EP3167197B1 - Method for pressure and temperature control of a fluid in a series of cryogenic compressors - Google Patents

Method for pressure and temperature control of a fluid in a series of cryogenic compressors Download PDF

Info

Publication number
EP3167197B1
EP3167197B1 EP15733630.6A EP15733630A EP3167197B1 EP 3167197 B1 EP3167197 B1 EP 3167197B1 EP 15733630 A EP15733630 A EP 15733630A EP 3167197 B1 EP3167197 B1 EP 3167197B1
Authority
EP
European Patent Office
Prior art keywords
soll
compressor
rotational speed
red
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15733630.6A
Other languages
German (de)
French (fr)
Other versions
EP3167197A1 (en
Inventor
Can Üresin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3167197A1 publication Critical patent/EP3167197A1/en
Application granted granted Critical
Publication of EP3167197B1 publication Critical patent/EP3167197B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/006Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by influencing fluid temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/001Pumps adapted for conveying materials or for handling specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/001Pumps adapted for conveying materials or for handling specific elastic fluids
    • F04D23/003Pumps adapted for conveying materials or for handling specific elastic fluids of radial-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/001Pumps adapted for conveying materials or for handling specific elastic fluids
    • F04D23/005Pumps adapted for conveying materials or for handling specific elastic fluids of axial-flow type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0276Surge control by influencing fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/27Problems to be solved characterised by the stop of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Definitions

  • the invention relates to a method for controlling the pressure and temperature of a fluid, in particular helium, in particular when starting up a cryogenic cooling system, or during the cooling process (cool-down) in a series of cryogenic compressors according to claim 1.
  • compressors Radial or turbo compressors (hereafter referred to as compressors) in series are used to overcome or create large pressure differences (of the order of 1 bar).
  • Such compressors are known from the prior art and usually have a shaft with at least one impeller (compressor wheel) or directly connected to the shaft blades, with which the fluid is compressed during rotation of the shaft.
  • the speed of the compressor means the number of complete rotations (360 °) of the shaft about the shaft axis per unit of time.
  • Compressor such as Turbo compressors, are divided in particular in radial and axial compressors. In the radial compressor, the fluid flows axially to the shaft and is deflected in the radial direction to the outside. In the case of the axial compressor, on the other hand, the fluid to be compressed flows through the compressor in a direction parallel to the shaft.
  • the inlet pressure of the fluid to a first compressor that is, the pressure at an input of the most upstream compressor of the series, regulated.
  • the entry states are also established at the respective inlet of the other compressor arranged downstream of the first compressor.
  • An entry condition is determined by the pressure and the temperature at the inlet of the respective compressor.
  • the respective entry state on a compressor corresponds in each case to the state of Fluids at the output of the previous compressor.
  • cryogenic systems ie cooling systems that are designed for very low temperatures (1.5K-100K), especially for temperatures between 1.5K and 2.2K
  • the desired saturation temperature for the cold liquid is controlled by regulating the inlet pressure the suction side, that is the side from which the compressors suck the gas phase (vapor).
  • the pressure at the outlet of the series and the temperature of the fluid flowing through the compressor is increased (polytropic compression process).
  • so-called reduced variables are used, such as the reduced mass flow through the compressor or the reduced speed for the compressor in the control.
  • the design values are the operating conditions of a compressor where the compressor operates with the greatest efficiency (most economically).
  • Compressors have design values, for example, with regard to the speed, the temperature and the pressure above the respective compressor. The goal is to operate the compressors of the series close to their design points.
  • the fluid on the suction side of the compressor series is cooled down very far (for example, from 300K to 4K). This can be done at atmospheric pressure, ie 1 bar. Lower temperatures are then realized with suppression. This process is also called cool-down.
  • the pressure reduction on the suction side of the system is achieved by commissioning the compressor series. In particular, it serves to further lower the temperature above the fluid (pump-down).
  • the temperature increase of the fluid due to the compression process when flowing through the compressor series, for example, three to four compressors is in the range of about 4K to 23K.
  • a heat exchanger arranged downstream of the compressor series, which is used for cooling a parallel mass flow is designed for example at 23K. However, if this heat exchanger is flowed through by the 4K cold mass flow from the compressor series for a long time, the parallel mass flow in the heat exchanger is cooled very far. However, since this parallel mass flow downstream is still being expanded by a turbine, condensation of the parallel mass flow within the turbine could occur. To avoid this condensation, the turbine is switched off, whereby the cooling process is temporarily interrupted. These operating conditions are to be avoided and are referred to as trip the system.
  • the compression of the fluid in the compressor series would have to be interrupted again and again, so that the temperature in the compressors is not too high.
  • the temperature is included in the reduced control quantities, such as the reduced speed, i.e., an increase in the temperature at the compressor causes the reduced speed to increase. It would therefore be desirable to have a temperature control for the entry of the compressor series in particular for the cool-down or the pump-down phase, which ensures an uninterrupted pump-down with simultaneous cool-down.
  • k is a proportionality factor.
  • the priority value determines which of the two values, the proportional value or the smallest of the rotational speed indices, is used to regulate the compressor series. If the priority value corresponds, for example, to the proportional value, then the priority of the regulation lies on the pressure regulation (thus in particular the pump-down), since the proportional value particularly reflects the pressure difference as a control value. If the priority value corresponds to the lowest speed index, then the priority of the control is in particular the regulation of the inlet temperature at the first compressor. In this scheme, the speeds of the compressor should not increase.
  • the respective inlet temperature is detected, in particular at the input of each compressor of the series.
  • the pump-down process can take place parallel to the cool-down.
  • the temperature no longer drops as soon as the cooling-down process is ended.
  • the temperature of the fluid at the outlet is already regulated in a temperature range, which are favorable for downstream components, such as heat exchangers.
  • Another advantage is that overspeeds are avoided in all compressors, since in particular a reduction in the inlet temperature pulls lower speeds. Moreover, it is advantageous in the method according to the invention that the pump-down process without interruption, which would be necessary for example due to excessive speeds of the compressors, can take place.
  • the influence of unwanted heat input through the environment, ie from the outside, can be minimized. Furthermore, it is particularly advantageous that during pump-down operation, the desired inlet temperature can be regulated transiently and automatically.
  • the inventive method is especially suitable for temperature control in supercritical helium pumps.
  • the priority value influences the control such that, if the smallest speed index of all compressors is smaller than the proportional value, the actual inlet temperature is lowered, in particular by stepwise or continuous lowering of the determined target inlet temperature, until the proportional value is smaller than the smallest speed index is, and that in particular the actual speed of the respective compressor is not increased as long as the smallest speed index is smaller than the proportional value.
  • the proportional value is used in particular for controlling the actual input pressure.
  • the actual speed of each compressor from a reduced actual speed and the target speed of each compressor is determined from a reduced target speed, wherein the reduced actual speed of the actual speed and an actual temperature is determined at the input of the respective compressor, and wherein the reduced target speed is determined from the desired speed and the actual temperature at the input of the respective compressor.
  • an integral value is determined from the priority value, the integral value being used in particular for determining the reduced setpoint rotational speed.
  • an actual total pressure ratio is determined, the actual total pressure ratio being equal to the quotient of an actual discharge pressure, which corresponds to the pressure at an outlet of the compressor located farthest downstream, and the actual inlet pressure of the first compressor ,
  • a capacitance factor is determined from the actual total pressure ratio and a proportional integral value determined from the priority value and the integral value, wherein the reduced target rotational speed for each compressor is determined as a function value of a control function assigned to the respective compressor in particular assigns a reduced desired speed to each value pair of capacity factor and model total pressure ratio, which is determined in particular from the actual total pressure ratio.
  • FIG. 1 is a schematic diagram shown schematically, with which the inventive method can be performed.
  • Four compressors V 1, V 2, V 3, V 4 are arranged in series and have, on their suction side of a respective inlet pressure p, p is the first p 2, p 3, and a temperature at its input T, T 1, T 2, T 3.
  • Upstream of the first compressor V 1 of the series is an inlet for cool fluid having a temperature T coldbox (for example 200K, 100K, 50K, 20K and / or 4K) that can be supplied in particular via a valve to the fluid to be cooled.
  • T coldbox for example 200K, 100K, 50K, 20K and / or 4K
  • a model total pressure ratio ⁇ model is determined, which is then to the control function F to determine the reduced setpoint speeds n 1, red , n 2 soll, red , n Let 3, red , n 4 should, be given red .
  • the model total pressure ratio ⁇ Model is equal to the actual total pressure ratio n ist when the determined capacity factor X is between the minimum and maximum values X min , X max . If the capacity factor X is outside this value range, then the model total pressure ratio ⁇ model is modified via a saturation function SF.
  • the capacity factor X is limited to its minimum or maximum value X min , X max and then, in particular together with the model total pressure ratio ⁇ Model , forwarded to the control function F, the off these arguments the reduced target speed n 1 should red , n 2 should, red , n 3 should, red , n 4 is determined, red for the respective compressor V 1 , V 2 , V 3 , V 4 .
  • This modification of the model total pressure ratio ⁇ model ensures that in operating conditions in which the capacity factor X is saturated, the control still has an influence on the compressors V 1 , V 2 , V 3 , V 4 , because then instead of the capacity factor X, the model total pressure ratio ⁇ model is changed, whereby the control function F reduced target speeds n 1 should red , n 2 should, red n 3 should, red n 4 should, call red , which lead out of these operating conditions.
  • the reduced setpoint speeds n 1 should, red , n 2 should, red , n 3 should, red , n 4 should, red for each compressor V 1 , V 2 , V 3 , V 4, in particular in a table (look up table).
  • this table can be constructed by model calculations using Eulerian Turbomachine equations.
  • a software for reading the reduced target speeds n 1 soll, red , n 2 soll, red , n 3 soll, red , n 4 soll, red n red from the table be used.
  • the capacity factor X is dependent on the model total pressure ratio ⁇ Model and the reduced speeds n 1 soll, red , n 2 soll, red , n 3 soll, red , n 4 soll, red n red chosen so that by the scheme the control function F, the actual inlet pressure p is the desired inlet pressure p is intended to equalize.
  • the smaller of the two values is assigned to the priority value PW, which is then used to determine further control values (such as the reduced setpoint speeds n 1, red , n 2 soll , red , n 3 soll , red , n 4 soll , red , in particular using the capacity factor or the target inlet temperature T soll ) is used. That is, if a compressor V i already has very high speeds n i , its speed index D i will be almost or equal to zero. As a result, the control of the plant is prioritized so that cold fluid is added via a cold reservoir upstream of the input of the first compressor V 1 , so that the actual inlet temperature T is reduced.
  • PW the priority value
  • a temperature control unit TE determines the target inlet temperature T soll .
  • the calculation is qualitatively such that at a low priority value PW, the target inlet temperature T soll is gradually reduced.
  • the target inlet temperature T setpoint is set to 90% of the measured actual inlet temperature T ist .
  • the downgrading to this value is realized, for example, by a ramp function. If, during the downgrading of the target inlet temperature T soll, the speed indices still have control priority, a new downgrade of the set inlet temperature T soll to 90% of the last measured actual inlet temperature T ist is performed.
  • the target inlet temperature T soll is greater than a design temperature at the inlet of the compressor series. If the design temperature is 4K and the temperature setpoint is 3.8K, the value is limited to 4K. Via a cooling reservoir control box C, the corresponding amount of cold fluid upstream of the inlet of the first compressor V 1 is acted upon by the warm fluid, so that by mixing the two differently warm fluids, the fluid has a mixing temperature which is smaller than previously measured Actual inlet temperature T is is.
  • the fluid at the inlet of the first compressor V 1 is not acted upon or with only a small amount of cold fluid, since the compressors V 1 , V 2 , V 3 , V 4 of the series already not with too high speeds n i run.
  • the calculation of the target inlet temperature T should be affected - for example, so that a Smoothing or a certain slope of a temperature ramp for T soll is achieved.
  • n i n i . red ⁇ n i . design ⁇ T i - 1 T i .
  • n i is the speed of the compressor (target, or actual speed)
  • n i, red is the reduced speed (target or actual speed) of the compressor V i
  • T i-1 is the temperature at the inlet of the compressor V i and T i, design the design or design temperature of the compressor V i .
  • ⁇ red is the reduced mass flow through the compressor
  • is the instantaneous mass flow
  • ⁇ Design designates the mass flow for which the particular compressor is designed
  • p Design represents the design pressure at the respective compressor
  • T Design is the design temperature
  • p is the actual inlet pressure at the respective compressor is.

