EP3175020B1 - Cellule d'extraction électrolytique de métal - Google Patents

Cellule d'extraction électrolytique de métal Download PDF

Info

Publication number
EP3175020B1
EP3175020B1 EP15752958.7A EP15752958A EP3175020B1 EP 3175020 B1 EP3175020 B1 EP 3175020B1 EP 15752958 A EP15752958 A EP 15752958A EP 3175020 B1 EP3175020 B1 EP 3175020B1
Authority
EP
European Patent Office
Prior art keywords
anodic
bar
cell according
anode
hanger bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15752958.7A
Other languages
German (de)
English (en)
Other versions
EP3175020A1 (fr
Inventor
Alessandro FIORUCCI
Luciano Iacopetti
Giuseppe Faita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrie de Nora SpA
Original Assignee
Industrie de Nora SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrie de Nora SpA filed Critical Industrie de Nora SpA
Priority to PL15752958T priority Critical patent/PL3175020T3/pl
Publication of EP3175020A1 publication Critical patent/EP3175020A1/fr
Application granted granted Critical
Publication of EP3175020B1 publication Critical patent/EP3175020B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the invention relates to an electrolyser comprising a plurality of elementary cells suitable for the electrowinning of metals - in particular for the electrolytic production of copper and other non-ferrous metals starting from ionic solutions - and to the electrowinning plant in which such electrolyser is installed.
  • Electrochemical plants for non-ferrous metal deposition such as for example plants for electrolytic extraction and refining of metals, also known respectively as electrowinning and electrorefining plants, typically make use of one or more electrolysers comprising a plurality of elementary cells, each containing an anode and a cathode.
  • the anodes and the cathodes are generally arranged in the electrolytic bath in alternate positions and mutually parallel.
  • Each electrode is mechanically and electrically connected to a hanger bar and is supplied with electricity through the contact of its respective hanger bar with a bus-bar.
  • the same bus-bar is shared between electrodes of same polarity, mutually connected in parallel.
  • the metal produced by the electrochemical reaction is deposited under the action of the passage of electrical current onto the cathode of each elementary cell.
  • the deposited product is harvested at periodic intervals, typically of some days, upon extraction of the cathodes from the relevant electrolyser.
  • the deposition of metal onto the cathode surface may take place in a non-uniform fashion giving rise to localised deposits, also known as dendrites or dendritic formations, growing towards the facing anode at increasing speed under the effect of the electrical current passage, until the onset of an electrical short circuit.
  • the temperature increase of the anodic surface in correspondence of the contact with the dendritic formation may cause severe damages; in some cases, the dendritic formation gets locally welded to the anode surface, hindering the subsequent cathode extraction and consequently the whole metal harvesting operation.
  • the invention relates to a an electrolyser for the electrowinning of metals made of a plurality of elementary cells, each cell comprising an anode and a cathode with an electrically conductive porous screen interposed therebetween, the anode being provided with a catalytic surface towards oxygen evolution reaction and the cathode being suitable for the deposition of metal from an electrolytic bath.
  • the cell further comprises an electrically conductive anodic hanger bar, electrically and mechanically connected to the anode, and an electrically conductive cathodic hanger bar, electrically and mechanically connected to the cathode.
  • Each elementary cell also comprises a device suitable for direct or indirect detection of the electric current flowing across the corresponding anodic hanger bar.
  • the electrolyser is also equipped with an anodic bus-bar, electrically connected to the anodic hanger bars of each cell and a cathodic bus-bar electrically connected to the cathodic hanger bars of each cell.
  • the electrolyser may also comprise a cathodic balancing bar placed parallel and in proximity to the anodic bus-bar.
  • the conductive porous screen, interposed between the anode and the cathode of the elementary cell is a structure that can present different degrees of compactness and is made in such a way as to allow the passage of the electrolytic solution without interrupting the ionic conduction between cathode and anode.
  • the dendrites that may be formed on one or more cathodes of the elementary cells come into contact with the facing porous screen before they can reach the anodic surface aft so that their growth is stopped, or in any case slowed down. It was observed that in case a dendritic formation comes into contact with the porous screen, part of the metal produced in the cell is deposited directly on the screen as a coating, provided the screen has some electrical conductivity.
  • the assembly consisting of cathode, dendrite and porous screen, by virtue of the existing electrical connection between these elements, additionally performs the function of new cathode of the elementary cell, furthermore being placed closer to the anode than the original one.
  • the lower ohmic drop in the electrolyte associated to the reduced gap between the new cathode and the anode causes an increase in the electric current flowing across the relevant anodic hanger bar. It was found that the extent of this current increase can be used as an indication of dendrite growth.
  • the direct or indirect detection of the electric current flowing in each anodic hanger bar can be effected on the bar itself, or on elements electrically connected thereto, by means of a detection device capable of measuring voltage or temperature variations.
  • the measurement of voltage variation is effected through the connection of the detection device to the relevant anodic bus-bar on one side and to the cathodic hanger bar on the other side by means of an electrically conductive and optionally flexible pressure contact.
  • This configuration can give the advantage of avoiding fixed electrical connections on the anodic hanger bar, facilitating subsequent maintenance operations of the cell.
  • the measurement of voltage variation is effected through the connection of the detection device to the corresponding anodic hanger bar in two points, located at a certain distance along the major axis thereof.
  • the measurement of the temperature variation can be effected by means of a thermosensitive device, for example a thermocouple.
  • a thermosensitive device for example a thermocouple.
