EP3175114B1 - Top part of a housing of a labyrinth piston compressor and method for cooling the same - Google Patents

Top part of a housing of a labyrinth piston compressor and method for cooling the same Download PDF

Info

Publication number
EP3175114B1
EP3175114B1 EP15750943.1A EP15750943A EP3175114B1 EP 3175114 B1 EP3175114 B1 EP 3175114B1 EP 15750943 A EP15750943 A EP 15750943A EP 3175114 B1 EP3175114 B1 EP 3175114B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
interior
longitudinal axis
outlet
gas distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15750943.1A
Other languages
German (de)
French (fr)
Other versions
EP3175114A1 (en
Inventor
Urs Weilenmann
Benjamin REMBOLD
Andreas Allenspach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Burckhardt Compression AG
Original Assignee
Burckhardt Compression AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burckhardt Compression AG filed Critical Burckhardt Compression AG
Publication of EP3175114A1 publication Critical patent/EP3175114A1/en
Application granted granted Critical
Publication of EP3175114B1 publication Critical patent/EP3175114B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1046Combination of in- and outlet valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • F04B39/041Measures to avoid lubricant contaminating the pumped fluid sealing for a reciprocating rod
    • F04B39/045Labyrinth-sealing between piston and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders

Definitions

  • the invention relates to an upper housing part of a labyrinth piston compressor according to the preamble of claim 1.
  • the invention further relates to a labyrinth piston compressor comprising an upper housing part.
  • the invention also relates to a method for cooling an upper housing part of a labyrinth piston compressor according to claim 12.
  • Labyrinth piston compressors are compressors for compressing fluids.
  • a piston is arranged in a cylinder such that there is permanently a gap between the lateral surface of the piston and the inner wall of the cylinder, so that piston and cylinder do not touch each other. It is deliberately accepted that part of the fluid flows past the piston between the cylinder wall and the lateral surface. In order to keep such leakage low, the gap between the cylinder wall and the lateral surface is kept as small as possible.
  • the publication JP2010209723 discloses such a labyrinth piston compressor with an upper housing part. This labyrinth piston compressor has the disadvantage that a unilateral wear of the piston may occur, resulting in an increased gap width and increased leakage.
  • the object of the invention is to form a more advantageous upper housing part for a labyrinth piston compressor and a more advantageous labyrinth piston compressor and a more advantageous method for operating a labyrinth piston compressor with such a housing upper part.
  • the dependent claims 2 to 8 relate to further advantageous embodiments.
  • the object is further achieved with a labyrinth piston compressor comprising an upper housing part according to one of claims 1 to 8.
  • the object is further achieved by a method for operating an upper housing part of a labyrinth piston compressor comprising the features of claim 12.
  • the dependent claims 13 to 15 relate to further advantageous method steps ,
  • an upper housing part of a labyrinth piston compressor comprising a cylinder jacket extending in the direction of a longitudinal axis with a cylinder interior and a cylinder jacket outer side, wherein the cylinder jacket has at least one cylinder inlet opening or at least one cylinder outlet opening, which open into the cylinder interior, wherein a Gasverteilgephaseuse the cylinder jacket in the circumferential direction to the longitudinal axis at least partially encloses, so between the gas distribution housing and at least a portion of the cylinder jacket outer side of the cylinder jacket, a Gasverteilinnenraum is formed, wherein the partial section is axially symmetrical with respect to the longitudinal axis, wherein the Gasverteilinnenraum either via the cylinder inlet or the cylinder outlet fluidly connected to the cylinder interior, and wherein the Gasverteilgephaseuse either a gas inlet or a gas outlet includes which fluid is conductively connected to the Gasverteilinnenraum .
  • the object is further achieved, in particular, with a method for cooling an upper housing part of a labyrinth piston compressor comprising a cylinder jacket extending in the direction of a longitudinal axis with a cylinder interior and a cylinder jacket outer side, wherein an inlet fluid to be compressed is sucked into the cylinder interior via a cylinder inlet opening arranged on the cylinder jacket from a gas distributor interior, or wherein a compressed outlet fluid is discharged from the cylinder interior into the gas distribution chamber via a cylinder outlet opening arranged on the cylinder jacket, and sections of the cylinder jacket outer side arranged axially symmetrically opposite to the longitudinal axis are flowed around by the same inlet fluid or outlet fluid.
  • a labyrinth piston compressor also referred to as a labyrinth piston compressor, comprises at least one housing top part and a housing bottom part, and comprises at least a crankshaft, a crosshead, a piston rod and a piston.
  • the upper housing part and the lower housing part are fixed to one another connected.
  • the crankshaft and the crosshead are arranged, wherein the piston rod is connected to the crosshead.
  • the housing upper part comprises a cylinder jacket, wherein the piston is arranged within the cylinder interior of the cylinder jacket, and wherein the piston is connected to the piston rod, and wherein the piston is displaceably mounted within the cylinder interior in the direction of the longitudinal axis.
  • the labyrinth piston compressor also comprises a spacer which is arranged between the lower housing part and the upper housing part, wherein the spacer may also be part of the lower housing part or part of the upper housing part, or wherein the spacer may be integrated in the upper housing part or in the lower housing part.
  • the upper housing part according to the invention for a labyrinth piston compressor has the advantage that the cylinder wall surrounding the piston of the labyrinth piston compressor has an essentially axially symmetrical temperature distribution in the circumferential direction relative to the longitudinal axis. This means that the cylinder wall has the same or essentially the same temperature at regions which are axially symmetrical with respect to the longitudinal axis. This ensures that the cylinder jacket does not distort unilaterally during operation of the labyrinth piston compressor due to the acting temperature. This has the consequence that the gap between the cylinder wall and the piston can be kept very small, since a temperature change of the cylinder jacket during operation has no or only a slight delay result.
  • the small gap has the consequence that the inventive Labyrinth piston compressor has a low leakage.
  • the inventive labyrinth piston compressor also has a low wear, which allows long-term reliable and low-maintenance operation of the labyrinth piston compressor.
  • a gas distribution housing which extends in the circumferential direction through 360 ° surrounds the cylinder wall from the outside, wherein in this formed by the Gasverteilgeophuse and the cylinder wall Gasverteilinnenraum either a compressed inlet fluid or a compressed outlet fluid flows, resulting in that the cylinder jacket outer side is flowed around in the circumferential direction by the same fluid, and therefore the cylinder jacket outer side in the circumferential direction therefore has the same or substantially the same temperature.
  • the inlet fluid flowing into the labyrinth piston compressor and the outflowing outlet fluid are advantageously routed in the housing upper part according to the invention in such a way that the cylinder has the same or essentially the same temperature in the circumferential direction.
  • the cylinder jacket in the direction of the longitudinal axis may have a section higher or lower temperatures, wherein in a particularly advantageous embodiment of the cylinder in the circumferential direction the same or in the Has substantially the same temperature. Due to the symmetrical or substantially symmetrical temperature distribution, it is ensured that the cylinder jacket does not warp on one side due to the temperature. This makes it possible to keep the abrasion of the piston and the cylinder inner surface very low and to ensure that during operation of the labyrinth piston compressor no one-sided wear occurs, which could lead to increased leakage and possibly to a piston seizure.
  • Such a labyrinth piston compressor comprising the inventive housing top has the advantage that it has a higher efficiency, and / or that the fluid is compressible to a higher pressure and / or that the labyrinth piston compressor can be operated at a lower speed.
  • inventive upper housing part has in the document JP2010209723 revealed upper housing part or the labyrinth piston compressor in the uncooled state in the circumferential direction of the cylinder greatly different temperatures, so that the cylinder during operation, a thermal distortion occurs, with the result that the piston on one side of the cylinder wears.
  • the upper housing part according to the invention is made of aluminum or an aluminum alloy.
  • Aluminum has much better low-temperature properties than, for example, cast iron such as gray cast iron.
  • a cylinder with aluminum cylinder is approved for an operating temperature of up to -160 ° C, while a gray iron cylinder is only approved for an operating temperature of up to -40 ° C is allowed.
  • a labyrinth piston compressor comprising the inventive housing upper part made of aluminum or an aluminum alloy thus has the advantage that it can be used even at very low operating temperatures of up to -160 ° C, for example in the field of cryotechnology or the cryogenic technology at temperatures lower than - 150 ° C, for example, for the liquefaction of gases.
  • An upper housing part made of aluminum or an aluminum alloy also has the advantage that its production is more cost-effective than an upper housing part made of an iron alloy, for example made of cast iron.
  • Fig. 1 shows a partial section of a labyrinth piston compressor 21 comprising, together with the components, not shown, an upper housing part 1, a spacer 22, a piston 15 with a piston rod 16, a seal 23 and a linear guide 24.
  • the upper housing part 1 comprises a cylinder jacket 2 with a in the direction of Longitudinal axis L extending cylinder interior 2a.
  • the piston 15 is disposed within the cylinder interior 2a, and is displaceably mounted together with the piston rod 16 in the direction of the longitudinal axis L in the direction of movement L1.
  • the piston 15 has on the side surface 15 a forming Surface on fine, circumferentially extending grooves, which are not shown in detail.
  • the cylinder jacket 2 comprises at least one cylinder inlet opening 4, which opens into the cylinder interior 2a.
  • a cylinder outlet opening 6 is arranged on the end face of the cylinder interior 2a.
  • the cylinder inlet opening 4 and the cylinder outlet opening 6 are preferably arranged spaced apart in the longitudinal direction L.
  • the cylinder outlet 2 is only slightly higher than the cylinder inlet opening 4.
  • the cylinder jacket 2 is surrounded by a Gasverteilgephase 9a, such that between the outer side 2e of the cylinder jacket 2 and the Gasverteilgephase 9a in the circumferential direction 360 ° extending inner space 9b is formed.
  • the gas distribution housing 9a has at least one gas inlet opening 9, and in the illustrated embodiment has two gas inlet openings 9, which are opposite to the longitudinal direction L and through which the inlet fluid to be compressed is sucked from the outside. Between the inner space 9b and the cylinder inlet opening 4 there is arranged an inlet valve 5 which is shown only schematically, which allows the gas to pass in the direction indicated by an arrow and prevents a gas flow in the opposite direction. In the illustrated embodiment, two inlet valves 5 are arranged symmetrically to the longitudinal direction L.
  • the gas distribution housing 9a has an access opening 9c for the valve 5 to maintain or replace the valve 5.
  • the access opening 9 c is closed by a cover plate 19. At the upper end side of the cylinder 2, a frontal end part 8 is arranged.
  • the closure part 8 comprises three cylinder outlet openings 6, which are each followed by a schematically illustrated outlet valve 7.
  • the Exhaust valves 7 pass the compressed discharge fluid or gas in the direction indicated by an arrow, and prevent a gas flow in the opposite direction.
  • the termination part 8 ends in a gas outlet 10.
  • a piston rod seal 23 is also arranged in the upper housing part 1.
  • the labyrinth piston compressor 21 in the illustrated embodiment also comprises a spacer 22 with a base 18 and a linear guide 24.
  • the upper housing part 1 is connected via the spacer 22 with a housing lower part 25 only hinted.
  • the upper housing part 1 is fixed to the stand 18.
  • the labyrinth piston compressor 21 comprises a compression space 3 at the top, whereas an inlet and outlet 2f, which forms a fluid-conducting connection between the lower cylinder interior 3c and the interior 9b of the gas distribution housing 9a, is arranged below in the cylinder wall 2d.
  • the cylinder inlet openings 4 are arranged in the direction of the longitudinal axis L at the same height and spaced apart in the circumferential direction by 180 °. This arrangement has the advantage that the fluid flowing in via the gas inlet 9 flows into the interior space 9 b, while the cylinder jacket outer side 2 e flows around before the gas flows via the inlet valve 5 into the cylinder inlet opening 4.
