EP3161401B1 - Vorkühler für luftgekühlte wärmetauscher - Google Patents

Vorkühler für luftgekühlte wärmetauscher Download PDF

Info

Publication number
EP3161401B1
EP3161401B1 EP15722412.2A EP15722412A EP3161401B1 EP 3161401 B1 EP3161401 B1 EP 3161401B1 EP 15722412 A EP15722412 A EP 15722412A EP 3161401 B1 EP3161401 B1 EP 3161401B1
Authority
EP
European Patent Office
Prior art keywords
cooler
air
temperature
tube bundle
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15722412.2A
Other languages
English (en)
French (fr)
Other versions
EP3161401A1 (de
Inventor
Nicholas F. Urbanski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
ExxonMobil Upstream Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Upstream Research Co filed Critical ExxonMobil Upstream Research Co
Publication of EP3161401A1 publication Critical patent/EP3161401A1/de
Application granted granted Critical
Publication of EP3161401B1 publication Critical patent/EP3161401B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies

Definitions

  • Air-cooled heat exchangers are large, semi-enclosed structures used to cool fluids in industrial processes requiring dissipation of large quantities of heat.
  • ACHEs generally include a tube bundle, which may have spiral-wound fins upon the tubes, and a fan, which moves air across the tubes.
  • air-cooled exchangers may be used for the greater part of process cooling.
  • substantially all cooling may be done with air.
  • this increased use of ACHEs may be explained by the lack of available water for water cooling, significant increases in water costs, concern for water pollution, the heat to be removed is too low for water cooling to be economical, etc.
  • Process ACHEs sometimes called fin-fan heat exchangers, function by passing cooler air (forced or induced) across a bank (or bundle) of tubes via one or more motorized fans to cool the process fluid passing through the tubes.
  • the process fluid in the tubes may be liquid, vapor, a mixture of both, or contain solids.
  • the tubes may be plain, externally finned, internally finned, continuously finned, and/or possess numerous heat transfer enhancements familiar to those experienced in the practice.
  • the magnitude of process fluid cooling is dependent on the temperature of the air entering the heat exchanger.
  • the ambient air temperature drives the overall design and size (physical footprint) of ACHEs.
  • Ambient temperature is substantially the temperature of the outside air at the location of the facility, which, depending on the location of the facility, may range from about -40 °C to about +40 °C, depending on the location of the facility and the given time period of concern (e.g., hour, day, month, season, etc.).
  • a design ambient air temperature may be employed in the design of ACHEs.
  • the design ambient air temperature may be based on the maximum-recorded air temperature at the plant or some percentage thereof, e.g., as derived from an accepted exceedance probability percentage.
  • the design ambient air temperature may be used to ensure that the unit will operate satisfactorily (i.e., the tubeside process fluid will reach an acceptable outlet temperature) under most or all expected operating conditions. In conditions exceeding the design ambient air temperature, some or all of the capabilities of the process may have to be taken offline or otherwise operate at less than optimal efficiency and/or performance.
  • a design challenge may arise when the applied design ambient air temperature only affects the process for a limited window of time, e.g., seasons, months, weeks, days, or less.
  • a maximum ambient air temperature that decreases the temperature difference between the inlet air to the unit and the desired outlet of the tubeside process fluid may control the design of the ACHE.
  • This design practice decreases the heat transfer driving force, increases the required heat transfer area, and increases the unit's footprint.
  • Customary solutions for reaching the desired tubeside outlet temperature in such situations include requiring an additional kit before reaching the next unit operation. These and other solutions are based on an expected maximum air ambient temperature that may occur only for relatively brief periods throughout the operating year. Similar challenges may arise when climates, climate patterns, and/or operating environments change and cause a mismatch between the design ambient air temperature and actual ambient air temperatures, or when system efficiencies decrease over time and the former design criteria are no longer applicable to the in-use system.
