EP3154919A1 - Photovoltaic concrete, production method thereof and construction element comprising such concrete - Google Patents

Photovoltaic concrete, production method thereof and construction element comprising such concrete

Info

Publication number
EP3154919A1
EP3154919A1 EP15727958.9A EP15727958A EP3154919A1 EP 3154919 A1 EP3154919 A1 EP 3154919A1 EP 15727958 A EP15727958 A EP 15727958A EP 3154919 A1 EP3154919 A1 EP 3154919A1
Authority
EP
European Patent Office
Prior art keywords
concrete
photovoltaic
fibers
polymer film
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15727958.9A
Other languages
German (de)
French (fr)
Inventor
Isabelle Dubois-Brugger
Matthieu Horgnies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lafarge SA
Original Assignee
Lafarge SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lafarge SA filed Critical Lafarge SA
Publication of EP3154919A1 publication Critical patent/EP3154919A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4888Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5111Ag, Au, Pd, Pt or Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5138Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of Mn and Mo, e.g. for the Moly-manganese method
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/70Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/71Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being an organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic concrete, a method of manufacturing such a concrete, a member for the field of construction comprising such a concrete, and a method of manufacturing this element.
  • the present invention aims at the technical field of the production of electricity from renewable energies, in particular solar energy, thanks to the photovoltaic effect.
  • Cities include many buildings, buildings, structures or infrastructure (including transportation) with high surface capacity, which would be relevant to use to produce electricity from solar energy. For this purpose, it becomes interesting to use the concrete surfaces available on the many works present in the cities. However, the application of solar panels on the facades or more generally on concrete surfaces is long and expensive, and requires a lot of manpower. In addition, it requires prior manufacture of solar panels in the factory.
  • EP 2 190 032 a fiber cement panel on which is applied by gluing a photovoltaic thin layer. This bonding takes place using an adhesive applied by vacuum lamination and hot on the fiber cement board, previously coated with a polymer film.
  • the technical problem to be solved by the invention is to provide a concrete intended for the construction of buildings, buildings, structures or infrastructures and capable of producing electricity, without having recourse to the use and the installation of solar panels or photovoltaic thin film bonding.
  • the subject of the present invention is a concrete having a smooth surface, coated in whole or in part with a polymer film by polymerization under the action of radiation, said film itself being coated in whole or in part with a photovoltaic thin layer.
  • the inventors have shown that the fact of covering a concrete having a smooth surface, by means of a first polymer film and then covering said film with a photovoltaic thin film makes it possible to obtain a photovoltaic concrete which can transform the photovoltaic energy from solar radiation into electrical energy.
  • the smooth surface of the concrete combined with the very low intrinsic porosity of the polymer film makes it possible to obtain a surface that makes it possible to obtain good adhesion of the photovoltaic thin film.
  • the invention offers another advantage that the concrete is characterized by a smooth surface condition, very little rough and homogeneous, with sizes of surface defects (depth of the grooves and / or heights of asperities) less than one micrometer.
  • the concrete used according to the invention may be a structural concrete, that is to say preferably having performance in accordance with the NF EN 1992-1 -1 standard of October 2005.
  • the advantage of the process according to the invention is that it does not require a bonding step of the photovoltaic thin film.
  • the photovoltaic thin film is directly manufactured in the layer formed by the polymer film. This manufacture does not consist in an assembly or bonding between the polymer film and the photovoltaic thin film. This is an in situ fabrication of the photovoltaic thin film. There is no assembly according to the method of the invention, of prefabricated element, likewise the method according to the invention does not require adhesive bonding.
  • hydroaulic binder a material which takes and hardens by hydration, for example a cement.
  • crete is meant a mixture of hydraulic binder (for example cement), aggregates, water, optionally adjuvants, and possibly mineral additives, such as for example high performance concrete, Ultra-high performance concrete, self-compacting concrete, self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete. According to this definition, prestressed concrete is also meant.
  • cement includes mortars. In this specific case, the concrete comprises a mixture of hydraulic binder, sand, water and possibly additives and possibly mineral additions.
  • the term “concrete” according to the invention indistinctly refers to the concrete in the fresh state and in the cured state, and also includes a cement slurry or a mortar.
  • the invention relates to a method of manufacturing a photovoltaic concrete, comprising the following steps:
  • the temperature of the composition is less than 35 ° C., preferably less than 30 ° C.