  • the cylinder jacket outer side 2e therefore has the same or approximately the same temperature in the circumferential direction. Due to the compression of the gas in the compression chamber 3, the temperature of the housing wall of the cylinder jacket 2 can increase in the direction of the longitudinal axis L in the direction of the cylinder outlet 6 out, the cylinder jacket 2 in the circumferential direction in each case has the same or about the same temperature. As a result, the cylinder jacket 2 radially to the longitudinal axis L a symmetrical or approximately symmetrical temperature distribution, which has the consequence that in the radial direction no or hardly any heat distortion on the cylinder jacket 2 is formed. This gives the advantage that the piston does not wear on one side. This increases the seal of the piston 15, or allows the gas in the compression chamber 3 to compress to a higher pressure. In addition, the efficiency of the labyrinth piston compressor is increased.
  • FIG. 2 shows a plan view of the in FIG. 1 Housing shell 21 shown at the front end part 8 of the gas outlet 10 and the exhaust valves 7 can be seen.
  • the Gasverteilgepatuse 9 a has left and right each have a cover 19.
  • FIG. 3 shows in a longitudinal section a further embodiment of a housing upper part 1, which in contrast to the in FIG. 1 illustrated embodiment is designed for two compression chambers, a first compression chamber 3a and a second compression chamber 3b.
  • the spacer 22 may also be part of the upper housing part 1.
  • the area above the piston 15 is configured identically as in FIG FIG. 1 shown.
  • the cylinder opening 4a is shown with inlet valve 5a, which open into the first compression chamber 3a, and the cylinder outlet 6a and the outlet valve 7a, which are arranged between the first compression chamber 3a and the gas outlet 10a.
  • the cylinder interior 2a below the piston 15 form a second compression chamber 3b.
  • top view of the upper housing part 1 according FIG. 3 shows the gas outlet 10a of the first compression space 3a, and shows the exhaust valves 7a.
  • gas inlet 9 is shown, which is arranged laterally in the gas distribution housing 9a.
  • FIG. 5 shows that in the FIGS. 3 and 4 illustrated upper housing part 1 in a perspective view, in particular the gas inlet 9 is visible, and above and below the gas outlet 10a of the first compression chamber 3a and the gas outlet 10b of the second compression chamber 3b.
  • FIG. 6 shows a longitudinal section along the section line CC of the in FIGS. 3, 4 and 5 shown housing upper part.
  • FIG. 9 shows a cross section along the section line DD of the in the FIGS. 3 to 6 illustrated housing top part 1, wherein in contrast to the Figures 3 and 6 in FIG. 9 the piston 15 is not shown, and of the exhaust valves 5, only the valve seat 5b is shown.
  • the gas distribution housing 9a is configured in such a way that it forms an interior space 9b extending all the way around an angle ⁇ of 360 ° about the outside of the cylinder jacket 2e, the gas inlet 9 opening into this interior 9b.
  • This arrangement of the gas inlet 9 has the advantage that the aspirated gas initially along the Cylinder jacket outer side 2e flows to then be sucked through the inlet valves 5a, 5b in the first and second compression chamber 3a, 3b.
  • FIG. 6 shows the front end part 8, in which the cylinder outlet 6a, the flow direction subsequently arranged outlet valve 7a and the subsequently arranged gas outlet 10a is visible.
  • FIG. 6 shows the front end part 8, in which the cylinder outlet 6a, the flow direction subsequently arranged outlet valve 7a and the subsequently arranged gas outlet 10a is visible.
  • FIGS. 1 to 6 illustrated embodiments have cylinder outlet 6, 6a, 6b, which are respectively arranged on the end face 2b, 2c of the cylinder interior 2. Since the gas compressed in the compression chamber 3a, 3b is also heated during the compression, the compressed outlet gas flowing out via the cylinder outlet openings 6, 6a, 6b has a higher temperature than the inlet gas to be compressed flowing into the cylinder interior 2. Because the exit gas is not passed through the cylinder wall 2d, but is discharged via the end face 2b, 2c of the cylinder interior 2, the cylinder wall 2d is heated less locally, with the result that a possible thermal distortion of the cylinder jacket 2 is considerably reduced.
  • the derivation of the exit gas at the end face also has the advantage that the discharge at the end of the cylinder interior 2a or outside the cylinder interior 2 a, so that the warmer, outflowing gas can not heat the cylinder wall 2 d at all or only to a very slight extent.
  • the cylinder interior 2a in the direction of the longitudinal axis L has an interior length L2 which is smaller than the length of the gas distribution interior 9b, as shown in FIG FIG. 6 is shown.
  • This embodiment has the advantage that the inlet gas flowing in via the gas inlet 9 also cools that outer side 2e of the cylinder jacket 2, behind which the end-side end part 8 is arranged so that it too is cooled, with the result that temperature differences in the cylinder jacket 2 are reduced be, and thus a possible thermal distortion of the cylinder jacket 2 is reduced.
  • FIGS. 1 to 6 illustrated embodiments could also be configured such that the intake valves 5 and the exhaust valves 7 are arranged reversed, so that the inlet fluid via the gas outlet 10 and the inlet valve 5 flows into the compression chamber 3, and the discharge fluid from the compression chamber 3 via the cylinder inlet 4 and the exhaust valve 7 flows into the gas chamber 9b.
  • the outlet fluid flows around the cylinder jacket outer side 2e and exits at the opening 9, the cylinder jacket outer side 2e having a uniform temperature distribution.
  • FIG. 7 shows a further embodiment of a housing upper part 1.
  • a fluid-conducting connection channel 17 is arranged, so that via an opening 17a, a gas-conducting connection between the gas outlet 10a and the Gas line housing 10c is formed.
  • the gas outlet 10a is closed in a gas-tight manner by means of a cover plate 20, which is shown only partially, so that the entire compressed outlet gas flowing out via the outlet valve 7a is supplied to the gas line housing 10c and subsequently to the gas outlet 10b.
  • This in FIG. 7 illustrated embodiment of an upper housing part 1 thus has the advantage that it has a single gas inlet 9 and a single gas outlet 10b.
  • FIG. 8 shows in a longitudinal section a fourth embodiment of a housing upper part 1.
  • the labyrinth piston compressor 21 associated piston 15 with piston rod 16 is not shown.
  • the cylinder outlet openings 6 are likewise arranged in the cylinder wall 2d of the cylinder jacket 2.
  • the end-side closing part 8 is configured such that a fluid-conducting channel is formed between the compression space 3 and the cylinder outlet openings 6.
  • Each of the cylinder outlet openings 6 is followed by an outlet valve 7, which opens into a gas distribution interior 10f.
  • An access opening 10e for the outlet valve 7 is closed by a cover plate 19.
  • the gas distribution interior 10f has a gas outlet 10a on the rear side, for which reason the gas outlet 10a is shown only in broken lines. Otherwise, the upper housing part 1 is substantially as in FIG. 1 designed configured.
  • FIGS. 10 to 12 show a fifth embodiment of a housing upper part.
  • FIG. 10 shows in a longitudinal section an upper housing part 1 with a first and a second Compaction space 3a, 3b.
  • Two cylinder openings 4a open into the first compression space 3a.
  • a cylinder opening 4b opens into the second compression chamber 3b.
  • the access openings 9 c for the valves 5 a, 5 b are closed with cover plates 19.
  • a gas inlet 9 opens into the gas distribution chamber 9b.
  • FIG. 11 shows in a longitudinal section an upper housing part 1 with a first and a second compression chamber 3a, 3b.
  • FIG. 12 shows a section through the Figures 10 and 11 along the section line EE, wherein in FIG. 12 the piston 15 and the piston rod 16 are not shown.
  • the gas distribution housings 9a are configured in such a way that the gas distribution interior 9b rests against the outside of the cylinder jacket 2e only along a part section 2g.
  • the sections 2g extend axially symmetrically with respect to the longitudinal axis L, which has the consequence that with respect to the longitudinal axis L opposite sections 2g of Zylindermantelaussenseite 2e have the same or about the same temperature, since these opposite sections 2g are flowed around by the same gas, either from compressed inlet gas or compressed exit gas.
  • the partial section 2g extends in the circumferential direction U over at least 20 ° or at least 30 °.
  • the Gasverteilinnenopathyopathy 9b configured mutually perpendicular in the illustrated section.
  • the Gasverteilinnenippo 9b as in FIG. 14 represented, each other also run at a sharp or an obtuse angle.
  • FIG. 14 illustrated embodiment has the advantage that the upper housing part 1 requires less space, so that several Labyrinthkolbenkompressoren 21 can be mutually more closely juxtaposed.
  • FIG. 13 shows in a longitudinal section a sixth embodiment. Unlike the in FIG. 3 illustrated embodiment, the in FIG. 13 shown upper housing part 21 only on the left side of the Gasverteilinnenraums 9b valve seats 5a, 5b and arranged therein valves 5, whereas in the right part of the Gasverteilinnenraums 9b no valves are arranged. Otherwise, the in the Figures 3 and 13 Housing tops 1 shown designed similar, so more details in particular from the FIGS. 4 and 9 can be seen.
  • the housing upper part 1 has at least one cylinder inlet opening 4 and at least one cylinder outlet opening 6.
  • a plurality of cylinder inlet openings 4 arranged circumferentially spaced in the cylinder wall 2d.
  • the cylinder inlet openings 4 in the circumferential direction are regular spaced, wherein in the circumferential direction preferably two, three or four cylinder inlet openings 4 are arranged.
  • FIG. 8 shown in the circumferential direction to the longitudinal axis L a plurality of cylinder outlet openings 6 circumferentially spaced in the cylinder wall 2 d arranged.
  • the cylinder outlet openings 6 are regularly spaced in the circumferential direction, wherein preferably two, three or four cylinder outlet openings 6 are arranged in the circumferential direction.
  • the cylinder outlet openings 6 are preferably arranged on the front side of the cylinder interior 2a, the cylinder outlet openings 6 preferably extending in the direction of the longitudinal axis L.
  • a single cylinder outlet opening 6 can be arranged in the circumferential direction with respect to the longitudinal axis L, but preferably two, three or four cylinder outlet openings 6.
  • the labyrinth piston compressor 21 comprises a cylinder jacket 2 extending in the direction of a longitudinal axis L with a cylinder interior 2 a and a cylinder jacket outer side 2 e, wherein a piston 15 is displaceably mounted in the cylinder interior 2 a in the direction of the longitudinal axis L and forms a compression chamber 3, wherein the gas to be compressed via a the cylinder jacket 2 penetrating cylinder inlet opening 4 is sucked.
  • the method for cooling the housing 1 of the labyrinth piston compressor 21 takes place in such a way that an inlet fluid to be compressed is sucked into the cylinder interior 2 a from a gas distributor interior 9 b via a cylinder inlet opening 4 arranged on the cylinder jacket 2, or wherein a compressed outlet fluid flows through an inlet Cylinder casing 2 arranged cylinder outlet 6 is discharged from the cylinder interior 2a in the gas distribution interior 9b, wherein with respect to the longitudinal axis L axially symmetrically opposite arranged sections 2g of Zylindermantelaussenseite 2e are flowed around by the same inlet fluid or outlet fluid.
  • oppositely arranged part section 2g have the same or substantially the same temperature.
  • the partial section 2g extends along an angle of 360 °, so that the cylinder jacket outer side 2e is flowed around in the circumferential direction of the longitudinal axis L by an angle ⁇ of 360 degrees from the inlet fluid to be compressed or from the compressed outlet fluid.
  • the cylinder jacket outer side 2e in the circumferential direction of the longitudinal axis L at least two circumferentially spaced sections 2g, which extend in the circumferential direction over an angle of at least 30 °.
  • the outlet fluid is ejected via a cylinder outlet opening 6 arranged on the front side of the cylinder interior 2a, wherein the cylinder inlet opening 4 and the cylinder outlet opening 6 are spaced in the direction of the longitudinal axis L in order to cause a temperature gradient on the cylinder jacket outer side 2e in the direction of the longitudinal axis L.
  • the method preferably takes place in such a way that the fluid to be compressed is sucked in via a multiplicity of cylinder inlet opening 4 arranged in the cylinder jacket 2 with respect to the longitudinal axis L at the same height and distributed in the circumferential direction in order to produce the same temperature in the circumferential direction.
  • the method further takes place in such a way that the cylinder jacket 2 has a cylinder jacket outer side 2e, and that the outer side 2e flows around at least along the interior space L2 of the fluid to be compressed in order to cool the cylinder jacket 2 along the interior length L2 before the fluid to be compressed flows into the cylinder interior 2a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

Die Erfindung betrifft ein Gehäuseoberteil eines Labyrinthkolbenkompressors gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter einen Labyrinthkolbenkompressor umfassend ein Gehäuseoberteil. Die Erfindung betrifft zudem ein Verfahren zum Kühlen eines Gehäuseoberteils eines Labyrinthkolbenkompressors gemäss Anspruch 12.The invention relates to an upper housing part of a labyrinth piston compressor according to the preamble of claim 1. The invention further relates to a labyrinth piston compressor comprising an upper housing part. The invention also relates to a method for cooling an upper housing part of a labyrinth piston compressor according to claim 12.

