EP3158773B1 - Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station - Google Patents

Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station Download PDF

Info

Publication number
EP3158773B1
EP3158773B1 EP15720575.8A EP15720575A EP3158773B1 EP 3158773 B1 EP3158773 B1 EP 3158773B1 EP 15720575 A EP15720575 A EP 15720575A EP 3158773 B1 EP3158773 B1 EP 3158773B1
Authority
EP
European Patent Office
Prior art keywords
unit
measurement
antenna
measuring
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15720575.8A
Other languages
German (de)
French (fr)
Other versions
EP3158773A1 (en
Inventor
Bruno Busslinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kistler Holding AG
Original Assignee
Kistler Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kistler Holding AG filed Critical Kistler Holding AG
Publication of EP3158773A1 publication Critical patent/EP3158773A1/en
Application granted granted Critical
Publication of EP3158773B1 publication Critical patent/EP3158773B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the invention relates to a device comprising a measuring unit and a base station, and a method for recording measurement signals with the measuring unit and for telemetry transmission of measured data to the base station, wherein for a measurement, the base station is stationary in a working space and the measuring unit fixed to a System is mounted, which moves within this workspace.
  • Transferring measured data from a moving system to a base station stationarily arranged in a working space often causes difficulties, since often no cables can be laid or they break quickly because of the constant movements.
  • moving systems rotating or rotating systems are considered, but also those that translate back and forth, but always within the work space, such as a robot that always moves an arm to perform a job back and forth.
  • Unidirectional systems such as vehicles or persons on the move and moving away from a work space are not taken into account in the present invention, but only those in which the movement is in a defined area, namely in the work space. In particular, systems are considered whose motion sequences are defined and predetermined.
  • the moving systems considered here may move relative to the base station but not significantly alter the distance to the base station.
  • the transmission with telemetry has proven particularly useful.
  • applications are rotating tool systems in which, for example, the cutting force of a cutting edge is to be determined, turbines, rollers or vehicle wheels.
  • the base stations While in most applications the base stations are located in a work space that is itself stationary, the work space may also be a vehicle combination for determining the wheel forces of vehicle wheels. While the base stations move during a measurement, they are stationary within their work area. The base stations do not move in this example, therefore, the same as the respective associated measurement units.
  • a known measuring device of the type described above is in the EP1323495 described.
  • This document describes a method for monitoring tools on a spindle by means of a sensor device, wherein the acquired measurement data are transmitted without contact to a stator, which forwards them to a main processor.
  • range changes can be made to the sensor device by sending appropriate commands from the main processor via the stator without contact to a microprocessor of the sensor device.
  • a disadvantage of the arrangement described is the fact that the non-contact transmission by means of near field telemetry. This implies that in each case close, so at a distance of a few millimeters, a stator is arranged. In many systems, especially rotating tools and robots, which are used for example in material processing or assembly in industrial companies, this has proven to be disadvantageous.
  • the object of the present invention is to provide a device and a method for recording measurement signals on a moving system for transmitting measurement data of the type described above, wherein for transmitting the data no stator has to be arranged in the immediate vicinity of the measurement unit for transmitting the data by means of near field telemetry.
  • the measuring unit has at least one or more measuring channels to which one or more sensors for detecting measurement signals can be connected or are connected.
  • the measuring unit comprises an electronic unit with a first processor for conditioning and / or compressing the measuring signals to measured data, a first telemetry unit and a first antenna.
  • the first antenna can transmit measurement data and preferably also status information as well as configuration and control data receive.
  • the base station comprises a data processing unit as well as a second antenna and a second telemetry unit, for receiving measurement data and preferably status information and for sending configuration and control data.
  • the first antenna is a linearly polarized antenna and the second antenna is a circularly polarized antenna or vice versa. Accordingly, in the method according to the invention in the telemetric transmission, the first antenna linearly polarizes the measured data and the second antenna circulates the configuration and control data circularly or vice versa.
  • Losses are achieved when the transmit and receive antennas are the same. This is the case when both antennas are horizontally linear or both linearly polarized linearly, or when both are circularly clockwise or circularly left-handed. In each case, no losses occur if the transmission is direct.
  • the signals are reduced as soon as the antennas are no longer arranged parallel to one another. This is the case, for example a machine tool, on which the moving system is mounted, is moved.
  • the signal strength decreases to a theoretical value of zero when the antennas are perpendicular to each other.
  • a signal loss of 20-30 dB is registered.
  • a circular clockwise signal transforms into a circular counterclockwise signal after being reflected on a wall.
  • the circular left-handed signal that can be received at the circular clockwise rotating antenna is reduced by 20-30 dB.
  • the Fig. 1 shows an example of an inventive device comprising a measuring unit 3 and a base station 21 for receiving measurement signals with the measuring unit 3 and telemetric transmission of measurement data to the base station 21, wherein for a measurement, the base station 21 is stationary in a working space 20 and the measuring unit. 3 is fixedly attached to a system 2 that moves within this working space 20.
  • the moving system 2 is usually connected to the working space 20 and does not leave it during a measurement.
  • an industrial building or an industrial plant, a tool shed, an assembly hall, a production plant or the like can be regarded as the working space 20, wherein the system 2, for example a tool or a robot, can move translationally and / or rotationally within this working space 20.
  • the working space 20 may be configured, for example as a vehicle, but also itself, wherein the system 2 moves during a measurement relative to the working space 20, for example as a wheel of such a vehicle.
  • the base station 21 is mounted in this case in or on the vehicle, the measuring unit 3 on the vehicle.
  • the measuring unit 3 shown in more detail in Fig. 2a , comprises at least one or more measuring channels 6, to which one or more sensors 4 for recording measurement signals can be connected or are connected and an electronic unit 7 with a first processor 8 for conditioning and / or compressing the measurement signals to measurement data.
  • processor 8 can also be understood a programmable logic and / or a combination of processors and logic.
  • the measuring unit 3 comprises a first telemetry unit 14 and a first antenna 15 for transmitting measured data and for receiving configuration and control data.
  • status information is also transmitted by the first antenna 15.
  • the first antenna 15 may be composed of a plurality of individual antennas 15.1-15.4, which are arranged uniformly distributed around the measuring unit 3. In Fig. 2b an example is shown with four such individual antennas 15.1-15.4.
  • the base station 21 shown in more detail in FIG Fig. 3 , comprises a second antenna 22 and a second telemetry unit 24 for receiving measurement data and for transmitting configuration and control data. Status information transmitted by the first antenna 15 is also received by the second antenna 22.
  • the base station 21 additionally comprises a data processing unit 25.
  • the second antenna 22 may, as in Fig. 1 represented separated from the rest of the base station 21 and connected to this with a connection 23. But it can also be attached to or in the base station 21, as in Fig. 3 shown.
  • the first antenna 15 is a linearly polarized antenna and the second antenna 22 is a circularly polarized Antenna or vice versa.
  • the first antenna 15 is a linearly polarized antenna and the second antenna 22 is a circularly polarized antenna.
  • Both antennas 15, 22 are transmitters and receivers for far field telemetry 16, for example in the range between 400 MHz and 70 GHz.
  • FIG. 1 an application example of a rotating tool 17 is shown, which is attached to a tool holder 18 on a shaft 19 and together forms a moving system 2, on which the measuring unit 3 is mounted.
  • moving systems to which the measuring unit 3 according to the invention can be applied include turbines, in particular power stations, for example hydropower or wind power plants, shafts of any kind, rollers, in particular metal and paper processing systems, wheels of vehicles, for example Rail vehicles or motor vehicles, or robots, for example, used in industrial companies for the manufacture or assembly of parts.
  • robots do not permanently move around a given axis like other examples, but move predominantly translationally, measuring units mounted thereon can often not be connected with data cables to a base station in the work space without risking the cables breaking in a short time.
  • the measuring unit 3 comprises one or more sensors 4, 5. These are in particular as force, pressure, torque, Vorschubkraft-, bending moment, strain, vibration, acceleration and / or temperature sensors designed. Therefore, it is advantageous if the sensor 4, 5 is a piezoelectric or piezoresistive sensor, a strain gauge or a thermocouple. Accordingly, one or more measurement channels 6 are designed for processing measurement signals originating from piezoelectric and / or piezoresistive sensors 4, 5, strain gauges and / or thermocouples.
  • multi-dimensional sensors 4 can be used, which can, for example, measure forces in all three orthogonal directions or combinations of forces, moments, expansions, thrust and / or temperature.
  • the sensors 4, 5 themselves can be integrated in the measuring unit 3 or optionally connected to them.
  • each channel of a sensor 4, 5 should be connected to its own measuring channel 6, as in Fig. 2a shown.
  • each measuring channel 6 of the measuring unit 3 comprises an AD converter 9 for digitizing the measured data.
  • individual or all measurement channels 6 may comprise a range switch 10 for adjusting the measurement range, each range switch being telemetrically configurable from the base station.
  • Some measuring channels 6 also comprise a reset function 11 for resetting the measuring channel 6 and / or a start / stop function 12 for starting and stopping a measurement, all functions 11, 12 being telemetrically controllable from the base station 21.
  • the measuring unit 3 may, however, also comprise further sensors 5 which do not require a range changeover 10, for example temperature sensors 5.
  • the measuring unit 3 also comprises a power generation system and / or an energy storage unit 13, in particular a capacitor with a large capacity and / or a rechargeable or non-rechargeable battery for powering the electronic unit and the first telemetry unit 14.
  • the power generation system may be a system which can generate energy due to the movement or a temperature difference which the measuring unit 3 is subject to. Energy can also be transmitted to the measuring unit 3 by means of telemetry.
  • the measuring unit 3 also provides data about their status. This may relate in particular to the state of charge of an energy store 13, range settings and other data, including sensor-specific data such as sensor sensitivities.
  • the data processing unit 25 also shown in FIG Fig. 3 , comprises a second processor 26 for analyzing the measurement data and for telemetrically checking, configuring, operating and controlling the measurement unit.
  • the second telemetry unit 24 is housed together with the data processing unit 25 in a housing 31, on or in which the second antenna 22 is mounted.
  • the data processing unit 25 preferably comprises at least one interface to a user 27, a controller 28, an evaluation unit 29 and / or a memory unit 30.
  • the second processor 26 may be programmed so that it can autonomously initiate range switches, reset functions and start / stop commands ,
  • a device 1 is used in one of the embodiments described above.
  • the base station 3 is stationary in the working space 20 and the measuring unit 3 is fixed to the system 2, which moves within this working space 20.
  • the measuring unit 3 first detects the measuring signals with the at least one sensor 4, 5 which is connected to one or more measuring channels 6. Subsequently, the electronic unit 7 with the first processor 8 conditions and / or compresses the measurement signals into measurement data which are transmitted by means of the first telemetry unit 14 and the first antenna 15. In the same working space 20, the base station 21 receives the measurement data, which are processed in the data processing unit 25, by means of the second antenna 22 and the second telemetry unit 24. In addition, configuration and control data are sent from the second telemetry unit 24 via the second antenna 22 to the first antenna 15 to the first telemetry unit 14.
  • the measurement data and any further data are linearly polarized by the first antenna 15 and the configuration and control data are circularly polarized by the second antenna 22 or vice versa.
  • the first variant is preferred.
  • the measurement signals are digitized in an AD converter 9 in the measuring unit 3.
  • the data processing unit 25 configures a range switchover 10 of one or more measurement channels 6 by means of telemetry 16.
  • the data processing unit 10 preferably starts and / or stops at least one measurement by at least one measurement channel 6 of the measurement unit 3 by means of telemetry Start / stop function 12 and / or resets it using the Reset function 11.

