderrohrinner cylinder tube
66
AnflanschungFlange mounting
88th
AußenmantelflächeOuter surface
1010th
InnenmantelflächeInner surface
1212th
RingraumAnnulus
1414
Kolbenpiston
1616
ZylinderbodenCylinder bottom
1818th
ZylinderdeckelCylinder cover
2020
KolbenstangePiston rod
2222
äußerer Zylinderdeckelouter cylinder cover
2424th
innerer Zylinderdeckelinner cylinder cover
2626
KolbendeckelPiston cover
2727
WirkflächeEffective area
2828
erste Zylinderkammerfirst cylinder chamber
2929
WirkflächeEffective area
3030th
zweite Zylinderkammersecond cylinder chamber
3232
innerer Kammerabschnittinner chamber section
3434
äußerer Kammerabschnittouter chamber section
3636
Bohrungdrilling
3838
Hohlraumcavity
4040
Pumpepump
4242
AntriebseinheitDrive unit
4444
KolbenseitePiston side
4646
ZylinderkammerCylinder chamber
4848
AntriebseinheitDrive unit
5050
Antriebswelledrive shaft
5252
TriebwelleDrive shaft
5454
Stufestep
5656
Schultershoulder
5858
InnenmantelflächeInner surface
6060
Stufestep
6262
InnenmantelflächeInner surface
6464
erste Stufefirst stage
6666
zweite Stufesecond step
6868
Schultershoulder
7070
zweiter Fluidkanalsecond fluid channel
7272
erster Fluidkanalfirst fluid channel
7474
RadialbohrungRadial bore
7676
SacklochbohrungBlind hole
7878
SteuerniereControl kidneys
8080
SacklochbohrungBlind hole
8282
RadialbohrungRadial bore
8484
SacklochbohrungBlind hole
8686
SteuerniereControl kidneys
8888
AußenmantelflächeOuter surface
9090
SacklochbohrungBlind hole
9292
BohrungsgrundBottom of the hole
9494
Hydrospeicher/ KolbenspeicherHydraulic accumulator / piston accumulator
9696
SpeicherkolbenAccumulator piston
9898
SpeicherfederSpring
100100
DeckelelementCover element
102102
Rückschlagventilcheck valve
104104
Rückschlagventilcheck valve
106106
DurchgangsbohrungThrough hole
108108
erstes Wälzlagerfirst rolling bearing
110110
TriebwelleDrive shaft
112112
LeckagekanalLeakage channel
113113
QuerbohrungCross hole
114114
ZylindertrommelCylinder drum
116116
Kolbenpiston
118118
SchrägscheibeSwashplate
120120
VerteilerplatteDistribution plate
122122
RadialwellendichtringRadial shaft seal
124124
zweites Wälzlagersecond rolling bearing
126126
DruckbegrenzungsventilPressure relief valve
128128
AxialbohrungAxial bore

Claims (11)

  1. Hydraulic spindle with a cylinder (1) which can be activated via a pump (40), wherein the pump (40) is installed in a cavity (38) of the cylinder (1), and the cylinder (1) is a differential-type double rod cylinder, with an outer cylinder tube (2) in which an inner cylinder tube (4) is arranged, wherein the cavity (38) with the pump (40) is formed in the inner cylinder tube (4), wherein the cylinder tubes (2, 4) bound an annular space (12) in which a piston (14) is arranged in an axially displaceable manner, from which piston a hollow-cylindrical piston rod (20) extends, the piston rod passing through a closure device (18) of the cylinder (1) and being closed on a side of the closure device (18) that faces away from the piston (14) in order to bound a first cylinder chamber (28), and wherein the piston (14) on the piston-rod side bounds a second cylinder chamber (30), wherein an operative surface (29) of the piston that bounds the second cylinder chamber (30) and an operative surface (27) of the piston rod that bounds the first cylinder chamber (28) are approximately identical in size, and therefore the volumes of the cylinder chambers (28, 30) are equalized.
  2. Hydraulic spindle according to Claim 1, wherein the piston rod (20) separates the second cylinder chamber (30) in the radial direction into an outer chamber section (34) and an inner chamber section (32), wherein the chamber sections (32, 34) are connected fluidically via a flow path (36).
  3. Hydraulic spindle according to either of the preceding claims, wherein the pump (40) can be driven via a drive unit (42, 48) which is arranged within the inner cylinder tube (4) or which is flange-mounted on the cylinder (1).
  4. Hydraulic spindle according to one of the preceding claims, wherein the pump (40) is a piston pump of swash plate design.
  5. Hydraulic spindle according to one of Claims 1 to 4, wherein the closure device (18) has an outer annular closure element (22) engaging around the piston rod (20) and an inner closure element (24) arranged within the piston rod (20).
  6. Hydraulic spindle according to Claim 5, wherein the inner closure element (24) contains a first fluid channel (72) which fluidically connects the first cylinder chamber (28) to the pump (40), and contains a second fluid channel (70) which fluidically connects the second cylinder chamber (30) to the pump (40).
  7. Hydraulic spindle according to one of the preceding claims, wherein a hydraulic accumulator (94) is provided for equalizing the temperature and/or for prestressing a respective low-pressure region.
  8. Hydraulic spindle according to Claim 7, wherein the hydraulic accumulator (94) is formed in the inner closure element (24).
  9. Hydraulic spindle according to Claim 7 or 8, wherein the first fluid channel (70) is connected to the hydraulic accumulator (94) via a first nonreturn valve (102) which closes towards the hydraulic accumulator (94), and wherein the second fluid channel (72) is connected to the hydraulic accumulator (94) via a second nonreturn valve (104) which closes towards the hydraulic accumulator (94).
  10. Hydraulic spindle according to one of Claims 7 to 9, wherein the hydraulic accumulator (94) is connected to the pump (40) via a leakage channel (106, 112) .
  11. Hydraulic spindle according to one of the preceding claims, wherein a distance measuring device is arranged on the bottom side of the cylinder (1).
EP15747138.4A 2014-07-31 2015-07-29 Hydraulic actuator system Active EP3175123B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215080.9A DE102014215080A1 (en) 2014-07-31 2014-07-31 Hydraulic axis
PCT/EP2015/067391 WO2016016310A1 (en) 2014-07-31 2015-07-29 Hydraulic spindle