Description

Die Erfindung betrifft ein Verfahren zur Druck- und Temperaturregelung eines Fluids, insbesondere Helium, insbesondere beim Anfahren einer kryogenen Kühlanlage, oder beim Abkühlprozess (englisch: Cool-Down) in einer Serie von kryogenen Verdichtern gemäß Anspruch 1.The invention relates to a method for controlling the pressure and temperature of a fluid, in particular helium, in particular when starting up a cryogenic cooling system, or during the cooling process (cool-down) in a series of cryogenic compressors according to claim 1.

Radial- oder Turbo-Verdichter (im Folgenden Verdichter genannt) in Serie werden zur Überwindung oder zur Erzeugung von großen Druckdifferenzen (in der Größenordnung von 1 bar) eingesetzt.Radial or turbo compressors (hereafter referred to as compressors) in series are used to overcome or create large pressure differences (of the order of 1 bar).

Verfahren zur Druck- und Temperaturregelung eines Fluids in einer Serie von kryogenen Verdichtern sind bekannt, beispielsweise von den folgenden Patentanträgen bekannt: US2005178134 , US2013232999 und US2006101836 .Methods for controlling the pressure and temperature of a fluid in a series of cryogenic compressors are known, for example, from the following patent applications: US2005178134 . US2013232999 and US2006101836 ,

Derartige Verdichter sind aus dem Stand der Technik bekannt und weisen in der Regel eine Welle mit mindestens einem Laufrad (Verdichterrad) bzw. direkt mit der Welle verbundenen Laufschaufeln auf, mit denen das Fluid beim Rotieren der Welle verdichtet wird. Im Rahmen der vorliegenden Erfindung wird dabei unter der Drehzahl des Verdichters die Anzahl der vollständigen Rotationen (360°) der Welle um die Wellenachse pro Zeiteinheit verstanden. Verdichter, wie z.B. Turboverdichter, unterteilen sich insbesondere in Radial- und Axialverdichter. Beim Radialverdichter strömt das Fluid axial zur Welle ein und wird in radialer Richtung nach außen abgelenkt. Beim Axialverdichter hingegen strömt das zu verdichtende Fluid in paralleler Richtung zur Welle durch den Verdichter.Such compressors are known from the prior art and usually have a shaft with at least one impeller (compressor wheel) or directly connected to the shaft blades, with which the fluid is compressed during rotation of the shaft. In the context of the present invention, the speed of the compressor means the number of complete rotations (360 °) of the shaft about the shaft axis per unit of time. Compressor, such as Turbo compressors, are divided in particular in radial and axial compressors. In the radial compressor, the fluid flows axially to the shaft and is deflected in the radial direction to the outside. In the case of the axial compressor, on the other hand, the fluid to be compressed flows through the compressor in a direction parallel to the shaft.

Durch das Einstellen der Drehzahlen der Verdichter wird der Eintrittsdruck des Fluids an einem ersten Verdichter, also der Druck an einem Eingang des am weitesten stromauf angeordneten Verdichters der Serie, geregelt. Dadurch werden insbesondere auch die Eintrittszustände an den jeweiligen Eingang der anderen - stromab des ersten Verdichters angeordneten - Verdichter festgelegt. Ein Eintrittszustand ist durch den Druck und die Temperatur am Eingang des jeweiligen Verdichters bestimmt. Dabei entspricht der jeweilige Eintrittszustand an einem Verdichter jeweils dem Zustand des Fluids am Ausgang des vorangehenden Verdichters. Dadurch ergibt sich, dass eine Änderung der Drehzahl eines Verdichters immer auch die Eintrittszustände des Fluids der anderen Verdichter der Serie beeinflusst.By adjusting the speeds of the compressor, the inlet pressure of the fluid to a first compressor, that is, the pressure at an input of the most upstream compressor of the series, regulated. As a result, in particular, the entry states are also established at the respective inlet of the other compressor arranged downstream of the first compressor. An entry condition is determined by the pressure and the temperature at the inlet of the respective compressor. In this case, the respective entry state on a compressor corresponds in each case to the state of Fluids at the output of the previous compressor. As a result, a change in the speed of one compressor always also influences the entry states of the fluid of the other compressors of the series.

Bei kryogenen Systemen, also bei Kühlanlagen, die für sehr niedrige Temperaturen (1,5K-100K), hier insbesondere für Temperaturen zwischen 1,5K und 2,2K ausgelegt sind, wird durch die Regelung des Eintrittsdrucks die gewünschte Sättigungstemperatur für die kalte Flüssigkeit auf der Saugseite, also der Seite von der die Verdichter die Gasphase (Dampf) absaugen, erreicht. Bei dem Verdichtungsprozess in der Serie (aber auch bei einem einzelnen Verdichter) wird der Druck am Ausgang der Serie sowie die Temperatur des durch die Verdichter strömenden Fluids erhöht (polytroper Verdichtungsprozess). Um den Einfluss von Betriebspunktschwankungen zu glätten, verwendet man sogenannte reduzierte Größen, wie beispielsweise den reduzierten Massenstrom durch den Verdichter oder die reduzierte Drehzahl für den Verdichter bei der Regelung. Zur Berechnung dieser reduzierten Größen benötigt man die Größe an sich (also beispielsweise den Massenstrom oder die Drehzahl des Verdichters), die Temperatur, den Druck und die Auslegungswerte (oder auch Designpunkte) der Verdichter. Die Auslegungswerte sind die Betriebszustände eines Verdichters, bei denen der Verdichter mit größter Effizienz (am wirtschaftlichsten) arbeitet. Verdichter weisen Auslegungswerte beispielsweise bezüglich der Drehzahl, der Temperatur und des Drucks über dem jeweiligen Verdichter auf. Ziel ist es, die Verdichter der Serie nahe an ihren Designpunkten zu betreiben.In cryogenic systems, ie cooling systems that are designed for very low temperatures (1.5K-100K), especially for temperatures between 1.5K and 2.2K, the desired saturation temperature for the cold liquid is controlled by regulating the inlet pressure the suction side, that is the side from which the compressors suck the gas phase (vapor). In the compression process in the series (but also in a single compressor), the pressure at the outlet of the series and the temperature of the fluid flowing through the compressor is increased (polytropic compression process). To smooth the influence of operating point variations, so-called reduced variables are used, such as the reduced mass flow through the compressor or the reduced speed for the compressor in the control. To calculate these reduced sizes, you need the size per se (for example, the mass flow or speed of the compressor), the temperature, pressure, and the design values (or design points) of the compressors. The design values are the operating conditions of a compressor where the compressor operates with the greatest efficiency (most economically). Compressors have design values, for example, with regard to the speed, the temperature and the pressure above the respective compressor. The goal is to operate the compressors of the series close to their design points.

Üblicherweise wird bei Inbetriebnahme einer solchen Tiefsttemperatur Kühlanlage zunächst das Fluid auf der Saugseite der Verdichterserie sehr weit heruntergekühlt (beispielsweise von 300K auf 4K). Dies kann bei Atmosphärendruck, also 1 bar geschehen. Tiefere Temperaturen werden dann mit Unterdrücken realisiert. Diesen Prozess nennt man auch Cool-Down. Die Druckabsenkung auf der Saugseite der Anlage erfolgt durch Inbetriebnahme der Verdichterserie. Sie dient insbesondere dazu, die Temperatur über dem Fluid weiter abzusenken (Pump-Down). Die Temperaturerhöhung des Fluids aufgrund des Verdichtungsprozesses beim Durchströmen der Verdichterserie von beispielsweise drei bis vier Verdichtern liegt im Bereich von ca. 4K auf 23K.Usually, when starting up such a cryogenic refrigeration system, first the fluid on the suction side of the compressor series is cooled down very far (for example, from 300K to 4K). This can be done at atmospheric pressure, ie 1 bar. Lower temperatures are then realized with suppression. This process is also called cool-down. The pressure reduction on the suction side of the system is achieved by commissioning the compressor series. In particular, it serves to further lower the temperature above the fluid (pump-down). The temperature increase of the fluid due to the compression process when flowing through the compressor series, for example, three to four compressors is in the range of about 4K to 23K.