Description

Technisches GebietTechnical area

Die Erfindung betrifft eine Vorrichtung, umfassend eine Messeinheit sowie eine Basisstation, und ein Verfahren zum Aufnehmen von Messsignalen mit der Messeinheit und zum telemetrischen Übertragen von Messdaten zur Basisstation, wobei für eine Messung die Basisstation stationär in einem Arbeitsraum angeordnet ist und die Messeinheit fest an einem System angebracht ist, das sich innerhalb dieses Arbeitsraums bewegt.The invention relates to a device comprising a measuring unit and a base station, and a method for recording measurement signals with the measuring unit and for telemetry transmission of measured data to the base station, wherein for a measurement, the base station is stationary in a working space and the measuring unit fixed to a System is mounted, which moves within this workspace.

Stand der TechnikState of the art

Messdaten von einem bewegten System auf eine stationär in einem Arbeitsraum angeordnete Basisstation zu übertragen bereitet oft Schwierigkeiten, da oftmals keine Kabel verlegt werden können oder diese wegen den ständigen Bewegungen schnell brechen. Als bewegte Systeme werden rotierende oder sich drehende Systeme angesehen aber auch solche, die sich translatorisch hin und her bewegen, aber immer innerhalb des Arbeitsraums, beispielsweise wie ein Roboter, der einen Arm zum Verrichten einer Arbeit stets hin- und her bewegt. Sich in eine Richtung entfernende Systeme wie Fahrzeuge oder Personen, die unterwegs sind und sich von einem Arbeitsraum entfernen, werden für die vorliegende Erfindung nicht berücksichtigt, sondern nur solche, bei denen sich die Bewegung in einem abgegrenzten Gebiet, namentlich im Arbeitsraum bewegen. Insbesondere werden Systeme betrachtet, deren Bewegungsabläufe definiert und vorbestimmt sind.Transferring measured data from a moving system to a base station stationarily arranged in a working space often causes difficulties, since often no cables can be laid or they break quickly because of the constant movements. As moving systems rotating or rotating systems are considered, but also those that translate back and forth, but always within the work space, such as a robot that always moves an arm to perform a job back and forth. Unidirectional systems such as vehicles or persons on the move and moving away from a work space are not taken into account in the present invention, but only those in which the movement is in a defined area, namely in the work space. In particular, systems are considered whose motion sequences are defined and predetermined.

