EP3167195B1 - Return channel of a multistage turbocompressor or turboexpander with rough wall surfaces - Google Patents

Return channel of a multistage turbocompressor or turboexpander with rough wall surfaces Download PDF

Info

Publication number
EP3167195B1
EP3167195B1 EP15774561.3A EP15774561A EP3167195B1 EP 3167195 B1 EP3167195 B1 EP 3167195B1 EP 15774561 A EP15774561 A EP 15774561A EP 3167195 B1 EP3167195 B1 EP 3167195B1
Authority
EP
European Patent Office
Prior art keywords
return stage
flow channel
flow
radially
rough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15774561.3A
Other languages
German (de)
French (fr)
Other versions
EP3167195A1 (en
Inventor
Sven KÖNIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3167195A1 publication Critical patent/EP3167195A1/en
Application granted granted Critical
Publication of EP3167195B1 publication Critical patent/EP3167195B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/045Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/60Structure; Surface texture
    • F05D2250/63Structure; Surface texture coarse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/516Surface roughness

Definitions

  • radial turbofluid energy machines especially in radial turbocompressors process fluid is sucked axially by an impeller or impeller and output radially accelerated.
  • a so-called return stage takes over the supply of the process fluid discharged upstream from the impeller to a further downstream impeller.
  • this return stage not only has the function of deflecting the process fluid radially outward in the flow direction in an axial flow direction and the other impeller, but also at least partially retard the flow of the process fluid and in this way to increase the pressure according to Bernulli.
  • the recirculation stage is regularly designed as a diffuser in a radially outwardly directed flow path and also as a confuser in a radially inwardly directed flow path in the supply of the process fluid to the further impeller.
  • the recirculation stage is stationary relative to the impellers, and vanes provided in the recirculation stage regularly alter the swirl and thus the flow direction of the process fluid in preparation for subsequent entry into the subsequent compression. This demanding aerodynamic task of the recirculation stage requires careful fluidic design to minimize pressure losses and optimize efficiency.
  • the object of the invention is to design the surface of the flow-guiding regions of the recycling stage in such a way that, compared with the known solutions, a reduced or, if necessary, constant production outlay is achieved while at the same time improving the efficiency of the turbocompressor.
  • the return stage according to the invention is a component which extends annularly around the axis of rotation.
  • This Component may be divided in the circumferential direction or formed undivided.
  • a divided in the circumferential direction training is provided so that a parting line of the return stage or the return stages is formed, which allows a separation of the rotor without disassembly of the rotor at split feedback stage.
  • an embodiment of the feedback stage which is undivided in the direction of contact is also conceivable, in particular in the case of an axially separable rotor.
  • the return stage is generally formed axially divided, wherein a blade bottom separates the radially outwardly guided branch of the flow channel of a radially inwardly guided branch downstream of the 180 ° deflection of the flow and this blade bottom is attached to an intermediate floor of the return stage, said Intermediate bottom on the one hand, the flow guide in the return stage is used and on the other hand, the attachment of the return stage to the other components of the turbocompressor, for example on an inner housing or on an inner bundle of the turbo compressor summarizing carrier.
  • a first portion extends radially and has a radial opening to an upstream impeller at a first end of the first portion.
  • a second section adjoins a first end of the second section at the second end of the first section upstream of the turbocompressor in the case of the turbocompressor, and the flow is deflected by approximately 180 ° from a radial direction in the opposite radial direction.
  • a third section which extends substantially radially, adjoins with a first end on a second end of the second section arranged upstream, in the case of the turbocompressor.
  • a fourth portion radially adjoins a first end of the fourth portion radially at a second end of the third portion, which is upstream in the case of the turbocompressor.
  • the fourth section diverts the flow by about 90 ° in the axial direction, and with a second end of the fourth section, it has an axial opening to the second downstream impeller.
  • the rough areas are preferably provided at different positions, which are specified in detail below.
  • a first rough region in the first portion is disposed on the axial boundary surface that is axially further from the third portion than the other axial boundary surface.
  • a second rough region on the radially inner boundary surface of the second portion beginning at the second end of the second portion is disposed extending between 30% to 70% of the extent along the flow channel.
  • a third rough region is directly adjacent to the second rough region in the third section and is provided extending between 5% to 40% along the flow channel.
  • a fourth rough region is located in the fourth section on the radially outer boundary surface.
  • a preferred embodiment of the invention provides that the rough areas each extend over the entire circumference of the flow channel.
  • a process fluid flows through the sections in the order of the first section, the second section, the third section, the fourth section.
  • a process fluid flows through the sections in the order fourth section, third section, second section, first section.
  • the first portion of the flow channel may include vanes to direct the flow to downstream conditions.
  • the rough areas have an average roughness of 20 ⁇ m ⁇ Rz, particularly preferably 30 ⁇ m ⁇ Rz.
  • the non-rough regions preferably have an average roughness of 20 ⁇ m> Rz, particularly preferably 10 ⁇ m> Rz.
  • the local surface roughness is to be adapted to the local flow velocity.
  • the area-specific roughness of the surface according to the invention provides that, in the region of high flow velocities, the flow-wetted surface is designed with a smaller roughness than in the region of lower flow velocities.
  • a preferred application of the invention provides that the recirculation stage a bladed radial diffuser or im Case of the radial turbine having a bladed radial Konfusor.
  • the return stage has a blade-less radial diffuser or, in the case of the radial turbine, a blade-less radial confuser.
  • the speed level in the radial diffuser or in the radial confuser is at the annular space inside diameter - ie at the impeller outer diameter - highest and decreases with increasing radius - ie outward - from.
  • the wetted surfaces to be machined surface of the annular space walls with the radius becomes larger. Due to the invention according to the invention adjusting the roughness of the local flow rate level of the wetted surfaces in radial diffusers and confusers friction-related pressure losses are reduced without necessarily increasing the manufacturing cost of the components. This is achieved in particular because the increased complexity of a smaller roughness on a small area in the area of high flow velocities is offset by a reduced outlay with a larger permissible roughness on a large area in the region of lower flow velocities.
  • FIG. 1 shows a schematic longitudinal section through a return stage RS from a first impeller IMP1 to a second impeller IMP2 a turbocompressor TCO.
  • the two impellers IMP1, IMP2 are components of a rotor R, wherein the impeller IMP1, IMP2 frictionally on a are attached along an axis X extending shaft SH.
  • the rotor R is surrounded by flow-leading stationary components, of which a return stage RS is shown here.
  • a multistage turbomachine comprises a plurality of return stages RS which, viewed in the direction of flow, deflects the process fluid PF by 180 ° following a radial diffuser path, by a first impeller IMP1, which in the case of the turbo-compressor TCO axially draws in and radially discharges a process fluid PF back to radially inward and then deflects in the axial direction to supply the process fluid PF to the second downstream impeller IMP2.
  • the return stage comprises a blade bottom SB and an intermediate bottom ZB, which are firmly connected to one another by means of guide vanes V forming a flow channel between them.
  • the return stages RS are formed divided in the circumferential direction, so that a division of the return stage in a parting line allows the removal of the rotor from the structure of the return stages. The rotor is radially inserted during assembly or removed radially during disassembly.
  • the return stages RS have to the rotor R at different points shaft seals SHS, which should prevent the unused degradation of pressure differences or Beipassströmungen in operation.
  • the flow channel CH extending from the first impeller IMP1 to the second impeller IMP2 is conceptually subdivided into four successive sections S1, S2, S3, S4 arranged in succession in the flow direction in the case of the turbocompressor TCO.
  • the numbering of these sections S1-S4 is opposite to the flow direction.
  • the first section S1 extends substantially radially and has a radial opening to the first impeller IMP1 at a first end S1E1 of the first section S1.
  • the second Section S2 abuts with a first end S2E1 of the second section S2 at a second end S1E2 of the first section S1 and deflects the flow through the channel CH by about 180 ° from a radial direction in the opposite radial direction.
  • the flow is deflected from radially outward in a direction radially inward.
  • the third section S3 connects to a first end S3E1 of the third section S3 adjacent to the second end S2E2 of the second section S2. This section extends essentially radially and, in the case of the turbocompressor TCO, leads the flow from radially further outward to radially further inward.
  • the fourth portion radially adjoins a first end S4E1 of the fourth portion S4 radially at a second end S3E2 of the third portion S3 and diverts the flow by about 90 ° in the direction of the second impeller IMP2.
  • a second end S4E2 of the fourth section S4 adjoins the second impeller IMP2.
  • a first rough region RZ1 is located in the first section S1 on the axial boundary surface that is axially further away from the third section S3 than the other axial boundary surface.
  • a second rough region RZ2 is located on the radially inner boundary surface of the second portion S2 beginning at the second end S2E2 of the second portion S2. This second rough region RZ2 extends between 30% -70% of the extent along the flow channel of the second section S2.
  • a third rough region RZ3 directly adjoins the second rough region RZ2 in the third section S3 and extends between 5% -40% along the flow channel CH in the third section S3.
  • a fourth rough region RZ4 extends in the fourth section S4 on the radially outer boundary surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Description