Stand der TechnikState of the art

Labyrinthkolbenkompressoren sind Verdichter zur Komprimierung von Fluiden. Dabei ist ein Kolben derart in einem Zylinder angeordnet, dass zwischen der Mantelfläche des Kolbens und der Innenwand des Zylinders permanent ein Spalt besteht, sodass sich Kolben und Zylinder gegenseitig nicht berühren. Es wird dabei bewusst in Kauf genommen, dass ein Teil des Fluides zwischen der Zylinderwand und der Mantelfläche am Kolben vorbeiströmt. Um eine solche Leckage gering zu halten, wird der Spalt zwischen Zylinderwand und Mantelfläche so klein wie möglich gehalten.
Die Druckschrift JP2010209723 offenbart einen derartigen Labyrinthkolbenkompressor mit einem Gehäuseoberteil. Dieser Labyrinthkolbenkompressor weist den Nachteil auf, dass eine einseitige Abnutzung des Kolbens auftreten kann, was zu einer erhöhten Spaltbreite und zu einer erhöhten Leckage führt.
Labyrinth piston compressors are compressors for compressing fluids. In this case, a piston is arranged in a cylinder such that there is permanently a gap between the lateral surface of the piston and the inner wall of the cylinder, so that piston and cylinder do not touch each other. It is deliberately accepted that part of the fluid flows past the piston between the cylinder wall and the lateral surface. In order to keep such leakage low, the gap between the cylinder wall and the lateral surface is kept as small as possible.
The publication JP2010209723 discloses such a labyrinth piston compressor with an upper housing part. This labyrinth piston compressor has the disadvantage that a unilateral wear of the piston may occur, resulting in an increased gap width and increased leakage.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es ein vorteilhafteres Gehäuseoberteil für einen Labyrinthkolbenkompressor sowie einen vorteilhafteren Labyrinthkolbenkompressor und ein vorteilhafteres Verfahren zum Betrieb eines Labyrinthkolbenkompressors mit einem derartigen Gehäuseoberteil auszubilden.The object of the invention is to form a more advantageous upper housing part for a labyrinth piston compressor and a more advantageous labyrinth piston compressor and a more advantageous method for operating a labyrinth piston compressor with such a housing upper part.

Diese Aufgabe wird gelöst mit einem Gehäuseoberteil aufweisend die Merkmale von Anspruch 1. Die Unteransprüche 2 bis 8 betreffen weitere, vorteilhafte Ausgestaltungen. Die Aufgabe wird weiter gelöst mit einem Labyrinthkolbenkompressor umfassend ein Gehäuseoberteil nach einem der Ansprüche 1 bis 8. Die Aufgabe wird weiter gelöst mit einem Verfahren zum Betrieb eines Gehäuseoberteils eines Labyrinthkolbenkompressors aufweisend die Merkmale von Anspruch 12. Die Unteransprüche 13 bis 15 betreffen weitere, vorteilhafte Verfahrensschritte.This object is achieved with an upper housing part having the features of claim 1. The dependent claims 2 to 8 relate to further advantageous embodiments. The object is further achieved with a labyrinth piston compressor comprising an upper housing part according to one of claims 1 to 8. The object is further achieved by a method for operating an upper housing part of a labyrinth piston compressor comprising the features of claim 12. The dependent claims 13 to 15 relate to further advantageous method steps ,

Die Aufgabe wird insbesondere gelöst mit einem Gehäuseoberteil eines Labyrinthkolbenkompressors umfassend einen in Richtung einer Längsachse verlaufenden Zylindermantel mit einem Zylinderinnenraum und einer Zylindermantelaussenseite, wobei der Zylindermantel zumindest eine Zylindereinlassöffnung oder zumindest eine Zylinderauslassöffnung aufweist, welche in den Zylinderinnenraum münden, wobei ein Gasverteilgehäuse den Zylindermantel in Umfangsrichtung zur Längsachse zumindest teilweise umschliesst, sodass zwischen dem Gasverteilgehäuse und zumindest einem Teilabschnitt der Zylindermantelaussenseite des Zylindermantels ein Gasverteilinnenraum ausgebildet ist, wobei der Teilabschnitt axialsymmetrisch bezüglich der Längsachse ausgestaltet ist, wobei der Gasverteilinnenraum entweder über die Zylindereinlassöffnung oder die Zylinderauslassöffnung Fluid leitend mit dem Zylinderinnenraum verbunden ist, und wobei das Gasverteilgehäuse entweder einen Gaseinlass oder einen Gasauslass umfasst, welcher Fluid leitend mit dem Gasverteilinnenraum verbunden ist..The object is achieved in particular with an upper housing part of a labyrinth piston compressor comprising a cylinder jacket extending in the direction of a longitudinal axis with a cylinder interior and a cylinder jacket outer side, wherein the cylinder jacket has at least one cylinder inlet opening or at least one cylinder outlet opening, which open into the cylinder interior, wherein a Gasverteilgehäuse the cylinder jacket in the circumferential direction to the longitudinal axis at least partially encloses, so between the gas distribution housing and at least a portion of the cylinder jacket outer side of the cylinder jacket, a Gasverteilinnenraum is formed, wherein the partial section is axially symmetrical with respect to the longitudinal axis, wherein the Gasverteilinnenraum either via the cylinder inlet or the cylinder outlet fluidly connected to the cylinder interior, and wherein the Gasverteilgehäuse either a gas inlet or a gas outlet includes which fluid is conductively connected to the Gasverteilinnenraum ..

Die Aufgabe wird weiter insbesondere gelöst mit einem Verfahren zum Kühlen eines Gehäuseoberteils eines Labyrinthkolbenkompressors umfassend einen in Richtung einer Längsachse verlaufenden Zylindermantel mit einem Zylinderinnenraum und einer Zylindermantelaussenseite, wobei ein zu komprimierendes Eintrittsfluid über eine am Zylindermantel angeordnete Zylindereinlassöffnung von einem Gasverteilinnenraum in den Zylinderinnenraum angesaugt wird, oder wobei ein komprimiertes Austrittsfluid über eine am Zylindermantel angeordnete Zylinderauslassöffnung aus dem Zylinderinnenraum in den Gasverteilinnenraum abgegeben wird, und wobei bezüglich der Längsachse axialsymmetrisch gegenüberliegend angeordnete Teilabschnitte der Zylindermantelaussenseite von demselben Eintrittsfluid oder Austrittsfluid umströmt werden.The object is further achieved, in particular, with a method for cooling an upper housing part of a labyrinth piston compressor comprising a cylinder jacket extending in the direction of a longitudinal axis with a cylinder interior and a cylinder jacket outer side, wherein an inlet fluid to be compressed is sucked into the cylinder interior via a cylinder inlet opening arranged on the cylinder jacket from a gas distributor interior, or wherein a compressed outlet fluid is discharged from the cylinder interior into the gas distribution chamber via a cylinder outlet opening arranged on the cylinder jacket, and sections of the cylinder jacket outer side arranged axially symmetrically opposite to the longitudinal axis are flowed around by the same inlet fluid or outlet fluid.

Ein Labyrinthkolbenkompressor, auch als Labyrinthkolbenverdichter bezeichnet, umfasst zumindest ein Gehäuseoberteil sowie ein Gehäuseunterteil, und umfasst zumindest eine Kurbelwelle, einen Kreuzkopf, eine Kolbenstange sowie einen Kolben. Das Gehäuseoberteil und das Gehäuseunterteil sind fest miteinander verbunden. Im Gehäuseunterteil sind die Kurbelwelle sowie der Kreuzkopf angeordnet, wobei die Kolbenstange mit dem Kreuzkopf verbunden ist. Das Gehäuseoberteil umfasst einen Zylindermantel, wobei der Kolben innerhalb des Zylinderinnenraums des Zylindermantels angeordnet ist, und wobei der Kolben mit der Kolbenstange verbunden ist, und wobei der Kolben innerhalb des Zylinderinnenraums in Richtung der Längsachse verschiebbar gelagert ist. In einer vorteilhaften Ausgestaltung umfasst der Labyrinthkolbenkompressor zudem ein Distanzstück, das zwischen dem Gehäuseunterteil und dem Gehäuseoberteil angeordnet ist, wobei das Distanzstück auch ein Teil des Gehäuseunterteils oder ein Teil des Gehäuseoberteils sein kann, beziehungsweise wobei das Distanzstück im Gehäuseoberteil oder im Gehäuseunterteil integriert sein kann.A labyrinth piston compressor, also referred to as a labyrinth piston compressor, comprises at least one housing top part and a housing bottom part, and comprises at least a crankshaft, a crosshead, a piston rod and a piston. The upper housing part and the lower housing part are fixed to one another connected. In the lower housing part, the crankshaft and the crosshead are arranged, wherein the piston rod is connected to the crosshead. The housing upper part comprises a cylinder jacket, wherein the piston is arranged within the cylinder interior of the cylinder jacket, and wherein the piston is connected to the piston rod, and wherein the piston is displaceably mounted within the cylinder interior in the direction of the longitudinal axis. In an advantageous embodiment of the labyrinth piston compressor also comprises a spacer which is arranged between the lower housing part and the upper housing part, wherein the spacer may also be part of the lower housing part or part of the upper housing part, or wherein the spacer may be integrated in the upper housing part or in the lower housing part.

Das erfindungsgemässe Gehäuseoberteil für einen Labyrinthkolbenkompressor weist den Vorteil auf, dass die den Kolben des Labyrintkolbenkompressors umgebende Zylinderwand in Umfangsrichtung zur Längsachse eine im Wesentlichen axialsymmetrische Temperaturverteilung aufweist. Das heisst, dass die Zylinderwand an bezüglich der Längsachse axialsymmetrisch gegenüberliegenden Bereichen dieselben oder im Wesentlichen dieselben Temperatur aufweist. Dadurch ist gewährleistet, dass sich der Zylindermantel während des Betriebs des Labyrinthkolbenkompressors auf Grund der einwirkenden Temperatur nicht einseitig verzieht. Dies hat zur Folge, dass der Spalt zwischen der Zylinderwand und dem Kolben sehr klein gehalten werden kann, da eine Temperaturveränderung des Zylindermantels während des Betriebs keinen oder einen nur geringfügigen Verzug zur Folge hat. Der kleine Spalt hat zur Folge, dass der erfindungsgemässe Labyrinthkolbenkompressor eine geringe Leckage aufweist. Vorteilhafterweise weist der erfindungsgemässe Labyrinthkolbenkompressor zudem einen geringen Verschleiss auf, was einen langfristig zuverlässigen und wartungsarmen Betrieb des Labyrinthkolbenkompressors ermöglicht.The upper housing part according to the invention for a labyrinth piston compressor has the advantage that the cylinder wall surrounding the piston of the labyrinth piston compressor has an essentially axially symmetrical temperature distribution in the circumferential direction relative to the longitudinal axis. This means that the cylinder wall has the same or essentially the same temperature at regions which are axially symmetrical with respect to the longitudinal axis. This ensures that the cylinder jacket does not distort unilaterally during operation of the labyrinth piston compressor due to the acting temperature. This has the consequence that the gap between the cylinder wall and the piston can be kept very small, since a temperature change of the cylinder jacket during operation has no or only a slight delay result. The small gap has the consequence that the inventive Labyrinth piston compressor has a low leakage. Advantageously, the inventive labyrinth piston compressor also has a low wear, which allows long-term reliable and low-maintenance operation of the labyrinth piston compressor.

In einer besonders vorteilhaften Ausgestaltung umschliesst ein Gasverteilgehäuse, das sich in Umfangsrichtung um 360° erstreckt, die Zylinderwand von Aussen, wobei in diesem durch das Gasverteilgehäuse und die Zylinderwand gebildeten Gasverteilinnenraum entweder ein zu komprimierendes Eintrittsfluid oder ein komprimiertes Austrittsfluid strömt, was zur Folge hat, dass die Zylindermantelaussenseite in Umfangsrichtung von demselben Fluid umströmt wird, und die Zylindermantelaussenseite in Umfangsrichtung deshalb dieselbe oder im wesentlichen dieselbe Temperatur aufweist. Dadurch ist gewährleistet, dass sich der Zylindermantel während des Betriebs des Labyrinthkolbenkompressors auf Grund der einwirkenden Temperatur und der daraus resultierenden Materialdehnungen gewisser Bereiche des Zylindermantels nicht einseitig verzieht. Das in den Labyrinthkolbenkompressor einströmende Eintrittsfluid und das ausströmende Austrittsfluid ist beim erfindungsgemässen Gehäuseoberteil vorteilhafterweise derart geleitet, dass der Zylinder in Umfangsrichtung dieselbe oder im wesentlichen dieselbe Temperatur aufweist.In a particularly advantageous embodiment, a gas distribution housing, which extends in the circumferential direction through 360 ° surrounds the cylinder wall from the outside, wherein in this formed by the Gasverteilgehäuse and the cylinder wall Gasverteilinnenraum either a compressed inlet fluid or a compressed outlet fluid flows, resulting in that the cylinder jacket outer side is flowed around in the circumferential direction by the same fluid, and therefore the cylinder jacket outer side in the circumferential direction therefore has the same or substantially the same temperature. This ensures that the cylinder jacket does not distort unilaterally during operation of the labyrinth piston compressor due to the acting temperature and the resulting material expansions of certain areas of the cylinder jacket. The inlet fluid flowing into the labyrinth piston compressor and the outflowing outlet fluid are advantageously routed in the housing upper part according to the invention in such a way that the cylinder has the same or essentially the same temperature in the circumferential direction.