  • This measurement may be done, for example, with the thermosensitive device installed on each anodic hanger bar, preferably in correspondence of the terminal portion thereof, or alternatively on the anodic bus-bar in correspondence with each point of contact with the anodic hanger bars.
  • the thermosensitive device may be equipped with a chemically resistant lining, suitable to protect and/or to increase its thermal insulation from the surrounding environment.
  • the measurement of the temperature variation can be effected through the use of thermochromic paints which change their colour whenever the temperature exceeds a predetermined threshold.
  • thermochromic paints which change their colour whenever the temperature exceeds a predetermined threshold.
  • Such paints are applied either on the anodic hanger bar or on the anodic bus-bar in correspondence of the point of contact with the anodic hanger bar.
  • each detection device can be connected to its own microprocessor configured for the comparison between the measurement made by the device and a predetermined reference range; if the measure does not fall within the reference range, the microprocessor can activate one or more signalling systems acting sequentially or simultaneously.
  • the microprocessor and/or the signalling system can be turned off during the operation of cathode extraction, e.g. in view of product harvesting.
  • the microprocessor can be integrated with the signalling system and/or the detection device within a single unit.
  • the microprocessor is powered by the process electrical voltage, so as to avoid the use of batteries which would require a periodic replacement.
  • the microprocessor can be connected directly to the anodic bus-bar and to the cathodic balancing bar in case the electrolyser is equipped therewith. If the electrolyser does not include a cathodic balancing bar and one wishes to avoid fixed wirings which would interfere with the plant operations, the microprocessor directed to monitor a certain anodic hanger bar can be connected to the anodic bus-bar and to the hanger bar of the adjacent cathode via a preferably flexible pressure contact.
  • the microprocessor actuates at least one signalling system consisting of a light-emitting diode which can be coupled to an optical fibre, either directly or through an optical coupling device.
  • the optical fibre optionally lined with a polymeric material, allows transferring the light signal to the terminal portions of each anodic hanger bar or even better to the outside of the electrolyser, thereby facilitating its identification by the plant operating personnel and allowing to quickly spot the electrolyser and the relevant anode or anodes presenting direct or indirect current values outside the range of predetermined values.
  • the porous screen can be made of carbon fabrics of suitable thickness.
  • the porous screen can consist of a mesh or punched sheet made of a corrosion-resistant metal, for instance titanium, provided with a coating catalytically inert towards oxygen evolution reaction.
  • the catalytically inert coating can be based on tin, tantalum, niobium or titanium, for example in the form of oxides.
  • the anodes are obtained from titanium meshes or expanded sheets coated with a catalytic material.
  • the catalyst-coated titanium mesh is inserted inside an envelope consisting of a permeable separator, for example a porous sheet of polymeric material or a cation-exchange membrane, fixed to a frame and surmounted by a demister.
  • a permeable separator for example a porous sheet of polymeric material or a cation-exchange membrane
  • the optimum porous screen-to-anode surface gap depends on the process characteristics and the overall size of the plant. In plants used to verify the invention, the best performances were obtained with cells employing anodes and cathodes spaced apart by 25 to 100 mm and porous screens positioned at a distance of 1-20 mm from the facing anodes.
  • the invention relates to an anodic element for elementary cells of electrolysers for metal electrowinning comprising an anode having a catalytic surface towards oxygen evolution reaction, a porous screen, an anodic hanger bar mechanically and electrically connected to the anode and a device suitable for direct or indirect detection of the electric current flowing across the anode hanger bar.
  • the device suitable for direct or indirect detection of the electric current can be made as hereinbefore described and can be optionally connected to a microprocessor suitable for comparing the detected value with a predetermined range of values and actuating one or more alert signals in the event that the detected value is not comprised in the preset range.
  • the alert signal can be acoustic, visual, electromagnetic or of any other nature, and can consist a combination of multiple signals.
  • the invention relates to a elementary cell of an electrolyser for metal electrowinning, comprising:
  • the invention relates to a process for obtaining copper from a solution containing cuprous and/or cupric ions comprising electrolysing the solution inside an electrolyser as hereinbefore described.
  • Figure 1 schematically shows an elementary cell of an electrolyser for metal electrowinning comprising an anode (100) and a cathode (200) suitable for the deposition of metal from an electrolytic bath arranged parallel to the anode, a porous screen (300) interposed between anode and cathode, an anodic hanger bar (400) integral with the anode and electrically connected thereto, a cathodic hanger bar (450), a device (500) suitable for direct or indirect detection of the electric current flowing across anodic hanger bar (400), an electrically conductive anodic bus-bar (600) in electrical connection with anodic hanger bar (400).
  • Device (500) suitable for direct or indirect detection of the electric current can be connected to a microprocessor (700) configured for comparing the quantity detected by device (500) with a predetermined range of values.
  • Microprocessor (700) is connected to a signalling system (800) actuated in case the detection provides a value outside the reference range.
  • Figure 2 shows a device (500) suitable for direct or indirect detection of the electric current connected to a microprocessor (700) for comparing said detection with a predetermined range of values.
  • Microprocessor (700) is configured to actuate signalling system (800) in case the detection provides a value outside the reference range.
  • Signalling system (800) can consist of a light-emitting diode (801) which emits a light signal in case of actuation by microprocessor (800).
  • the signal of diode (801) is transported by an optical fibre (803), optionally coupled to diode (800) via an optical coupling system (802).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (15)