Bei Radialturbofluidenergiemaschinen, insbesondere bei radialen Turboverdichtern wird Prozessfluid von einem Impeller oder Laufrad axial angesaugt und radial beschleunigt ausgegeben. Bei einer mehrstufigen Bauweise übernimmt eine sogenannte Rückführstufe die Zuführung des stromaufwärts von dem Impeller ausgegebenen Prozessfluids zu einem weiter stromabwärts gelegenen weiteren Laufrad. Hierbei hat diese Rückführstufe nicht nur die Funktion, das Prozessfluid aus der Strömungsrichtung nach radial außen umzulenken in eine axiale Strömungsrichtung und dem weiteren Laufrad zuzuführen, sondern auch zumindest abschnittsweise die Strömung des Prozessfluids zu verzögern und auf diese Weise nach Bernulli den Druck zu erhöhen. Die Rückführstufe wird hierbei gleichzeitig regelmäßig als Diffusor in einem nach radial außen gerichteten Strömungspfad und auch als Konfusor in einem radial nach innen gerichteten Strömungspfad bei der Zuleitung des Prozessfluids zu dem weiteren Laufrad ausgebildet. Die Rückführstufe ist relativ zu den Laufrädern unbewegt und regelmäßig verändern in der Rückführstufe vorgesehene Leitschaufeln den Drall und damit die Strömungsrichtung des Prozessfluids zur Vorbereitung auf den nachfolgenden Eintritt in die nachfolgende Verdichtung. Diese anspruchsvolle aerodynamische Aufgabe der Rückführstufe erfordert eine sorgfältige strömungstechnische Gestaltung zur Minimierung von Druckverlusten und zur Wirkungsgradoptimierung. Dennoch entstehen bei der Durchströmung von radialen Diffusoren und Konfusoren der Rückführstufe an den strömungsbenetzten Oberflächen reibungsbedingte und dem Grunde nach unvermeidbare Druckverluste, die den Wirkungsgrad der Turbomaschine reduzieren. Bei gegebenen Betriebsbedingungen hinsichtlich Gasart, Druck und Temperatur, sind die lokalen reibungsbedingten Druckverluste abhängig von der lokalen Strömungsgeschwindigkeit sowie der lokalen Rauheit oder Rauigkeit der strömungsbenetzen Oberfläche. In der Regel treten große Druckverluste dort auf, wo die lokalen Strömungsgeschwindigkeiten und gleichzeitig die lokalen Rauheiten der überströmten Oberflächen groß sind.In radial turbofluid energy machines, especially in radial turbocompressors process fluid is sucked axially by an impeller or impeller and output radially accelerated. In a multi-stage design, a so-called return stage takes over the supply of the process fluid discharged upstream from the impeller to a further downstream impeller. In this case, this return stage not only has the function of deflecting the process fluid radially outward in the flow direction in an axial flow direction and the other impeller, but also at least partially retard the flow of the process fluid and in this way to increase the pressure according to Bernulli. At the same time, the recirculation stage is regularly designed as a diffuser in a radially outwardly directed flow path and also as a confuser in a radially inwardly directed flow path in the supply of the process fluid to the further impeller. The recirculation stage is stationary relative to the impellers, and vanes provided in the recirculation stage regularly alter the swirl and thus the flow direction of the process fluid in preparation for subsequent entry into the subsequent compression. This demanding aerodynamic task of the recirculation stage requires careful fluidic design to minimize pressure losses and optimize efficiency. Nevertheless, due to the flow of radial diffusers and confusers of the recirculation stage at the surfaces wetted by the flow, friction-induced and basically unavoidable pressure losses occur which reduce the efficiency of the turbomachine. For given operating conditions in terms of gas type, pressure and temperature, the local friction-induced pressure losses are dependent on the local flow velocity and the local roughness or roughness of the surface wetted by flow. In general, large pressure drops occur where the local Flow rates and at the same time the local roughness of the overflow surfaces are large.