  • a first coolant flows through the first exchanger and a second coolant flow through the second heat exchanger in such a manner that the first heat exchanger cools the first fluid to a first temperature and the second heat exchanger cools the first fluid from the first temperature to a second temperature that is lower than the first temperature.
  • U.S. Patent No. US 6092377 titled "Air Cooled Two Stage Condenser for Air Conditioning and Refrigeration System," describing a self-contained two-stage condenser construction for air conditioning a refrigeration system.
  • Still another example is U.S. Patent No.
  • US 6755158 titled “Vehicle Charge Air Cooler with a Pre-Cooler,” describing an air-cooled charge air cooler for vehicles with a coolant-filled pre-cooler integral with the charge air cooler.
  • the pre-cooler has flow paths carrying coolant between manifolds of the pre-cooler and the flow paths define channels there through to direct charge air through the pre-cooler and into a cooling grate of the charge cooler.
  • a final example is U.S. Patent No. US 8225852 , titled “Heat Exchanger Using Air and Liquid as Coolants,” describing a heat exchanger suitable for a vehicle which includes a plurality of tubular first members arranged in a row forming elongate gaps.
  • a first fluid passes through the formed passageways with cooling air flowing through the gaps.
  • associated cooling device circulates liquid coolant and comprises flat tube-like second members each extending into a respective gap in a secondary area, which is part of the primary area but smaller.
  • U. S. Patent Application Publication No. US-A-20110284185 titled “Thermal Fluid Temperature Converter” describes a thermal fluid temperature converter that uses temperature from a thermal fluid to preheat or precool incoming air prior to entering a building or appliance.
  • U.S. Patent Application Publication No. US-A-2009/0188651 titled “Cooler,” describes a cooler that includes a main body provided with a water tank for storing cooling water and at least one air-cooling radiating device with cooling fins assembled in the main body.
  • One embodiment includes an apparatus for conditioning an inlet air for an air-cooled heat exchanger according to claim 1.
  • Another embodiment includes a method of removing heat from a process fluid according to claim 10.
  • Still another embodiment includes an air-cooled heat exchanger system according to claim 4.
  • the disclosure includes a bundle of tubes installed below the process tube bundle (located between the fan and the tube bundle in forced flow arrangement) that carries a heat transfer medium that is colder than the ambient air to cool it before passing over the process tube bundle.
  • the air exiting this pre-cooler tube bundle possessing a lower temperature than the ambient air temperature, may increase the temperature difference between the inlet air and the desired outlet tubeside process fluid, increase the heat transfer driving force, decrease the required heat transfer area, and/or decrease the unit's footprint.
  • This cooling bundle (or bundles) may be used during times of high ambient air temperature alone or during the entire operating year to enhance the overall operating heat transfer of the unit.
  • the pre-cooler tubes may be plain, externally finned, internally finned, and/or possess numerous heat transfer enhancements familiar to those experienced in the practice.
  • the fluid in the tubes may be liquid, vapor, or a mixture of both.
  • the fluid in the tubes may even carry solid material in solution with liquid and/or vapor.
  • the ACHE system does not feed a gas combustion turbine or a vehicle.
  • pre-cooler tube bundle may be integral to the design of a new air-cooled heat exchanger (ACHE) system.
  • Other embodiments may be designed to retrofit existing ACHE systems.
  • some embodiments of the disclosed pre-cooler tube bundle may be designed as after-market components suitable to be incorporated into existing ACHE systems, e.g., due to increased inefficiency of the ACHE system, due to climate or other changes in the operating environment of the ACHE system, etc.
  • plate pack or "plate pack assembly,” as used herein, means a plurality of substantially parallel sheets or planar surfaces formed so as to create flow channels such that a cooling medium and air pass through alternating passes within the plate pack assembly.
  • a plurality of coil-in-plate sheets may be suitably employed as one or more of the constituent sheets or plates comprised within the plate pack assembly.
  • process fluid means any industrial fluid for which cooling is desired.
  • the process fluid may be a liquid, a vapor, a mixture of both, and may contain solids in solution with a liquid and/or vapor.