So können sich die hier betrachteten bewegten Systeme relativ zur Basisstation bewegen aber den Abstand zur Basisstation nicht wesentlich verändern. Neben Übertragungsverfahren mit schleifenden Kontakten bei rotierenden Systemen hat sich insbesondere auch die Übertragung mit Telemetrie bewährt. Beispiele von Anwendungen sind rotierende Werkzeugsysteme, bei denen beispielsweise die Schnittkraft einer Schneide ermittelt werden soll, Turbinen, Walzen oder Fahrzeugräder. Während bei den meisten Anwendungen die Basisstationen in einem Arbeitsraum angeordnet sind, der selbst stationär ist, kann der Arbeitsraum auch eine Fahrzeugkombination sein, zum Ermitteln der Radkräfte von Fahrzeugrädern. Die Basisstationen bewegen sich zwar während einer Messung, aber innerhalb ihres Arbeitsgebiets sind sie stationär. Die Basisstationen bewegen sich in diesem Beispiel daher nicht gleich wie die jeweils dazugehörigen Messeinheiten.Thus, the moving systems considered here may move relative to the base station but not significantly alter the distance to the base station. In addition to transmission methods with sliding contacts in rotating systems, the transmission with telemetry has proven particularly useful. Examples of applications are rotating tool systems in which, for example, the cutting force of a cutting edge is to be determined, turbines, rollers or vehicle wheels. While in most applications the base stations are located in a work space that is itself stationary, the work space may also be a vehicle combination for determining the wheel forces of vehicle wheels. While the base stations move during a measurement, they are stationary within their work area. The base stations do not move in this example, therefore, the same as the respective associated measurement units.

Eine bekannte Messvorrichtung oben beschriebener Art ist in der EP1323495 beschrieben. Dieses Dokument beschreibt ein Verfahren zum Überwachen von Werkzeugen an einer Spindel mittels einer Sensoreinrichtung, wobei die erfassten Messdaten berührungslos auf einen Stator übertragen werden, der sie an einen Hauptprozessor weiterleitet. Zudem können Bereichsumstellungen an der Sensoreinrichtung durchgeführt werden, indem entsprechende Befehle vom Hauptprozessor aus über den Stator berührungslos zu einem Mikroprozessor der Sensoreinrichtung geschickt werden.A known measuring device of the type described above is in the EP1323495 described. This document describes a method for monitoring tools on a spindle by means of a sensor device, wherein the acquired measurement data are transmitted without contact to a stator, which forwards them to a main processor. In addition, range changes can be made to the sensor device by sending appropriate commands from the main processor via the stator without contact to a microprocessor of the sensor device.

Nachteilig an der beschriebenen Anordnung ist der Umstand, dass die berührungslose Übertragung mittels Nahfeldtelemetrie erfolgt. Dies bedingt, dass jeweils nahe, also im Abstand von wenigen Millimetern, ein Stator angeordnet ist. Bei vielen Systemen, insbesondere bei rotierenden Werkzeugen und bei Robotern, die beispielsweise in der Materialbearbeitung oder in der Montage in Industrieunternehmen eingesetzt sind, hat sich dies als nachteilig erwiesen.A disadvantage of the arrangement described is the fact that the non-contact transmission by means of near field telemetry. This implies that in each case close, so at a distance of a few millimeters, a stator is arranged. In many systems, especially rotating tools and robots, which are used for example in material processing or assembly in industrial companies, this has proven to be disadvantageous.

Eine andere bekannte Messvorrichtung ist in der US 2003/0236100 beschrieben.Another known measuring device is in the US 2003/0236100 described.

Darstellung der ErfindungPresentation of the invention

Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung und ein Verfahren zum Aufnehmen von Messsignalen an einem bewegten System zum Übertragen von Messdaten eingangs beschriebener Art anzugeben, wobei zum Übertragen der Daten kein Stator in unmittelbarer Nähe von der Messeinheit angeordnet sein muss zur Übertragung der Daten mittels Nahfeldtelemetrie. Zudem soll sicher gestellt sein, dass der berührungslose Datentransfer jeweils störungsfrei mit ausreichend Signalstärke ankommt.The object of the present invention is to provide a device and a method for recording measurement signals on a moving system for transmitting measurement data of the type described above, wherein for transmitting the data no stator has to be arranged in the immediate vicinity of the measurement unit for transmitting the data by means of near field telemetry. In addition, it should be ensured that the contactless data transfer arrives trouble-free with sufficient signal strength.

Die Aufgaben werden durch eine Vorrichtung mit den Merkmalen des unabhängigen Vorrichtungsanspruchs und durch ein Verfahren mit den Merkmalen des unabhängigen Verfahrensanspruchs gelöst. Bevorzugte Ausführungen sind in den abhängigen Patentansprüchen beschrieben.The objects are achieved by a device having the features of the independent apparatus claim and by a method having the features of the independent method claim. Preferred embodiments are described in the dependent claims.

Zur Lösung der Aufgabe wird eine eingangs beschriebene Vorrichtung verwendet, wobei die Messeinheit mindestens einen oder mehrere Messkanäle aufweist, an denen ein oder mehrere Sensoren zum Erfassen von Messsignalen angeschlossen werden können oder angeschlossen sind. Zudem umfasst die Messeinheit eine elektronische Einheit mit einem ersten Prozessor zum Konditionieren und/oder Komprimieren der Messsignale zu Messdaten, eine erste Telemetrieeinheit und eine erste Antenne. Die erste Antenne kann Messdaten und vorzugsweise auch Statusinformationen senden sowie Konfigurations- und Steuerdaten empfangen. Die Basisstation umfasst eine Datenverarbeitungseinheit sowie eine zweite Antenne und eine zweite Telemetrieeinheit, zum Empfangen von Messdaten und vorzugsweise Statusinformationen und zum Senden von Konfigurations- und Steuerdaten.To achieve the object, a device described above is used, wherein the measuring unit has at least one or more measuring channels to which one or more sensors for detecting measurement signals can be connected or are connected. In addition, the measuring unit comprises an electronic unit with a first processor for conditioning and / or compressing the measuring signals to measured data, a first telemetry unit and a first antenna. The first antenna can transmit measurement data and preferably also status information as well as configuration and control data receive. The base station comprises a data processing unit as well as a second antenna and a second telemetry unit, for receiving measurement data and preferably status information and for sending configuration and control data.

Erfindungsgemäss ist die erste Antenne eine linear polarisierte Antenne und die zweite Antenne eine zirkular polarisierte Antenne oder umgekehrt. Entsprechend polarisiert im erfindungsgemässen Verfahren bei der telemetrischen Übertragung die erste Antenne die Messdaten linear und die zweite Antenne die Konfigurations- und Steuerdaten zirkular oder umgekehrt.According to the invention, the first antenna is a linearly polarized antenna and the second antenna is a circularly polarized antenna or vice versa. Accordingly, in the method according to the invention in the telemetric transmission, the first antenna linearly polarizes the measured data and the second antenna circulates the configuration and control data circularly or vice versa.

Es hat sich gezeigt, dass bei herkömmlichen Antennen die Ausrichtung der Antennen entscheidend ist für eine störungsfreie Übertragung von Daten mit ausreichend Signalstärke. Bei Nahfeldübermittlungen, wo die relative Anordnung der Antennen zueinander fest vorgegeben ist, ist die Übertragungsqualität nicht gefährdet. Bei Fernfeldtelemetrie jedoch wächst die Gefahr vom sogenannten Fading, Interferenzen mit anderen Funkdiensten, Abschattungen, Mehrwegausbreitungen und Doppler Effekt durch die Bewegung. Zudem schwächt sich das Signal merklich ab, wenn sich Personen im Raum zwischen Sende- und Empfangsantenne bewegen. Weitere Probleme werden durch Reflexionen der Signale im Raum verursacht.It has been found that with conventional antennas, the orientation of the antennas is crucial for a trouble-free transmission of data with sufficient signal strength. In near field transmissions, where the relative arrangement of the antennas to each other is fixed, the transmission quality is not compromised. In far field telemetry, however, the danger of so-called fading, interference with other radio services, shadowing, multipath propagation and Doppler effect by the movement increases. In addition, the signal noticeably weakens when people move in the space between the transmitting and receiving antenna. Further problems are caused by reflections of the signals in the room.