In einer weiteren möglichen Ausgestaltung kann der Zylindermantel in Richtung der Längsachse eine abschnittweise höhere oder tiefere Temperaturen aufweisen, wobei in einer besonders vorteilhaften Ausgestaltung der Zylinder in Umfangsrichtung dieselbe oder im Wesentlichen dieselbe Temperatur aufweist. Aufgrund der symmetrischen oder im Wesentlichen symmetrischen Temperaturverteilung ist gewährleistet, dass sich der Zylindermantel aufgrund der Temperatur nicht einseitig verzieht. Dies ermöglicht es den Abrieb des Kolbens und der Zylinderinnenfläche sehr gering zu halten und zu gewährleisten, dass während dem Betrieb des Labyrinthkolbenkompressors kein einseitiger Verschleiss auftritt, welcher zu erhöhter Leckage und unter Umständen zu einem Kolbenfresser führen könnte. Ein derartiger Labyrinthkolbenkompressor umfassend das erfindungsgemässe Gehäuseoberteil weist den Vorteil auf, dass dieser eine höhere Effizienz aufweist, und/oder dass das Fluid auf einen höheren Druck komprimierbar ist und/oder dass der Labyrinthkolbenkompressor mit tieferer Drehzahl betrieben werden kann. Im Gegensatz zum erfindungsgemässen Gehäuseoberteil weist das in der Druckschrift JP2010209723 offenbarte Gehäuseoberteil beziehungsweise der Labyrinthkolbenkompressor im ungekühlten Zustand in Umfangsrichtung des Zylinders stark unterschiedliche Temperaturen auf, sodass am Zylinder während des Betriebs ein Wärmeverzug auftritt, was zur Folge hat, dass sich der Kolben an der Zylinderwand einseitig abnutzt.In a further possible embodiment of the cylinder jacket in the direction of the longitudinal axis may have a section higher or lower temperatures, wherein in a particularly advantageous embodiment of the cylinder in the circumferential direction the same or in the Has substantially the same temperature. Due to the symmetrical or substantially symmetrical temperature distribution, it is ensured that the cylinder jacket does not warp on one side due to the temperature. This makes it possible to keep the abrasion of the piston and the cylinder inner surface very low and to ensure that during operation of the labyrinth piston compressor no one-sided wear occurs, which could lead to increased leakage and possibly to a piston seizure. Such a labyrinth piston compressor comprising the inventive housing top has the advantage that it has a higher efficiency, and / or that the fluid is compressible to a higher pressure and / or that the labyrinth piston compressor can be operated at a lower speed. In contrast to the inventive upper housing part has in the document JP2010209723 revealed upper housing part or the labyrinth piston compressor in the uncooled state in the circumferential direction of the cylinder greatly different temperatures, so that the cylinder during operation, a thermal distortion occurs, with the result that the piston on one side of the cylinder wears.

In einer besonders vorteilhaften Ausgestaltung ist das erfindungsgemässe Gehäuseoberteil aus Aluminium oder einer Aluminiumlegierung gefertigt. Aluminium weist wesentlich bessere Tieftemperatureigenschaften als beispielsweise Gusseisen wie Grauguss auf. So ist ein Kompressor mit einem Zylinder aus Aluminium für eine Betriebstemperatur von bis zu -160°C zugelassen, während ein Zylinder aus Grauguss nur für eine Betriebstemperatur von bis zu
-40°C zugelassen ist. Ein Labyrinthkolbenkompressor umfassend das erfindungsgemässe Gehäuseoberteil gefertigt aus Aluminium oder einer Aluminiumlegierung weist somit den Vorteil auf, dass dieser auch bei sehr tiefen Betriebstemperaturen von bis zu -160°C verwendet werden kann, beispielsweise im Bereich der Kryotechnik beziehungsweise der Tieftemperaturtechnik bei Temperaturen von tiefer als -150°C, beispielsweise zur Verflüssigung von Gasen. Ein Gehäuseoberteil gefertigt aus Aluminium oder einer Aluminiumlegierung weist zudem den Vorteil auf, dass dessen Herstellung kostengünstiger ist als ein Gehäuseoberteil gefertigt aus einer Eisenlegierung, beispielweise aus Gusseisen.
In a particularly advantageous embodiment, the upper housing part according to the invention is made of aluminum or an aluminum alloy. Aluminum has much better low-temperature properties than, for example, cast iron such as gray cast iron. For example, a cylinder with aluminum cylinder is approved for an operating temperature of up to -160 ° C, while a gray iron cylinder is only approved for an operating temperature of up to
-40 ° C is allowed. A labyrinth piston compressor comprising the inventive housing upper part made of aluminum or an aluminum alloy thus has the advantage that it can be used even at very low operating temperatures of up to -160 ° C, for example in the field of cryotechnology or the cryogenic technology at temperatures lower than - 150 ° C, for example, for the liquefaction of gases. An upper housing part made of aluminum or an aluminum alloy also has the advantage that its production is more cost-effective than an upper housing part made of an iron alloy, for example made of cast iron.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die zur Erläuterung der Ausführungsbeispiele verwendeten Zeichnungen zeigen:

Fig. 1
einen Längsschnitt durch ein erstes Ausführungsbeispiel eines Gehäuseoberteils eines Labyrinthkolbenkompressors entlang der Schnittlinie A-A;
Fig. 2
eine Draufsicht auf das Gehäuseoberteil gemäss Figur 1;
Fig. 3
einen Längsschnitt durch ein zweites Ausführungsbeispiel eines Gehäuseoberteils entlang der Schnittlinie B-B;
Fig.4
eine Draufsicht auf das Gehäuseoberteil gemäss Figur 3;
Fig. 5
eine perspektivische Ansicht des Gehäuseoberteils gemäss Figur 3;
Fig. 6
einen Längsschnitt des zweiten Ausführungsbeispiel des Gehäuseoberteils entlang der Schnittlinie C-C;
Fig. 7
eine perspektivische Ansicht eines dritten Ausführungsbeispiels eines Gehäuseoberteils;
Fig. 8
einen Längsschnitt durch ein viertes Ausführungsbeispiel eines Gehäuseoberteils;
Fig. 9
einen Querschnitt durch das zweite Ausführungsbeispiel entlang der Schnittlinie D-D;
Fig. 10
einen Längsschnitt durch ein fünftes Ausführungsbeispiel eines Gehäuseoberteils;
Fig. 11
einen weiteren Längsschnitt durch das fünfte Ausführungsbeispiel des Gehäuseoberteils;
Fig. 12
einen Querschnitt durch das fünfte Ausführungsbeispiel entlang der Schnittlinie E-E;
Fig. 13
einen Längsschnitt durch ein sechstes Ausführungsbeispiel eines Gehäuseoberteils;
Fig. 14
einen Querschnitt durch siebtes Ausführungsbeispiel eines Gehäuseoberteils.
The drawings used to explain the embodiments show:
Fig. 1
a longitudinal section through a first embodiment of a housing upper part of a labyrinth piston compressor along the section line AA;
Fig. 2
a plan view of the upper housing part according FIG. 1 ;
Fig. 3
a longitudinal section through a second embodiment of a housing upper part along the section line BB;
Figure 4
a plan view of the upper housing part according FIG. 3 ;
Fig. 5
a perspective view of the upper housing part according FIG. 3 ;
Fig. 6
a longitudinal section of the second embodiment of the housing upper part along the section line CC;
Fig. 7
a perspective view of a third embodiment of a housing upper part;
Fig. 8
a longitudinal section through a fourth embodiment of a housing upper part;
Fig. 9
a cross section through the second embodiment along the section line DD;
Fig. 10
a longitudinal section through a fifth embodiment of a housing upper part;
Fig. 11
a further longitudinal section through the fifth embodiment of the upper housing part;
Fig. 12
a cross section through the fifth embodiment along the section line EE;
Fig. 13
a longitudinal section through a sixth embodiment of a housing upper part;
Fig. 14
a cross section through seventh embodiment of a housing upper part.

Grundsätzlich sind in den Zeichnungen gleiche Teile mit gleichen Bezugszeichen versehen.Basically, the same parts are given the same reference numerals in the drawings.