  • FIG. 1 is a schematic diagram of an ACHE system 100. Flow arrows are provided to illustrate the direction of airflow through the ACHE system 100.
  • the ACHE system 100 includes a tube bundle 102 having an inlet 104 and an outlet 106.
  • the tube bundle may have spiral-would fins upon the tubes, such as embedded, integral, overlapped footed, footed, bonded or other finned-tube constructions.
  • the heat exchanger tube bundle can take the form of any suitable heat exchange device, including shell-and-tube heat exchangers, plate-and-frame heat exchangers, falling-film heat exchangers, etc.
  • the tube bundle 102 may comprise a plurality of tube bundles, e.g., extending laterally in parallel and disposed such that the air outlet side of a first tube bundle feeds an air inlet side of a second tube bundle. Alternate embodiments may increase the number of tube bundles or alter the arrangement as known in the art.
  • the tube bundle 102, the inlet 104, the outlet 106, or a combination thereof may be incorporated into a housing, header, or other structure for enclosing the components, e.g., a floating header (not depicted).
  • the tube bundle 102, the inlet 104, the outlet 106, or a combination thereof may comprise temperature monitoring equipment to monitor the performance of the ACHE system 100.
  • a process fluid may be circulated, e.g., using a pump, natural circulation, etc., through the tube bundle 102 by passing or circulating the process fluid into the inlet 104 and out of the outlet 106.
  • the ACHE system 100 includes fans 108 and 110 disposed on the air inlet side of the tube bundle 102.
  • the fans 108 and 110 may be disposed on the air outlet side of the tube bundle for an induced-draft heat exchanger system design or, as illustrated in FIG. 1 , on the air inlet side of the tube bundle for a forced-draft heat exchanger system design. Still other embodiments may place one or more fans on either side of the tube bundle 102. Additionally, while two fans are illustrated, alternate embodiments may have only one or an as-desired plurality of fans.
  • the fans 108 and 110 may be driven by any suitable means known in the art, e.g., electric motors, steam turbines, compressors, etc.
  • the fans 108 and 110 may be operatively coupled to an air-flow controller (not depicted) for varying the speed of one or more of the fans 108 and 110.
  • a plenum 112 is disposed between the fans 108 and 110 and the tube bundle 102.
  • the plenum 112 may be a first plenum and a second plenum may be disposed between the tube bundle 102 and the one or more fans disposed on the air outlet side of the tube bundle 102.
  • the ACHE system 100 includes a bay comprising supporting columns 114
  • the ACHE system 100 may be mounted on, enclosed in, or semi-enclosed in a hood, shroud, or other structure (not shown) to protect the structure or components from the environment or debris, for aesthetic purposes, for sound shielding, for filtering or controlling the particulate quality of inlet air, or for other reasons.
  • Embodiments utilizing one or more external structures may optionally comprise screens, louvers, fan guards, fan rings, or other such enclosure variations within the scope of this disclosure.
  • Some embodiments of the ACHE system 100 further comprise monitoring equipment, e.g., temperature monitoring equipment for monitoring an ambient air temperature, an air inlet temperature (e.g., the temperature in plenum 112), an air outlet temperature, or any combination thereof.
  • FIG. 2 is a schematic diagram of an ACHE system 200 having a pre-cooler 202.
  • the components of the ACHE system 200 may be the same as the corresponding components of the ACHE system 100 except as otherwise noted. While depicted as disposed in the plenum 112, in alternate embodiments the pre-cooler 202 may be disposed on the inlet side of the fans 108 and 110 or in an alternate location on the air inlet side of the tube bundle 102.
  • the pre-cooler 202 may comprise a cooling coil, e.g., a plain, externally finned, internally finned, continuously finned, or a combination thereof. Alternately, the pre-cooler 202 may comprise a plate pack assembly or other suitable heat exchange structure known in the art.
  • the pre-cooler 202 has an inlet and an outlet (not depicted) for admitting a pre-cooler medium.
  • a pre-cooler medium may be circulated, e.g., using a pump, natural circulation, etc., through the pre-cooler 202 by passing or circulating the cooling medium into the inlet and out of the outlet for the pre-cooler 202.
  • the pre-cooler 202, the inlet, the outlet, or a combination thereof may comprise temperature monitoring equipment to monitor the performance of the pre-cooler.