Am wenigsten Verluste werden erzielt, wenn die Sende- und Empfangsantennen gleichartig sind. Dies ist der Fall, wenn demnach beide Antennen horizontal linear oder beide vertikal linear polarisiert sind, oder wenn beide zirkular rechtsdrehend oder zirkular linksdrehend sind. Dann treten jeweils keine Verluste auf, wenn die Übertragung direkt verläuft.Losses are achieved when the transmit and receive antennas are the same. This is the case when both antennas are horizontally linear or both linearly polarized linearly, or when both are circularly clockwise or circularly left-handed. In each case, no losses occur if the transmission is direct.

Bei horizontal und vertikal linearen Antennen reduzieren sich die Signale aber, sobald die Antennen nicht mehr parallel zueinander angeordnet sind. Dies ist der Fall, wenn beispielsweise eine Werkzeugmaschine, an dem das bewegte System angebracht ist, verschoben wird. Die Signalstärke verringert sich bis zu einem theoretischen Wert von null, wenn die Antennen senkrecht zueinander stehen. Praktisch wird ein Signalverlust von 20-30 dB registriert. Andererseits wandelt sich ein zirkular rechtsdrehendes Signal in ein zirkular linksdrehendes Signal, nachdem es an einer Wand reflektiert wurde. Auch in diesem Fall ist das zirkular linksdrehende Signal, das an der zirkular rechtsdrehenden Antenne empfangen werden kann, um 20-30 dB reduziert.With horizontally and vertically linear antennas, however, the signals are reduced as soon as the antennas are no longer arranged parallel to one another. This is the case, for example a machine tool, on which the moving system is mounted, is moved. The signal strength decreases to a theoretical value of zero when the antennas are perpendicular to each other. In practice, a signal loss of 20-30 dB is registered. On the other hand, a circular clockwise signal transforms into a circular counterclockwise signal after being reflected on a wall. Also in this case, the circular left-handed signal that can be received at the circular clockwise rotating antenna is reduced by 20-30 dB.

Es hat sich nun gezeigt, dass eine Mischform von Antennen eine stabile Datenübertragung gewährleistet. Wenn demnach eine der beiden Antennen eine (horizontal oder vertikal) linear polarisierte Antenne und die andere eine zirkular (rechtsdrehende oder linksdrehende) Antenne ist, so beträgt der Verlust 3 dB, was eine Halbierung der maximalen Signalstärke beträgt. Dieser Signalverlust kann kompensiert werden, indem die Leistung der Sendeantenne verdoppelt wird. In diesem Fall ist es unerheblich, ob und wie oft das Signal an einer Wand reflektiert wird. Ebenso unerheblich ist, wie die Antennen zueinander ausgerichtet sind. Auch andere Störfaktoren und Fading haben einen minimalen Einfluss. Es hat sich gezeigt, dass der Signaltransfer in beide Richtungen mit der Kombination von linear und zirkular polarisierten Antennen stabil ist, wenn auch um 3 dB reduziert.It has now been shown that a mixed form of antennas ensures stable data transmission. Thus, if one of the two antennas is a (horizontally or vertically) linearly polarized antenna and the other is a circular (right-handed or left-handed) antenna, the loss is 3 dB, which is a halving of the maximum signal strength. This signal loss can be compensated by doubling the power of the transmit antenna. In this case, it does not matter if and how often the signal is reflected on a wall. It is also irrelevant how the antennas are aligned with each other. Other confounding factors and fading have a minimal impact. It has been shown that the signal transfer in both directions with the combination of linearly and circularly polarized antennas is stable, albeit reduced by 3 dB.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Im Folgenden wird die Erfindung unter Beizug der Zeichnungen näher erklärt. Es zeigen

Fig. 1
eine schematische Darstellung einer Messvorrichtung in einem Anwendungsbeispiel;
Fig. 2a
eine erfindungsgemässe Messeinheit;
Fig. 2b
Anordnung von Einzelantennen um die Messeinheit;
Fig. 3
eine erfindungsgemässe Basiseinheit.
The invention will be explained in more detail below with reference to the drawings. Show it
Fig. 1
a schematic representation of a measuring device in an application example;
Fig. 2a
a measuring unit according to the invention;
Fig. 2b
Arrangement of individual antennas around the measuring unit;
Fig. 3
a base unit according to the invention.

Wege zur Ausführung der ErfindungWays to carry out the invention

Die Fig. 1 zeigt ein Beispiel einer erfindungsgemässen Vorrichtung umfassend eine Messeinheit 3 sowie eine Basisstation 21 zum Aufnehmen von Messsignalen mit der Messeinheit 3 und zum telemetrischen Übertragen von Messdaten zur Basisstation 21, wobei für eine Messung die Basisstation 21 stationär in einem Arbeitsraum 20 angeordnet ist und die Messeinheit 3 fest an einem System 2 angebracht ist, das sich innerhalb dieses Arbeitsraums 20 bewegt.The Fig. 1 shows an example of an inventive device comprising a measuring unit 3 and a base station 21 for receiving measurement signals with the measuring unit 3 and telemetric transmission of measurement data to the base station 21, wherein for a measurement, the base station 21 is stationary in a working space 20 and the measuring unit. 3 is fixedly attached to a system 2 that moves within this working space 20.

Das bewegte System 2 ist in der Regel mit dem Arbeitsraum 20 verbunden und verlässt diesen bei einer Messung nicht. Als Arbeitsraum 20 kann insbesondere ein Industriegebäude oder eine Industrieanlage, eine Werkzeughalle, eine Montagehalle, eine Fabrikationsanlage oder dergleichen angesehen werden, wobei sich das System 2, beispielsweise ein Werkzeug oder ein Roboter, translatorisch und/oder rotativ innerhalb dieses Arbeitsraums 20 bewegen kann. Der Arbeitsraum 20 kann sich, beispielsweise als Fahrzeug ausgestaltet, aber auch selbst bewegen, wobei sich das System 2 während einer Messung relativ zum Arbeitsraum 20 bewegt, beispielsweise wie ein Rad eines solchen Fahrzeuges. Die Basisstation 21 ist in diesem Fall im oder am Fahrzeug angebracht, die Messeinheit 3 am Fahrzeugrad.The moving system 2 is usually connected to the working space 20 and does not leave it during a measurement. In particular, an industrial building or an industrial plant, a tool shed, an assembly hall, a production plant or the like can be regarded as the working space 20, wherein the system 2, for example a tool or a robot, can move translationally and / or rotationally within this working space 20. The working space 20 may be configured, for example as a vehicle, but also itself, wherein the system 2 moves during a measurement relative to the working space 20, for example as a wheel of such a vehicle. The base station 21 is mounted in this case in or on the vehicle, the measuring unit 3 on the vehicle.