Aus der EP 1 433 960 B1 ist es bereits bekannt, die strömungsführenden Bauteile mittels einer Polierbearbeitung soweit zu glätten, dass der Gesamtwirkungsgrad des Verdichters sich erhöht. Üblicherweise wird für die strömungsbenetzten Oberflächen im radialen Diffusor oder Konfusor eine einheitliche maximale Rauheit (z. B. RZ12) gefordert, insbesondere dann, wenn diese Oberflächen aus einem Bauteil beziehungsweise in einem Fertigungsgang hergestellt werden. Dieses auch in der EP 1 433 960 B1 vorgeschlagenen Vorgehen beschert zusätzlichen Arbeitsaufwand und führt zu erheblichen Mehrkosten.From the EP 1 433 960 B1 It is already known to smooth the flow-leading components by means of polishing to the extent that the overall efficiency of the compressor increases. Usually, a uniform maximum roughness (eg RZ12) is required for the wetted surfaces in the radial diffuser or confuser, especially when these surfaces are made from one component or in one production run. This also in the EP 1 433 960 B1 proposed procedure brings additional work and leads to significant additional costs.

Aus den DE 603 20 519 T2 , US 2 419 669 A , EP 1 953 340 A2 sind bereits verschiedene Oberflächenbehandlungen, insbesondere Glättungen, für Oberflächen von Turbomaschinenkomponenten bekannt.From the DE 603 20 519 T2 . US 2 419 669 A . EP 1 953 340 A2 Various surface treatments, in particular smoothing, are already known for surfaces of turbomachine components.

Die Erfindung hat es sich ausgehend von dem beschriebenen Stand der Technik zur Aufgabe gemacht, die Oberfläche der strömungsführenden Bereiche der Rückführstufe derart zu gestalten, dass gegenüber den bekannten Lösungen ein reduzierter oder gegebenenfalls gleichbleibender Herstellungsaufwand bei gleichzeitig verbessertem Wirkungsgrad des Turboverdichters.The object of the invention, based on the described prior art, is to design the surface of the flow-guiding regions of the recycling stage in such a way that, compared with the known solutions, a reduced or, if necessary, constant production outlay is achieved while at the same time improving the efficiency of the turbocompressor.

Zur Lösung der erfindungsgemäßen Aufgabe wird eine Rückführstufe der eingangs definierten Art mit den zusätzlichen Merkmalen des kennzeichnenden Teils des Anspruchs 1 vorgeschlagen. Die jeweils rückbezogenen Unteransprüche beinhalten vorteilhafte Weiterbildungen der Erfindung.To achieve the object of the invention, a feedback stage of the type defined is proposed with the additional features of the characterizing part of claim 1. The respective dependent claims contain advantageous developments of the invention.

Begriffe, wie axial, tangential, radial oder Umfangsrichtung beziehen sich stets - wenn nicht anders angegeben - auf eine Rotationsachse des radialen Turboverdichters. Bei der erfindungsgemäßen Rückführstufe handelt es sich um ein sich ringförmig um die Rotationsachse erstreckendes Bauteil. Dieses Bauteil kann in Umfangsrichtung geteilt oder ungeteilt ausgebildet sein. Bevorzugt ist eine in Umfangsrichtung geteilte Ausbildung vorgesehen, damit eine Teilfuge der Rückführstufe oder der Rückführstufen entsteht, die ein Trennen des Rotors ohne ein Zerlegen des Rotors bei geteilter Rückführstufe ermöglicht. Grundsätzlich ist auch eine in Umgangsrichtung ungeteilte Ausbildung der Rückführstufe denkbar, insbesondere bei einem axial zerlegbaren Rotor.Terms such as axial, tangential, radial or circumferential direction always refer - unless otherwise stated - to an axis of rotation of the radial turbocompressor. The return stage according to the invention is a component which extends annularly around the axis of rotation. This Component may be divided in the circumferential direction or formed undivided. Preferably, a divided in the circumferential direction training is provided so that a parting line of the return stage or the return stages is formed, which allows a separation of the rotor without disassembly of the rotor at split feedback stage. In principle, an embodiment of the feedback stage which is undivided in the direction of contact is also conceivable, in particular in the case of an axially separable rotor.

Im Zusammenhang dieser Erfindung bedeutet Rauheit stets - wenn nicht anders angegeben - die Mittlere Rautiefe Rz in [pm] nach DIN EN ISO 4287:1998.In the context of this invention roughness always means - unless stated otherwise - the mean roughness Rz in [pm] according to DIN EN ISO 4287: 1998.

Die Rückführstufe ist in der Regel axial geteilt ausgebildet, wobei ein Schaufelboden den radial nach außen geführten Ast des Strömungskanals von einem radial nach innen geführten Ast stromabwärts der 180°-Umlenkung der Strömung trennt und dieser Schaufelboden an einen Zwischenboden der Rückführstufe angebracht ist, wobei der Zwischenboden einerseits der Strömungsführung in der Rückführstufe dient und andererseits der Befestigung der Rückführstufe an den sonstigen Bauelementen des Turboverdichters, beispielsweise an einem Innengehäuse oder an einem ein Innenbündel des Turboverdichters zusammenfassenden Träger.The return stage is generally formed axially divided, wherein a blade bottom separates the radially outwardly guided branch of the flow channel of a radially inwardly guided branch downstream of the 180 ° deflection of the flow and this blade bottom is attached to an intermediate floor of the return stage, said Intermediate bottom on the one hand, the flow guide in the return stage is used and on the other hand, the attachment of the return stage to the other components of the turbocompressor, for example on an inner housing or on an inner bundle of the turbo compressor summarizing carrier.

Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass sich der Strömungskanal der Rückführstufe gedanklich in die folgenden Abschnitte aufgliedern lässt.An advantageous development of the invention provides that the flow channel of the feedback stage can mentally be divided into the following sections.