Wege zur Ausführung der ErfindungWays to carry out the invention

Fig. 1 zeigt einen Teilausschnitt eines Labyrinthkolbenkompressors 21 umfassend, nebst den nicht dargestellten Komponenten, ein Gehäuseoberteil 1, ein Distanzstück 22, einen Kolben 15 mit einer Kolbenstange 16, eine Dichtung 23 sowie eine Linearführung 24. Das Gehäuseoberteil 1 umfasst einen Zylindermantel 2 mit einem in Richtung einer Längsachse L verlaufenden Zylinderinnenraum 2a. Der Kolben 15 ist innerhalb des Zylinderinnenraums 2a angeordnet, und ist gemeinsam mit der Kolbenstange 16 in Richtung der Längsachse L in Bewegungsrichtung L1 verschiebbar gelagert ist. Der Kolben 15 weist an der eine Seitenfläche 15a ausbildenden Mantelfläche feine, in Umfangsrichtung verlaufende Rillen auf, welche nicht im Detail dargestellt sind.
Der Zylindermantel 2 umfasst zumindest eine Zylindereinlassöffnung 4, welche in den Zylinderinnenraum 2a mündet. Zudem ist an der Stirnseite des Zylinderinnenraums 2a eine Zylinderauslassöffnung 6 angeordnet. Die Zylindereinlassöffnung 4 sowie die Zylinderauslassöffnung 6 sind in Längsrichtung L vorzugsweise beabstandet angeordnet. Im Ausführungsbeispiel gemäss Figur 1 ist die Zylinderauslassöffnung 6 nur geringfügig höher angeordnet als die Zylindereinlassöffnung 4. Der Zylindermantel 2 ist von einem Gasverteilgehäuse 9a umgeben, derart, dass sich zwischen der Aussenseite 2e des Zylindermantels 2 und dem Gasverteilgehäuse 9a ein sich in Umfangsrichtung um 360° erstreckender Innenraum 9b ausbildet. Das Gasverteilgehäuse 9a weist zumindest eine einzige Gaseinlassöffnung 9 auf, und weist im dargestellten Ausführungsbeispiel zwei bezüglich der Längsrichtung L gegenüberliegende Gaseinlassöffnungen 9 auf, durch welche das zu komprimierende Eintrittsfluid von Aussen angesogen wird. Zwischen dem Innenraum 9b und der Zylindereinlassöffnung 4 ist ein nur schematisch dargestelltes Einlassventil 5 angeordnet, welches das Gas in der mit einem Pfeil angedeuteten Richtung passieren lässt, und in der Gegenrichtung einen Gasfluss verhindert. Im dargestellten Ausführungsbeispiel sind zwei Einlassventile 5 symmetrisch zur Längsrichtung L angeordnet. Das Gasverteilgehäuse 9a weist eine Zugangsöffnung 9c für das Ventil 5 auf, um das Ventil 5 zu warten oder zu ersetzen. Die Zugangsöffnung 9c ist mit einer Abdeckplatte 19 verschlossen. An der oberen Stirnseite des Zylinders 2 ist ein stirnseitiges Abschlussteil 8 angeordnet. Das Abschlussteil 8 umfasst drei Zylinderauslassöffnungen 6, denen nachfolgend je ein schematisch dargestelltes Auslassventil 7 angeordnet ist. Die Auslassventile 7 lassen das komprimierte Austrittsfluid bzw. Gas in der mit einem Pfeil angedeuteten Richtung passieren, und verhindern in der Gegenrichtung einen Gasfluss. Das Abschlussteil 8 endet in einem Gasauslass 10. Im Gehäuseoberteil 1 ist zudem eine Kolbenstangendichtung 23 angeordnet. Der Labyrinthkolbenkompressor 21 umfasst im dargestellten Ausführungsbeispiel zudem ein Distanzstück 22 mit einem Standfuss 18 sowie einer Linearführung 24. Das Gehäuseoberteil 1 ist über das Distanzstück 22 mit einem nur andeutungsweise dargestellten Gehäuseunterteil 25 verbunden. Das Gehäuseoberteil 1 ist am Standfuss 18 befestigt. Der Labyrinthkolbenkompressor 21 umfasst oben einen Verdichtungsraum 3, wogegen unten in der Zylinderwand 2d ein Ein- und Auslass 2f angeordnet ist, welcher zwischen dem unteren Zylinderinnenraum 3c und dem Innenraum 9b des Gasverteilgehäuses 9a eine Fluid leitende Verbindung ausbildet. Im dargestellten Ausführungsbeispiel sind die Zylindereinlassöffnungen 4 in Richtung der Längsachse L auf derselben Höhe angeordnet und in Umfangsrichtung um 180° gegenseitig beabstandet. Diese Anordnung weist den Vorteil auf, dass das über den Gaseinlass 9 einströmende Fluid in den Innenraum 9b strömt, und dabei die Zylindermantelaussenseite 2e umströmt, bevor das Gas über das Einlassventil 5 in die Zylindereinlassöffnung 4 strömt. Die Zylindermantelaussenseite 2e weist deshalb in Umfangsrichtung dieselbe oder etwa dieselbe Temperatur auf. Auf Grund der Kompression des Gases im Verdichtungsraum 3 kann sich die Temperatur der Gehäusewand des Zylindermantels 2 in Verlaufsrichtung der Längsachse L in Richtung zur Zylinderauslassöffnung 6 hin erhöhen, wobei der Zylindermantel 2 in Umfangsrichtung jeweils dieselbe oder etwa dieselbe Temperatur aufweist. Dadurch weist der Zylindermantel 2 radial zur Längsachse L eine symmetrische oder annähernd symmetrische Temperaturverteilung auf, was zur Folge hat, dass in radialer Richtung kein oder kaum ein Wärmeverzug am Zylindermantel 2 entsteht. Dies ergibt den Vorteil, dass der Kolben nicht einseitig verschleisst. Dies erhöht die Dichtung des Kolbens 15, beziehungsweise ermöglicht das Gas im Verdichtungsraum 3 auf einen höheren Druck zu komprimieren. Zudem wird der Wirkungsgrad des Labyrinthkolbenkompressors erhöht.
Fig. 1 shows a partial section of a labyrinth piston compressor 21 comprising, together with the components, not shown, an upper housing part 1, a spacer 22, a piston 15 with a piston rod 16, a seal 23 and a linear guide 24. The upper housing part 1 comprises a cylinder jacket 2 with a in the direction of Longitudinal axis L extending cylinder interior 2a. The piston 15 is disposed within the cylinder interior 2a, and is displaceably mounted together with the piston rod 16 in the direction of the longitudinal axis L in the direction of movement L1. The piston 15 has on the side surface 15 a forming Surface on fine, circumferentially extending grooves, which are not shown in detail.
The cylinder jacket 2 comprises at least one cylinder inlet opening 4, which opens into the cylinder interior 2a. In addition, a cylinder outlet opening 6 is arranged on the end face of the cylinder interior 2a. The cylinder inlet opening 4 and the cylinder outlet opening 6 are preferably arranged spaced apart in the longitudinal direction L. In the embodiment according to FIG. 1 the cylinder outlet 2 is only slightly higher than the cylinder inlet opening 4. The cylinder jacket 2 is surrounded by a Gasverteilgehäuse 9a, such that between the outer side 2e of the cylinder jacket 2 and the Gasverteilgehäuse 9a in the circumferential direction 360 ° extending inner space 9b is formed. The gas distribution housing 9a has at least one gas inlet opening 9, and in the illustrated embodiment has two gas inlet openings 9, which are opposite to the longitudinal direction L and through which the inlet fluid to be compressed is sucked from the outside. Between the inner space 9b and the cylinder inlet opening 4 there is arranged an inlet valve 5 which is shown only schematically, which allows the gas to pass in the direction indicated by an arrow and prevents a gas flow in the opposite direction. In the illustrated embodiment, two inlet valves 5 are arranged symmetrically to the longitudinal direction L. The gas distribution housing 9a has an access opening 9c for the valve 5 to maintain or replace the valve 5. The access opening 9 c is closed by a cover plate 19. At the upper end side of the cylinder 2, a frontal end part 8 is arranged. The closure part 8 comprises three cylinder outlet openings 6, which are each followed by a schematically illustrated outlet valve 7. The Exhaust valves 7 pass the compressed discharge fluid or gas in the direction indicated by an arrow, and prevent a gas flow in the opposite direction. The termination part 8 ends in a gas outlet 10. In the upper housing part 1, a piston rod seal 23 is also arranged. The labyrinth piston compressor 21 in the illustrated embodiment also comprises a spacer 22 with a base 18 and a linear guide 24. The upper housing part 1 is connected via the spacer 22 with a housing lower part 25 only hinted. The upper housing part 1 is fixed to the stand 18. The labyrinth piston compressor 21 comprises a compression space 3 at the top, whereas an inlet and outlet 2f, which forms a fluid-conducting connection between the lower cylinder interior 3c and the interior 9b of the gas distribution housing 9a, is arranged below in the cylinder wall 2d. In the illustrated embodiment, the cylinder inlet openings 4 are arranged in the direction of the longitudinal axis L at the same height and spaced apart in the circumferential direction by 180 °. This arrangement has the advantage that the fluid flowing in via the gas inlet 9 flows into the interior space 9 b, while the cylinder jacket outer side 2 e flows around before the gas flows via the inlet valve 5 into the cylinder inlet opening 4. The cylinder jacket outer side 2e therefore has the same or approximately the same temperature in the circumferential direction. Due to the compression of the gas in the compression chamber 3, the temperature of the housing wall of the cylinder jacket 2 can increase in the direction of the longitudinal axis L in the direction of the cylinder outlet 6 out, the cylinder jacket 2 in the circumferential direction in each case has the same or about the same temperature. As a result, the cylinder jacket 2 radially to the longitudinal axis L a symmetrical or approximately symmetrical temperature distribution, which has the consequence that in the radial direction no or hardly any heat distortion on the cylinder jacket 2 is formed. This gives the advantage that the piston does not wear on one side. This increases the seal of the piston 15, or allows the gas in the compression chamber 3 to compress to a higher pressure. In addition, the efficiency of the labyrinth piston compressor is increased.

Figur 2 zeigt eine Draufsicht des in Figur 1 dargestellten Gehäuseoberteils 21. Am stirnseitigen Abschlussteil 8 sind der Gasauslass 10 sowie die Auslassventile 7 erkennbar. Das Gasverteilgehäuse 9a weist links und rechts je eine Abdeckplatte 19 auf. FIG. 2 shows a plan view of the in FIG. 1 Housing shell 21 shown at the front end part 8 of the gas outlet 10 and the exhaust valves 7 can be seen. The Gasverteilgehäuse 9 a has left and right each have a cover 19.

Figur 3 zeigt in einem Längsschnitt ein weiteres Ausführungsbeispiel eines Gehäuseoberteils 1, das im Unterschied zu dem in Figur 1 dargestellten Ausführungsbeispiel für zwei Kompressionsräume ausgestaltet ist, einen ersten Verdichtungsraum 3a sowie einen zweiten Verdichtungsraum 3b. Wie in Figur 3 dargestellt kann das Distanzstück 22 auch ein Teil des Gehäuseoberteils 1 sein. In der dargestellten Ansicht ist der Bereich oberhalb des Kolbens 15 identisch ausgestaltet wie in Figur 1 dargestellt. Im Bereich oberhalb des Kolbens 15 ist die Zylinderöffnung 4a mit Einlassventil 5a dargestellt, welche in den ersten Verdichtungsraum 3a münden, sowie die Zylinderauslassöffnung 6a sowie das Auslassventil 7a, welche zwischen dem ersten Verdichtungsraum 3a und dem Gasauslass 10a angeordnet sind. Der Zylinderinnenraum 2a unterhalb des Kolbens 15 bilden einen zweiten Verdichtungsraum 3b. Im Bereich unterhalb des Kolbens 15 ist die Zylinderöffnung 4b mit Einlassventil 5b dargestellt, welche in den zweiten Verdichtungsraum 3b münden, sowie eine Zylinderauslassöffnung 6b sowie einem Auslassventil 7b, welche zwischen dem zweiten Verdichtungsraum 3b und einem Gasleitungsgehäuse 10c angeordnet sind. FIG. 3 shows in a longitudinal section a further embodiment of a housing upper part 1, which in contrast to the in FIG. 1 illustrated embodiment is designed for two compression chambers, a first compression chamber 3a and a second compression chamber 3b. As in FIG. 3 shown, the spacer 22 may also be part of the upper housing part 1. In the illustrated view, the area above the piston 15 is configured identically as in FIG FIG. 1 shown. In the area above the piston 15, the cylinder opening 4a is shown with inlet valve 5a, which open into the first compression chamber 3a, and the cylinder outlet 6a and the outlet valve 7a, which are arranged between the first compression chamber 3a and the gas outlet 10a. The cylinder interior 2a below the piston 15 form a second compression chamber 3b. In the area below the piston 15, the cylinder opening 4b shown with inlet valve 5b, which open into the second compression chamber 3b, and a cylinder outlet opening 6b and an outlet valve 7b, which are arranged between the second compression chamber 3b and a gas line housing 10c.

Die in Figur 4 dargestellte Draufsicht auf das Gehäuseoberteil 1 gemäss Figur 3 zeigt den Gasauslass 10a des ersten Verdichtungsraums 3a, und zeigt die Auslassventile 7a. Zudem ist der Gaseinlass 9 dargestellt, der im Gasverteilgehäuse 9a seitlich angeordnet ist.In the FIG. 4 shown top view of the upper housing part 1 according FIG. 3 shows the gas outlet 10a of the first compression space 3a, and shows the exhaust valves 7a. In addition, the gas inlet 9 is shown, which is arranged laterally in the gas distribution housing 9a.

Figur 5 zeigt das in den Figuren 3 und 4 dargestellte Gehäuseoberteil 1 in perspektivischer Ansicht, wobei insbesondere der Gaseinlass 9 sichtbar ist, sowie oben und unten der Gasauslass 10a des ersten Verdichtungsraumes 3a sowie der Gasauslass 10b des zweiten Verdichtungsraumes 3b. FIG. 5 shows that in the FIGS. 3 and 4 illustrated upper housing part 1 in a perspective view, in particular the gas inlet 9 is visible, and above and below the gas outlet 10a of the first compression chamber 3a and the gas outlet 10b of the second compression chamber 3b.

Figur 6 zeigt einen Längsschnitt entlang der Schnittlinie C-C des in den Figuren 3, 4 und 5 dargestellten Gehäuseoberteils 1. Figur 9 zeigt einen Querschnitt entlang der Schnittlinie D-D des in den Figuren 3 bis 6 dargestellten Gehäuseoberteils 1, wobei in Unterschied zu den Figuren 3 und 6 in Figur 9 der Kolben 15 nicht dargestellt ist, und von den Auslassventilen 5 nur der Ventilsitz 5b dargestellt ist. Wie aus Figur 9 ersichtlich ist das Gasverteilgehäuse 9a derart ausgestaltet, dass dieses einen rundherum um einen Winkel α von 360° um die Zylindermantelaussenseite 2e verlaufenden Innenraum 9b ausbildet, wobei der Gaseinlass 9 in diesen Innenraum 9b mündet. Diese Anordnung des Gaseinlasses 9 weist den Vorteil auf, dass das angesogene Gas vorerst entlang der Zylindermantelaussenseite 2e strömt, um danach über die Einlassventile 5a, 5b in den ersten und zweiten Verdichtungsraum 3a, 3b eingesogen zu werden. Dies hat zur Folge, dass die Zylindermantelaussenseite 2e ständig gekühlt wird, vorzugsweise wie in Figur 6 dargestellt, entlang der gesamten Höhe L2 des Verdichtungsraumes 3, welcher den ersten und den zweiten Verdichtungsraum 3a, 3b umfasst. Figur 6 zeigt oben das stirnseitige Abschlussteil 8, in welchem die Zylinderauslassöffnung 6a, das in Strömungsrichtung nachfolgend angeordnete Auslassventil 7a und der nachfolgend angeordnete Gasauslass 10a sichtbar ist. Figur 6 zeigt unten das Gasleitgehäuse 10c, dessen Innenraum 10d in den Gasauslass 10b mündet, wobei der zweite Verdichtungsraum 3b über die Zylinderauslassöffnung 6b, das Auslassventil 7b und den Innenraum 10d Fluid leitend mit dem Gasauslass 10b verbunden ist. FIG. 6 shows a longitudinal section along the section line CC of the in FIGS. 3, 4 and 5 shown housing upper part. 1 FIG. 9 shows a cross section along the section line DD of the in the FIGS. 3 to 6 illustrated housing top part 1, wherein in contrast to the Figures 3 and 6 in FIG. 9 the piston 15 is not shown, and of the exhaust valves 5, only the valve seat 5b is shown. How out FIG. 9 it can be seen that the gas distribution housing 9a is configured in such a way that it forms an interior space 9b extending all the way around an angle α of 360 ° about the outside of the cylinder jacket 2e, the gas inlet 9 opening into this interior 9b. This arrangement of the gas inlet 9 has the advantage that the aspirated gas initially along the Cylinder jacket outer side 2e flows to then be sucked through the inlet valves 5a, 5b in the first and second compression chamber 3a, 3b. This has the consequence that the cylinder jacket outer side 2e is constantly cooled, preferably as in FIG. 6 represented along the entire height L2 of the compression space 3, which comprises the first and the second compression space 3a, 3b. FIG. 6 shows the front end part 8, in which the cylinder outlet 6a, the flow direction subsequently arranged outlet valve 7a and the subsequently arranged gas outlet 10a is visible. FIG. 6 below shows the Gasleitgehäuse 10c, the interior 10d opens into the gas outlet 10b, wherein the second compression chamber 3b via the Zylinderauslassöffnung 6b, the outlet valve 7b and the inner space 10d fluidly connected to the gas outlet 10b.