Falls die Verdichter der Serie nicht in Betrieb sind, also keine Verdichtung stattfindet, liegt die Temperatur des Massenstroms bei 4K am Austritt der Verdichterserie, was, wie im Folgenden erläutert wird, problematisch sein kann. Ein stromab der Verdichterserie angeordneter Wärmetauscher, der zur Kühlung eines parallelen Massenstroms verwendet wird, ist beispielsweise auf 23K ausgelegt. Wenn dieser Wärmetauscher jedoch längere Zeit von dem 4K kalten Massenstrom aus der Verdichterserie durchgeströmt wird, wird der parallele Massenstrom im Wärmetauscher sehr weit abgekühlt. Da dieser parallele Massenstrom stromab jedoch noch durch eine Turbine expandiert wird, könnte eine Kondensation des parallelen Massenstroms innerhalb der Turbine stattfinden. Um diese Kondensation zu vermeiden, wird die Turbine abgeschaltet, wodurch temporär der Abkühlvorgang unterbrochen wird. Diese Betriebsbedingungen sind zu vermeiden und werden als Trip der Anlage bezeichnet. Wenn die Verdichter andererseits gleichzeitig mit der Anlage gestartet werden, also das Fluid verdichten, strömt warmes Fluid von der Saugseite durch die Verdichter, da die Anlage noch warm ist. Bei diesen Temperaturen ist die Gasdichte des Fluids sehr gering. Daher werden die Verdichter aufgrund eines vorgegebenen Solldrucks von beispielsweise 20mbar auf der Saugseite sehr hohe Drehzahlen aufweisen. Die hohe Gastemperatur führt jedoch dazu, dass die Verdichter schnell ihre maximalen Drehzahlen erreichen. Die Ursache der hohen Drehzahlen ist einerseits der niedrige vorgegebene Solldruck und andererseits die vergleichsweise hohen Temperaturen an den Verdichtern. In diesem Bereich kommt es im ungünstigsten Fall zu Überdrehzahlen. Überdrehzahlen sind Drehzahlen, für die die Verdichter nicht ausgelegt sind und die daher zu vermeiden sind. Daher müsste beim parallelen Cool-Down und Pump-Down die Verdichtung des Fluids in der Verdichterserie immer wieder unterbrochen werden, damit die Temperatur in den Verdichtern nicht zu hoch wird. Wie oben erwähnt, geht die Temperatur in die reduzierten Steuergrößen, wie beispielsweise die reduzierte Drehzahl, mit ein, d.h., ein Ansteigen der Temperatur am Verdichter bewirkt ein Ansteigen der reduzierten Drehzahl. Es wäre daher wünschenswert, über eine Temperaturregelung für den Eintritt der Verdichterserie insbesondere für die Cool-Down bzw. die Pump-down Phase zu verfügen, die einen unterbrechungsfreien Pump-down bei gleichzeitigem Cool-Down gewährleistet.If the compressors of the series are not in operation, ie no compression takes place, the temperature of the mass flow at 4K is at the outlet of the compressor series, which, as explained below, can be problematic. A heat exchanger arranged downstream of the compressor series, which is used for cooling a parallel mass flow, is designed for example at 23K. However, if this heat exchanger is flowed through by the 4K cold mass flow from the compressor series for a long time, the parallel mass flow in the heat exchanger is cooled very far. However, since this parallel mass flow downstream is still being expanded by a turbine, condensation of the parallel mass flow within the turbine could occur. To avoid this condensation, the turbine is switched off, whereby the cooling process is temporarily interrupted. These operating conditions are to be avoided and are referred to as trip the system. On the other hand, if the compressors are started simultaneously with the system, ie, compress the fluid, warm fluid flows from the suction side through the compressors since the system is still warm. At these temperatures, the gas density of the fluid is very low. Therefore, the compressor will have very high speeds due to a predetermined target pressure, for example 20mbar on the suction side. However, the high gas temperature causes the compressors to quickly reach their maximum speeds. The cause of the high speeds is on the one hand the low preset target pressure and on the other hand the comparatively high temperatures at the compressors. In this area, it comes in the worst case to overspeed. Overspeed speeds are speeds for which the compressors are not designed and should therefore be avoided. Therefore, in the parallel cool-down and pump-down, the compression of the fluid in the compressor series would have to be interrupted again and again, so that the temperature in the compressors is not too high. As mentioned above, the temperature is included in the reduced control quantities, such as the reduced speed, i.e., an increase in the temperature at the compressor causes the reduced speed to increase. It would therefore be desirable to have a temperature control for the entry of the compressor series in particular for the cool-down or the pump-down phase, which ensures an uninterrupted pump-down with simultaneous cool-down.

Dieses Problem wird durch das erfindungsgemäße Verfahren gemäß Anspruch 1 gelöst. Dazu sind folgende Schritte vorgesehen:

  • Erfassen einer Ist-Drehzahl für jeden Verdichter, wobei die Ist-Drehzahl die momentane Drehzahl des Verdichters ist,
  • Erfassen eines Ist-Eintrittsdrucks, sowie einer Ist-Eintrittstemperatur am Eingang des am weitesten stromauf angeordneten, ersten Verdichters der Serie, wobei die Strömungsrichtung der Serie insbesondere von der Saugseite der Verdichter in Richtung steigenden Drucks weist, und wobei die Ist-Eintrittstemperatur und der Ist-Eintrittsdruck insbesondere die momentan herrschende Temperatur bzw. der momentan herrschende Druck am Eingang des ersten Verdichters ist,
  • Vorgeben einer Maximaldrehzahl für jeden Verdichter der Serie sowie eines Soll-Eintrittsdrucks für den ersten Verdichter der Serie, wobei die Maximaldrehzahl insbesondere die höchste zulässige Drehzahl des jeweiligen Verdichters ist, bei der ein stabiler Betrieb des jeweiligen Verdichters gewährleistet ist, und wobei der Soll-Eintrittsdruck der am Eingang des ersten Verdichters zu erreichende Druck ist,
  • Bestimmung eines Drehzahlindex für jeden Verdichter der Serie aus der Maximaldrehzahl und der Ist-Drehzahl jedes Verdichters,
  • Bestimmung eines Proportionalwertes aus der Abweichung des Ist- vom Soll-Eintrittsdruck,
  • Bestimmung eines Prioritätswertes aus dem kleineren von beiden Werten: Proportionalwert und dem kleinsten Drehzahlindex aller Verdichter der Serie (bevorzugt wird der Prioritätswert dem kleineren der beiden besagten Werte gleichgesetzt)
    • wobei wenn der Proportionalwert kleiner als der kleinste Drehzahlindex aller Verdichter der Serie ist, der Prioritätswert aus dem Proportionalwert bestimmt wird, und
    • wobei wenn der Proportionalwert größer als der kleinste Drehzahlindex aller Verdichter der Serie ist, der Prioritätswert aus dem kleinsten Drehzahlindex aller Verdichter der Serie bestimmt wird um die Priorität der Reglung auf der Regelung der Eintrittstemperatur am ersten Verdichter zu basieren,
  • Ermitteln einer Soll-Eintrittstemperatur für den ersten Verdichter der Serie und einer Soll-Drehzahl für jeden Verdichter mit Hilfe des Pioritätswerts,
  • Einstellen der Ist-Eintrittstemperatur des ersten Verdichters, auf die ermittelte Soll-Eintrittstemperatur,
  • Einstellen der Ist-Drehzahl für jeden Verdichter auf die ermittelte Soll-Drehzahl.
This problem is solved by the method according to claim 1. For this purpose, the following steps are provided:
  • Detecting an actual speed for each compressor, the actual speed being the instantaneous speed of the compressor,
  • Detecting an actual inlet pressure, as well as an actual inlet temperature at the inlet of the most upstream, the first compressor of the series, wherein the flow direction of the series, in particular from the suction side of the compressor in the direction of increasing pressure, and wherein the actual inlet temperature and the actual Inlet pressure is in particular the currently prevailing temperature or the currently prevailing pressure at the inlet of the first compressor,
  • Specifying a maximum speed for each compressor of the series and a target inlet pressure for the first compressor in the series, wherein the maximum speed is in particular the highest allowable speed of the respective compressor, in which a stable operation of the respective compressor is ensured, and wherein the target inlet pressure is the pressure to be reached at the inlet of the first compressor,
  • Determining a speed index for each compressor of the series from the maximum speed and the actual speed of each compressor,
  • Determination of a proportional value from the deviation of the actual and desired inlet pressure,
  • Determining a priority value from the smaller of the two values: Proportional value and the smallest RPM index of all compressors of the series (preferably the priority value is set equal to the smaller of the two said values)
    • if the proportional value is smaller than the smallest speed index of all the compressors in the series, the priority value is determined from the proportional value, and
    • wherein if the proportional value is greater than the smallest RPM index of all the compressors of the series, the priority value is determined from the lowest RPM index of all the compressors of the series to base the priority of the regulation on the regulation of the inlet temperature at the first compressor,
  • Determining a desired inlet temperature for the first compressor of the series and a desired speed for each compressor using the Pioritätswerts,
  • Setting the actual inlet temperature of the first compressor to the determined target inlet temperature,
  • Setting the actual speed for each compressor to the determined target speed.

Der Proportionalwert ist insbesondere der Differenz aus dem Soll-Eintrittsdruck und dem Ist-Eintrittsdruck proportional: prop = k p soll p ist ,

Figure imgb0001
wobei k ein Proportionalitätsfaktor ist.
Über den Prioritätswert wird also insbesondere festgelegt, welcher der beiden Werte, der Proportionalwert oder der kleinste der Drehzahlindices, zum Regeln der Verdichterserie verwendet wird. Wenn der Prioritätswert beispielsweise dem Proportionalwert entspricht, dann liegt die Priorität der Regelung auf der Druckregelung (also insbesondere dem Pump-Down), da der Proportionalwert insbesondere die Druckdifferenz als Steuerwert widerspiegelt. Wenn der Prioritätswert dem kleinsten Drehzahlindex entspricht, dann liegt die Priorität der Reglung insbesondere auf der Regelung der Eintrittstemperatur am ersten Verdichter. Bei dieser Regelung sollen die Drehzahlen der Verdichter nicht weiter steigen.The proportional value is in particular proportional to the difference between the desired inlet pressure and the actual inlet pressure: prop = - k p should - p is .
Figure imgb0001
where k is a proportionality factor.
In particular, the priority value determines which of the two values, the proportional value or the smallest of the rotational speed indices, is used to regulate the compressor series. If the priority value corresponds, for example, to the proportional value, then the priority of the regulation lies on the pressure regulation (thus in particular the pump-down), since the proportional value particularly reflects the pressure difference as a control value. If the priority value corresponds to the lowest speed index, then the priority of the control is in particular the regulation of the inlet temperature at the first compressor. In this scheme, the speeds of the compressor should not increase.