Ein erster Abschnitt erstreckt sich radial und weist eine radiale Öffnung zu einem stromaufwärts angeordneten Impeller an einem ersten Ende des ersten Abschnitts auf.A first portion extends radially and has a radial opening to an upstream impeller at a first end of the first portion.

Ein zweiter Abschnitt grenzt mit einem ersten Ende des zweiten Abschnitts an dem zweiten Ende des - im Falle des Turboverdichters stromaufwärts angeordneten - ersten Abschnitts an und die Strömung wird um etwa 180° von einer Radialrichtung in die entgegengesetzte Radialrichtung umgelenkt.A second section adjoins a first end of the second section at the second end of the first section upstream of the turbocompressor in the case of the turbocompressor, and the flow is deflected by approximately 180 ° from a radial direction in the opposite radial direction.

Ein dritter Abschnitt, der im Wesentlichen radial verläuft, grenzt mit einem ersten Ende an einem - im Falle des Turboverdichters stromaufwärts angeordneten - zweiten Ende des zweiten Abschnitts an.A third section, which extends substantially radially, adjoins with a first end on a second end of the second section arranged upstream, in the case of the turbocompressor.

Ein vierter Abschnitt grenzt radial mit einem ersten Ende des vierten Abschnitts radial an einem zweiten Ende des - im Falle des Turboverdichters stromaufwärts angeordneten - dritten Abschnitts an. Der vierte Abschnitt lenkt die Strömung um etwa 90° in axiale Richtung um und mit einem zweiten Ende des vierten Abschnitts weist er eine axiale Öffnung zu dem zweiten stromabwärts angeordneten Impeller auf.A fourth portion radially adjoins a first end of the fourth portion radially at a second end of the third portion, which is upstream in the case of the turbocompressor. The fourth section diverts the flow by about 90 ° in the axial direction, and with a second end of the fourth section, it has an axial opening to the second downstream impeller.

In diesen Abschnitten sind bevorzugt nach der Erfindung die rauen Bereiche an verschiedenen Positionen, im Folgenden im Einzelnen angegeben, vorgesehen.In these sections, according to the invention, the rough areas are preferably provided at different positions, which are specified in detail below.

Bevorzugt ist ein erster rauer Bereich im ersten Abschnitt auf derjenigen axialen Begrenzungsoberfläche angeordnet, die axial von dem dritten Abschnitt weiter entfernt ist als die andere axiale Begrenzungsoberfläche.Preferably, a first rough region in the first portion is disposed on the axial boundary surface that is axially further from the third portion than the other axial boundary surface.

Bevorzugt ist ein zweiter rauer Bereich auf der radial inneren Begrenzungsoberfläche des zweiten Abschnitts beginnend an dem zweiten Ende des zweiten Abschnitts sich zwischen 30% bis 70% der Erstreckung entlang des Strömungskanals sich erstreckend angeordnet.Preferably, a second rough region on the radially inner boundary surface of the second portion beginning at the second end of the second portion is disposed extending between 30% to 70% of the extent along the flow channel.

Bevorzugt ist ein dritter rauer Bereich direkt an den zweiten rauen Bereich im dritten Abschnitt angrenzend und sich zwischen 5% bis 40% entlang des Strömungskanals erstreckend vorgesehen.Preferably, a third rough region is directly adjacent to the second rough region in the third section and is provided extending between 5% to 40% along the flow channel.

Bevorzugt befindet sich ein vierter rauer Bereich im vierten Abschnitt auf der radial äußeren Begrenzungsoberfläche.Preferably, a fourth rough region is located in the fourth section on the radially outer boundary surface.

Eine bevorzugte Weiterbildung der Erfindung sieht vor, dass die rauen Bereiche sich jeweils über den gesamten Umfang des Strömungskanals erstrecken.A preferred embodiment of the invention provides that the rough areas each extend over the entire circumference of the flow channel.

Wenn die Radialturbofluidenergiemaschine ein Turboverdichter ist, durchströmt ein Prozessfluid die Abschnitte in der Reihenfolge erster Abschnitt, zweiter Abschnitt, dritter Abschnitt, vierter Abschnitt.When the radial turbofluid energy machine is a turbocompressor, a process fluid flows through the sections in the order of the first section, the second section, the third section, the fourth section.

Wenn die Radialturbofluidenergiemaschine ein Turboexpander ist durchströmt ein Prozessfluid die Abschnitte in der Reihenfolge vierter Abschnitt, dritter Abschnitt, zweiter Abschnitt, erster Abschnitt.When the radial turbofan energy machine is a turboexpander, a process fluid flows through the sections in the order fourth section, third section, second section, first section.

Sinnvoll kann der erste Abschnitt des Strömungskanals Leitschaufeln aufweisen, um die Strömung auf die stromabwärts gegebenen Bedingungen auszurichten.Suitably, the first portion of the flow channel may include vanes to direct the flow to downstream conditions.

Zweckmäßig weisen die rauen Bereiche eine mittlere Rauheit 20µm < Rz, besonders bevorzugt 30µm < Rz auf.Expediently, the rough areas have an average roughness of 20 μm <Rz, particularly preferably 30 μm <Rz.

Bevorzugt weisen die nicht rauen Bereiche eine mittlere Rauheit 20µm > Rz, besonders bevorzugt 10µm > Rz auf.The non-rough regions preferably have an average roughness of 20 μm> Rz, particularly preferably 10 μm> Rz.

In den Fällen, wo die lokale Strömungsgeschwindigkeit nicht sinnvoll an eine gegebene lokale Oberflächen- Rauheit angepasst werden kann, um die reibungsbedingten Druckverluste möglichst klein zu halten, soll nach der Erfindung umgekehrt die lokale Oberflächenrauigkeit an die lokale Strömungsgeschwindigkeit angepasst werden. Die Bereichs-spezifische Rauheit der Oberfläche nach der Erfindung sieht vor, dass im Bereich hoher Strömungsgeschwindigkeiten die strömungsbenetze Oberfläche mit kleinerer Rauheit ausgeführt wird als im Bereich kleinerer Strömungsgeschwindigkeiten.In cases where the local flow rate can not be sensibly adapted to a given local surface roughness in order to minimize the pressure losses due to friction, according to the invention, the local surface roughness is to be adapted to the local flow velocity. The area-specific roughness of the surface according to the invention provides that, in the region of high flow velocities, the flow-wetted surface is designed with a smaller roughness than in the region of lower flow velocities.