Die in den Figuren 1 bis 6 dargestellten Ausführungsbeispiele weisen Zylinderauslassöffnungen 6, 6a, 6b auf, welche jeweils an der Stirnseite 2b, 2c des Zylinderinnenraums 2 angeordnet sind. Da das im Verdichtungsraum 3a, 3b komprimierte Gas während der Verdichtung auch erwärmt wird, weist das über die Zylinderauslassöffnungen 6, 6a, 6b ausströmende komprimierte Austrittsgas eine höhere Temperatur auf als das in den Zylinderinnenraum 2 einströmende, zu komprimierende Eintrittsgas. Weil das Austrittsgas nicht durch die Zylinderwand 2d hindurchgeleitet wird, sondern über die Stirnseite 2b, 2c des Zylinderinnenraumes 2 abgeleitet wird, wird die Zylinderwand 2d weniger stark lokal erwärmt, was zur Folge hat, dass ein möglicher Wärmeverzug des Zylindermantels 2 erheblich reduziert wird. Die Ableitung des Austrittsgases an der Stirnseite hat zudem den Vorteil, dass die Ableitung am Ende des Zylinderinnenraumes 2a beziehungsweise ausserhalb des Zylinderinnenraumes 2a erfolgt, sodass das wärmere, ausströmende Gas die Zylinderwand 2d überhaupt nicht oder nur sehr gering erwärmen kann. Vorteilhafterweise weist der Zylinderinnenraum 2a in Richtung der Längsachse L eine Innenraumlänge L2 auf, welche kleiner ist als die Länge des Gasverteilinnenraums 9b, wie dies in Figur 6 dargestellt ist. Diese Ausgestaltung weist den Vorteil auf, dass das über den Gaseinlass 9 einströmende Eintrittsgas auch diejenige Aussenseite 2e des Zylindermantels 2 kühlt, hinter welcher das stirnseitige Abschlussteil 8 angeordnet ist, sodass auch diese gekühlt wird, was zur Folge hat, dass Temperaturunterschiede im Zylindermantel 2 reduziert werden, und somit ein möglicher Wärmeverzug des Zylindermantels 2 reduziert wird.The in the FIGS. 1 to 6 illustrated embodiments have cylinder outlet 6, 6a, 6b, which are respectively arranged on the end face 2b, 2c of the cylinder interior 2. Since the gas compressed in the compression chamber 3a, 3b is also heated during the compression, the compressed outlet gas flowing out via the cylinder outlet openings 6, 6a, 6b has a higher temperature than the inlet gas to be compressed flowing into the cylinder interior 2. Because the exit gas is not passed through the cylinder wall 2d, but is discharged via the end face 2b, 2c of the cylinder interior 2, the cylinder wall 2d is heated less locally, with the result that a possible thermal distortion of the cylinder jacket 2 is considerably reduced. The derivation of the exit gas at the end face also has the advantage that the discharge at the end of the cylinder interior 2a or outside the cylinder interior 2 a, so that the warmer, outflowing gas can not heat the cylinder wall 2 d at all or only to a very slight extent. Advantageously, the cylinder interior 2a in the direction of the longitudinal axis L has an interior length L2 which is smaller than the length of the gas distribution interior 9b, as shown in FIG FIG. 6 is shown. This embodiment has the advantage that the inlet gas flowing in via the gas inlet 9 also cools that outer side 2e of the cylinder jacket 2, behind which the end-side end part 8 is arranged so that it too is cooled, with the result that temperature differences in the cylinder jacket 2 are reduced be, and thus a possible thermal distortion of the cylinder jacket 2 is reduced.

Die in den Figuren 1 bis 6 dargestellten Ausführungsbeispiele könnten auch derart ausgestaltet sein, dass die Einlassventile 5 und die Auslassventile 7 vertauscht angeordnet sind, sodass das Eintrittsfluid über den Gasauslass 10 und das Einlassventil 5 in den Verdichtungsraum 3 strömt, und das Austrittsfluid vom Verdichtungsraum 3 über die Zylindereinlassöffnung 4 und das Auslassventil 7 in die Gaskammer 9b strömt. Dabei umströmt das Austrittsfluid die Zylindermantelaussenseite 2e und tritt bei der Öffnung 9 aus, wobei die Zylindermantelaussenseite 2e eine gleichmässige Temperaturverteilung aufweist.The in the FIGS. 1 to 6 illustrated embodiments could also be configured such that the intake valves 5 and the exhaust valves 7 are arranged reversed, so that the inlet fluid via the gas outlet 10 and the inlet valve 5 flows into the compression chamber 3, and the discharge fluid from the compression chamber 3 via the cylinder inlet 4 and the exhaust valve 7 flows into the gas chamber 9b. The outlet fluid flows around the cylinder jacket outer side 2e and exits at the opening 9, the cylinder jacket outer side 2e having a uniform temperature distribution.

Figur 7 zeigt ein weiteres Ausführungsbeispiel eines Gehäuseoberteils 1. Zwischen dem oberen Gasauslass 10a und dem unten angeordneten Gasleitungsgehäuse 10c ist ein Fluid leitender Verbindungskanal 17 angeordnet, sodass über eine Öffnung 17a eine Gas leitende Verbindung zwischen dem Gasauslass 10a und dem Gasleitungsgehäuse 10c entsteht. Der Gasauslass 10a ist mit eine nur teilweise dargestellten Abdeckplatte 20 gasdicht verschlossen, sodass das gesamte, über das Auslassventil 7a ausströmende, komprimierte Austrittsgas dem Gasleitungsgehäuse 10c und nachfolgend dem Gasauslass 10b zugeführt wird. Das in Figur 7 dargestellte Ausführungsbeispiel eines Gehäuseoberteils 1 weist somit den Vorteil auf, dass dieses einen einzigen Gaseinlass 9 und einen einzigen Gasauslass 10b aufweist. FIG. 7 shows a further embodiment of a housing upper part 1. Between the upper gas outlet 10a and the bottom gas line housing 10c, a fluid-conducting connection channel 17 is arranged, so that via an opening 17a, a gas-conducting connection between the gas outlet 10a and the Gas line housing 10c is formed. The gas outlet 10a is closed in a gas-tight manner by means of a cover plate 20, which is shown only partially, so that the entire compressed outlet gas flowing out via the outlet valve 7a is supplied to the gas line housing 10c and subsequently to the gas outlet 10b. This in FIG. 7 illustrated embodiment of an upper housing part 1 thus has the advantage that it has a single gas inlet 9 and a single gas outlet 10b.

Figur 8 zeigt in einem Längsschnitt ein viertes Ausführungsbeispiel eines Gehäuseoberteils 1. In diesem Ausführungsbeispiel ist der zum Labyrinthkolbenkompressor 21 gehörende Kolben 15 mit Kolbenstange 16 nicht dargestellt. Im Unterschied zu dem in Figur 1 dargestellten Ausführungsbeispiel sind im Ausführungsbespiel gemäss Figur 8 die Zylinderauslassöffnungen 6 ebenfalls in der Zylinderwand 2d des Zylindermantels 2 angeordnet. Das stirnseitige Abschlussteil 8 ist derart ausgestaltet, dass ein Fluid leitender Kanal zwischen dem Verdichtungsraum 3 und den Zylinderauslassöffnungen 6 ausgebildet ist. Nachfolgend jeder der Zylinderauslassöffnungen 6 ist ein Auslassventil 7 angeordnet, welches in einen Gasverteilinnenraum 10f mündet. Eine Zugangsöffnung 10e für das Auslassventil 7 ist mit einer Abdeckplatte 19 verschlossen. Der Gasverteilinnenraum 10f weist an der hinteren Seite einen Gasauslass 10a auf, weshalb der Gasauslass 10a nur strichliert dargestellt ist. Ansonsten ist das Gehäuseoberteil 1 im Wesentlichen wie in Figur 1 dargestellt ausgestaltet. FIG. 8 shows in a longitudinal section a fourth embodiment of a housing upper part 1. In this embodiment, the labyrinth piston compressor 21 associated piston 15 with piston rod 16 is not shown. Unlike the in FIG. 1 illustrated embodiment are in the Ausführungsbespiel according to FIG. 8 the cylinder outlet openings 6 are likewise arranged in the cylinder wall 2d of the cylinder jacket 2. The end-side closing part 8 is configured such that a fluid-conducting channel is formed between the compression space 3 and the cylinder outlet openings 6. Each of the cylinder outlet openings 6 is followed by an outlet valve 7, which opens into a gas distribution interior 10f. An access opening 10e for the outlet valve 7 is closed by a cover plate 19. The gas distribution interior 10f has a gas outlet 10a on the rear side, for which reason the gas outlet 10a is shown only in broken lines. Otherwise, the upper housing part 1 is substantially as in FIG. 1 designed configured.