Für die Ermittlung der Soll-Drehzahl für jeden Verdichter wird insbesondere am Eingang jedes Verdichters der Serie die jeweilige Eintrittstemperatur erfasst.
Durch das erfindungsgemäße Verfahren, kann der Pump-Down Prozess parallel zum Cool-Down stattfinden. Durch das erfindungsgemäße Verfahren, sinkt die Temperatur nicht mehr weiter ab, sobald der Abkühlprozess (Cool-Down) beendet wird. Außerdem wird so die Temperatur des Fluids am Ausgang schon in einen Temperaturbereich geregelt, der für stromab angeordnete Komponenten, wie beispielsweise Wärmetauscher günstig sind.
To determine the setpoint speed for each compressor, the respective inlet temperature is detected, in particular at the input of each compressor of the series.
By means of the method according to the invention, the pump-down process can take place parallel to the cool-down. As a result of the method according to the invention, the temperature no longer drops as soon as the cooling-down process is ended. In addition, the temperature of the fluid at the outlet is already regulated in a temperature range, which are favorable for downstream components, such as heat exchangers.

Ein weiterer Vorteil ist, dass Überdrehzahlen bei allen Verdichtern vermieden werden, da insbesondere eine Herabsetzung der Eintrittstemperatur geringere Drehzahlen nach sich zieht. Außerdem ist es bei dem erfindungsgemäßen Verfahren von Vorteil, dass der Pump-Down Prozess ohne Unterbrechung, die beispielsweise durch zu hohe Drehzahlen der Verdichter nötig würde, von statten gehen kann.Another advantage is that overspeeds are avoided in all compressors, since in particular a reduction in the inlet temperature pulls lower speeds. Moreover, it is advantageous in the method according to the invention that the pump-down process without interruption, which would be necessary for example due to excessive speeds of the compressors, can take place.

Vorteilhaft ist des Weiteren, dass der Einfluss von unerwünschter Wärmezufuhr durch die Umwelt, also von Außen, minimiert werden kann. Weiterhin ist es besonders vorteilhaft, dass beim Pump-Down-Betrieb die Soll-Eintrittstemperatur transient und automatisiert geregelt werden kann. Das erfindungsgemäße Verfahren ist insbesondere auch zur Temperaturregelung bei superkritischen Heliumpumpen geeignet.It is also advantageous that the influence of unwanted heat input through the environment, ie from the outside, can be minimized. Furthermore, it is particularly advantageous that during pump-down operation, the desired inlet temperature can be regulated transiently and automatically. The inventive method is especially suitable for temperature control in supercritical helium pumps.

In einer vorteilhaften Variante der Erfindung, ist vorgesehen, dass der Drehzahlindex für jeden Verdichter dem Verhältnis (Quotient) aus der Differenz der Maximaldrehzahl ni,max und der Ist-Drehzahl ni des jeweiligen Verdichters und der Maximaldrehzahl gleich ist: D i = n i , max n i n i , max = 1 n i n i , max

Figure imgb0002
, wobei i der den jeweiligen Verdichter bezeichnende Index ist.In an advantageous variant of the invention, it is provided that the speed index for each compressor is equal to the ratio (quotient) of the difference between the maximum speed n i, max and the actual speed n i of the respective compressor and the maximum speed: D i = n i . Max - n i n i . Max = 1 - n i n i . Max
Figure imgb0002
where i is the index denoting the respective compressor.

Besonders bevorzugt beeinflusst der Prioritätswert die Regelung derart, dass, wenn der kleinste Drehzahlindex von allen Verdichtern kleiner als der Proportionalwert ist, die Ist-Eintrittstemperatur solange abgesenkt wird, insbesondere durch stufenweise oder kontinuierliche Absenkung der ermittelten Soll-Eintrittstemperatur, bis der Proportionalwert kleiner als der kleinste Drehzahlindex wird, und dass insbesondere die Ist-Drehzahl der jeweiligen Verdichter nicht erhöht wird, solange der kleinste Drehzahlindex kleiner als der Proportionalwert ist. Der Proportionalwert wird insbesondere zur Regelung des Ist-Eingangsdrucks verwendet.Particularly preferably, the priority value influences the control such that, if the smallest speed index of all compressors is smaller than the proportional value, the actual inlet temperature is lowered, in particular by stepwise or continuous lowering of the determined target inlet temperature, until the proportional value is smaller than the smallest speed index is, and that in particular the actual speed of the respective compressor is not increased as long as the smallest speed index is smaller than the proportional value. The proportional value is used in particular for controlling the actual input pressure.

In einer bevorzugten Ausführungsform der Erfindung wird die Ist-Drehzahl jedes Verdichters aus einer reduzierten Ist-Drehzahl und die Soll-Drehzahl jedes Verdichters aus einer reduzierten Soll-Drehzahl ermittelt, wobei die reduzierte Ist-Drehzahl aus der Ist-Drehzahl und einer Ist-Temperatur am Eingang des jeweiligen Verdichters ermittelt wird, und wobei die reduzierte Soll-Drehzahl aus der Soll-Drehzahl und der Ist-Temperatur am Eingang des jeweiligen Verdichters ermittelt wird. Die detaillierte Umrechnung von reduzierten Größen in reale / absolute Größen ist in einer beispielhaften Formel weiter unten aufgeführt.In a preferred embodiment of the invention, the actual speed of each compressor from a reduced actual speed and the target speed of each compressor is determined from a reduced target speed, wherein the reduced actual speed of the actual speed and an actual temperature is determined at the input of the respective compressor, and wherein the reduced target speed is determined from the desired speed and the actual temperature at the input of the respective compressor. The detailed conversion of reduced quantities into real / absolute quantities is shown below in an exemplary formula.

In einer Variante der Erfindung wird ein Integralwert aus dem Prioritätswert bestimmt, wobei der Integralwert insbesondere zur Bestimmung der reduzierten Soll-Drehzahl verwendet wird. Der Integralwert setzt sich dabei insbesondere aus dem Proportionalwert prop oder allgemein dem Prioritätswert zu dem Integralwert int t=n+1 zusammen. Dabei wird der Proportionalwert prop bzw. der Prioritätswert PW mit einer Zykluszeit Δt multipliziert, einer Integralzeit Tint dividiert und zu dem Integralwert des vorangegangenen Zyklus int t=n addiert: in t t = n + 1 = in t t = n + prop Δ t T int

Figure imgb0003
bzw. in t t = n + 1 = in t t = n + PW Δ t T int
Figure imgb0004
In one variant of the invention, an integral value is determined from the priority value, the integral value being used in particular for determining the reduced setpoint rotational speed. The integral value is in particular composed of the proportional value prop or, in general, the priority value to the integral value int t = n +1 . In this case, the proportional value prop or the priority value PW with a Cycle time Δ t multiplied by an integral time T divided int int and to the integral value of the previous cycle t = n is added: in t t = n + 1 = in t t = n + prop Δ t T int
Figure imgb0003
respectively. in t t = n + 1 = in t t = n + PW Δ t T int
Figure imgb0004

In einer bevorzugten Ausführungsform der Erfindung wird ein Ist-Gesamtdruckverhältnis ermittelt, wobei das Ist-Gesamtdruckverhältnis dem Quotienten aus einem Ist-Austrittsdruck, der dem Druck an einem Ausgang des am weitesten stromab angeordneten Verdichters entspricht, und dem Ist-Eintrittsdruck des ersten Verdichters gleich ist.In a preferred embodiment of the invention, an actual total pressure ratio is determined, the actual total pressure ratio being equal to the quotient of an actual discharge pressure, which corresponds to the pressure at an outlet of the compressor located farthest downstream, and the actual inlet pressure of the first compressor ,

In einer Variante der Erfindung wird aus dem Ist-Gesamtdruckverhältnis und einem, aus dem Prioritätswert und dem Integralwert bestimmten, Proportional-Integral-Wert ein Kapazitätsfaktor bestimmt, wobei die reduzierte Soll-Drehzahl für jeden Verdichter als Funktionswert einer dem jeweiligen Verdichter zugeordneten Regelungsfunktion bestimmt wird, die insbesondere jedem Wertepaar aus Kapazitätsfaktor und Modell-Gesamtdruckverhältnis, das insbesondere aus dem Ist-Gesamtdruckverhältnis bestimmt wird, eine reduzierte Soll-Drehzahl zuordnet.In one variant of the invention, a capacitance factor is determined from the actual total pressure ratio and a proportional integral value determined from the priority value and the integral value, wherein the reduced target rotational speed for each compressor is determined as a function value of a control function assigned to the respective compressor in particular assigns a reduced desired speed to each value pair of capacity factor and model total pressure ratio, which is determined in particular from the actual total pressure ratio.

In der folgenden Figurenbeschreibung werden vorteilhafte Ausführungsformen und Beispiele sowie weitere Merkmale des erfindungsgemäßen Verfahrens beschrieben. Es zeigt:

Fig. 1
eine schematischen Darstellung des erfindungsgemäßen Verfahrens.
The following description of the figures describes advantageous embodiments and examples as well as further features of the method according to the invention. It shows:
Fig. 1
a schematic representation of the method according to the invention.