Eine bevorzugte Anwendung der Erfindung sieht vor, dass die Rückführstufe einen beschaufelten radialen Diffusor oder im Fall der Radialturbine einen beschaufelten radialen Konfusor aufweist.A preferred application of the invention provides that the recirculation stage a bladed radial diffuser or im Case of the radial turbine having a bladed radial Konfusor.

Eine andere bevorzugte Anwendung der Erfindung sieht vor, dass die Rückführstufe einen schaufellosen radialen Diffusor oder im Fall der Radialturbine einen schaufellosen radialen Konfusor aufweist.Another preferred application of the invention provides that the return stage has a blade-less radial diffuser or, in the case of the radial turbine, a blade-less radial confuser.

Das Geschwindigkeitsniveau im radialen Diffusor beziehungsweise im radialen Konfusor ist am Ringrauminnendurchmesser - also am Laufradaußendurchmesser - am höchsten und nimmt mit zunehmendem Radius - also nach außen hin - ab. Gleichzeitig wird die strömungsbenetze zu bearbeitende Oberfläche der Ringraumwände mit dem Radius größer. Durch das erfindungsgemäß bereichsweise Anpassen der Rauheit an das lokale Strömungsgeschwindigkeitsniveau der strömungsbenetzten Oberflächen in radialen Diffusoren und Konfusoren werden die reibungsbedingten Druckverluste reduziert, ohne notwendigerweise die Herstellkosten der Bauteile zu erhöhen. Dies ist insbesondere deswegen erreicht, weil dem erhöhten Aufwand einer kleineren Rauheit auf kleiner Fläche im Bereich hoher Strömungsgeschwindigkeiten ein verringerter Aufwand mit größerer zulässiger Rauheit auf großer Fläche im Bereich kleinerer Strömungsgeschwindigkeiten gegenübersteht.The speed level in the radial diffuser or in the radial confuser is at the annular space inside diameter - ie at the impeller outer diameter - highest and decreases with increasing radius - ie outward - from. At the same time the wetted surfaces to be machined surface of the annular space walls with the radius becomes larger. Due to the invention according to the invention adjusting the roughness of the local flow rate level of the wetted surfaces in radial diffusers and confusers friction-related pressure losses are reduced without necessarily increasing the manufacturing cost of the components. This is achieved in particular because the increased complexity of a smaller roughness on a small area in the area of high flow velocities is offset by a reduced outlay with a larger permissible roughness on a large area in the region of lower flow velocities.

Im Folgenden ist die Erfindung anhand eines speziellen Ausführungsbeispiels unter Bezugnahme auf eine Zeichnung näher beschrieben. Es zeigt:

Figur 1
eine schematische Darstellung eines Längsschnitts durch einen Turboverdichter gemäß der Erfindung.
In the following the invention with reference to a specific embodiment with reference to a drawing is described in more detail. It shows:
FIG. 1
a schematic representation of a longitudinal section through a turbocompressor according to the invention.

Figur 1 zeigt einen schematischen Längsschnitt durch eine Rückführstufe RS von einem ersten Impeller IMP1 zu einem zweiten Impeller IMP2 eines Turboverdichters TCO. FIG. 1 shows a schematic longitudinal section through a return stage RS from a first impeller IMP1 to a second impeller IMP2 a turbocompressor TCO.

Die beiden Impeller IMP1, IMP2 sind Bestandteile eines Rotors R, wobei die Impeller IMP1, IMP2 kraftschlüssig auf einer sich entlang einer Achse X erstreckenden Welle SH angebracht sind. Der Rotor R ist von strömungsführenden stehenden Bauteilen umgeben, von denen hier eine Rückführstufe RS dargestellt ist. Eine mehrstufige Turbomaschine umfasst in der Regel mehrere Rückführstufen RS, die in Strömungsrichtung betrachtet von einem ersten Impeller IMP1, der im Falle des Turboverdichters TCO ein Prozessfluid PF axial ansaugt und radial ausgibt, das Prozessfluid PF im Anschluss an eine radiale Diffusorstrecke um 180° umlenkt und zurück nach radial innen führt und anschließend in axiale Richtung umlenkt, um das Prozessfluid PF dem zweiten stromabwärts gelegenen Impeller IMP2 zuzuführen.The two impellers IMP1, IMP2 are components of a rotor R, wherein the impeller IMP1, IMP2 frictionally on a are attached along an axis X extending shaft SH. The rotor R is surrounded by flow-leading stationary components, of which a return stage RS is shown here. As a rule, a multistage turbomachine comprises a plurality of return stages RS which, viewed in the direction of flow, deflects the process fluid PF by 180 ° following a radial diffuser path, by a first impeller IMP1, which in the case of the turbo-compressor TCO axially draws in and radially discharges a process fluid PF back to radially inward and then deflects in the axial direction to supply the process fluid PF to the second downstream impeller IMP2.

Die Rückführstufe umfasst in der Regel einen Schaufelboden SB und einem Zwischenboden ZB, die mittels Leitschaufeln V einen Strömungskanal zwischen sich ausbildend fest miteinander verbunden sind. In der Regel sind die Rückführstufen RS in Umfangsrichtung geteilt ausgebildet, so dass eine Teilung der Rückführstufe in einer Teilfuge die Entnahme des Rotors aus der Struktur der Rückführstufen ermöglicht. Der Rotor wird bei der Montage radial eingelegt beziehungsweise bei der Demontage radial enthoben.As a rule, the return stage comprises a blade bottom SB and an intermediate bottom ZB, which are firmly connected to one another by means of guide vanes V forming a flow channel between them. In general, the return stages RS are formed divided in the circumferential direction, so that a division of the return stage in a parting line allows the removal of the rotor from the structure of the return stages. The rotor is radially inserted during assembly or removed radially during disassembly.

Die Rückführstufen RS weisen zu dem Rotor R an verschiedenen Stellen Wellendichtungen SHS auf, die den ungenutzten Abbau von Druckdifferenzen beziehungsweise Beipassströmungen im Betrieb verhindern sollen.The return stages RS have to the rotor R at different points shaft seals SHS, which should prevent the unused degradation of pressure differences or Beipassströmungen in operation.