Die Messeinheit 3, detaillierter dargestellt in Fig. 2a, umfasst mindestens einen oder mehrere Messkanäle 6, an denen ein oder mehrere Sensoren 4 zum Aufnehmen von Messsignalen angeschlossen werden können oder angeschlossen sind und eine elektronische Einheit 7 mit einem ersten Prozessor 8 zum Konditionieren und/oder Komprimieren der Messsignale zu Messdaten. Als Prozessor 8 kann auch eine programmierbare Logik und/oder eine Kombination von Prozessoren und Logik verstanden werden. Zudem umfasst die Messeinheit 3 eine erste Telemetrieeinheit 14 sowie eine erste Antenne 15 zum Senden von Messdaten und zum Empfangen von Konfigurations- und Steuerdaten. Vorzugsweise werden von der ersten Antenne 15 auch Statusinformationen gesendet. Die erste Antenne 15 kann aus mehreren Einzelantennen 15.1-15.4 zusammengeschlossen sein, die um die Messeinheit 3 gleichmässig verteilt angeordnet sind. In Fig. 2b ist ein Beispiel mit vier solchen Einzelantennen 15.1-15.4 dargestellt.The measuring unit 3, shown in more detail in Fig. 2a , comprises at least one or more measuring channels 6, to which one or more sensors 4 for recording measurement signals can be connected or are connected and an electronic unit 7 with a first processor 8 for conditioning and / or compressing the measurement signals to measurement data. As processor 8 can also be understood a programmable logic and / or a combination of processors and logic. In addition, the measuring unit 3 comprises a first telemetry unit 14 and a first antenna 15 for transmitting measured data and for receiving configuration and control data. Preferably, status information is also transmitted by the first antenna 15. The first antenna 15 may be composed of a plurality of individual antennas 15.1-15.4, which are arranged uniformly distributed around the measuring unit 3. In Fig. 2b an example is shown with four such individual antennas 15.1-15.4.

Die Basisstation 21, detaillierter dargestellt in Fig. 3, umfasst eine zweite Antenne 22 und eine zweite Telemetrieeinheit 24 zum Empfangen von Messdaten und zum Senden von Konfigurations- und Steuerdaten. Von der ersten Antenne 15 gesendete Statusinformationen werden ebenfalls von der zweiten Antenne 22 empfangen. Die Basisstation 21 umfasst zudem eine Datenverarbeitungseinheit 25.The base station 21, shown in more detail in FIG Fig. 3 , comprises a second antenna 22 and a second telemetry unit 24 for receiving measurement data and for transmitting configuration and control data. Status information transmitted by the first antenna 15 is also received by the second antenna 22. The base station 21 additionally comprises a data processing unit 25.

Die zweite Antenne 22 kann, wie in Fig. 1 dargestellt, vom Rest der Basisstation 21 getrennt angeordnet und mit dieser mit einer Verbindung 23 verbunden sein. Sie kann aber auch an oder in der Basisstation 21 angebracht sein, wie in Fig. 3 dargestellt.The second antenna 22 may, as in Fig. 1 represented separated from the rest of the base station 21 and connected to this with a connection 23. But it can also be attached to or in the base station 21, as in Fig. 3 shown.

Erfindungsgemäss ist die erste Antenne 15 eine linear polarisierte Antenne und die zweite Antenne 22 eine zirkular polarisierte Antenne oder umgekehrt. Bevorzugt ist die erste Antenne 15 eine linear polarisierte Antenne und die zweite Antenne 22 eine zirkular polarisierte Antenne. Dies hat mit der typischen Geometrie und Grösse der jeweiligen Antennen zu tun. Die kleinere Antenne ist demnach bevorzugt am bewegten System. Für die Qualität der Übertragung ist dies aber unerheblich. Beide Antennen 15, 22 sind Sender und Empfänger für Fernfeldtelemetrie 16, beispielsweise im Bereich zwischen 400 MHz und 70 GHz.According to the invention, the first antenna 15 is a linearly polarized antenna and the second antenna 22 is a circularly polarized Antenna or vice versa. Preferably, the first antenna 15 is a linearly polarized antenna and the second antenna 22 is a circularly polarized antenna. This has to do with the typical geometry and size of the respective antennas. The smaller antenna is therefore preferred on the moving system. For the quality of the transmission but this is irrelevant. Both antennas 15, 22 are transmitters and receivers for far field telemetry 16, for example in the range between 400 MHz and 70 GHz.

Im dargestellten Beispiel der Fig. 1 ist insbesondere ein Anwendungsbeispiel eines rotierenden Werkzeuges 17 dargestellt, das an einem Werkzeughalter 18 an einer Welle 19 angebracht ist und zusammen ein bewegten System 2 bildet, an dem die Messeinheit 3 angebracht ist. Andere Beispiele für bewegte Systeme, an denen die erfindungsgemässe Messeinheit 3 angebracht werden kann, sind unter anderem Turbinen, insbesondere von Kraftwerken, beispielsweise Wasserkraft- oder Windkraftanlagen, Wellen jeglicher Art, Walzen, insbesondere von Metall- und Papierverarbeitungsanlagen, Räder von Fahrzeugen, beispielsweise von Schienenfahrzeugen oder Motorfahrzeugen, oder Roboter, beispielsweise eingesetzt in Industrieunternehmen für Herstellung oder Montage von Teilen. Obwohl sich solche Roboter nicht wie andere genannte Beispiele permanent um eine vorgegebene Achse bewegen sondern sich vorwiegend translatorisch bewegen, lassen sich daran montierte Messeinheiten oft nicht mit Datenkabeln zu einer Basisstation im Arbeitsraum verbinden, ohne zu riskieren, dass die Kabel in kurzer Zeit brechen.In the example shown the Fig. 1 In particular, an application example of a rotating tool 17 is shown, which is attached to a tool holder 18 on a shaft 19 and together forms a moving system 2, on which the measuring unit 3 is mounted. Other examples of moving systems to which the measuring unit 3 according to the invention can be applied include turbines, in particular power stations, for example hydropower or wind power plants, shafts of any kind, rollers, in particular metal and paper processing systems, wheels of vehicles, for example Rail vehicles or motor vehicles, or robots, for example, used in industrial companies for the manufacture or assembly of parts. Although such robots do not permanently move around a given axis like other examples, but move predominantly translationally, measuring units mounted thereon can often not be connected with data cables to a base station in the work space without risking the cables breaking in a short time.

In einer bevorzugten Ausführung umfasse die Messeinheit 3 einen oder mehrere Sensoren 4, 5. Diese sind insbesondere als Kraft-, Druck-, Drehmoment-, Vorschubkraft-, Biegemoment-, Dehnungs-, Schwingungs-, Beschleunigungs- und/oder Temperatursensoren ausgestaltet. Daher ist es vorteilhaft, wenn der Sensor 4, 5 ein piezoelektrischer oder piezoresistiver Sensor, ein Dehnmessstreifen oder ein Thermoelement ist. Dementsprechend sind ein oder mehrere Messkanäle 6 zum Verarbeiten von Messsignalen ausgelegt, die von piezoelektrischen und/oder piezoresistiven Sensoren 4, 5, Dehnmessstreifen und/oder Thermoelementen stammen. Insbesondere können mehrdimensionale Sensoren 4 eingesetzt werden, die beispielsweise Kräfte in alle drei orthogonale Richtungen messen können oder Kombinationen von Kräften, Momenten Dehnungen, Schub und/oder Temperatur. Die Sensoren 4, 5 selbst können in der Messeinheit 3 integriert sein oder wahlweise an diese angeschlossen werden.In a preferred embodiment, the measuring unit 3 comprises one or more sensors 4, 5. These are in particular as force, pressure, torque, Vorschubkraft-, bending moment, strain, vibration, acceleration and / or temperature sensors designed. Therefore, it is advantageous if the sensor 4, 5 is a piezoelectric or piezoresistive sensor, a strain gauge or a thermocouple. Accordingly, one or more measurement channels 6 are designed for processing measurement signals originating from piezoelectric and / or piezoresistive sensors 4, 5, strain gauges and / or thermocouples. In particular, multi-dimensional sensors 4 can be used, which can, for example, measure forces in all three orthogonal directions or combinations of forces, moments, expansions, thrust and / or temperature. The sensors 4, 5 themselves can be integrated in the measuring unit 3 or optionally connected to them.