In Figur 1 ist ein Verfahrensschaltplan schematisch dargestellt, mit dem das erfindungsgemäße Verfahren durchgeführt werden kann. Vier Verdichter V1, V2, V3, V4 sind in Serie angeordnet, und weisen auf Ihrer Saugseite je einen Eintrittsdruck pist, p1. p2, p3 und eine Temperatur an ihrem Eingang Tist, T1, T2, T3 auf. Stromauf des ersten Verdichters V1 der Serie, ist ein Einlass für kühles Fluid mit einer Temperatur Tcoldbox (beispielsweise 200K, 100K, 50K, 20K und /oder 4K) das insbesondere über ein Ventil dem zu kühlenden Fluid zugeführt werden kann. Bei jedem Verdichter V1, V2, V3, V4 wird die Temperatur Tist, T1, T2, T3 an seinem Eingang erfasst. Beim ersten Verdichter V1 ist dies die Ist-Eintrittstemperatur Tist. Weiterhin wird auch der Ist-Druck pist, p1,p2,p3 am Eingang des jeweiligen Verdichters V1, V2, V3, V4 erfasst. Aus dem Ist-Eintrittsdruck pist und dem Ist-Austrittsdruck p4 wird ein Ist-Gesamtdruckverhältnis πist berechnet, welches zur Bestimmung der reduzierten Drehzahlen n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red der Verdichter V1, V2, V3, V4 verwendet wird: π ist = p 4 p ist

Figure imgb0005
Aus dem Ist- und Soll-Eintrittsdruck pist, psoll, sowie dem Ist-Gesamtdruckverhältnis πist lässt sich ein Kapazitätsfaktor X bestimmen, der für alle Verdichter V1, V2, V3, V4 gleich ist. Mit diesem Kapazitätsfaktor X wird für jeden Verdichter V1, V2, V3, V4 über eine dem jeweiligen Verdichter V1, V2, V3, V4 zugeordnete Regelungsfunktion F, die beispielsweise in Form einer Tabelle oder eines Polynoms für jeden Verdichter vorberechnet ist, die jeweilige reduzierte Soll-Drehzahl n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red, ermittelt, so dass die Verdichter V1, V2, V3, V4 der Serie möglichst wirtschaftlich arbeiten.In FIG. 1 is a schematic diagram shown schematically, with which the inventive method can be performed. Four compressors V 1, V 2, V 3, V 4 are arranged in series and have, on their suction side of a respective inlet pressure p, p is the first p 2, p 3, and a temperature at its input T, T 1, T 2, T 3. Upstream of the first compressor V 1 of the series, is an inlet for cool fluid having a temperature T coldbox (for example 200K, 100K, 50K, 20K and / or 4K) that can be supplied in particular via a valve to the fluid to be cooled. For each compressor V 1 , V 2 , V 3 , V 4 the temperature T ist , T 1 , T 2 , T 3 detected at its entrance. In the case of the first compressor V 1 , this is the actual inlet temperature T ist . Furthermore, the actual pressure p ist , p 1 , p 2 , p 3 at the input of the respective compressor V 1 , V 2 , V 3 , V 4 is detected. Is from the actual inlet pressure p and the actual discharge pressure p 4 is calculated an actual overall pressure ratio is π which n for the determination of reduced speeds 1 to, red, n 2 is intended, red, n is to 3, red, n 4 should , red the compressor V 1 , V 2 , V 3 , V 4 is used: π is = p 4 p is
Figure imgb0005
Is from the actual and desired inlet pressure p, p should, as well as π is the actual overall pressure ratio can be a capacity factor X determine which is the same for all compressors V 1, V 2, V 3, V. 4 With this capacity factor X is for each compressor V 1 , V 2 , V 3 , V 4 via the respective compressor V 1 , V 2 , V 3 , V 4 associated control function F, for example in the form of a table or a polynomial for each Compressor is precalculated, the respective reduced target speed n 1 should, red , n 2 should, red , n 3 should, red , n 4 should, red , determined so that the compressor V 1 , V 2 , V 3 , V 4 of the series work as economically as possible.

Der Kapazitätsfaktor X ist insbesondere so geartet, dass er Werte zwischen 0 (Xpump = 0 Pump-Regime) und 1 (Xsperr = 1, Sperr-Regime) annehmen kann. Sowohl das Pump als auch das Sperr-Regime sind Betriebszustände des Verdichters, die es zu vermeiden gilt. Das Pump-Regime entspricht den Betriebszuständen, bei denen der Verdichter die sogenannte Surge-Kondition erfüllt während hingegen das Sperr-Regime Betriebszuständen entspricht, die die sogenannte Choke-Kondition erfüllen. Damit die Verdichter nicht in diese Regimes gefahren werden, beschränkt man den Kapazitätsfaktor X auf Werte zwischen einem Minimalwert X min = Xpump + 0,05 und einem Maximalwert Xmax = Xsperr - 0,1;The capacity factor X is in particular such that it can assume values between 0 ( X pump = 0 pumping regime) and 1 ( X blocking = 1, blocking regime). Both the pump and the lock-up regime are operating conditions of the compressor, which must be avoided. The pumping regime corresponds to the operating conditions in which the compressor fulfills the so-called surge condition whereas the blocking regime corresponds to operating conditions which fulfill the so-called choke condition. So that the compressors are not driven into these regimes, the capacity factor X is limited to values between a minimum value X min = X pump + 0.05 and a maximum value X max = X disable - 0.1;

Ebenso wird für den Integralwert int t=n+1 ein oberer und unterer Grenzwert intmax bzw. intmin des Integralwertes int durch Xmax bzw. Xmin und vom natürlichen Logarithmus des Ist-Gesamtdruckverhältnisses ln(πist ) abgeleitet: in t max = X max + ln π ist

Figure imgb0006
in t min = X min + ln π ist
Figure imgb0007
Da das gemessene Ist-Gesamtdruckverhältnis πist im transienten Betrieb (Pump-down) immer größer wird (der Ist-Eintrittsdruck pist wird immer kleiner), werden dadurch die Grenzwerte des Integralwertes auch immer größer. Im umgekehrten Fall (Pump-up), also wenn der Soll-Eintrittsdruck psoll kleiner als der Ist-Eintrittsdruck pist ist, werden diese Grenzwerte immer kleiner.Also, for the integral value int t = n +1, an upper and lower limit max int and min int int the integral value by X max or X min and ln from the natural logarithm of the actual overall pressure ratio is) is derived: in t Max = X Max + ln π is
Figure imgb0006
in t min = X min + ln π is
Figure imgb0007
Since the measured actual total pressure ratio π ist in transient operation (pump-down) is always larger (the actual inlet pressure p is is getting smaller), thereby the limit values of the integral value are always larger. In the opposite case (pump-up), So when the target inlet pressure p should be smaller than the actual inlet pressure p is, these limits are getting smaller.

Wenn der Integralwert int t=n+1 größer bzw. kleiner als der obere bzw. untere Grenzwert intmax , intmin wird, wird er auf den jeweiligen Grenzwert begrenzt. Prioritätswert PW und Integralwert int t=n+1 werden addiert, um einen Proportional-Integral-Wert PI zu generieren. PI = PW + in t n + 1

Figure imgb0008
Wenn alle Verdichter V1, V2, V3, V4 in Serie an ihrem Designpunkt laufen, erreicht die Verdichterserie ihren Design- oder Arbeitspunkt bei einem Design-Gesamtdruckverhältnis πDesign .When the integral value int t = n + 1 becomes larger or smaller than the upper and lower limit values int max , int min , respectively, it is limited to the respective limit value. Priority value PW and integral value int t = n +1 are added to generate a proportional integral value PI. PI = PW + in t n + 1
Figure imgb0008
When all compressors V 1 , V 2 , V 3 , V 4 run in series at their design point, the compressor series reaches its design or operating point at a design total pressure ratio π design .

Wenn der Proportional-Integral-Wert PI kleiner ist als die Summe aus dem Maximalwert des Kapazitätsfaktors Xmax und aus dem natürlichen Logarithmus des Design-Gesamtdruckverhältniswertes πDesign , dann wird der Kapazitätsfaktor X aus der Differenz des Proportional-Integral-Wertes PI und dem natürlichen Logarithmus des Ist-Gesamtdruckverhältnisses πist berechnet. Andernfalls wird der Proportional-Integral-Wert PI auf die Summe aus dem natürlichen Logarithmus des Design-Gesamtdruckverhältnisses πDesign und dem Maximalwert des Kapazitätsfaktors Xmax insbesondere zur Berechnung des Kapazitätsfaktors X beschränkt, d.h., es gilt: X = PI ln π ist , wenn PI < ln π Design + X sperr

Figure imgb0009
X = ln π Design + X sperr ln π ist ,
Figure imgb0010
sonstIf the proportional integral value PI is smaller than the sum of the maximum value of the capacitance factor X max and the natural logarithm of the design total pressure ratio value π design , then the capacitance factor X becomes the difference between the proportional integral value PI and the natural one Logarithm of the actual total pressure ratio π is calculated. Otherwise, the proportional-integral value PI is limited to the sum of the natural logarithm of the design total pressure ratio π design and the maximum value of the capacitance factor X max, in particular for calculating the capacitance factor X, that is to say: X = PI - ln π is . if PI < ln π design + X locking
Figure imgb0009
X = ln π design + X locking - ln π is .
Figure imgb0010
otherwise

Anhand des so berechneten Kapazitätsfaktors X, wird nun im erfindungsgemäßen Verfahren entschieden, wie ein Modell-Gesamtdruckverhältnis πModel ermittelt wird, das dann an die Regelungsfunktion F zur Ermittlung der reduzierten Soll-Drehzahlen n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red übergeben wird. Das Modell-Gesamtdruckverhältnis πModel ist gleich dem Ist-Gesamtdruckverhältnis nist, wenn der ermittelte Kapazitätsfaktor X, zwischen dem Minimal- und Maximalwert Xmin, Xmax liegt. Wenn der Kapazitätsfaktor X außerhalb dieses Wertebereichs liegt, dann wird das Modell-Gesamtdruckverhältnis πModel über eine Sättigungsfunktion SF abgeändert. Anschließend wird der Kapazitätsfaktor X auf seinen Minimal, bzw. Maximalwert Xmin, Xmax beschränkt und dann, insbesondere zusammen mit dem Modell-Gesamtdruckverhältnis πModel, an die Regelungsfunktion F weitergeleitet, die aus diesen Argumenten die reduzierte Soll-Drehzahl n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red für den jeweiligen Verdichter V1, V2, V3, V4 ermittelt.
Die Sättigungsfunktion SF kann für Werte des Kapazitätsfaktors X, die nicht zwischen dem Minimal- und dem Maximalwert Xmin, Xmax liegen, beispielsweise durch SF = exp 0,5 X X max für X > X max

Figure imgb0011
bzw. SF = exp 0,5 X X min für X < X min
Figure imgb0012
gegeben sein. Damit ergibt sich: π Model = π ist SF ln π Model = ln π ist + 0,5 X X min / max
Figure imgb0013
Based on the thus calculated capacity factor X, it is now decided in the method according to the invention how a model total pressure ratio π model is determined, which is then to the control function F to determine the reduced setpoint speeds n 1, red , n 2 soll, red , n Let 3, red , n 4 should, be given red . The model total pressure ratio π Model is equal to the actual total pressure ratio n ist when the determined capacity factor X is between the minimum and maximum values X min , X max . If the capacity factor X is outside this value range, then the model total pressure ratio π model is modified via a saturation function SF. Subsequently, the capacity factor X is limited to its minimum or maximum value X min , X max and then, in particular together with the model total pressure ratio π Model , forwarded to the control function F, the off these arguments the reduced target speed n 1 should red , n 2 should, red , n 3 should, red , n 4 is determined, red for the respective compressor V 1 , V 2 , V 3 , V 4 .
The saturation function SF can for values of the capacity factor X, which are not between the minimum and the maximum value X min , X max , for example, by SF = exp 0.5 * X - X Max for X > X Max
Figure imgb0011
respectively. SF = exp 0.5 * X - X min For X < X min
Figure imgb0012
be given. This results in: π Model = π is SF ln π Model = ln π is + 0.5 X - X min / Max
Figure imgb0013

Diese Modifikation des Modell-Gesamtdruckverhältnisses πModel stellt sicher, dass in Betriebszuständen, in denen der Kapazitätsfaktor X in Sättigung ist, die Regelung dennoch weiter Einfluss auf die Verdichter V1, V2, V3, V4 hat, da dann anstelle des Kapazitätsfaktors X das Modell-Gesamtdruckverhältnis πModel verändert wird, womit die Regelungsfunktion F reduzierte Soll-Drehzahlen n1 soll, red ,n2 soll, red n3 soll, red n4 soll, red aufrufen kann, die aus diesen Betriebszuständen herausführen.This modification of the model total pressure ratio π model ensures that in operating conditions in which the capacity factor X is saturated, the control still has an influence on the compressors V 1 , V 2 , V 3 , V 4 , because then instead of the capacity factor X, the model total pressure ratio π model is changed, whereby the control function F reduced target speeds n 1 should red , n 2 should, red n 3 should, red n 4 should, call red , which lead out of these operating conditions.