Der von dem ersten Impeller IMP1 zu dem zweiten Impeller IMP2 sich erstreckende Strömungskanal CH ist zum Zwecke der Definition der Erfindung gedanklich in vier aufeinanderfolgende, im Falle des Turboverdichters TCO in Strömungsrichtung hintereinander angeordnete, Abschnitte S1, S2, S3, S4 untergliedert. Im Falle des Turboexpanders ist die Nummerierung dieser Abschnitte S1-S4 entgegen der Strömungsrichtung. Der erste Abschnitt S1 erstreckt sich im Wesentlichen radial und weist eine radiale Öffnung zu dem ersten Impeller IMP1 an einem ersten Ende S1E1 des ersten Abschnittes S1 auf. Der zweite Abschnitt S2 grenzt mit einem ersten Ende S2E1 des zweiten Abschnitts S2 an einem zweiten Ende S1E2 des ersten Abschnitts S1 an und lenkt die Strömung durch den Kanal CH um etwa 180° von einer Radialrichtung in die entgegengesetzte Radialrichtung um. Im Falle des Turboverdichters TCO wird die Strömung von radial nach außen gerichtet umgelenkt in eine Richtung nach radial innen. An dem zweiten Abschnitt S2 schließt sich der dritte Abschnitt S3 mit einem ersten Ende S3E1 des dritten Abschnitts S3 angrenzend an dem zweiten Ende S2E2 des zweiten Abschnitts S2 an. Dieser Abschnitt verläuft im Wesentlichen radial und führt im Falle des Turboverdichters TCO die Strömung von radial weiter außen nach radial weiter innen. Der vierte Abschnitt grenzt radial mit einem ersten Ende S4E1 des vierten Abschnitts S4 radial an einem zweiten Ende S3E2 des dritten Abschnitts S3 an und lenkt die Strömung um etwa 90° in Richtung des zweiten Impellers IMP2 um. Ein zweites Ende S4E2 des vierten Abschnitts S4 grenzt an den zweiten Impeller IMP2 an.For the purposes of the definition of the invention, the flow channel CH extending from the first impeller IMP1 to the second impeller IMP2 is conceptually subdivided into four successive sections S1, S2, S3, S4 arranged in succession in the flow direction in the case of the turbocompressor TCO. In the case of the turboexpander, the numbering of these sections S1-S4 is opposite to the flow direction. The first section S1 extends substantially radially and has a radial opening to the first impeller IMP1 at a first end S1E1 of the first section S1. The second Section S2 abuts with a first end S2E1 of the second section S2 at a second end S1E2 of the first section S1 and deflects the flow through the channel CH by about 180 ° from a radial direction in the opposite radial direction. In the case of the turbocompressor TCO, the flow is deflected from radially outward in a direction radially inward. At the second section S2, the third section S3 connects to a first end S3E1 of the third section S3 adjacent to the second end S2E2 of the second section S2. This section extends essentially radially and, in the case of the turbocompressor TCO, leads the flow from radially further outward to radially further inward. The fourth portion radially adjoins a first end S4E1 of the fourth portion S4 radially at a second end S3E2 of the third portion S3 and diverts the flow by about 90 ° in the direction of the second impeller IMP2. A second end S4E2 of the fourth section S4 adjoins the second impeller IMP2.

Ein erster rauer Bereich RZ1 befindet sich im ersten Abschnitt S1 auf derjenigen axialen Begrenzungsoberfläche, die axial von dem dritten Abschnitt S3 weiter entfernt ist als die andere axiale Begrenzungsoberfläche.
Ein zweiter rauer Bereich RZ2 befindet sich auf der radial inneren Begrenzungsoberfläche des zweiten Abschnitts S2 beginnend an dem zweiten Ende S2E2 des zweiten Abschnitts S2. Dieser zweite raue Bereich RZ2 erstreckt sich zwischen 30%-70% der Erstreckung entlang des Strömungskanals des zweiten Abschnitts S2.
Ein dritter rauer Bereich RZ3 grenzt direkt an dem zweiten rauen Bereich RZ2 im dritten Abschnitt S3 an und erstreckt sich zwischen 5%-40% entlang des Strömungskanals CH im dritten Abschnitt S3.
Ein vierter rauer Bereich RZ4 erstreckt sich im vierten Abschnitt S4 auf der radial äußeren Begrenzungsoberfläche.
A first rough region RZ1 is located in the first section S1 on the axial boundary surface that is axially further away from the third section S3 than the other axial boundary surface.
A second rough region RZ2 is located on the radially inner boundary surface of the second portion S2 beginning at the second end S2E2 of the second portion S2. This second rough region RZ2 extends between 30% -70% of the extent along the flow channel of the second section S2.
A third rough region RZ3 directly adjoins the second rough region RZ2 in the third section S3 and extends between 5% -40% along the flow channel CH in the third section S3.
A fourth rough region RZ4 extends in the fourth section S4 on the radially outer boundary surface.

Grundsätzlich ist es denkbar, dass von den vier rauen Bereichen RZ1-RZ4 nicht alle oder nur ein einziger rauer Bereich zur Verbesserung des Wirkungsgrads der Turbomaschine TCO vorgesehen ist. Der höchste Wirkungsgradgewinn wird durch die vollständige Implementierung der rauen Bereiche RZ1-RZ4 nach der Erfindung und gemäß dem Ausführungsbeispiel nach Figur 1 erreicht. Grundsätzlich ist es denkbar, dass von den Begrenzungsoberflächen SFA des Strömungskanals CH die rauen Bereiche RZ1-RZ3 extra aufgeraut gestaltet sind oder die sonstigen Bereiche der Begrenzungsoberfläche SFA gegenüber den rauen Bereichen RZ1-RZ4 mit einer niedrigeren Oberflächenrauigkeit versehen werden, beispielsweise mittels Polierens. Daneben ist es auch denkbar, dass sowohl ein Aufrauen der rauen Bereiche RZ1-RZ4 und ein Polieren der sonstigen Begrenzungsoberflächen SFA vorgesehen wird, um den erfindungsmäßen Effekt zu erzielen.In principle, it is conceivable that not all or only one rough area of the four rough areas RZ1-RZ4 is provided to improve the efficiency of the turbomachine TCO. The highest efficiency gain is achieved by the complete implementation of the rough regions RZ1-RZ4 according to the invention and according to the embodiment FIG. 1 reached. In principle, it is conceivable that the rough areas RZ1-RZ3 are specially roughened by the boundary surfaces SFA of the flow channel CH or the other areas of the boundary surface SFA are provided with a lower surface roughness than the rough areas RZ1-RZ4, for example by means of polishing. In addition, it is also conceivable that both a roughening of the rough areas RZ1-RZ4 and a polishing of the other boundary surfaces SFA is provided in order to achieve the erfindungsmäßen effect.