Jeder Kanal eines Sensors 4, 5 sollte mit einem eigenen Messkanal 6 verbunden sein, wie in Fig. 2a dargestellt. Vorzugsweise umfasst jeder Messkanal 6 der Messeinheit 3 einen AD-Wandler 9 zum Digitalisieren der Messdaten. Zudem können einzelne oder alle Messkanäle 6 eine Bereichsumschaltung 10 zum Anpassen des Messbereichs umfassen, wobei jede Bereichsumschaltung von der Basisstation her telemetrisch konfigurierbar ist. Manche Messkanäle 6 umfassen zudem eine Reset Funktion 11 zum Zurücksetzen des Messkanals 6 und/oder eine Start/Stopp Funktion 12 zum Starten und Stoppen einer Messung, wobei alle Funktionen 11, 12 von der Basisstation 21 her telemetrisch steuerbar sind. Die Messeinheit 3 kann aber auch weitere Sensoren 5 umfassen, welche keine Bereichsumschaltung 10 benötigen, beispielsweise Temperatursensoren 5.Each channel of a sensor 4, 5 should be connected to its own measuring channel 6, as in Fig. 2a shown. Preferably, each measuring channel 6 of the measuring unit 3 comprises an AD converter 9 for digitizing the measured data. In addition, individual or all measurement channels 6 may comprise a range switch 10 for adjusting the measurement range, each range switch being telemetrically configurable from the base station. Some measuring channels 6 also comprise a reset function 11 for resetting the measuring channel 6 and / or a start / stop function 12 for starting and stopping a measurement, all functions 11, 12 being telemetrically controllable from the base station 21. The measuring unit 3 may, however, also comprise further sensors 5 which do not require a range changeover 10, for example temperature sensors 5.

Die Messeinheit 3 umfasst zudem ein Energieerzeugungssystem und/oder eine Energiespeichereinheit 13, insbesondere einen Kondensator mit grosser Kapazität und/oder eine aufladbare oder nicht aufladbare Batterie zum Speisen der elektronischen Einheit und der ersten Telemetrieeinheit 14. Das Energieerzeugungssystem kann ein System sein, welches auf Grund der Bewegung oder einer Temperaturdifferenz, welcher die Messeinheit 3 unterliegt, Energie erzeugen kann. Energie kann auch mittels einer Telemetrie auf die Messeinheit 3 übertragen werden.The measuring unit 3 also comprises a power generation system and / or an energy storage unit 13, in particular a capacitor with a large capacity and / or a rechargeable or non-rechargeable battery for powering the electronic unit and the first telemetry unit 14. The power generation system may be a system which can generate energy due to the movement or a temperature difference which the measuring unit 3 is subject to. Energy can also be transmitted to the measuring unit 3 by means of telemetry.

Die Messeinheit 3 liefert zudem Daten über ihren Status. Dies kann insbesondere der Ladezustand eines Energiespeichers 13 betreffen, Bereichseinstellungen und andere Daten, auch sensorspezifische Daten wie Sensorempfindlichkeiten.The measuring unit 3 also provides data about their status. This may relate in particular to the state of charge of an energy store 13, range settings and other data, including sensor-specific data such as sensor sensitivities.

Die Datenverarbeitungseinheit 25, auch dargestellt in Fig. 3, umfasst einen zweiten Prozessor 26 zum Analysieren der Messdaten sowie zum telemetrischen Überprüfen, Konfigurieren, Bedienen und Steuern der Messeinheit. Vorzugsweise ist die zweite Telemetrieeinheit 24 zusammen mit der Datenverarbeitungseinheit 25 in einem Gehäuse 31 untergebracht, an oder in dem auch die zweite Antenne 22 angebracht ist. Die Datenverarbeitungseinheit 25 umfasst bevorzugt mindestens eine Schnittstelle zu einem Benutzer 27, einer Steuerung 28, einer Auswerteeinheit 29 und/oder einer Speichereinheit 30. Der zweite Prozessor 26 kann so programmiert sein, dass er selbständig Bereichsumschaltungen, Reset Funktionen und Start/Stopp Befehle veranlassen kann.The data processing unit 25, also shown in FIG Fig. 3 , comprises a second processor 26 for analyzing the measurement data and for telemetrically checking, configuring, operating and controlling the measurement unit. Preferably, the second telemetry unit 24 is housed together with the data processing unit 25 in a housing 31, on or in which the second antenna 22 is mounted. The data processing unit 25 preferably comprises at least one interface to a user 27, a controller 28, an evaluation unit 29 and / or a memory unit 30. The second processor 26 may be programmed so that it can autonomously initiate range switches, reset functions and start / stop commands ,

Für das erfindungsgemässe Verfahren wird eine Vorrichtung 1 in einer der oben beschriebenen Ausführungsvarianten verwendet. Gemäss dem erfindungsgemässen Verfahren zum Aufnehmen von Messsignale mit der Messeinheit 3 und zum telemetrischen Übertragen von Messdaten zur Basisstation 21 ist die Basisstation 3 stationär im Arbeitsraum 20 angeordnet und die Messeinheit 3 ist fest am System 2 angebracht, das sich innerhalb dieses Arbeitsraums 20 bewegt.For the inventive method, a device 1 is used in one of the embodiments described above. According to the inventive method for receiving measurement signals with the measuring unit 3 and for telemetric transmission of measured data to the base station 21, the base station 3 is stationary in the working space 20 and the measuring unit 3 is fixed to the system 2, which moves within this working space 20.

Die Messeinheit 3 erfasst zunächst die Messsignale mit dem mindestens einen Sensor 4, 5 der mit einem oder mehreren Messkanälen 6 verbunden ist. Anschliessend konditioniert und/oder komprimiert die elektronische Einheit 7 mit dem ersten Prozessor 8 die Messsignale zu Messdaten, die mittels der ersten Telemetrieeinheit 14 sowie der ersten Antenne 15 gesendet werden. Im selben Arbeitsraum 20 empfängt die Basisstation 21 mittels der zweiten Antenne 22 und der zweiten Telemetrieeinheit 24 die Messdaten, welche in der Datenverarbeitungseinheit 25 verarbeitet werden. Zudem werden Konfigurations- und Steuerdaten von der zweiten Telemetrieeinheit 24 über die zweite Antenne 22 auf die erste Antenne 15 zur ersten Telemetrieeinheit 14 gesendet.The measuring unit 3 first detects the measuring signals with the at least one sensor 4, 5 which is connected to one or more measuring channels 6. Subsequently, the electronic unit 7 with the first processor 8 conditions and / or compresses the measurement signals into measurement data which are transmitted by means of the first telemetry unit 14 and the first antenna 15. In the same working space 20, the base station 21 receives the measurement data, which are processed in the data processing unit 25, by means of the second antenna 22 and the second telemetry unit 24. In addition, configuration and control data are sent from the second telemetry unit 24 via the second antenna 22 to the first antenna 15 to the first telemetry unit 14.