Die reduzierten Soll-Drehzahlen n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red können für jeden Verdichter V1, V2, V3, V4 insbesondere in einer Tabelle (look-up Tabelle) hinterlegt sein. Diese Tabelle kann insbesondere durch Modellberechnungen unter Verwendung von Eulerschen Turbomaschinen-Gleichungen erstellt werden. Entsprechend des Kapazitätsfaktors X und des Modell-Gesamtdruckverhältnisses πModel kann insbesondere eine Software zum Auslesen der reduzierten Soll-Drehzahlen n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red nred aus der Tabelle herangezogen werden. Diese Tabelle entspricht dann insbesondere der Regelungsfunktion F und umfasst zumindest für mehrere Kapazitätsfaktoren X (beispielsweise X = 0, 0,25, 0,5, 0,75 und 1), und Modell-Gesamtdruckverhältnisse πModel die jeweiligen reduzierten Drehzahlen n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red nred für den jeweiligen Verdichter V1, V2, V3, V4. Werte des Kapazitätsfaktors X, die nicht in der Tabelle aufgeführt sind, werden durch Interpolation ermittelt. Weiterhin ist der Kapazitätsfaktor X in Abhängigkeit des Modell-Gesamtdruckverhältnisses πModel und der reduzierten Drehzahlen n1 soll, red ,n2 soll, red ,n3 soll, red ,n4 soll, red nred so gewählt, dass sich durch die Regelung der Regelungsfunktion F, der Ist-Eintrittsdruck pist dem Soll-Eintrittsdruck psoll angleicht.The reduced setpoint speeds n 1 should, red , n 2 should, red , n 3 should, red , n 4 should, red for each compressor V 1 , V 2 , V 3 , V 4, in particular in a table (look up table). In particular, this table can be constructed by model calculations using Eulerian Turbomachine equations. According to the capacity factor X and the model total pressure ratio π Model , in particular, a software for reading the reduced target speeds n 1 soll, red , n 2 soll, red , n 3 soll, red , n 4 soll, red n red from the table be used. This table then corresponds in particular to the control function F and comprises at least for a plurality of capacitance factors X (for example X = 0, 0.25, 0.5, 0.75 and 1), and model total pressure ratios π Model the respective reduced rotational speeds n 1 soll, red , n 2 soll, red , n 3 soll, red, n 4 soll, red n red for the respective compressor V 1 , V 2 , V 3 , V 4 . Values of the capacity factor X that are not listed in the table are determined by interpolation. Furthermore, the capacity factor X is dependent on the model total pressure ratio π Model and the reduced speeds n 1 soll, red , n 2 soll, red , n 3 soll, red , n 4 soll, red n red chosen so that by the scheme the control function F, the actual inlet pressure p is the desired inlet pressure p is intended to equalize.

Um beim Cool-Down der Anlage parallel einen Pump-Down zu gewährleisten, also während der Abkühlphase gleichzeitig den Druck auf der Saugseite der Verdichter V1, V2, V3, V4 zu verringern, muss entschieden werden, ob die Ist-Eintrittstemperatur Tist, am Eingang des ersten Verdichters V1 verringert werden muss, um zu hohe
Drehzahlen bei den Verdichtern V1, V2, V3, V4 zu vermeiden, oder ob der Betrieb ohne zusätzliche Kühlung am Eingang des ersten Verdichters V1 gewährleistet werden kann. Dazu werden zwei Werte miteinander verglichen. Zum einen wird ein Proportionalwert prop aus dem Ist- und dem Soll-Eintrittsdruck pist, psoll berechnet. Und zum anderen wird aus einer Drehzahlquota ein Drehzahlindex für jeden Verdichter berechnet, wobei die Drehzahlquota durch Q i = n i n i , max

Figure imgb0014
gegeben ist und der Drehzahlindex Di durch D i = 1 Q i = 1 n i n i , max
Figure imgb0015
gegeben ist. Dabei ist ni,max die Maximaldrehzahl des i-ten Verdichters Vi. i ist ein Index (i = 1 - 4).In order to ensure a pump-down in parallel during the cool-down of the system, that is to say simultaneously during the cooling-down phase the pressure on the suction side of the compressor V 1 , Decrease V 2 , V 3 , V 4 , it must be decided whether the actual inlet temperature is T, at the input of the first compressor V 1 must be reduced to high
To avoid speeds at the compressors V 1 , V 2 , V 3 , V 4 , or whether the operation without additional cooling at the input of the first compressor V 1 can be guaranteed. For this purpose, two values are compared with each other. On the one hand, a proportional value prop is calculated from the actual and desired inlet pressure p ist , p soll . And second, from a speed quota a speed index is calculated for each compressor, the speed quota by Q i = n i n i . Max
Figure imgb0014
is given and the speed index D i by D i = 1 - Q i = 1 - n i n i . Max
Figure imgb0015
given is. In this case, n i, max is the maximum speed of the i-th compressor V i . i is an index ( i = 1-4).

Wenn der Drehzahlindex Di eines Verdichters Vi also gegen null strebt, bedeutet dies, dass der Verdichter Vi nahe seiner Maximaldrehzahl ni, max operiert, und keine höheren Drehzahlen ni durch eine Erhöhung der reduzierten Soll-Drehzahlen n1 soll, red, n2 soll, red, n3 soll, red, n4 soll, red eingestellt werden sollten.
Aus der Menge der Drehzahlindices Di für jeden Verdichter Vi wird nun der kleinste Drehzahlindex Di mit dem Proportionalwert prop verglichen. Der kleinere der beiden Werte wird dem Prioritätswert PW zugeordnet, der dann für die Ermittlung weiterer Steuerwerte (wie beispielsweise der reduzierten Soll-Drehzahlen n1 soll, red, n2 soll, red, n3 soll, red, n4 soll, red, insbesondere mit Hilfe des Kapazitätsfaktors oder der Soll-Eintrittstemperatur Tsoll) verwendet wird. D.h. wenn ein Verdichter Vi schon sehr hohe Drehzahlen ni aufweist, wird sein Drehzahlindex Di fast oder gleich null sein. Dadurch wird der Steuerung der Anlage so priorisiert, dass über ein Kältereservoir kaltes Fluid stromauf des Eingangs des ersten Verdichters V1 zugegeben wird, so dass sich die Ist-Eintrittstemperatur Tist verringert. Als Folge verringern sich auch die Drehzahlen ni der Verdichter Vi, so dass der Drehzahlindex Di dieses Verdichters Vi wieder ansteigt - und zwar insbesondere solange bis der Proportionalwert prop geringer ist. Auf diese Weise ist ein wirtschaftlicher Betrieb der Verdichterserie gewährleistet, insbesondere beim Cool-Down und Pump-Down.
If the speed index D i of a compressor V i thus tends to zero, this means that the compressor V i is operating near its maximum speed n i, max , and no higher speeds n i should be increased by an increase in the reduced set speeds n 1, red , n 2 should, red , n 3 should, red , n 4 should, red should be set.
From the set of speed indices D i for each compressor V i , the smallest speed index D i is now compared with the proportional value prop. The smaller of the two values is assigned to the priority value PW, which is then used to determine further control values (such as the reduced setpoint speeds n 1, red , n 2 soll , red , n 3 soll , red , n 4 soll , red , in particular using the capacity factor or the target inlet temperature T soll ) is used. That is, if a compressor V i already has very high speeds n i , its speed index D i will be almost or equal to zero. As a result, the control of the plant is prioritized so that cold fluid is added via a cold reservoir upstream of the input of the first compressor V 1 , so that the actual inlet temperature T is reduced. In particular until the proportional value is prop lower - As a result, the rotational speeds n i V i of the compressor, so that the speed index D i of this compressor V i rises again reduced. In this way Ensures economical operation of the compressor series, especially in cool-down and pump-down.