  • This characteristic is advantageous because it makes it possible to limit the local rise in temperature at the surface of the concrete, when it is covered by the composition.
  • this composition is applied to the concrete without being heated. The exact temperature of this composition, when it is deposited on the concrete, depends on the operating conditions and, where appropriate, on the climatic conditions.
  • This composition comprising monomers and / or unpolymerized reactive prepolymers may be applied by roller or spray, which allows a good distribution of the coating.
  • This composition is capable of crosslinking under the action of radiation, in particular under ultraviolet radiation. This guarantees a very rapid crosslinking, of the order of a few seconds, and completes the monomer, in particular greater than 90%, or even greater than 99%; the coating obtained being homogeneous and crosslinked throughout its thickness.
  • the method according to the invention may optionally comprise a step of polishing the concrete surface before the application of the composition comprising monomers and / or unpolymerized reactive prepolymers.
  • the method according to the invention may comprise a step after hardening of the concrete, mechanical treatment by roughing, and then polishing. This treatment gives a perfectly smooth surface.
  • the method further comprises demolding and / or heat treatment of the concrete.
  • the steps of application of the composition and polymerization under the action of radiation may occur between the release of the concrete and the heat treatment.
  • the method according to the invention does not include a step of bonding the photovoltaic thin film to the polymer film.
  • This thermal treatment of concrete is generally carried out on ultra-high performance concretes, at a temperature above ambient temperature (for example from 20 ° C. to 90 ° C.), preferably from 60 ° C. to 90 ° C.
  • the temperature of the heat treatment is preferably less than the boiling point of the water at ambient pressure.
  • the temperature of the heat treatment is generally less than 100 ° C.
  • the use of an autoclave in which the heat treatment is carried out at high pressure also allows the use of higher heat treatment temperatures.
  • the heat treatment may last, for example, from 6 hours to 4 days, preferably about 2 days.
  • the heat treatment begins after setting, usually at least one day after setting has started, and preferably on concrete which has aged from 1 day to about 7 days at 20 ° C.
  • the crosslinking of the polymer constituting the film induces a strong adhesion with the element exiting the mold, as well as sealing the surface of the concrete with respect to the flow of water and calcium salts.
  • the crosslinking of the polymer has the advantage of being fast (less than 5 minutes, or even 1 minute), which reduces the cycle and storage times associated with the application and drying of the parts.
  • the advantage of a highly crosslinked film is to have a very scratch-resistant surface.
  • the concrete used according to the process of the invention has a surface, before coating with the polymer film, having a roughness Ra of from 0.5 ⁇ to 10 ⁇ , preferably from 0.5 to 7 ⁇ , even more preferably from 0.5 to 5 ⁇ , advantageously from 0.5 to 3 ⁇ .
  • roughness is meant the irregularities of the order of one micrometer of a surface which are defined by comparison with a reference surface, and are classified in two categories: asperities or “peaks” or “protuberances” , and cavities or “hollows”.
  • the roughness of a given surface can be determined by measuring a number of parameters.
  • parameter Ra measured by a confocal Micromesure full-field 3D confocal optical profilometer
  • NF EN 05-015 and DIN EN ISO 4287 of October 1998 corresponding to the arithmetic mean of all the ordinates of the profile within a base length (in our examples, the latter was set at 12.5 mm).
  • the resistance of the coating to the scratch is practiced using the so-called "grid” test, according to ISO 2409: 2007 (Paints and varnishes - grid test). Its principle is to make a grid by making parallel and perpendicular incisions in the coating. The incisions must penetrate to the substrate. The incisions are 6 in number and spaced 1 mm apart.
  • the concrete used according to the process of the invention has a surface, after coating with the polymer film, having a roughness Ra of from 0.1 ⁇ to 5 ⁇ , preferably from 0.2 to 3 ⁇ , more preferably from 0.3 to 1 ⁇ , advantageously from 0.4 to 0.6 ⁇ .
  • Ra roughness
  • the method according to the invention comprises a step of obtaining a polymer film by polymerization under the action of radiation.
  • This type of polymer film obtained by Radiation polymerization is also called photocrosslinked polymer or crosslinkable film-forming resin or photoresist.
  • compositions of unpolymerized reactive monomers and / or prepolymers are applied in whole or in part to the surface of the concrete.
  • this composition is a composition of unpolymerized reactive monomers and prepolymers.