Erfindungsgemäss werden bei der telemetrischen Übertragung die Messdaten und allfällige weitere Daten von der ersten Antenne 15 linear polarisiert und die Konfigurations- und Steuerdaten von der zweiten Antenne 22 zirkular polarisiert oder umgekehrt. Bevorzugt ist die erstgenannte Variante.According to the invention, in the telemetric transmission, the measurement data and any further data are linearly polarized by the first antenna 15 and the configuration and control data are circularly polarized by the second antenna 22 or vice versa. The first variant is preferred.

Vorzugsweise werden die Messsignale in einem AD Wandler 9 in der Messeinheit 3 digitalisiert. Zudem konfiguriert in einem bevorzugten Verfahren die Datenverarbeitungseinheit 25 mittels Telemetrie 16 eine Bereichsumschaltung 10 eines oder mehrerer Messkanäle 6. In einem weiteren bevorzugten Verfahren startet und/oder stoppt die Datenverarbeitungseinheit 10 mittels Telemetrie bevorzugt mindestens eine Messung an mindestens einen Messkanal 6 der Messeinheit 3 mittels der Start/stopp Funktion 12 und/oder setzt ihn mittels der Reset Funktion 11 zurück.Preferably, the measurement signals are digitized in an AD converter 9 in the measuring unit 3. In addition, in a preferred method, the data processing unit 25 configures a range switchover 10 of one or more measurement channels 6 by means of telemetry 16. In a further preferred method, the data processing unit 10 preferably starts and / or stops at least one measurement by at least one measurement channel 6 of the measurement unit 3 by means of telemetry Start / stop function 12 and / or resets it using the Reset function 11.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Vorrichtung zum Messen, MessvorrichtungDevice for measuring, measuring device
22
Bewegtes SystemMoving system
33
Messeinheitmeasuring unit
44
Sensorsensor
55
Weiterer SensorAnother sensor
66
Messkanalmeasuring channel
77
Elektronische EinheitElectronic unit
88th
Erster ProzessorFirst processor
99
AD WandlerAD converter
1010
Bereichsumschaltungrange switching
1111
Reset FunktionReset function
1212
Start/Stopp FunktionStart / stop function
1313
Energieerzeugungssystem, EnergiespeicherEnergy generation system, energy storage
1414
Erste TelemetrieeinheitFirst telemetry unit
1515
Erste Antenne
15.1 ... 15.4 Einzelantennen
First antenna
15.1 ... 15.4 individual antennas
1616
Telemetrie DatenTelemetry data
1717
WerkzeugTool
1818
Werkzeughaltertoolholder
1919
Wellewave
2020
Arbeitsraumworking space
2121
Basisstationbase station
2222
Zweite AntenneSecond antenna
2323
Verbindungconnection
2424
Zweite TelemetrieeinheitSecond telemetry unit
2525
DatenverarbeitungseinheitData processing unit
2626
Zweiter ProzessorSecond processor
2727
Benutzeruser
2828
Steuerungcontrol
2929
Auswerteeinheitevaluation
3030
Speichereinheitstorage unit
3131
Gehäusecasing

Claims (15)

  1. A device comprising a measuring unit (3) and a base station (21) for recording measurement signals by the measuring unit (3) and for telemetric transmission of measurement data to the base station (21), wherein for performing a measurement the base station (3) is stationary in a working area (20) and the measuring unit (3) is firmly attached to a system (2) moving within this working area (20), and wherein the measuring unit (3) comprises at least one or more measuring channels (6) to which one or a plurality of sensors (4, 5) can be connected or are connected for receiving the measurement signals, and an electronic unit (7) comprising a first processor (8) for conditioning and/or compressing the measurement signals to obtain measurement data, a first telemetry unit (14) and a first antenna (15) for transmitting measurement data and for receiving configuration and control data, and wherein the base station (21) comprises a second antenna (22) and a second telemetry unit (24) for receiving the measurement data and for sending the configuration and control data, and a data processing unit (25), characterized in that the first antenna (15) is a linearly polarized antenna and the second antenna (22) is a circularly polarized antenna or vice versa.
  2. The device according to claim 1, characterized in that the measuring unit (2) comprises at least one sensor (4, 5), wherein said sensor (4, 5) is a force sensor, pressure sensor, torque sensor, feed force sensor, bending moment sensor, strain sensor, vibration sensor, acceleration sensor and/or temperature sensor.
  3. The device according to claim 1 or 2, characterized in that one or more measuring channels (6) are configured for processing measurement signals of piezoelectric and/or piezoresistive sensors (4, 5), strain gauges and/or thermocouples.
  4. The device according to any of the preceding claims, characterized in that the moving system (2) is a rotating tool, a turbine, a shaft, a roller, a wheel of a vehicle or a robot.
  5. The device according to any of the preceding claims, characterized in that the two telemetry units (14, 24) are far field telemetry transmitters and receivers.
  6. The device according to any of the preceding claims, characterized in that each measuring channel (6) of the measuring unit (3) comprises an AD converter (9) for digitizing the measurement signals.
  7. The device according to any of the preceding claims, characterized in that at least one measuring channel (6) of the measuring unit (3) comprises a range switch (10) for adjusting the measurement range, wherein each range switch (10) can be telemetrically configured from the base station (21).
  8. The device according to any of the preceding claims, characterized in that at least one measuring channel (6) of the measuring unit (3) has a reset function (11) for resetting the measuring channel (6), and/or a start/stop function (12) for starting and stopping a measurement, wherein all functions (11, 12) can be telemetrically controlled from the base station.
  9. The device according to any of the preceding claims, characterized in that the measuring unit (3) comprises a power generation system and/or an energy storage unit (13) for supplying the electronic unit (7) and the first telemetry unit (14).
  10. The device according to any of the preceding claims, characterized in that the data processing unit (25) comprises at least one interface to a user (27), a controller (28), an evaluation unit (29) and/or a memory unit (30).
  11. The device according to any of the preceding claims, characterized in that the data processing unit (25) comprises a second processor (26) for analyzing the measurement data and for telemetrically monitoring, configuring, operating and controlling the measuring unit (3) .
  12. A method for recording measurement signals by means of a measuring unit (3) and for telemetric transmission of measurement data to a base station (21), wherein the base station (3) is stationary in a working area (20) and the measuring unit (3) is fixedly attached to a system (2) moving within this working area (20), wherein the measuring unit (3) detects measurement signals by means of at least one sensor (4, 5) having one or more measuring channels (6) and an electronic unit (7) comprising a first processor (8) conditions and/or compresses the measurement signals to obtain measurement data, said measurement data being transmitted by means of a first telemetry unit (14) and a first antenna (15), and wherein the base station (21) receives the measurement data by means of a second antenna (22) and a second telemetry unit (24) and processes them by means of a data processing unit (25), and wherein configuration and control data are transmitted from the second telemetry unit (24) via the second antenna (22) to the first antenna (15) and to the first telemetry unit (14), characterized in that in said telemetric transmission (16) the first antenna (15) linearly polarizes the measurement data and the second antenna (22) circularly polarizes the configuration and control data or vice versa.
  13. The method according to claim 12, characterized in that the measurement signals are digitized in an AD converter (9) in the measuring unit (3).
  14. The method according to claim 12 or 13, characterized in that the data processing unit (25) configures a range switch (10) of a measuring channel (6) by telemetry (16).
  15. The method according to any of claims 12 to 14, characterized in that the data processing unit (25) resets at least one measuring channel (6) of the measuring unit (3) and/or starts and/or stops a measurement by telemetry (16).
EP15720575.8A 2014-05-22 2015-04-23 Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station Active EP3158773B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00785/14A CH709714A1 (en) 2014-05-22 2014-05-22 Measurement apparatus and method for telemetric transmission of measuring data from a measuring unit on a moving system to a base station.
PCT/CH2015/000061 WO2015176189A1 (en) 2014-05-22 2015-04-23 Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station