  • the pre-cooler medium may be any suitable coolant or other cooling medium for heat transfer, for example, ammonia, sulfur dioxide, non-halogenated hydrocarbons such as propane, any of a variety of halocarbon compounds such as organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds.
  • a controller 204 is operatively coupled to the ACHE system 200 such that the controller 204 is configured to circulate the cooling medium through the pre-cooler when the ambient air temperature is above a first preselected temperature and stop circulation of the cooling medium through the pre-cooler when the ambient air temperature is below a second preselected temperature.
  • the first and second preselected temperature set-points may be preselected or dynamically adjusted based on predicted temperatures or as-measured temperatures in order to obtain the desired cooling of the air inlet to the ACHE system 200.
  • the pre-cooler 202 is further configured to circulate a warming medium through the pre-cooler 202.
  • the warming medium and the cooling medium are the same.
  • Other embodiments may substitute or replace the cooling medium of one type, e.g., liquid, with a warming medium of another type, e.g., steam.
  • the controller 204 may be configured to circulate the warming medium through the pre-cooler when the ambient air temperature is below a third preselected temperature and stop circulation of the warming medium through the pre-cooler when the ambient air temperature is above a fourth preselected temperature. Similar to the control operation for the cooling regime, the third and fourth preselected temperature set-points may be preselected or dynamically adjusted based on predicted temperatures or as-measured temperatures in order to obtain the desired warming of the air inlet to the ACHE system 200.
  • the pre-cooler 202 may be compatibly designed to retrofit existing ACHE systems or may be designed to be integrally incorporated into new ACHE systems. In either scenario, it should be apparent to those of skill in the art that the pre-cooler 202 may be incorporated without significantly changing the footprint of current ACHE systems. Further, in systems where ACHE system efficiency has degraded, e.g., due to fouling, etc., a temporary pre-cooler 202 may be installed to increase efficiency and/or maintain operations until defouling operations or maintenance can be conducted.
  • FIG. 3 is a flowchart showing a process 300 for removing heat from a process fluid using an ACHE system having a pre-cooler, e.g., the ACHE system 200 with the pre-cooler 202 of FIG. 2 .
  • the process 300 includes circulating a pre-cooler medium through a pre-cooler disposed on the air inlet side of an air-cooled heat exchanger tube bundle and circulating the process fluid through the air-cooled heat exchanger tube bundle.
  • the process 300 includes passing air to the pre-cooler, e.g., using one or more fans in a forced-draft and/or induced-draft configuration.
  • the air may be ambient air at a first temperature.
  • the process 300 includes changing the temperature of the air, e.g., by heat transfer across the pre-cooler, to create a conditioned air at a second temperature. As described above, this may include cooling the ambient air to a cooler temperature inlet air or warming the ambient air to a warmer temperature inlet air.
  • the first temperature (e.g., ambient air) may from 0.5 °C, 1 °C, 2 °C, 5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, 40 °C, 50 °C, 60 °C, 70 °C, 80 °C, or any temperature or temperature range therebetween, different from the second temperature (e.g., inlet air).
  • the second temperature e.g., inlet air
  • the process 300 includes passing the conditioned air through the air inlet side of the air-cooled heat exchanger tube bundle. This may be accomplished using the same driving force that passed the air to the pre-cooler.
  • the process 300 includes removing heat from the process fluid by heat exchange with the conditioned air, thereby creating an exhaust air.
  • the process 300 may include monitoring various parameters, e.g., the exhaust air temperature, the temperature of the plenum, the inlet and/or outlet temperature of the process fluid and/or pre-cooler medium, and changing system operation using a controller based on the as-monitored monitored conditions.
  • the controller may turn the pre-cooler system on or off, may change the pre-cooler medium from a cooling medium to a warming medium, may increase fan flow rate(s), or make other system changes or alterations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (15)