Die Figuren 10 bis 12 zeigen ein fünftes Ausführungsbeispiel eines Gehäuseoberteils 1. Figur 10 zeigt in einem Längsschnitt ein Gehäuseoberteil 1 mit einem ersten und einem zweiten Verdichtungsraum 3a, 3b. Zwei Zylinderöffnungen 4a münden in den ersten Verdichtungsraum 3a. Eine Zylinderöffnung 4b mündet in den zweiten Verdichtungsraum 3b. Die Zugangsöffnungen 9c für die Ventile 5a, 5b sind mit Abdeckplatten 19 verschlossen. Ein Gaseinlass 9 mündet in den Gasverteilinnenraum 9b. Ein nur schematisch dargestellter Verbindungskanal 17 leitet das über den Gaseinlass 9 eingetretene, zu komprimierende Eingangsfluid zum links angeordneten Gasverteilinnenraum 9b. Figur 11 zeigt in einem Längsschnitt ein Gehäuseoberteil 1 mit einem ersten und einem zweiten Verdichtungsraum 3a, 3b. Zwei Zylinderauslassöffnungen 6a münden vom ersten Verdichtungsraum 3a in den Gasverteilinnenraum 9b. Eine Zylinderauslassöffnung 6b mündet vom zweiten Verdichtungsraum 3b in den Gasverteilinnenraum 9b. Die Zugangsöffnungen 10e für die Ventile 7a, 7b sind mit Abdeckplatten 19 verschlossen. Ein Gasauslass 10 verlässt den Gasverteilinnenraum 9b. Ein nur schematisch dargestellter Verbindungskanal 17 leitet das sich im links angeordneten Gasverteilinnenraum 9b befindliche komprimierte Austrittsgas über den nur schematisch dargestellten Verbindungskanal 17 dem Gasauslass 10 zu. Figur 12 zeigt einen Schnitt durch die Figuren 10 und 11 entlang der Schnittlinie E-E, wobei in Figur 12 der Kolben 15 und die Kolbenstange 16 nicht dargestellt sind. Die Gasverteilgehäuse 9a sind derart ausgestaltet, dass der Gasverteilinnenraum 9b nur entlang eines Teilabschnittes 2g an der Zylindermantelaussenseite 2e anliegt. Die Teilabschnitte 2g verlaufen axialsymmetrisch bezüglich der Längsachse L, was zur Folge hat, dass bezüglich der Längsachse L gegenüber liegende Teilabschnitte 2g der Zylindermantelaussenseite 2e dieselbe oder etwa dieselbe Temperatur aufweisen, da diese gegenüber liegenden Teilabschnitte 2g von demselben Gas umströmt werden, entweder vom zu komprimierenden Eintrittsgas oder vom komprimierten Austrittsgas. Vorteilhafterweise erstreckt sich der Teilabschnitt 2g in Umfangsrichtung U über zumindest 20° oder zumindest 30°. In dem in Figur 12 dargestellten Ausführungsbeispiel sind die Gasverteilinnenräume 9b im dargestellten Schnitt gegenseitig senkrecht verlaufend ausgestaltet. Die Gasverteilinnenräume 9b können, wie in Figur 14 dargestellt, gegenseitig auch unter einem spitzen beziehungsweise einem stumpfen Winkel verlaufen. Die in Figur 14 dargestellte Ausführungsform weist den Vorteil auf, dass das Gehäuseoberteil 1 weniger Platz benötigt, sodass mehrere Labyrinthkolbenkompressoren 21 gegenseitig dichter nebeneinander angeordnet werden können.The FIGS. 10 to 12 show a fifth embodiment of a housing upper part. 1 FIG. 10 shows in a longitudinal section an upper housing part 1 with a first and a second Compaction space 3a, 3b. Two cylinder openings 4a open into the first compression space 3a. A cylinder opening 4b opens into the second compression chamber 3b. The access openings 9 c for the valves 5 a, 5 b are closed with cover plates 19. A gas inlet 9 opens into the gas distribution chamber 9b. A connection duct 17, shown only schematically, passes the input fluid to be compressed, which has entered via the gas inlet 9, to the gas distribution interior 9b on the left. FIG. 11 shows in a longitudinal section an upper housing part 1 with a first and a second compression chamber 3a, 3b. Two cylinder outlet openings 6a open from the first compression chamber 3a into the gas distribution interior 9b. A cylinder outlet opening 6b opens from the second compression chamber 3b into the gas distribution interior 9b. The access openings 10e for the valves 7a, 7b are closed with cover plates 19. A gas outlet 10 leaves the gas distribution chamber 9b. A connection duct 17, shown only schematically, leads the compressed outlet gas located in the left-hand gas distribution interior 9b to the gas outlet 10 via the connecting duct 17, which is shown only schematically. FIG. 12 shows a section through the Figures 10 and 11 along the section line EE, wherein in FIG. 12 the piston 15 and the piston rod 16 are not shown. The gas distribution housings 9a are configured in such a way that the gas distribution interior 9b rests against the outside of the cylinder jacket 2e only along a part section 2g. The sections 2g extend axially symmetrically with respect to the longitudinal axis L, which has the consequence that with respect to the longitudinal axis L opposite sections 2g of Zylindermantelaussenseite 2e have the same or about the same temperature, since these opposite sections 2g are flowed around by the same gas, either from compressed inlet gas or compressed exit gas. Advantageously, the partial section 2g extends in the circumferential direction U over at least 20 ° or at least 30 °. In the in FIG. 12 illustrated embodiment, the Gasverteilinnenräume 9b configured mutually perpendicular in the illustrated section. The Gasverteilinnenräume 9b, as in FIG. 14 represented, each other also run at a sharp or an obtuse angle. In the FIG. 14 illustrated embodiment has the advantage that the upper housing part 1 requires less space, so that several Labyrinthkolbenkompressoren 21 can be mutually more closely juxtaposed.

Figur 13 zeigt in einem Längsschnitt ein sechstes Ausführungsbeispiel. Im Unterschied zu dem in Figur 3 dargestellten Ausführungsbeispiel weist das in Figur 13 dargestellte Gehäuseoberteil 21 nur auf der linken Seite des Gasverteilinnenraums 9b Ventilsitze 5a,5b und darin angeordnete Ventile 5 auf, wogegen im rechts dargestellten Teil des Gasverteilinnenraums 9b keine Ventile angeordnet sind. Ansonsten sind die in den Figuren 3 und 13 dargestellten Gehäuseoberteile 1 gleicht ausgestaltet, sodass weitere Details insbesondere aus den Figuren 4 und 9 ersichtlich sind. FIG. 13 shows in a longitudinal section a sixth embodiment. Unlike the in FIG. 3 illustrated embodiment, the in FIG. 13 shown upper housing part 21 only on the left side of the Gasverteilinnenraums 9b valve seats 5a, 5b and arranged therein valves 5, whereas in the right part of the Gasverteilinnenraums 9b no valves are arranged. Otherwise, the in the Figures 3 and 13 Housing tops 1 shown designed similar, so more details in particular from the FIGS. 4 and 9 can be seen.

Das erfindungsgemässe Gehäuseoberteil 1 weist zumindest eine Zylindereinlassöffnung 4 und zumindest eine Zylinderauslassöffnung 6 auf. Vorzugsweise sind in Umfangsrichtung zur Längsachse L eine Mehrzahl von Zylindereinlassöffnungen 4 in Umfangsrichtung beabstandet in der Zylinderwand 2d angeordnet. Vorzugsweise sind die Zylindereinlassöffnungen 4 in Umfangsrichtung regelmässig beabstandet, wobei in Umfangsrichtung vorzugsweise zwei, drei oder vier Zylindereinlassöffnungen 4 angeordnet sind. Ebenso könnten, wie in Figur 8 dargestellt, in Umfangsrichtung zur Längsachse L eine Mehrzahl von Zylinderauslassöffnungen 6 in Umfangsrichtung beabstandet in der Zylinderwand 2d angeordnet. Vorzugsweise sind die Zylinderauslassöffnungen 6 in Umfangsrichtung regelmässig beabstandet, wobei in Umfangsrichtung vorzugsweise zwei, drei oder vier Zylinderauslassöffnungen 6 angeordnet sind. Die Zylinderauslassöffnungen 6 sind jedoch bevorzugt an der Stirnseite des Zylinderinnenraums 2a angeordnet, wobei die Zylinderauslassöffnungen 6 vorzugsweise in Richtung der Längsachse L verlaufen. In Umfangsrichtung zur Längsachse L kann eine einzige Zylinderauslassöffnung 6 angeordnet sein, vorzugsweise jedoch zwei, drei oder vier Zylinderauslassöffnungen 6.The housing upper part 1 according to the invention has at least one cylinder inlet opening 4 and at least one cylinder outlet opening 6. Preferably, in the circumferential direction to the longitudinal axis L, a plurality of cylinder inlet openings 4 arranged circumferentially spaced in the cylinder wall 2d. Preferably, the cylinder inlet openings 4 in the circumferential direction are regular spaced, wherein in the circumferential direction preferably two, three or four cylinder inlet openings 4 are arranged. Likewise, as in FIG. 8 shown, in the circumferential direction to the longitudinal axis L a plurality of cylinder outlet openings 6 circumferentially spaced in the cylinder wall 2 d arranged. Preferably, the cylinder outlet openings 6 are regularly spaced in the circumferential direction, wherein preferably two, three or four cylinder outlet openings 6 are arranged in the circumferential direction. However, the cylinder outlet openings 6 are preferably arranged on the front side of the cylinder interior 2a, the cylinder outlet openings 6 preferably extending in the direction of the longitudinal axis L. A single cylinder outlet opening 6 can be arranged in the circumferential direction with respect to the longitudinal axis L, but preferably two, three or four cylinder outlet openings 6.

Der Labyrinthkolbenkompressor 21 umfasst einen in Richtung einer Längsachse L verlaufenden Zylindermantel 2 mit einem Zylinderinnenraum 2a und einer Zylindermantelaussenseite 2e, wobei im Zylinderinnenraum 2a ein Kolben 15 in Richtung der Längsachse L verschiebbar gelagert ist und einen Verdichtungsraum 3 ausbildet, wobei das zu komprimierende Gas über eine den Zylindermantel 2 durchdringende Zylindereinlassöffnung 4 angesaugt wird.The labyrinth piston compressor 21 comprises a cylinder jacket 2 extending in the direction of a longitudinal axis L with a cylinder interior 2 a and a cylinder jacket outer side 2 e, wherein a piston 15 is displaceably mounted in the cylinder interior 2 a in the direction of the longitudinal axis L and forms a compression chamber 3, wherein the gas to be compressed via a the cylinder jacket 2 penetrating cylinder inlet opening 4 is sucked.

Das Verfahren zum Kühlen des Gehäuses 1 des Labyrinthkolbenkompressors 21 erfolgt derart, dass ein zu komprimierendes Eintrittsfluid über eine am Zylindermantel 2 angeordnete Zylindereinlassöffnung 4 von einem Gasverteilinnenraum 9b in den Zylinderinnenraum 2a angesaugt wird, oder wobei ein komprimiertes Austrittsfluid über eine am Zylindermantel 2 angeordnete Zylinderauslassöffnung 6 aus dem Zylinderinnenraum 2a in den Gasverteilinnenraum 9b abgegeben wird, wobei bezüglich der Längsachse L axialsymmetrisch gegenüberliegend angeordnete Teilabschnitte 2g der Zylindermantelaussenseite 2e von demselben Eintrittsfluid oder Austrittsfluid umströmt werden. Dies hat zur Folge, dass gegenüberliegend angeordnete Teilabschnitt 2g dieselbe oder im Wesentlichen dieselben Temperatur aufweisen.The method for cooling the housing 1 of the labyrinth piston compressor 21 takes place in such a way that an inlet fluid to be compressed is sucked into the cylinder interior 2 a from a gas distributor interior 9 b via a cylinder inlet opening 4 arranged on the cylinder jacket 2, or wherein a compressed outlet fluid flows through an inlet Cylinder casing 2 arranged cylinder outlet 6 is discharged from the cylinder interior 2a in the gas distribution interior 9b, wherein with respect to the longitudinal axis L axially symmetrically opposite arranged sections 2g of Zylindermantelaussenseite 2e are flowed around by the same inlet fluid or outlet fluid. As a result, oppositely arranged part section 2g have the same or substantially the same temperature.

In einem vorteilhaften Verfahren verläuft der Teilabschnitt 2g entlang eines Winkels von 360°, sodass die Zylindermantelaussenseite 2e in Umfangsrichtung der Längsachse L um einen Winkel α von 360 Grad vom zu komprimierenden Eintrittsfluid oder vom komprimierten Austrittsfluid umströmt wird.In an advantageous method, the partial section 2g extends along an angle of 360 °, so that the cylinder jacket outer side 2e is flowed around in the circumferential direction of the longitudinal axis L by an angle α of 360 degrees from the inlet fluid to be compressed or from the compressed outlet fluid.

In einer vorteilhaften Ausführungsform weist die Zylindermantelaussenseite 2e in Umfangsrichtung der Längsachse L zumindest zwei in Umfangsrichtung beabstandete Teilabschnitte 2g auf, die sich in Umfangsrichtung über einen Winkel von jeweils zumindest 30° erstrecken.In an advantageous embodiment, the cylinder jacket outer side 2e in the circumferential direction of the longitudinal axis L at least two circumferentially spaced sections 2g, which extend in the circumferential direction over an angle of at least 30 °.

In einem vorteilhaften Verfahren wird das Austrittfluid über eine an der Stirnseite des Zylinderinnenraums 2a angeordnete Zylinderauslassöffnung 6 ausgestossen, wobei die Zylindereinlassöffnung 4 und die Zylinderauslassöffnung 6 in Richtung der Längsachse L beabstandet sind, um an der Zylindermantelaussenseite 2e in Richtung der Längsachse L einen Temperaturgradient zu bewirken.In an advantageous method, the outlet fluid is ejected via a cylinder outlet opening 6 arranged on the front side of the cylinder interior 2a, wherein the cylinder inlet opening 4 and the cylinder outlet opening 6 are spaced in the direction of the longitudinal axis L in order to cause a temperature gradient on the cylinder jacket outer side 2e in the direction of the longitudinal axis L. ,

Vorzugsweise erfolgt das Verfahren derart, dass das zu komprimierende Fluid über eine Mehrzahl von im Zylindermantel 2 bezüglich der Längsachse L auf derselben Höhe angeordneten und in Umfangsrichtung verteilt angeordneten Zylindereinlassöffnung 4 angesaugt wird, um in Umfangsrichtung dieselbe Temperatur zu erzeugen.The method preferably takes place in such a way that the fluid to be compressed is sucked in via a multiplicity of cylinder inlet opening 4 arranged in the cylinder jacket 2 with respect to the longitudinal axis L at the same height and distributed in the circumferential direction in order to produce the same temperature in the circumferential direction.