Claims (15)

  1. Return stage (RS) of a radial turbo fluid energy machine, in particular a radial turbocompressor (TCO), having an axis of rotation (X),
    Return stage (RS) comprising an annular flow channel (CH) for feeding a flowing process fluid (PF) from a flow opening of a first impeller (IMP1) to a flow opening of a second impeller (IMP2) arranged downstream,
    characterized in that
    the flow channel (CH) is defined by boundary surface regions (SFA), of which at least one specific rough region extending in the circumferential direction has a surface roughness (RZ) which is increased with respect to the other regions.
  2. Return stage (RS) according to Claim 1, wherein the flow channel (CH) has a first portion (S1), which extends radially and has a radial opening to an impeller (IMP) at a first end (S1E1) of the first portion (S1).
  3. Return stage (RS) according to Claim 2, wherein the flow channel (CH) has a second portion (S2), which adjoins a second end (S1E2) of the first portion (S1) with a first end (S2E1) of the second portion (S2) and deflects the flow by approximately 180° from one radial direction into the opposing radial direction.
  4. Return stage (RS) according to Claim 3, wherein the flow channel (CH) has a third portion (S3), which runs substantially radially and adjoins a second end (S2E2) of the second portion (S2) with a first end (S3E1) of the third portion (S3).
  5. Return stage (RS) according to Claim 4, wherein the flow channel (CH) has a fourth portion (S4), which radially adjoins a second end (S3E2) of the third portion (S3) radially with a first end (S4E1) of the fourth portion (S4) and deflects the flow by approximately 90° and, with a second end (S4E2) of the fourth portion (S4), has an axial opening to the second impeller (IMP2).
  6. Return stage (RS) according to Claim 2, wherein a first rough region (RZ1) in the first portion (S1) is arranged on that axial boundary surface which is at a greater axial distance from the third portion (S3) than the other axial boundary surface.
  7. Return stage (RS) according to Claims 2, 3 or 2, 3, 6, wherein a second rough region (RZ2) on the radially inner boundary surface of the second portion (S2), beginning at the second end (S2E2) of the second portion (S2), is located in a manner extending over between 30% and 70% of the extent along the flow channel (CH).
  8. Return stage (RS) according to Claims 2, 3, 4 or 2, 3, 4, 6 or 2, 3, 4, 6, 7, wherein a third rough region (RZ3) directly adjoins the second rough region (RZ2) in the third portion (S3) and is located in a manner extending between 5% and 40% along the flow channel (CH).
  9. Return stage (RS) according to Claims 2, 3, 4, 5 or 2, 3, 4, 5, 6 or 2, 3, 4, 5, 6, 7 or 2, 3, 4, 5, 6, 7, 8, wherein a fourth rough region (RZ4) is located in the fourth portion (S4) on the radially outer boundary surface.
  10. Return stage (RS) according to at least one of the preceding Claims 1 to 9, wherein the rough regions (RZ1-RZ4) each extend over the entire extent of the flow channel (CH).
  11. Return stage (RS) according to at least one of the preceding Claims 1 to 10, wherein the fluid energy machine (FEM) is a turbocompressor (TCO) and a process fluid (PF) flows through the portions in the sequence of first portion (S1), second portion (S2), third portion (S3), fourth portion (S4).
  12. Return stage (RS) according to at least one of the preceding Claims 1 to 10, wherein the fluid energy machine is a turboexpander and a process fluid (PF) flows through the portions in the sequence of fourth portion (S4), third portion (S3), second portion (S2), first portion (S1).
  13. Return stage (RS) according to at least one of the preceding Claims 1 to 12, wherein the first portion (S1) of the flow channel (CH) has guide blades (V).
  14. Return stage (RS) according to at least one of the preceding Claims 1 to 13, wherein the rough regions have a mean roughness of 20 µm < Rz.
  15. Return stage (RS) according to at least one of the preceding Claims 1 to 13, wherein the non-rough regions have a mean roughness of Rz < 20 µm.
EP15774561.3A 2014-09-30 2015-09-28 Return channel of a multistage turbocompressor or turboexpander with rough wall surfaces Not-in-force EP3167195B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014219821.6A DE102014219821A1 (en) 2014-09-30 2014-09-30 Return step
PCT/EP2015/072208 WO2016050669A1 (en) 2014-09-30 2015-09-28 Return stage of a multi-stage turbocompressor or turboexpander having rough wall surfaces

Publications (2)

Publication Number Publication Date
EP3167195A1 EP3167195A1 (en) 2017-05-17
EP3167195B1 true EP3167195B1 (en) 2018-07-11

Family

ID=54249461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15774561.3A Not-in-force EP3167195B1 (en) 2014-09-30 2015-09-28 Return channel of a multistage turbocompressor or turboexpander with rough wall surfaces

Country Status (6)