  1. Vorrichtung zum Konditionieren von Einlassluft für einen luftgekühlten Wärmetauscher, die
    ein Vorkühlerrohrbündel umfasst, das zum Zirkulieren eines Kühlmediums ausgestaltet ist,
    wobei das Vorkühlerrohrbündel ausgestaltet ist, um Wärme aus Luft abzuführen, die über das Vorkühlerrohrbündel zirkuliert wird,
    wobei das Vorkühlerrohrbündel ausgestaltet ist, um auf einer Lufteinlassseite des luftgekühlten Wärmetauschers in einem Verteilerkanal positioniert zu werden, gekennzeichnet durch eine Steuerung, wobei die Steuerung ausgestaltet ist, um das Kühlmedium durch das Vorkühlerrohrbündel zu zirkulieren, wenn eine Umgebungslufttemperatur über einer ersten vorgewählten Temperatur liegt, und die Zirkulation des Kühlmediums durch das Vorkühlerrohrbündel zu stoppen, wenn die Umgebungslufttemperatur unter einer zweiten vorgewählten Temperatur liegt.
  2. Vorrichtung nach Anspruch 1, bei der der Vorkühler eine Kühlschlange umfasst, und wobei die Kühlschlange schlicht, mit Außenrippen, mit Innenrippen, mit kontinuierlichen Rippen oder eine Kombination davon ist.
  3. Vorrichtung nach Anspruch 1 oder Anspruch 2, bei der der Vorkühler eine Plattenblockanordnung umfasst.
  4. Luftgekühltes Wärmetauschersystem, das
    ein Rohrbündel mit einer Lufteinlassseite und einer Luftauslassseite;
    ein Gebläse, wobei das Gebläse für ein Saugzug-Wärmetauschersystem auf der Luftauslassseite des Rohrbündels angeordnet ist, und wobei das Gebläse für ein druckbelüftetes Wärmetauschersystem auf der Lufteinlassseite des Rohrbündels angeordnet ist;
    einen Vorkühler umfasst, der auf der Lufteinlassseite des Rohrbündels angeordnet ist, wobei der Vorkühler ausgestaltet ist, um eine Umgebungslufttemperatur auf eine Einlasstemperatur abzusenken, wenn ein Kühlmedium durch den Vorkühler zirkuliert wird, und wobei die Lufteinlasstemperatur innerhalb einer vorgewählten Temperaturtoleranz liegt;
    gekennzeichnet durch
    eine Steuerung, wobei die Steuerung ausgestaltet ist, um das Kühlmedium durch den Vorkühler zu zirkulieren, wenn die Umgebungslufttemperatur über einer ersten vorgewählten Temperatur liegt, und die Zirkulation des Kühlmediums durch den Vorkühler zu stoppen, wenn die Umgebungslufttemperatur unter einer zweiten vorgewählten Temperatur liegt.
  5. System nach Anspruch 4, das ferner
    ein zweites Rohrbündel mit einer Einlassseite und einer Auslassseite; und
    ein zweites Gebläse umfasst,
    wobei das zweite Gebläse neben dem ersten Gebläse angeordnet ist, wobei das erste Rohrbündel und das zweite Rohrbündel sich seitlich parallel in eine Ausbuchtung erstrecken, und wobei das erste Rohrbündel in Bezug auf das zweite Rohrbündel so angeordnet ist, dass die Luftauslassseite des ersten Rohrbündels eine Lufteinlassseite des zweiten Rohrbündels speist.
  6. System nach Anspruch 4 oder Anspruch 5, bei dem der Vorkühler ferner ausgestaltet ist, um die Umgebungslufttemperatur auf eine zweite Einlasstemperatur anzuheben, wenn ein wärmendes Medium durch den Vorkühler zirkuliert wird.