  1. Cellule élémentaire d'un électrolyseur pour électro-extraction de métal, comprenant :
    - une anode avec une surface catalytique vers une réaction de dégagement d'oxygène ;
    - une cathode appropriée pour la déposition de métal à partir d'un bain électrolytique, disposée parallèlement à ladite anode ;
    - un écran poreux électriquement conducteur interposé entre ladite anode et ladite cathode ;
    - une barre de suspension anodique électriquement conductrice, intégrée à l'anode et électriquement connectée à celle-ci ;
    - un dispositif approprié pour la détection directe ou indirecte du courant électrique circulant à travers la barre de suspension anodique ;
    - une barre-bus anodique, électriquement conductrice et électriquement connectée à la barre de suspension anodique.
  2. Cellule selon la revendication 1, dans laquelle ledit dispositif approprié pour la détection directe ou indirecte du courant électrique comprend des moyens pour l'estimation d'une quantité physique sélectionnée entre la tension et la température.
  3. Cellule selon la revendication 2, dans laquelle lesdits moyens pour l'estimation d'une quantité physique sont des moyens pour la mesure de température à l'aide d'une peinture thermochromique ou d'un dispositif thermosensible.
  4. Cellule selon la revendication 3, dans laquelle ledit dispositif thermosensible est un thermocouple.
  5. Cellule selon la revendication 3 ou 4, dans laquelle lesdits moyens pour la mesure de température sont disposés sur ladite barre de suspension anodique en correspondance avec la partie terminale de celle-ci.
  6. Cellule selon la revendication 3 ou 4, dans laquelle lesdits moyens pour la mesure de température sont disposés sur ladite barre-bus anodique en correspondance avec les points de contact avec la barre de suspension anodique.
  7. Cellule selon la revendication 1, comprenant de plus un microprocesseur connecté audit dispositif de détection et au moins un système de signalisation, ledit microprocesseur étant configuré de façon à comparer ladite détection de courant électrique à une plage de référence prédéterminée, ledit système de signalisation au nombre d'au moins un étant configuré de façon à être actionné à chaque fois que ladite détection délivre une valeur à l'extérieur de ladite plage de référence.
  8. Cellule selon la revendication 7, comprenant de plus :
    - une barre de suspension cathodique électriquement conductrice, intégrée à la cathode et électriquement connectée à celle-ci ;
    - une barre d'équilibrage cathodique.
  9. Cellule selon la revendication 8, dans laquelle l'alimentation électrique dudit microprocesseur est délivrée par la tension électrique de traitement.
  10. Cellule selon la revendication 9, dans laquelle ladite alimentation électrique est obtenue par connexion à ladite barre-bus anodique et à ladite barre d'équilibrage cathodique.
  11. Cellule selon la revendication 9, dans laquelle ladite alimentation électrique est obtenue par connexion à ladite barre-bus anodique et par contact par pression avec ladite barre de suspension cathodique.
  12. Cellule selon l'une quelconque des revendications 7 à 11, dans laquelle ledit système de signalisation comprend une diode électroluminescente actionnée par ledit microprocesseur, ladite diode électroluminescente étant de préférence connectée à une fibre optique.
  13. Electrolyseur pour l'extraction primaire de métal à partir d'un bain électrolytique, comprenant une stratification de cellules selon l'une quelconque des revendications précédentes en connexion électrique mutuelle.
  14. Procédé pour obtenir du cuivre à partir d'une solution contenant des ions cuivreux et/ou cuivriques, comprenant l'électrolyse de la solution à l'intérieur d'un électrolyseur selon la revendication 13.
  15. Elément anodique pour cellules d'électro-extraction de métal, comprenant une anode comportant au moins une surface catalytique vers une réaction de dégagement d'oxygène, au moins un écran poreux électriquement conducteur, une barre de suspension anodique mécaniquement et électriquement connectée à l'anode et un dispositif approprié pour la détection directe ou indirecte du courant électrique circulant à travers ladite barre de suspension anodique.
EP15752958.7A 2014-08-01 2015-07-30 Cellule d'extraction électrolytique de métal Not-in-force EP3175020B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15752958T PL3175020T3 (pl) 2014-08-01 2015-07-30 Komórka do elektrolitycznego otrzymywania metali