  • This composition generally comprises the following precursors:
  • a prepolymer comprising a resin, which resin comprises one or more, for example 1, 2, 3 or 4 polymerizable group (s) (which may be the same or different), such as unsaturated groups or epoxy groups.
  • Polymerizable groups include acrylate, methacrylate, allyl, vinyl, epoxy and glycidyl.
  • Prepolymers include an acrylic resin, a methacrylic resin a polyester resin, a chlorinated polyester resin, an epoxy resin, a melamine resin, a polyamide resin, a silicone resin, a polyether resin, a polyurethane resin, a polyurea resin and / or mixtures thereof, the resins comprising one or more polymerizable group (s), such as those listed above.
  • the resins comprising the acrylate group may be partially modified by the action of an amine, generally called "synergistic amines".
  • polyurethanes comprising acrylate groups and epoxides comprising acrylate groups are particularly preferred according to the invention.
  • a monomer comprising one or more, for example 1, 2, 3 or 4 reactive group (s) (which may be the same or different), such as unsaturated groups or epoxy groups.
  • Reactive groups include acrylate, methacrylate, allyl, vinyl, epoxy and glycidyl.
  • the acrylic esters of alcohols such as isobornyl acrylate (IBOA), diols such as diethylene glycol diacrylate (DEGDA), tripropylene glycol diacrylate (TPGDA), bisphenol A diacrylate, or polyols such as trimethylolpropane triacrylate ( TMPTA), propoxylated glycerol triacrylate (GPTA), pentaerythritol tri- and tetra-acrylate, are usable according to the invention.
  • IBOA isobornyl acrylate
  • diols such as diethylene glycol diacrylate (DEGDA), tripropylene glycol diacrylate (TPGDA), bisphenol A diacrylate
  • polyols such as trimethylolpropane triacrylate ( TMPTA), propoxylated glycerol triacrylate (GPTA), pentaerythritol tri- and tetra-acrylate
  • TMPTA trimethylolpropane triacrylate
  • MPDDA is particularly preferred according to the invention.
  • a photoinitiator such as mixtures of benzophenone derivatives and tertiary amines or cationic systems such as triphenylsulphonium hexafluoroantimonate or such as a mixture of oxide acyl phosphines such as Irgacure TM 819 (BAPO) or Darocur TM TPO
  • Darocure TM 4265 (a mixture of MAPO and 50/50 hydroxyketone) sold by the company Ciba and acetophenone- ⁇ -hydroxy- ⁇ , ⁇ -di-substituted.
  • 2-hydroxy-2-methyl-1-phenylpropan-1-one (Darocure TM 1173, sold by the company Ciba)
  • 1-hydroxy-cyclohexyl phenyl ketone (Irgacure TM 184, sold by the company Ciba) are particularly preferred according to US Pat. 'invention.
  • compositions according to the invention of monomers and / or unpolymerized reactive prepolymers comprises:
  • MPDDA Methyl pentanediol diacrylate
  • composition of unpolymerized reactive monomers and / or prepolymers used in the process according to the invention may comprise from 1% to 10% by weight of photoinitiator, preferably from 2% to 8% and more preferably from 3% to 6% by weight. %.
  • this composition comprises both monomers and unpolymerized reactive prepolymers.
  • the group constituted by the monomers and prepolymers, apart from any other component may comprise from 10% to 90% by weight of monomers, preferably from 20% to 80%, and 10% to 90% by weight. prepolymer mass, preferably from 20% to 80%.
  • composition of monomers and / or unpolymerized reactive prepolymers can be prepared by simple mixing of its components, using any type of mixer. The resulting mixture is stable and can be stored for several months at room temperature and away from direct sunlight.
  • composition of unpolymerized reactive monomers and / or prepolymers is applied in whole or in part to the concrete by means of an applicator roller, a brush or a spray or any other means for depositing a layer thin and relatively homogeneous in composition thickness on the facing.
  • the composition of unpolymerized reactive monomers and / or prepolymers may be applied in one or more layers.
  • the total thickness of said composition deposited on the concrete is preferably from 5 to 100 microns, more preferably from 10 to 60 microns and even more preferably from 15 to 50 microns.
  • a polymerization may or may not be carried out between the layers.
  • the composition of monomers and / or unpolymerized reactive prepolymers is applied in two layers of 20 micrometers with a polymerization between the two applications, instead of the application of a single layer of 40 micrometers.