Publications (2)

Publication Number Publication Date
EP3175123A1 EP3175123A1 (en) 2017-06-07
EP3175123B1 true EP3175123B1 (en) 2020-07-08

Family

ID=53783217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15747138.4A Active EP3175123B1 (en) 2014-07-31 2015-07-29 Hydraulic actuator system

Country Status (5)

Country Link
EP (1) EP3175123B1 (en)
CN (1) CN107076177B (en)
DE (1) DE102014215080A1 (en)
ES (1) ES2820871T3 (en)
WO (1) WO2016016310A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340704B1 (en) * 2016-12-22 2020-06-10 Volkswagen Aktiengesellschaft Method for resource allocation in a mobile communication system and base station, and participant communication module for the use in the method
CN107654443B (en) * 2017-08-28 2024-02-06 无锡瑞真精机股份有限公司 Telescopic hydraulic self-centering mechanism

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598185A1 (en) * 1986-05-05 1987-11-06 Quiri Cie Usines High-performance hydraulic servo-control jack of the double rod type
JPH0217204A (en) * 1988-07-06 1990-01-22 Daiichi Denki Kk Integral drive source type hydraulic cylinder
JP2001182716A (en) * 1999-12-24 2001-07-06 Kayaba Ind Co Ltd Integrated actuator
DE10026147C2 (en) * 2000-05-26 2002-04-18 Emg Eltma Hebezeuge Oschersleb Electro-hydraulic actuator
CN2466411Y (en) * 2001-02-16 2001-12-19 丁振钰 Double-action hydraulic cylinder with safety controlling device
CN2685624Y (en) * 2004-03-05 2005-03-16 西南石油学院 Ring Multi-rod hydraulic cylinder
US20100107864A1 (en) * 2008-10-16 2010-05-06 James Allen Bushner Electro-hydraulic double-rod actuating cylinder
US20120325081A1 (en) * 2010-12-22 2012-12-27 Reed Vivatson High power hydraulic cylinder
JP5890987B2 (en) * 2011-09-15 2016-03-22 住友精密工業株式会社 Electric hydraulic actuator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3175123A1 (en) 2017-06-07
CN107076177A (en) 2017-08-18
WO2016016310A1 (en) 2016-02-04
CN107076177B (en) 2019-10-18
ES2820871T3 (en) 2021-04-22
DE102014215080A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
EP2821619B1 (en) Connecting rod for a two-stage variable compression
DE60310504T2 (en) Valve with pressure compensating piston
EP2488764B1 (en) Valve system
EP3183477B1 (en) Hydraulic control device for an automatic transmission
EP3371460B1 (en) Coolant pump for the automotive industry
EP3047183B1 (en) Control device for selectively fluidically connecting and disconnecting fluid connection points
EP2564040B1 (en) Pressure accumulator arrangement for a camshaft adjusting system
EP2722165A2 (en) Hydraulic circuit for a hydraulic axle and a hydraulic axle
WO2008138711A1 (en) Pump unit with a main pump and a charging pump with a variable pump capacity
EP3175123B1 (en) Hydraulic actuator system
DE102007030882A1 (en) Hydraulic control oil supply device for electro hydraulic pilot adjustment device, has combination valve for control pressure process screwed as threaded cartridge in receiving hole for pressure relief valve in connecting plate
DE102013203701A1 (en) Hydrostatic positive displacement machine
DE102011088674A1 (en) Adjustable coolant pump with a fluidic actuator
EP3015662B1 (en) Hydraulic valve and a tilt motor adjuster
DE102014221447A1 (en) variable
DE102015223037A1 (en) Vibratory drive with hydraulic pulse generating device
DE102015207260A1 (en) Adjustment device for a hydrostatic piston machine and hydrostatic axial piston machine
DE102012208808A1 (en) Control valve for controlling pressure medium flow of camshaft adjusting device, has radial bores which are spaced apart from each other in control sleeve and formed with greater diameter than the width of inner annular groove
EP3489460B1 (en) Valve for a steam turbine
DE102012223346A1 (en) Arrangement of hydraulic control valve e.g. pressure regulating valve for pressure control of axial-piston pump of hydraulic machine, has spring arrangement that is screwed in axial direction against spring seat in housing by screw
EP3392505B1 (en) Mixing valve device for a hydraulic system, and oil cooling system and a compressor system with same
DE102015015858A1 (en) Monitoring device for tool turrets
DE102014214176A1 (en) Hydraulic cartridge valve and hydraulic control assembly with it
DE102017102842A1 (en) Shaft passage and valve with such a shaft passage and method for producing a shaft passage
EP3728851B1 (en) Vane pump

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

INTG Intention to grant announced

Effective date: 20200408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1288774

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012969

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012969

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2820871

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

26N No opposition filed

Effective date: 20210409

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 9

Ref country code: ES

Payment date: 20230821

Year of fee payment: 9

Ref country code: AT

Payment date: 20230718

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 9

Ref country code: DE

Payment date: 20230922

Year of fee payment: 9