Publications (2)

Publication Number Publication Date
EP3158773A1 EP3158773A1 (en) 2017-04-26
EP3158773B1 true EP3158773B1 (en) 2019-03-27

Family

ID=50877209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15720575.8A Active EP3158773B1 (en) 2014-05-22 2015-04-23 Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station

Country Status (6)

Country Link
US (1) US10070203B2 (en)
EP (1) EP3158773B1 (en)
JP (1) JP6628740B2 (en)
CN (1) CN106463822B (en)
CH (1) CH709714A1 (en)
WO (1) WO2015176189A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014144948A1 (en) * 2013-03-15 2014-09-18 Stuart Micheal D Visible audiovisual annotation of infrared images using a separate wireless mobile device
WO2017205723A1 (en) 2016-05-26 2017-11-30 Safe-Com Wireless Distributed sensor system
EP4134198A1 (en) * 2021-08-13 2023-02-15 Kistler Holding AG System for machining a workpiece and for measuring and evaluating force and torque during the machining of the workpiece
JP2024000493A (en) 2022-06-20 2024-01-05 キストラー ホールディング アクチエンゲゼルシャフト Procedure for measuring measured variable in process step of manufacturing process and measurement chain for carrying out said procedure

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500065A (en) * 1994-06-03 1996-03-19 Bridgestone/Firestone, Inc. Method for embedding a monitoring device within a tire during manufacture
JP2000115044A (en) * 1998-10-09 2000-04-21 Kyocera Ddi Mirai Tsushin Kenkyusho:Kk Polarized wave diversity transmission system
DE10005558A1 (en) * 2000-02-09 2001-08-23 Bosch Gmbh Robert Vehicle data communications device uses dual channel communications microwave frequencies for intermediate frequency processing by conventional parts
DE10012438A1 (en) * 2000-03-15 2001-09-27 Daimler Chrysler Ag Key arrangement for remote radio control of a vehicle function, has antenna of different polarization compared with frame antenna included in key body and connected to frame antenna and electronic circuit
DE10163734B4 (en) 2001-12-21 2005-06-16 Growth Finance Ag Method and device for monitoring tools
JP2003309495A (en) * 2002-04-16 2003-10-31 Seiko Instruments Inc Device for electronically transmitting data
JP3661670B2 (en) * 2002-08-26 2005-06-15 株式会社デンソー Tire pressure monitoring system, tire pressure monitoring device, and tire pressure monitoring program
JP2004145474A (en) * 2002-10-22 2004-05-20 Yokohama Rubber Co Ltd:The Tire-monitoring system, monitor receiver thereof, monitor device therefor and sensor device thereof
DE102004051145C5 (en) * 2004-10-20 2021-03-18 Marposs Monitoring Solutions Gmbh Sensor system for a cutting machine tool and a cutting machine tool with a sensor system
US8022822B2 (en) * 2008-06-27 2011-09-20 Microsoft Corporation Data collection protocol for wireless sensor networks
DE102008035440B4 (en) 2008-07-25 2010-12-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for determining the distance and / or orientation of a moving object
DE102009037335B4 (en) * 2009-08-14 2014-06-05 Gottfried Wilhelm Leibniz Universität Hannover ROTORTELEMETRIC PROCEDURE SUITABLE FOR VERY HIGH ROTATION SPEEDS FOR WIRELESS TRANSMISSION OF DATA BETWEEN A MULTIPLE OF COMMUNICATION UNITS ARRANGED IN A ROTATABLE COMPONENT AND A ROTATABLE COMPONENT SYSTEM AND BASIC COMMUNICATION UNIT
US9132838B2 (en) * 2012-09-17 2015-09-15 Douglas M. Baker Rotary power transmission joint with an integrated wireless sensor
US9515373B2 (en) * 2013-09-05 2016-12-06 The Boeing Company Integrated antenna transceiver for sensor and data transmission on rotating shafts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CH709714A1 (en) 2015-11-30
WO2015176189A1 (en) 2015-11-26
CN106463822B (en) 2019-11-22
US20170223433A1 (en) 2017-08-03
JP6628740B2 (en) 2020-01-15
US10070203B2 (en) 2018-09-04
JP2017522769A (en) 2017-08-10
EP3158773A1 (en) 2017-04-26
CN106463822A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
EP3158773B1 (en) Measurement device and method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station
EP2385341A1 (en) Method and device for determining the 3D coordinates of an object
DE102007048121B4 (en) Clamping device for a machine tool with a flatness measurement
EP2402114B1 (en) Device and method for protecting a work spindle
EP1650540A2 (en) sensor system for a chip forming machine tool
EP3744482B1 (en) Securing of a movable part of a machine
EP1920160A1 (en) Vacuum pump
EP2682713B1 (en) Sensor system and method for operating same
EP3828584B1 (en) Safety system
EP2456594B1 (en) Electromechanical joining module having a force transducer
EP3336628A1 (en) Method and mobile device for analysing a production flow of a production machine, and computer program, set for analysing the production flow in the production machine and suitcase
DE102010011318B3 (en) Measuring device for measuring force at force clamping spindle of workpiece clamping apparatus of e.g. lathe, is designed such that evaluation unit comprises receiving unit, coupler and detector to wirelessly receive signal
EP3578295B1 (en) Position measuring device and method for operating same
EP3094955A1 (en) System for determining measurement variables on a rotating component
DE202019106569U1 (en) security system
US20180343506A1 (en) Method for telemetric transmission of measurement data from a measurement unit on a mobile system to a base station
EP2829848B1 (en) Sensor with sensor holder an therein integrated memory for sensor parameters
EP4018159B1 (en) Measuring system
EP4031840A1 (en) Sensor network assembly
EP3197671B1 (en) Tablet machine and method for identifying a pressure roller column in a tabletting machine
EP3129802A1 (en) Manufacturing assistance device having an ultrasound locating unit
EP1791387B1 (en) Monitoring device for tools and power units of a machining centre
WO2018001678A1 (en) Data collector and device and method for collecting measurement data
EP2302417A2 (en) Handheld device for detecting metallic objects in a base, in particular a wall or similar
CN208341454U (en) Punched pipefitting device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1114430

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008483

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190423

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008483

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1114430

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 9

Ref country code: DE

Payment date: 20230420

Year of fee payment: 9

Ref country code: CH

Payment date: 20230607

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 9