  • the polymerization of the reactive monomers and / or prepolymers takes place under the action of radiation, preferably under the action of waves whose wavelength is in the visible ultraviolet spectrum, or the length of which is wave is shorter still. It is also conceivable that the polymerization takes place under the action of infrared rays.
  • the radiations cause the polymerization by condensation reactions or additions of the precursors of the polymer, in particular the radiation causes the crosslinking of the precursors of the polymer. It is also conceivable that the polymerization takes place under the action of an electron beam. In this case, the composition of unpolymerized reactive monomers and / or prepolymers does not include a photoinitiator, since the energy of the electron beams is sufficient to create the free radicals necessary for the polymerization.
  • the polymer film is obtained by the polymerization under the action of ultraviolet radiation.
  • Ultraviolet (UV) rays can excite or decompose the photoinitiator and cause the formation of free radicals or ions which leads to the polymerization of the prepolymer with the monomer.
  • the polymerizations can be carried out at a speed of passage under the UV lamp from 5 meters / minute to 30 meters / minute.
  • the total dose of energy received (in one or more times if necessary) by the composition of monomers and / or reactive prepolymers is preferably 300 to 1200 mJ / cm 2 .
  • the polymerization can be carried out in the presence of an inert gas, such as nitrogen, thereby reducing the amounts of photoinitiator in the composition, and also hardening the surface of the polymer film.
  • an inert gas such as nitrogen
  • the polymerization causes the formation of the polymer film.
  • This polymer film is preferably continuous. According to a first variant, this polymer film is located on one side of the concrete or the construction element which comprises this concrete. In particular, one side of the concrete or the construction element which comprises this concrete is entirely coated with the polymer film.
  • the polymer film may further comprise an anti-fungal agent, a coloring agent, pigments, an agent or a mineral filler for improving the adhesion of a joint or a paint or other surface application susceptible to be deposited on the concrete (as for example silica, carbonate calcium, titanium dioxide, magnesium carbonate, calcium sulphate, magnesium oxide, calcium hydroxide or a powdery solid).
  • an anti-fungal agent a coloring agent, pigments, an agent or a mineral filler for improving the adhesion of a joint or a paint or other surface application susceptible to be deposited on the concrete (as for example silica, carbonate calcium, titanium dioxide, magnesium carbonate, calcium sulphate, magnesium oxide, calcium hydroxide or a powdery solid).
  • the polymerization step under the action of radiation is implemented without delay, after the end of the application step of the composition. This avoids any inadvertent degradation of the reactive composition, covering all or part of the concrete.
  • the steps of applying the composition and polymerization under the action of radiation are implemented as quickly as possible after the end of the demolding step.
  • the polymer film is obtained by polymerization under the action of ultraviolet radiation.
  • the film has in particular a very high resistance to abrasion and scratching, but also a high stability vis-à-vis high temperatures under partial vacuum.
  • the steps for applying the photovoltaic thin film to the polymer film are in particular by sputtering, chemical vapor deposition, ion deposition, plasma deposition, electron bombardment, laser ablation, and molecular beam epitaxy.
  • thermal evaporation the general principle of these techniques is to deposit or condense the covering material (forming the thin layer) under partial vacuum (e.g., using a pressure of 10 "2-10" 4 Torr) while the carrier material is heated to a constant temperature.
  • the method according to the invention does not include a step of bonding the photovoltaic thin film to the polymer film.
  • the above method is particularly suitable for treating a high performance concrete having at least one of the above characteristics.
  • the invention also relates to a photovoltaic concrete that can be obtained by the method according to the invention and described above.
  • the photovoltaic concrete according to the invention is preferably a structural concrete, generally having a compressive strength measured at 28 days greater than or equal to 12 MPa, in particular ranging from 12 MPa to 300 MPa.
  • This concrete can be used in the supporting structure of a structure.
  • a supporting structure is generally all the elements of a structure carrying more than their own weight.
  • an element that can be a carrier there may be mentioned poles, floors, walls, beams, lintels, piers, acroteria.
  • the photovoltaic concrete according to the invention has a photovoltaic thin film producing electricity thanks to the photovoltaic effect.
  • the photovoltaic thin film is based on inorganic compounds, metal compounds, organic compounds or organic-inorganic hybrid compounds (thin layers also called hybrid photovoltaic cells).
  • the photovoltaic thin film may be composed of photosensitive pigments; we will then speak of dye cell or Gra ⁇ tzel cell (also called DSSC or DSC).