Aus dem Prioritätswert PW ermittelt eine Temperaturregelungseinheit TE die Soll-Eintrittstemperatur Tsoll. Die Berechnung ist dabei qualitativ so geartet, dass bei einem niedrigen Prioritätswert PW, die Soll-Eintrittstemperatur Tsoll stufenweise heruntergeregelt wird. Beispielsweise wird dabei die Soll-Eintrittstemperatur Tsoll auf 90% der gemessenen Ist-Eintrittstemperatur Tist gesetzt. Die Herabstufung auf diesen Wert wird beispielsweise durch eine Rampenfunktion realisiert. Wenn während der Herabstufung der Soll-Eintrittstemperatur Tsoll die Drehzahlindices immer noch Regelungspriorität haben, wird eine neue Herabstufung der Soll-Eintrittstemperatur Tsoll auf 90% der zuletzt gemessenen Ist-Eintrittstemperatur Tist ausgeführt. Bei jeder Herabstufung der Soll-Eintrittstemperatur Tsoll auf 90% der gemessenen Ist-Eintrittstemperatur Tist wird geprüft, ob die ermittelte Soll-Eintrittstemperatur Tsoll grösser ist als eine Auslegungstemperatur am Eintritt der Verdichterserie. Wenn die Auslegungstemperatur 4K ist, und der Temperatursollwert 3.8K, dann wird der Wert auf 4K limitiert.
Über eine Kühlreservoir-Kontrollbox C, wird die entsprechende Menge an kaltem Fluid stromauf des Eingangs des ersten Verdichters V1 auf das warme Fluid beaufschlagt, so dass durch Mischung der beiden unterschiedlich warmen Fluide, das Fluid eine Mischungstemperatur aufweist, die kleiner als die zuvor gemessene Ist-Eintrittstemperatur Tist ist. Bei einem höheren Prioritätswert PW wird das Fluid am Eingang des ersten Verdichter V1 nicht oder mit nur einer geringen Menge von kaltem Fluid beaufschlagt, da die Verdichter V1, V2, V3, V4 der Serie bereits nicht mit zu hohen Drehzahlen ni laufen.
From the priority value PW, a temperature control unit TE determines the target inlet temperature T soll . The calculation is qualitatively such that at a low priority value PW, the target inlet temperature T soll is gradually reduced. For example, the target inlet temperature T setpoint is set to 90% of the measured actual inlet temperature T ist . The downgrading to this value is realized, for example, by a ramp function. If, during the downgrading of the target inlet temperature T soll, the speed indices still have control priority, a new downgrade of the set inlet temperature T soll to 90% of the last measured actual inlet temperature T ist is performed. At each downgrading of the target inlet temperature T soll to 90% of the measured actual inlet temperature T ist , it is checked whether the determined target inlet temperature T soll is greater than a design temperature at the inlet of the compressor series. If the design temperature is 4K and the temperature setpoint is 3.8K, the value is limited to 4K.
Via a cooling reservoir control box C, the corresponding amount of cold fluid upstream of the inlet of the first compressor V 1 is acted upon by the warm fluid, so that by mixing the two differently warm fluids, the fluid has a mixing temperature which is smaller than previously measured Actual inlet temperature T is is. At a higher priority value PW, the fluid at the inlet of the first compressor V 1 is not acted upon or with only a small amount of cold fluid, since the compressors V 1 , V 2 , V 3 , V 4 of the series already not with too high speeds n i run.

In einer Variante kann auch von einem Integrator, der insbesondere ein Teil eines PI (Proportional-Integral)-Reglers darstellt, und der eine zeitliche Integration des Prioritätswertes PW vornimmt, die Berechnung der Soll-Eintrittstemperatur Tsoll beeinflusst werden - beispielsweise so, dass eine Glättung oder eine bestimmte Steilheit einer Temperaturrampe für Tsoll erreicht wird.In a variant, also by an integrator, which is in particular part of a PI (proportional-integral) controller, and carries out a time integration of the priority value PW, the calculation of the target inlet temperature T should be affected - for example, so that a Smoothing or a certain slope of a temperature ramp for T soll is achieved.

Wichtig bei der gesamten Regelung ist, dass reduzierte Werte zum Steuern der Anlage und insbesondere der Verdichter V1, V2, V3, V4 verwendet werden. So berechnet sich beispielsweise die reduzierte Drehzahl ni, red eines Verdichters Vi aus der folgenden Formel: n i = n i , red n i , Design T i 1 T i , Design

Figure imgb0016
wobei ni die Drehzahl des Verdichters ist (Soll, oder Ist-Drehzahl), ni, red die reduzierte Drehzahl (Soll- oder Ist Drehzahl) des Verdichters Vi, ni, Design die Auslegungs- oder Design-Drehzahl des Verdichters Vi, Ti-1 ist die Temperatur am Eingang des Verdichters Vi und Ti, Design die Design- oder Auslegungstemperatur des Verdichters Vi. Wobei T0 (i = 1) gleich der Ist-Eintrittstemperatur Tist des ersten Verdichters V1 ist. Analog dazu gilt für den reduzierten Massenstrom red : m ˙ red = m ˙ ist m ˙ Design p Design p ist T ist T Design
Figure imgb0017
wobei red der reduzierte Massenstrom durch den Verdichter ist, ist der momentane Massenstrom, Design den Massenstrom bezeichnet, für den der jeweilige Verdichter ausgelegt ist, pDesign den Designdruck am jeweiligen Verdichter darstellt, TDesign die Design-Temperatur ist und pist der Ist-Eintrittsdruck am jeweiligen Verdichter ist. Bezugszeichenliste: PW Prioritätswert prop Proportionalwert int Integralwert pist Ist-Eintrittsdruck am ersten Verdichter psoll Soll-Eintrittsdruck am ersten Verdichter TE Temperaturregelungseinheit C Kühlreservoir-Kontrollbox F Regelungsfunktion X Kapazitätsfaktor Di Drehzahlindex des i-ten Verdichters (i = 1-4) ni Ist-Drehzahl des i-ten Verdichters (i = 1-4) ni, max Maximaldrehzahl i-ten Verdichters (i = 1-4) Vi i-ter Verdichter der Serie (i = 1-4) pi Ist-Druck am Ausgang des i-ten Verdichters, bzw. am Eingang des (i+1)-ten Verdichters (i = 1-4) ni, soll Soll-Drehzahl des i-ten Verdichters (i = 1-4) ni soll, red reduzierte Soll-Drehzahl des i-ten Verdichters (i = 1-4) ni, Design Auslegungs- bzw. Designdrehzahl des i-ten Verdichters (i = 1-4) Tist Ist-Eintrittstemperatur (am ersten Verdichter) Tsoll Soll-Eintrittstemperatur (am ersten Verdichter) Ti Ist-Temperatur am Eingang des (i+1)-ten Verdichters, bzw. am Ausgang des i-ten Verdichters (i = 1-4) Ti, Design Auslegungs- bzw. Designtemperatur des i-ten Verdichters (i = 1-4) Tcoldbox Temperatur des kalten Fluids SF Sättigungsfunktion πModel Modell-Gesamtdruckverhältnis πist Ist-Gesamtdruckverhältnis πDesign Design-Gesamtdruckverhältnis X Kapazitätsfaktor Xmin Minimalwert des Kapazitätsfaktors Xmax Maximalwert des Kapazitätsfaktors PI Proportional-Integral-Wert It is important in the overall control that reduced values are used to control the system and in particular the compressors V 1 , V 2 , V 3 , V 4 . So calculated For example, the reduced speed n i , red a compressor V i from the following formula: n i = n i . red n i . design T i - 1 T i . design
Figure imgb0016
where n i is the speed of the compressor (target, or actual speed), n i, red is the reduced speed (target or actual speed) of the compressor V i , n i, design the design or design speed of the compressor V i , T i-1 is the temperature at the inlet of the compressor V i and T i, design the design or design temperature of the compressor V i . Where T 0 (i = 1) is equal to the actual inlet temperature T ist of the first compressor V 1 . Analogously applies to the reduced mass flow red : m ˙ red = m ˙ is m ˙ design p design p is T is T design
Figure imgb0017
where red is the reduced mass flow through the compressor, is the instantaneous mass flow, Design designates the mass flow for which the particular compressor is designed, p Design represents the design pressure at the respective compressor, T Design is the design temperature and p is the actual inlet pressure at the respective compressor is. LIST OF REFERENCE NUMBERS PW priority value prop proportional value int integral value p is Actual inlet pressure at the first compressor p should Target inlet pressure at the first compressor TE Temperature control unit C Cooling reservoir control box F control function X capacity factor D i Speed index of the i-th compressor (i = 1-4) i Actual speed of the i-th compressor (i = 1-4) n i, max Maximum speed of the i-th compressor (i = 1-4) V i i-th compressor of the series (i = 1-4) p i Actual pressure at the output of the i-th compressor, or at the input of the (i + 1) -th compressor (i = 1-4) n i, shall Target speed of the i-th compressor (i = 1-4) i should, red Reduced setpoint speed of the i-th compressor (i = 1-4) n i, design Design or design speed of the i-th compressor (i = 1-4) T is Actual inlet temperature (at the first compressor) T shall Set inlet temperature (on the first compressor) T i Actual temperature at the input of the (i + 1) -th compressor, or at the output of the i-th compressor (i = 1-4) T i, design Design temperature of i-th compressor (i = 1-4) T cold box Temperature of the cold fluid SF saturation function π model Model overall pressure ratio π is Actual total pressure ratio π design Design overall pressure ratio X capacity factor X min Minimum value of the capacity factor X max Maximum value of the capacity factor PI Proportional-integral value

Claims (7)