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI20141416 2014-08-01
PCT/EP2015/067600 WO2016016406A1 (fr) 2014-08-01 2015-07-30 Cellule d'extraction électrolytique de métal

Publications (2)

Publication Number Publication Date
EP3175020A1 EP3175020A1 (fr) 2017-06-07
EP3175020B1 true EP3175020B1 (fr) 2018-07-18

Family

ID=51628381

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15752958.7A Not-in-force EP3175020B1 (fr) 2014-08-01 2015-07-30 Cellule d'extraction électrolytique de métal

Country Status (20)

Country Link
US (1) US20170211195A1 (fr)
EP (1) EP3175020B1 (fr)
JP (1) JP6660387B2 (fr)
KR (1) KR20170038880A (fr)
CN (1) CN106574385B (fr)
AP (1) AP2017009682A0 (fr)
AR (1) AR101935A1 (fr)
AU (1) AU2015295324B2 (fr)
BR (1) BR112017002063A2 (fr)
CA (1) CA2953274A1 (fr)
CL (1) CL2017000259A1 (fr)
EA (1) EA032134B1 (fr)
ES (1) ES2687602T3 (fr)
MX (1) MX2017001467A (fr)
PE (1) PE20170233A1 (fr)
PH (1) PH12016502567A1 (fr)
PL (1) PL3175020T3 (fr)
TW (1) TWI687550B (fr)
WO (1) WO2016016406A1 (fr)
ZA (1) ZA201700176B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017147388A1 (fr) 2016-02-25 2017-08-31 Calera Corporation Surveillance en ligne de procédé/système
WO2018156480A1 (fr) * 2017-02-24 2018-08-30 Calera Corporation Surveillance de l'état de cellules électrochimiques
KR102017567B1 (ko) * 2018-11-27 2019-09-03 주식회사 웨스코일렉트로드 전해 제련용 전극 조립체
CN109879376A (zh) * 2019-03-04 2019-06-14 苏州博创环保科技有限公司 一种封闭式电化学反应装置
EP4389940A1 (fr) 2022-12-21 2024-06-26 John Cockerill SA Dispositif pour une electrodeposition anti-dendrites