  7. System nach Anspruch 4 oder einem der Ansprüche 5 bis 6, bei dem der Vorkühler eine Kühlschlange umfasst, und wobei die Kühlschlange schlicht, mit Außenrippen, mit Innenrippen, mit kontinuierlichen Rippen oder eine Kombination davon ist.
  8. System nach Anspruch 4 oder einem der Ansprüche 5 bis 7, bei dem der Vorkühler eine Plattenblockanordnung umfasst.
  9. System nach Anspruch 4 oder einem der Ansprüche 5 bis 8, bei dem der Vorkühler ferner ausgestaltet ist, um die Umgebungslufttemperatur auf eine zweite Einlasstemperatur anzuheben, wenn ein wärmendes Medium durch den Vorkühler zirkuliert wird, und wobei die Steuerung ferner ausgestaltet ist, um das wärmende Medium durch den Vorkühler zu zirkulieren, wenn die Umgebungslufttemperatur unter einer dritten vorgewählten Temperatur liegt, und die Zirkulation des wärmenden Mediums durch den Vorkühler zu stoppen, wenn die Umgebungslufttemperatur über einer vierten vorgewählten Temperatur liegt.
  10. Verfahren zum Abführen von Wärme aus einem Prozessfluid, bei dem ein Vorkühlermedium durch einen Vorkühler zirkuliert wird, der an der Lufteinlassseite eines luftgekühlten Wärmetauscherrohrbündels angeordnet ist;
    das Prozessfluid durch das luftgekühlte Wärmetauscherrohrbündel zirkuliert wird;
    Luft mit einer ersten Temperatur zu dem Vorkühler geleitet wird; die Temperatur der Luft verändert wird, um eine konditionierte Luft zu erzeugen;
    die konditionierte Luft durch die Lufteinlassseite des luftgekühlten Wärmetauscherrohrbündels geleitet wird;
    Wärme durch Wärmetausch mit der konditionierten Luft aus dem Prozessfluid abgeführt wird; und
    das Kühlmedium durch den Vorkühler zirkuliert wird, wenn eine Umgebungslufttemperatur über einer ersten vorgewählten Temperatur liegt, und die Zirkulation des Kühlmediums durch den Vorkühler gestoppt wird, wenn die Umgebungslufttemperatur unter einer zweiten vorgewählten Temperatur liegt.
  11. Verfahren nach Anspruch 10, bei dem die Temperatur der Luft höher als die Temperatur der konditionierten Luft ist.
  12. Verfahren nach Anspruch 10 oder Anspruch 11, bei dem das Leiten der Luft zu dem Vorkühler Bewegen der Luft mit einer Vielzahl von Gebläsen umfasst.
  13. Verfahren nach Anspruch 10 oder einem der Ansprüche 11 bis 12, bei dem der Vorkühler eine Plattenblockanordnung oder eine Kühlschlange umfasst, und wobei die Kühlschlange schlicht, mit Außenrippen, mit Innenrippen, mit kontinuierlichen Rippen oder eine Kombination davon ist.
  14. Verfahren nach Anspruch 10 oder einem der Ansprüche 11 bis 13, bei dem das luftgekühlte Wärmetauscherrohrbündel eine Vielzahl von Rohrbündeln umfasst, die parallel in einer Ausbuchtung angeordnet sind.
  15. Verfahren nach Anspruch 10 oder einem der Ansprüche 11 bis 14, bei dem das Vorkühlermedium eine Halogenkohlenstoffverbindung oder einen Dampf umfasst.
EP15722412.2A 2014-06-26 2015-05-07 Vorkühler für luftgekühlte wärmetauscher Not-in-force EP3161401B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462017705P 2014-06-26 2014-06-26
PCT/US2015/029603 WO2015199819A1 (en) 2014-06-26 2015-05-07 Pre-cooler for air-cooled heat exchangers