Country Link
US (1) US20170292536A1 (en)
EP (1) EP3167195B1 (en)
CN (1) CN107076159A (en)
DE (1) DE102014219821A1 (en)
RU (1) RU2661916C1 (en)
WO (1) WO2016050669A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219556A1 (en) 2015-10-08 2017-04-13 Rolls-Royce Deutschland Ltd & Co Kg Diffuser for radial compressor, centrifugal compressor and turbo machine with centrifugal compressor
DE102016208265A1 (en) 2016-05-13 2017-11-16 Siemens Aktiengesellschaft Return stage, radial turbocompressor
GB2558917B (en) * 2017-01-19 2021-02-10 Gkn Aerospace Sweden Ab Transition duct of a multi-stage compressor with areas of different surface roughness
JP6935312B2 (en) 2017-11-29 2021-09-15 三菱重工コンプレッサ株式会社 Multi-stage centrifugal compressor
DE102018100336A1 (en) 2018-01-09 2019-07-11 Man Truck & Bus Ag Piston for an internal combustion engine
US11098730B2 (en) 2019-04-12 2021-08-24 Rolls-Royce Corporation Deswirler assembly for a centrifugal compressor
JP2021032106A (en) * 2019-08-22 2021-03-01 三菱重工業株式会社 Vaned diffuser and centrifugal compressor
CN110750845B (en) * 2019-11-13 2024-04-05 中国科学院工程热物理研究所 Method for improving sealing efficiency of disc cavity based on end wall rough area
CN112412884A (en) * 2020-05-09 2021-02-26 北京理工大学 Roughness stability expanding method, stability expanding structure and roughness stability expanding centrifugal compressor
US11441516B2 (en) 2020-07-14 2022-09-13 Rolls-Royce North American Technologies Inc. Centrifugal compressor assembly for a gas turbine engine with deswirler having sealing features
US11286952B2 (en) 2020-07-14 2022-03-29 Rolls-Royce Corporation Diffusion system configured for use with centrifugal compressor
DE102020118650A1 (en) 2020-07-15 2022-01-20 Ventilatorenfabrik Oelde, Gesellschaft mit beschränkter Haftung centrifugal fan
US11578654B2 (en) 2020-07-29 2023-02-14 Rolls-Royce North American Technologies Inc. Centrifical compressor assembly for a gas turbine engine
CN111997937B (en) * 2020-09-21 2021-11-30 江西省子轩科技有限公司 Compressor with interstage stator
CN113107872B (en) * 2021-05-11 2023-02-03 内蒙古兴洋科技股份有限公司 Centrifugal compressor for electronic high-purity gas
FR3127517A1 (en) * 2021-09-27 2023-03-31 Safran Secondary stream cavity surface between a fixed wheel and a moving wheel of an improved turbomachine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2419669A (en) * 1942-05-08 1947-04-29 Fed Reserve Bank Diffuser for centrifugal compressors
CA1252075A (en) * 1983-09-22 1989-04-04 Dresser Industries, Inc. Diffuser construction for a centrifugal compressor
DE4319628A1 (en) * 1993-06-15 1994-12-22 Klein Schanzlin & Becker Ag Structured surfaces of fluid machine components
US6092766A (en) * 1995-12-12 2000-07-25 Ulrich Laroche Process for forming a surface for contact with a flowing fluid and body with such surface regions
RU2275533C2 (en) * 2001-06-29 2006-04-27 ОАО Самарский научно-технический комплекс им. Н.Д. Кузнецова Multistage centrifugal compressor
ITMI20022753A1 (en) 2002-12-23 2004-06-24 Nuovo Pignone Spa HIGH PRESSURE CENTRIFUGAL COMPRESSOR WITH IMPROVED EFFICIENCY
RU2265141C1 (en) * 2004-04-12 2005-11-27 Кожевин Виталий Валерьевич Multistage compressor
EP1878879A1 (en) * 2006-07-14 2008-01-16 Abb Research Ltd. Turbocharger with catalytic coating
DE102007005384A1 (en) * 2007-02-02 2008-08-07 Rolls-Royce Deutschland Ltd & Co Kg Turbomachine and rotor blade of a turbomachine
DE102009019061A1 (en) * 2009-04-27 2010-10-28 Man Diesel & Turbo Se Multistage centrifugal compressor
JP5316365B2 (en) * 2009-10-22 2013-10-16 株式会社日立プラントテクノロジー Turbo fluid machine
JP2011132877A (en) * 2009-12-24 2011-07-07 Mitsubishi Heavy Ind Ltd Multistage radial turbine
CN103244461B (en) * 2012-02-14 2016-03-30 珠海格力电器股份有限公司 Low solidity blade diffuser and manufacturing method thereof
EP2749771B1 (en) * 2012-12-27 2020-04-22 Thermodyn Device for generating a dynamic axial thrust to balance the overall axial thrust of a radial rotating machine
CN104781562B (en) * 2013-01-28 2018-03-09 三菱重工业株式会社 Centrifugal rotation machinery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014219821A1 (en) 2016-03-31
US20170292536A1 (en) 2017-10-12
RU2661916C1 (en) 2018-07-23
EP3167195A1 (en) 2017-05-17
WO2016050669A1 (en) 2016-04-07
CN107076159A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
EP3167195B1 (en) Return channel of a multistage turbocompressor or turboexpander with rough wall surfaces
EP2242931B1 (en) Circulation structure for a turbo compressor
EP1530670B1 (en) Recirculation structure for a turbocompressor
EP2808559B1 (en) Structure assembly for a turbomachine
EP2647795B1 (en) Seal system for a turbo engine
EP3091177B1 (en) Rotor for a flow engine and compressor
EP2993357B1 (en) Radial compressor stage
EP3325812B1 (en) Side-channel machine (compressor, vacuum pump or blower) with a bleed duct in the stripper
CH707543A2 (en) Turbo engine with swirls retardant seal.
EP2818724B1 (en) Fluid flow engine and method
DE102014012764A1 (en) Radial compressor stage
EP3109410B1 (en) Stator device for a turbo engine with a housing device and multiple guide vanes
EP2808556B1 (en) Structure assembly for a turbo machine
DE102020201830B4 (en) VANE DIFFUSER AND CENTRIFUGAL COMPRESSOR
EP2514975B1 (en) Flow engine
EP2647796A1 (en) Seal system for a turbo engine
EP3388626B1 (en) Contouring of a blade row platform
EP3561228A1 (en) Turbomachine and blade, blade segment and assembly for a turbomachine
WO2019034740A1 (en) Diffuser for a radial compressor
EP3164578A1 (en) Discharge region of a turbocharger turbine
JP2011099438A (en) Steampath flow separation reduction system
EP3492701B1 (en) Turbomachine flow channel
EP2811117A2 (en) Shroud assembly for a turbo engine
DE102016218983A1 (en) Blades with in the flow direction S-shaped course for wheels of radial design
EP3109408A1 (en) Stator device for a turbo engine with a housing device and multiple guide vanes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180228

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1017167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005059

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180924

Year of fee payment: 4

Ref country code: IT

Payment date: 20180930

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181012

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005059

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

26N No opposition filed

Effective date: 20190412

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180711

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190928

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1017167

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200928