Vorzugsweise erfolgt das Verfahren weiter derart, dass der Zylindermantel 2 eine Zylindermantelaussenseite 2e aufweist, und dass die Aussenseite 2e zumindest entlang der Innenraumlänge L2 von dem zu komprimierenden Fluid umströmt wird, um den Zylindermantel 2 entlang der Innenraumlänge L2 zu kühlen, bevor das zu komprimierende Fluid in den Zylinderinnenraum 2a einströmt.Preferably, the method further takes place in such a way that the cylinder jacket 2 has a cylinder jacket outer side 2e, and that the outer side 2e flows around at least along the interior space L2 of the fluid to be compressed in order to cool the cylinder jacket 2 along the interior length L2 before the fluid to be compressed flows into the cylinder interior 2a.

Claims (15)

  1. A housing upper part (1) of a labyrinth piston compressor comprising a cylinder barrel (2) running in the direction of a longitudinal axis (L) with a cylinder interior (2a) and a cylinder barrel exterior (2e), wherein the cylinder barrel (2) comprises at least one cylinder inlet opening (4, 4a, 4b) or at least one cylinder outlet opening (6, 6a, 6b), which open into the cylinder interior (2a), characterized in that
    a gas distribution housing (9a) at least partly encloses the cylinder barrel (2) in the circumferential direction to the longitudinal axis (L) so that a gas distribution interior (9b) is formed between the gas distribution housing (9a) and at least one part section (2g) of the cylinder barrel exterior (2e) of the cylinder barrel (2), wherein the part section (2g) is configured axially symmetrical in regard to the longitudinal axis (L),
    wherein the gas distribution interior (9b) is fluidically connected either via the cylinder inlet opening (4, 4a, 4b) or the cylinder outlet opening (6, 6a, 6b) to the cylinder interior (2a), and wherein the gas distribution housing (9a) comprises either a gas inlet (9) or a gas outlet (10) which is fluidically connected to the gas distribution interior (9b).
  2. The housing upper part as claimed in claim 1, characterized in that the cylinder interior (2a) has a cylinder interior length (L2), and the gas distribution interior (9b) extends at least along the cylinder interior length (L2) so that the part section (2g) of the cylinder barrel exterior (2e) forms a boundary of the gas distribution interior (9b) at least along the entire length of the cylinder interior length (L2).
  3. The housing upper part as claimed in claim 1 or 2, characterized in that the gas distribution housing (9a) encloses the cylinder barrel exterior (2e) in the circumferential direction of the longitudinal axis (L) by an angle (α) of 360°, so that the gas distribution interior (9b) or the part section (2g) extends in the circumferential direction for 360°.
  4. The housing upper part according to claim 1 or 2, characterized in that the cylinder barrel exterior (2e) comprises in the circumferential direction of the longitudinal axis (L) at least two part sections (2g) spaced apart in the circumferential direction, which form a boundary of the gas distribution interior (9b) along the cylinder barrel exterior (2e), wherein the part sections (2g) extend in the circumferential direction across an angle of at least 30°.
  5. The housing upper part according to one of the preceding claims, characterized in that the cylinder inlet opening (4, 4a, 4b) and the cylinder outlet opening (6, 6a, 6b) are spaced apart in the longitudinal direction (L).
  6. The housing upper part according to one of the preceding claims, characterized in that a plurality of cylinder inlet openings (4, 4a, 4b) or cylinder outlet openings (6, 6a, 6b) are arranged at the same height in regard to the longitudinal axis (L), and mutually spaced apart in the circumferential direction in regard to the longitudinal axis (L).
  7. The housing upper part according to claim 6, characterized in that two cylinder inlet openings (4) or two cylinder outlet openings (6) are arranged each time opposite each other in regard to the longitudinal axis (L).
  8. The housing upper part according to one of the preceding claims, characterized in that the cylinder outlet opening (6) or the cylinder inlet opening (4) is arranged at an end face (2b,2c) of the cylinder interior (2a) running in the direction of the longitudinal axis (L).
  9. A labyrinth piston compressor comprising a housing upper part (1) according to one of the preceding claims and also comprising a piston (15) as well as a piston rod (16), wherein the piston (15) divides the cylinder interior (2a) into a first compression chamber (3a) and a second compression chamber (3b), wherein a first cylinder inlet opening (4a) opens into the first compression chamber (3a), wherein a second cylinder inlet opening (4b) opens into the second compression chamber (3b), wherein the first cylinder outlet opening (6a) is arranged at the end face (2b) of the cylinder interior (2a) facing away from the piston rod (16), and wherein a second cylinder outlet opening (6b) is arranged at the end face (2c) of the cylinder interior (2a) facing toward the piston rod (16).
  10. The labyrinth piston compressor according to claim 9, characterized in that a connection channel (17) connects the first and the second cylinder outlet opening (6a,6b) fluidically to each other, and the connection channel (17) is fluidically connected to a gas outlet (10b).
  11. The labyrinth piston compressor according to claim 9 or 10, characterized in that the gas distribution interior (9b) furthermore encloses at least a part section of the cylinder outlet opening (6,6a,6b) on the outside in the direction of the longitudinal axis (L).
  12. A method for cooling a housing upper part (1) of a labyrinth piston compressor comprising a cylinder barrel (2) running in the direction of a longitudinal axis (L) with a cylinder interior (2a) and a cylinder barrel exterior (2e), wherein an inlet fluid being compressed is drawn in through a cylinder inlet opening (4) arranged on the cylinder barrel (2) from a gas distribution interior (9b) into the cylinder interior (2a), or wherein a compressed outlet fluid is discharged via a cylinder outlet opening (6) arranged on the cylinder barrel (2) from the cylinder interior (2a) into the gas distribution interior (9b), and wherein part sections (2g) of the cylinder barrel exterior (2e) arranged opposite each other and axially symmetrical in regard to the longitudinal axis (L) are swept by the same inlet fluid or outlet fluid.
  13. The method according to claim 12, characterized in that the cylinder barrel exterior (2e) is swept by the inlet fluid being compressed or by compressed outlet fluid by an angle (α) of 360 degrees in the circumferential direction of the longitudinal axis (L).
  14. The method according to claim 12, characterized in that the cylinder barrel exterior (2e) comprises in the circumferential direction of the longitudinal axis (L) at least two part sections (2g) spaced apart in the circumferential direction, extending in the circumferential direction for an angle of at least 30° each.
  15. The method according to one of claims 12 to 14, characterized in that the outlet fluid is ejected through a cylinder outlet opening (6) arranged at the end face of the cylinder interior (2a), wherein the cylinder inlet opening (4) and the cylinder outlet opening (6) are spaced apart in the direction of the longitudinal axis (L) so as to produce a temperature gradient on the cylinder barrel exterior (2e) in the direction of the longitudinal axis (L).
EP15750943.1A 2014-07-31 2015-07-28 Top part of a housing of a labyrinth piston compressor and method for cooling the same Active EP3175114B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14179372 2014-07-31
EP14179721 2014-08-04
PCT/EP2015/067233 WO2016016222A1 (en) 2014-07-31 2015-07-28 Housing upper part of a labyrinth piston compressor and method for cooling same, and labyrinth piston compressor

Publications (2)

Publication Number Publication Date
EP3175114A1 EP3175114A1 (en) 2017-06-07
EP3175114B1 true EP3175114B1 (en) 2018-09-12

Family

ID=53879467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15750943.1A Active EP3175114B1 (en) 2014-07-31 2015-07-28 Top part of a housing of a labyrinth piston compressor and method for cooling the same

Country Status (5)

Country Link
US (1) US20170218935A1 (en)
EP (1) EP3175114B1 (en)
JP (1) JP6483235B2 (en)
CN (1) CN106536929B (en)
WO (1) WO2016016222A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210404454A1 (en) * 2018-09-24 2021-12-30 Burckhardt Compression Ag Labyrinth piston compressor
CN109763955B (en) * 2019-03-29 2021-11-02 北京航空航天大学 Self-air-cooling piston type compressor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1397914A (en) * 1920-06-29 1921-11-22 Edwin J Augustin Ammonia-compressor
US1628944A (en) * 1924-02-01 1927-05-17 Francis E Wright Compressor for refrigerating apparatus
US1652978A (en) * 1925-04-14 1927-12-13 Burlectas Ltd Air or gas compressor
US1707796A (en) * 1925-11-27 1929-04-02 Carrey Morse Engineering Compa Compressor
US1646754A (en) * 1927-02-14 1927-10-25 Michael J Leahy Pump, compressor, or the like
US1682736A (en) * 1927-03-05 1928-09-04 Carl W Floss Compressor piston
US2878990A (en) * 1953-10-30 1959-03-24 Sulzer Ag Upright piston compressor
CH359507A (en) * 1958-03-14 1962-01-15 Sulzer Ag Method for operating a labyrinth piston compressor and compressor for carrying out the method
US3112064A (en) * 1960-11-01 1963-11-26 Westinghouse Electric Corp Gas compressor valves
JPS56151848A (en) * 1980-04-25 1981-11-25 Hitachi Ltd Supercharger for reciprocating compressor
US4889039A (en) * 1988-10-17 1989-12-26 Miller Bernard F Gas compressor with labyrinth sealing and active magnetic bearings
EP0730092B1 (en) * 1995-03-03 1997-12-29 Cryopump Ag Pump for pumping a fluid including a liquified gas and device comprising such a pump
DE60129256T2 (en) * 2001-05-24 2007-10-11 Lg Electronics Inc. GAS OUTLET FOR A PISTON COMPRESSOR
EP1545952B1 (en) * 2002-09-24 2008-02-27 Continental Teves AG & Co. oHG Supply device
DE10314979B3 (en) * 2003-04-02 2004-12-02 Robert Bosch Gmbh piston pump
KR20060041041A (en) * 2004-11-08 2006-05-11 엘지전자 주식회사 Discharge valve assembly of reciprocating compressor
JP2010209723A (en) 2009-03-09 2010-09-24 Japan Steel Works Ltd:The Labyrinth piston type reciprocating compressor
FR2956452B1 (en) * 2010-02-17 2012-04-06 Vianney Rabhi DOUBLE-EFFECT PISTON COMPRESSOR GUIDED BY A ROLLER AND DRIVEN BY A WHEEL AND CREMAILLERES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN106536929B (en) 2019-03-15
JP2017522499A (en) 2017-08-10
EP3175114A1 (en) 2017-06-07
WO2016016222A1 (en) 2016-02-04
CN106536929A (en) 2017-03-22
JP6483235B2 (en) 2019-03-13
WO2016016222A9 (en) 2016-03-31
US20170218935A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
EP1799987B1 (en) Piston for a combustion engine, and combustion engine
DE102016015039B4 (en) Cooling structure for a multi-cylinder engine
DE112015001528T5 (en) Engine cooling structure
EP3175114B1 (en) Top part of a housing of a labyrinth piston compressor and method for cooling the same
WO2020107052A1 (en) Internal combustion engine with a cooling liquid jacket
EP3857068B1 (en) Labyrinth piston compressor
DE3020517C2 (en)
DE2061073A1 (en) Cold gas machine
WO2014023376A1 (en) Compressor cylinder head for a compressor, vehicle therewith and method for cooling and producing such a compressor cylinder head
EP3183443B1 (en) Internal combustion engine
EP3857065B1 (en) Piston compressor and method for operating the same
DE10066008A1 (en) Cooling device for angled-axis setting unit has turning body with one or more outlet channels
DE102018205269A1 (en) screw compressors
DE10044785C2 (en) Cooling device for an inclined axis adjustment unit
AT524215B1 (en) Internal combustion engine with cylinder liner with integrated cooling channel
AT525164B1 (en) ENGINE WITH ONE CYLINDER BLOCK
DE102010020356A1 (en) Lubricant pump, control piston
EP3215730B1 (en) Internal combustion engine having a coolant jacket which surrounds the combustion chambers
EP3230591A1 (en) Housing having a cylindrical insert sealed against the housing
DE102017106147B4 (en) Reciprocating machine with cooling device
EP2848811B1 (en) Valve assembly
DE102014007102B3 (en) Internal combustion engine
DE102013020835A1 (en) Cylinder crankcase for a reciprocating internal combustion engine
DE2150035A1 (en) Cylinder for reciprocating compressor
DE102017222743A1 (en) Piston for internal combustion engine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20161221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005874

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1040915

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180912

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BURCKHARDT COMPRESSION AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005874

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

26N No opposition filed

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: FRANZ-BURCKHARDT-STRASSE 5, 8404 WINTERTHUR (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230612

Year of fee payment: 9

Ref country code: FR

Payment date: 20230620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230608

Year of fee payment: 9

Ref country code: AT

Payment date: 20230626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231005

Year of fee payment: 9