  1. Method for pressure and temperature control of a fluid, in particular helium, in a series of cryogenic compressors, comprising the steps:
    - measuring an actual rotational speed for each compressor (V1, V2, V3, V4),
    - measuring an actual inlet pressure (pist) and an actual inlet temperature (Tist) at the inlet of the first compressor (V1) of the series, arranged furthest upstream,
    - stipulating an inlet pressure setpoint (psoll) for the first compressor (V1) of the series,
    - determining a rotational speed index (Di) for each compressor (V1, V2, V3, v4) from a maximum rotational speed (ni,max) of the respective compressor and the actual rotational speed (ni) of the respective compressor (V1, V2, V3, V4),
    - determining a proportional value (prop) from the deviation of the actual inlet pressure (pist) from the inlet pressure setpoint (psoll),
    - determining a priority value (PW),
    wherein, if the proportional value (prop) is smaller than the smallest rotational speed index (Di) of all the compressors (V1, V2, V3, V4) of the series, the priority value (PW) is determined from the proportional value (prop), and
    wherein, if the proportional value is greater than the smallest rotational speed index (Di) of all the compressors (V1, V2, V3, V4) of the series, the priority value (PW) is determined from the smallest rotational speed index (Di) of all the compressors (V1, V2, V3, V4) of the series, in order to base the priority of the control on the control of the inlet temperature at the first compressor,
    - determining an inlet temperature setpoint (Tsoll) for the first compressor (V1) of the series and a rotational speed setpoint (n1,soll, n2,soll, n3,soll, n4,soll) for each compressor (V1, V2, V3, V4) with the aid of the priority value(PW),
    - adjusting the actual inlet temperature (Tist) of the first compressor (V1) to the determined inlet pressure setpoint (Tsoll), and
    - adjusting the actual rotational speed (ni) for each compressor (V1, V2, V3, V4) to the determined rotational speed setpoint (n1,soll, n2,soll, n3,soll, n4,soll).
  2. Method according to Claim 1, characterized in that the rotational speed index (Di) for each compressor (V1, V2, V3, V4) corresponds to the ratio of the difference of the maximum rotational speed (ni,max) and the actual rotational speed (ni) of the respective compressor (V1, V2, V3, V4) and the maximum rotational speed (ni,max).
  3. Method according to either of Claims 1 and 2, characterized in that the priority value (PW) influences the control in such a way that if the smallest rotational speed index (Di) of all the compressors (V1, V2, V3, V4) is smaller than the proportional value (prop), the actual inlet temperature (Tist) is reduced, in particular by a stepwise reduction in the determined inlet temperature setpoint (Tsoll), until the proportional value (prop) is smaller than the smallest rotational speed index (Di), and that in particular the actual rotational speeds (ni) of the compressors (V1, V2, V3, V4) are not increased as long as the smallest rotational speed index (Di) is smaller than the proportional value (prop).
  4. Method according to one of the preceding claims, characterized in that the actual rotational speed (ni) of each compressor (V1, V2, V3, V4) is determined from a reduced actual rotational speed, and in that the rotational speed setpoint (n1,soll, n2,soll, n3,soll, n4,soll) of each compressor is determined from a reduced rotational speed setpoint (n1,soll,red, n2,soll,red, n3,soll,red, n4,soll,red), wherein the reduced actual rotational speed is determined from the actual rotational speed (ni) and an actual temperature (Tist, T1, T2, T3) at the inlet of the respective compressor (V1, V2, V3, V4), and wherein the reduced rotational speed setpoint (n1,soll,red, n2,soll,red, n3,soll,red, n4,soll,red) is determined from the rotational speed setpoint (n1,soll, n2,soll, n3,soll, n4,soll) and the actual temperature (Tist, T1, T2, T3) at the inlet of the respective compressor (V1, V2, V3, V4).
  5. Method according to one of the preceding claims, characterized in that an integral value (int) is determined from the priority value (PW), wherein the integral value (int) is used in particular to determine the reduced rotational speed setpoint (n1,soll,red, n2,soll,red, n3,soll,red, n4,soll,red) Of the respective compressor (V1, V2, V3, V4).
  6. Method according to one of the preceding claims, characterized in that an actual overall pressure ratio (πist ) is determined, wherein the actual overall pressure ratio (πist ) correspond to the quotient from an actual outlet pressure (p4), which corresponds to the pressure at an outlet of the compressor (V4) that is arranged furthest downstream and the actual inlet pressure (pist) of the first compressor (V1).
  7. Method according to Claim 6, characterized in that a capacity factor (X) is determined from the actual overall pressure ratio (πist ) and a proportional-integral value which is determined from the priority value (PW) and the integral value (int), wherein the reduced rotational speed setpoint (n1,soll,red, n2,soll,red, n3,soll,red, n4,soll,red) for each compressor (V1, V2, V3, V4) is determined as a function value of a control function (F) assigned to the respective compressor (V1, V2, V3, V4), which in particular assigns a reduced rotational speed setpoint (n1,soll,red, n2,soll,red, n3,soll,red, n4,soll,red) to each value pair comprising capacity factor (X) and model overall pressure ratio (πmodel ), which in particular is determined from the actual overall pressure ratio (πist ).
EP15733630.6A 2014-07-08 2015-07-02 Method for pressure and temperature control of a fluid in a series of cryogenic compressors Active EP3167197B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014010102.9A DE102014010102A1 (en) 2014-07-08 2014-07-08 Method for pressure and temperature control of a fluid in a series of cryogenic compressors
PCT/EP2015/001341 WO2016005037A1 (en) 2014-07-08 2015-07-02 Method for controlling the pressure and temperature of a fluid in a series of cryogenic compressors

Publications (2)

Publication Number Publication Date
EP3167197A1 EP3167197A1 (en) 2017-05-17
EP3167197B1 true EP3167197B1 (en) 2018-10-17

Family

ID=53502610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15733630.6A Active EP3167197B1 (en) 2014-07-08 2015-07-02 Method for pressure and temperature control of a fluid in a series of cryogenic compressors

Country Status (7)

Country Link
US (1) US10215183B2 (en)
EP (1) EP3167197B1 (en)
JP (1) JP6654190B2 (en)
KR (1) KR102437553B1 (en)
CN (1) CN106662112B (en)
DE (1) DE102014010102A1 (en)
WO (1) WO2016005037A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010104A1 (en) * 2014-07-08 2016-01-14 Linde Aktiengesellschaft Method for controlling the speed of series-connected cryogenic compressors for cooling cryogenic, cryogenic helium
EP3396169B1 (en) * 2017-04-27 2022-01-12 Cryostar SAS Method for controlling a plural stage compressor
USD982375S1 (en) 2019-06-06 2023-04-04 Sharkninja Operating Llc Food preparation device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203179A (en) * 1992-03-04 1993-04-20 Ecoair Corporation Control system for an air conditioning/refrigeration system
JPH06347115A (en) * 1993-06-08 1994-12-20 Matsushita Refrig Co Ltd Cooling control device for multi-chamber type air conditioner
FR2708093B1 (en) * 1993-07-23 1995-09-01 Air Liquide Very low temperature refrigeration system.
DE19639733A1 (en) * 1996-09-27 1998-04-16 Linde Ag Process for compressing a gas
FR2760074B1 (en) * 1997-02-24 1999-04-23 Air Liquide LOW TEMPERATURE LOW PRESSURE GAS COMPRESSION METHOD, CORRESPONDING COMPRESSION LINE AND REFRIGERATION PLANT
DE19933202B4 (en) * 1999-07-15 2006-04-06 Institut für Luft- und Kältetechnik gemeinnützige Gesellschaft mbH Method for operating multistage compressors
JP3837278B2 (en) * 2000-08-10 2006-10-25 株式会社神戸製鋼所 Compressor operation method
DE10144018A1 (en) * 2001-09-07 2003-03-27 Linde Ag Procedure for regulating a compressor set
FR2840060B1 (en) * 2002-05-24 2004-07-02 Air Liquide METHOD AND INSTALLATION FOR CONTROLLING AT LEAST ONE CRYOGENIC CENTRIFUGAL COMPRESSOR, CORRESPONDING COMPRESSION LINE AND REFRIGERATION PLANT
US7555911B2 (en) 2002-08-20 2009-07-07 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerator
WO2009079421A2 (en) * 2007-12-14 2009-06-25 Carrier Corporation Control device for hvac systems with inlet and outlet flow control devices
DE102008058799B4 (en) * 2008-11-24 2012-04-26 Siemens Aktiengesellschaft Method for operating a multi-stage compressor
JP5868224B2 (en) * 2012-03-07 2016-02-24 住友重機械工業株式会社 Cryopump system, operation method of cryopump system, and compressor unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170159666A1 (en) 2017-06-08
KR102437553B1 (en) 2022-08-26
JP2017524101A (en) 2017-08-24
US10215183B2 (en) 2019-02-26
WO2016005037A1 (en) 2016-01-14
JP6654190B2 (en) 2020-02-26
CN106662112B (en) 2019-01-15
EP3167197A1 (en) 2017-05-17
KR20170055470A (en) 2017-05-19
DE102014010102A1 (en) 2016-01-14
CN106662112A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
EP2522857A2 (en) Method for the intelligent control of a compressor device with heat recovery
DE2909825A1 (en) CONTROL SYSTEM FOR A MULTI-STAGE AXIAL FLOW COMPRESSOR OF A GAS TURBINE ENGINE
EP3167197B1 (en) Method for pressure and temperature control of a fluid in a series of cryogenic compressors
DE2947618C2 (en) Control method for a multistage centrifugal compressor
DE102010040503B4 (en) Method for controlling a compressor
DE112016004296T5 (en) GUESTURBINE CONTROL DEVICE AND METHOD, GAS TURBINE CONTROL PROGRAM AND GAS TURBINE
EP2639429A1 (en) Aircraft engine
DE102004003378B4 (en) Control and control apparatus and control method for a multi-stage turbocharger
EP1970542A2 (en) Throttle-dependent blade adjustment for turbo machines
DE1964758B2 (en) CONTROL PROCEDURE FOR A METALLURGICAL FURNACE SYSTEM
DE102017107601B4 (en) Method for controlling a screw compressor
EP3167196B1 (en) Method for regulating the rotational speed of cryogenic compressors which are connected in series
EP3004650A1 (en) Method for operating a compressor, and arrangement with a compressor
DE102008005354B4 (en) Method for controlling a turbomachine
EP3330644A1 (en) Refrigeration system and a method for regulating a refrigeration system
DE913342C (en) Procedure for changing the degree of cooling when the compressor load on a dynamic compressor and associated compressor changes
WO2017133872A1 (en) Method for compensating for the axial force of a rotor of a gas turbine, and corresponding gas turbine
WO2018054546A1 (en) Method for operating a turbo compressor, turbo compressor having a surge limit controller and air separation plant
EP3147511A1 (en) Method for surge control, turbo compressor
EP3343032B1 (en) Driving device for a fluid pump
DE19517113A1 (en) Equipment and process to control multistage turbine
DE102005040802A1 (en) Operation of a turbo compressor, with a turbine, measures the pressures at two different points for a rapid detection of an overload to trigger counter measures
WO2023161065A1 (en) Control device for an internal combustion engine, internal combustion engine assembly comprising an internal combustion engine and a control device of this type, method for operating an internal combustion engine, and method for determining a component characteristic map
DE2250582C2 (en) Load control device for a closed gas turbine plant
EP2907989A1 (en) Operation of a gas turbine plant with a compressor and a turbine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015006483

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04D0027000000

Ipc: F04D0023000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/02 20060101ALI20180530BHEP

Ipc: F04D 27/02 20060101ALI20180530BHEP

Ipc: F25B 49/02 20060101ALI20180530BHEP

Ipc: F04D 23/00 20060101AFI20180530BHEP

Ipc: F25B 1/10 20060101ALI20180530BHEP

Ipc: F04D 25/00 20060101ALI20180530BHEP

Ipc: F04D 17/12 20060101ALI20180530BHEP

Ipc: F04D 27/00 20060101ALN20180530BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/02 20060101ALI20180601BHEP

Ipc: F25B 49/02 20060101ALI20180601BHEP

Ipc: F04D 27/02 20060101ALI20180601BHEP

Ipc: F04D 23/00 20060101AFI20180601BHEP

Ipc: F04D 27/00 20060101ALN20180601BHEP

Ipc: F04D 25/00 20060101ALI20180601BHEP

Ipc: F04D 17/12 20060101ALI20180601BHEP

Ipc: F25B 1/10 20060101ALI20180601BHEP

INTG Intention to grant announced

Effective date: 20180620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006483

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006483

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190722

Year of fee payment: 5

26N No opposition filed

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015006483

Country of ref document: DE

Owner name: LINDE GMBH, DE

Free format text: FORMER OWNER: LINDE AKTIENGESELLSCHAFT, 80331 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150702

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1054374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 9

Ref country code: DE

Payment date: 20230720

Year of fee payment: 9