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139705A (en) * 1998-05-06 2000-10-31 Eltech Systems Corporation Lead electrode
DE102005005819B3 (de) * 2005-02-08 2006-03-02 Jl Goslar Gmbh Bleianode, insbesondere für die Abscheidung von Zink aus Zinklauge, und Anordnung zur Gewinnung von Zink aus Zinklauge
ITMI20052420A1 (it) * 2005-12-20 2007-06-21 De Nora Elettrodi S P A Cella elettrolitica per la deposizione di metalli
ITMO20050345A1 (it) * 2005-12-23 2007-06-24 Minipan S R L Metodo per sottigliare la pasta sfoglia alimentare, apparecchiatura meccanica per la realizzazione del metodo e pasta sfoglia alimentare prodotta secondo questo metodo
AU2008281742B2 (en) * 2007-07-31 2011-03-10 Ancor Termin S. A. A system for monitoring, control and management of a plant where hydrometallurgical electrowinning and electrorefining processes for non ferrous metals are conducted
WO2010035691A1 (fr) * 2008-09-24 2010-04-01 住友電気工業株式会社 Réacteur électrochimique, procédé pour la fabrication du réacteur électrochimique, élément de décomposition de gaz, élément de décomposition d'ammoniac et groupe électrogène
AU2011238427B2 (en) * 2010-04-07 2015-05-14 Mipac Pty Ltd Monitoring device
ITMI20111668A1 (it) * 2011-09-16 2013-03-17 Industrie De Nora Spa Sistema permanente per la valutazione in continuo della distribuzione di corrente in celle elettrolitiche interconnesse.
ITMI20111938A1 (it) * 2011-10-26 2013-04-27 Industrie De Nora Spa Comparto anodico per celle per estrazione elettrolitica di metalli
US20150211136A1 (en) * 2012-08-28 2015-07-30 Hatch Associates Pty Limited Electric current sensing and management system for electrolytic plants
FI125211B (en) * 2013-03-01 2015-07-15 Outotec Oyj Method for measuring electric current flowing in an individual electrode in an electrolysis system and arrangement for the same
ITMI20130505A1 (it) * 2013-04-04 2014-10-05 Industrie De Nora Spa Cella per estrazione elettrolitica di metalli
FI124587B (en) * 2013-06-05 2014-10-31 Outotec Finland Oy A device for protecting anodes and cathodes in an electrolytic cell system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
BR112017002063A2 (pt) 2018-01-30
JP2017524074A (ja) 2017-08-24
MX2017001467A (es) 2017-05-10
PL3175020T3 (pl) 2018-12-31
EA032134B1 (ru) 2019-04-30
AP2017009682A0 (en) 2017-01-31
AU2015295324A1 (en) 2017-01-12
US20170211195A1 (en) 2017-07-27
PH12016502567B1 (en) 2017-04-17
PE20170233A1 (es) 2017-04-19
CN106574385B (zh) 2020-06-05
JP6660387B2 (ja) 2020-03-11
WO2016016406A1 (fr) 2016-02-04
CN106574385A (zh) 2017-04-19
TW201606139A (zh) 2016-02-16
EP3175020A1 (fr) 2017-06-07
CA2953274A1 (fr) 2016-02-04
ZA201700176B (en) 2018-08-29
CL2017000259A1 (es) 2017-07-21
ES2687602T3 (es) 2018-10-26
KR20170038880A (ko) 2017-04-07
AU2015295324B2 (en) 2019-11-28
EA201790300A1 (ru) 2017-06-30
PH12016502567A1 (en) 2017-04-17
TWI687550B (zh) 2020-03-11
AR101935A1 (es) 2017-01-25

Similar Documents

Publication Publication Date Title
EP3175020B1 (fr) Cellule d'extraction électrolytique de métal
AU2014247023B2 (en) Electrolytic cell for metal electrowinning
TW201502324A (zh) 金屬電極澱積工廠中陰極和陽極之電流分配評估系統和方法及所用吊架桿
CN106034404A (zh) 用于金属电解提取池的阳极结构
CN108254611B (zh) 一种电极电流测量方法及系统
WO2017064485A1 (fr) Anode pour procédé d'extraction électrolytique de métal
EP3426824B1 (fr) Structure d'électrode pourvue de résistances

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1019464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015013783

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2687602

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181026

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1019464

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015013783

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180718

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200922

Year of fee payment: 6

Ref country code: FI

Payment date: 20200722

Year of fee payment: 6

Ref country code: DE

Payment date: 20200721

Year of fee payment: 6

Ref country code: NO

Payment date: 20200723

Year of fee payment: 6

Ref country code: FR

Payment date: 20200723

Year of fee payment: 6

Ref country code: GB

Payment date: 20200727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200727

Year of fee payment: 6

Ref country code: PL

Payment date: 20200717

Year of fee payment: 6

Ref country code: IT

Payment date: 20200724

Year of fee payment: 6

Ref country code: CH

Payment date: 20200721

Year of fee payment: 6

Ref country code: BE

Payment date: 20200727

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015013783

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

Ref country code: CH

Ref legal event code: PL

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210730

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210730