Publications (2)

Publication Number Publication Date
EP3161401A1 EP3161401A1 (de) 2017-05-03
EP3161401B1 true EP3161401B1 (de) 2018-06-20

Family

ID=53177393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15722412.2A Not-in-force EP3161401B1 (de) 2014-06-26 2015-05-07 Vorkühler für luftgekühlte wärmetauscher

Country Status (5)

Country Link
US (1) US20150377557A1 (de)
EP (1) EP3161401B1 (de)
AU (1) AU2015280652B2 (de)
SG (1) SG11201608831YA (de)
WO (1) WO2015199819A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608288A (zh) * 2020-09-08 2023-01-17 福建铭麟科技有限公司 一种方便控温散热的过硫酸钠自动化安全生产装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3768546A (en) * 1971-12-27 1973-10-30 Hudson Products Corp Axial flow fan assembly
US3968833A (en) * 1975-03-18 1976-07-13 Aktiebolaget Svenska Flaktfabriken Method for heat recovery in ventilation installations
CN2144290Y (zh) * 1992-11-05 1993-10-20 谭伟雄 高效翅片螺纹传热管
US5839654A (en) * 1996-02-05 1998-11-24 Innova Patent Trust Portable air comfort system thermostat enabling personal localized control of room temperature
US6092377A (en) 1999-06-01 2000-07-25 Tso; Ming-Li Air cooled two stage condenser for air conditioning and refrigeration system
DE10136861A1 (de) 2001-07-27 2003-02-20 Modine Mfg Co Luftgekühlter Ladeluftkühler
US20060140791A1 (en) * 2004-12-29 2006-06-29 Deming Glenn I Miniature rotary compressor, and methods related thereto
US8347640B2 (en) * 2005-11-16 2013-01-08 Technologies Holdings Corp. Enhanced performance dehumidification apparatus, system and method
DE102006032205A1 (de) 2006-07-12 2008-01-17 Modine Manufacturing Co., Racine Wärmetauscher mit Kupplungsanschluss und Kupplungsanschluss
US20090188651A1 (en) * 2008-01-29 2009-07-30 Yi-Hsiung Lin Cooler
ES2735977T3 (es) * 2008-03-24 2019-12-23 Prime Datum Inc Sistema de accionamiento de ventilador integrado para intercambiador de calor enfriado por aire (ACHE)
US20110174003A1 (en) * 2008-04-18 2011-07-21 Jarrell Wenger Evaporative Cooling Tower Performance Enhancement Through Cooling Recovery
US8225852B2 (en) 2008-04-30 2012-07-24 Dana Canada Corporation Heat exchanger using air and liquid as coolants
US8295950B1 (en) * 2008-07-02 2012-10-23 Jerry Lee Wordsworth Intelligent power management system
US7878236B1 (en) * 2009-02-09 2011-02-01 Breen Joseph G Conserving energy in an HVAC system
US20110284185A1 (en) * 2010-11-19 2011-11-24 Fredrick Thomas Cullen Thermal fluid temperature converter
MX2012009812A (es) * 2011-08-23 2013-02-22 Phoenix Mfg Inc Unidad y método de enfriamiento de condensador por evaporación.
DE102012202234A1 (de) 2012-02-14 2013-08-14 Behr Gmbh & Co. Kg Wärmeübertrageranordnung
US20140158328A1 (en) * 2012-07-05 2014-06-12 Airec Ab Plate for heat exchanger, heat exchanger and air cooler comprising a heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015199819A1 (en) 2015-12-30
AU2015280652A1 (en) 2016-12-22
EP3161401A1 (de) 2017-05-03
AU2015280652B2 (en) 2017-12-14
US20150377557A1 (en) 2015-12-31
SG11201608831YA (en) 2017-01-27

Similar Documents

Publication Publication Date Title
US10222146B2 (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
EP2667133B1 (de) Verfahren für einer Modularen luftgekühlten Kondensatorvorrichtung.
US8622372B2 (en) Fan cooling tower design and method
CN106662405B (zh) 组合式对流器
US8235365B2 (en) Natural draft air cooled steam condenser and method
CA3010855C (en) Elliptically finned heat exchanger comprising indirect and direct heat exchange sections
EP3306247B1 (de) Luft-wasser-wärmetauscherstruktur und verfahren zur steuerung und verbesserung des betriebs davon
US20070295492A1 (en) Heat exchange system with inclined heat exchanger device
SE0850102A1 (sv) Metod och system för överkylning av kylvätskan i ett fordons kylsystem.
US20160161187A1 (en) Liquid distribution system for a fluid cooler
EP3410053A1 (de) Luftgekühlter wärmetauscher
EP3161401B1 (de) Vorkühler für luftgekühlte wärmetauscher
US20180142956A1 (en) Single pass cross-flow heat exchanger
US20180274863A1 (en) Hybrid fluid cooler with extended intermediate basin nozzles
AU2017208218B2 (en) Cooling module
CA2890696C (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
EP3400412A1 (de) Verbesserung der wärmekapazität von elliptisch gerippten wärmetauschern
KR20160133980A (ko) 습식 냉각탑을 위한 공기 대 공기 열 교환기 바이패스 장치 및 방법
CN107906729B (zh) 换热装置及空调设备
KR102540887B1 (ko) 연료전지를 구비한 차량의 냉각 장치
CN107883562B (zh) 换热装置及空调设备
EP2990748A1 (de) Luft-zu-luft-wärmetauscher-bypass für nasskühlturmvorrichtung und verfahren
RU154273U1 (ru) Устройство воздушного охлаждения
AU2015202464A1 (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
DD221334A3 (de) Autark arbeitender, luftgekuehlter waermeuebertrager

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 1/04 20060101AFI20171027BHEP

Ipc: F28B 1/06 20060101ALI20171027BHEP

Ipc: F28D 1/02 20060101ALI20171027BHEP

Ipc: F28D 15/00 20060101ALI20171027BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171208

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20180503

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015012529

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010898

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1010898

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015012529

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181022

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200417

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200429

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150507

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015012529

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210507

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620