  • the inorganic or metallic compounds suitable for producing the photovoltaic thin film may be based on amorphous silicon, liquid silicon, cadmium telluride, copper-indium selenium, copper-indium-gallium selenium, copper-indium, gallium-diselenide-disulphide, gallium arsenide, indium-tin oxide, copper oxide, molybdenum oxide, chalcopyrite oxide or mixtures thereof.
  • Organic compounds suitable for producing the photovoltaic thin film may be based on two compounds, one electron donor and the other electron acceptor.
  • electron donors mention may be made of polyarylenes, poly (arylene-vinylene) s, poly (arylene-ethynylene) s or mixtures thereof.
  • P3HT poly-3-hexylthiophene
  • MDMO-PPV poly [2-methoxy-5- (3,7-dimethyloctyloxy) -1,4-phenylenevinylene]
  • photosensitive pigments constituting photovoltaic cells with dyes or Gra ⁇ tzel
  • the concrete according to the invention generally has a porosity to water of less than 14%, preferably less than 12%, for example less than 10% (determined by the method described in the report Technical Days, PSAC - AFREM, December 1997, pages 121 to 124).
  • the photovoltaic concrete according to the invention is an ultra-high performance concrete (BUHP).
  • This high-performance concrete preferably has a water-cement ratio (W / C) of at most 0.45, preferably at most 0.32, more preferably from 0.20 to 0.27.
  • the concrete may be a concrete containing silica fume.
  • the ultra-high performance concrete comprises, in parts by weight: 100 of Portland cement;
  • the ultra-high performance concrete mentioned above generally has a compressive strength measured at 28 days greater than or equal to 50 MPa, in particular ranging from 50 MPa to 300 MPa, in particular greater than or equal to 80 MPa, especially from 80 to 80 MPa. 250 MPa.
  • the concrete is preferably ultra-high performance concrete (BUHP), for example containing fibers.
  • An ultra high performance concrete is a particular type of high performance concrete and generally has a compressive strength at 28 days greater than or equal to 100 MPa and in particular greater than or equal to 120 MPa.
  • the polymer film and the photovoltaic thin film according to the invention are preferably applied to elements made with ultra-high performance concretes described in patents US6478867 and US6723162 or patent applications EP1958926 and EP2072481.
  • D90 also D v 90
  • D10 also denoted D v 10
  • D10 corresponds to the io th percentile of the distribution by volume of grain size, that is to say 10% of the grains have a size smaller than the D10 and 90% have larger than the D10.
  • the sand is usually silica sand or limestone sand, calcined bauxite or metallurgical waste particles, the sand may also comprise a crushed mineral hard material, for example, a crushed vitrified slag.
  • BUHPs generally have greater shrinkage at setting due to their higher cement content.
  • the total shrinkage can be reduced by the inclusion, generally from 2 to 8, preferably from 3 to 5, for example about 4 parts, of quicklime, lime or calcium oxide in the mixture before the addition of water.
  • Suitable pozzolanic materials include fumed silica, also known as micro-silica, which is a by-product of the production of silicon or ferrosilicon alloys. It is known as a pozzolanic reactive material.
  • the individual particles generally have a diameter of about 5 to 10 nm.
  • the individual particles agglomerate to form agglomerates of 0.1 to 1 ⁇ , and can then aggregate together into aggregates of 20 to 30 ⁇ .
  • the silica fumes generally have a BET surface area of 10 to 30 m 2 / g.
  • Other pozzolanic materials include materials rich in aluminosilicate such as metakaolin and natural pozzolans with volcanic, sedimentary, or diagenic origins.
  • Suitable non-pozzolanic materials also include materials containing calcium carbonate (eg ground or precipitated calcium carbonate), preferably ground calcium carbonate.
  • Ground calcium carbonate may, for example, be the Durcal ® 1 (OMYA, France).
  • Non-pozzolanic materials preferably have an average particle size of less than 5 ⁇ , for example from 1 to 4 ⁇ .
  • Non-pozzolanic materials may be ground quartz, for example C800 which is a substantially non-pozzolanic silica filler supplied by Sifraco, France.
  • the preferred BET surface (determined by known methods) of calcium carbonate or crushed quartz is from 2 to 10 m 2 / g, generally less than 8 m 2 / g, for example from 4 to 7 m 2 / g, preferably less than 6 m 2 / g.
  • Precipitated calcium carbonate is also suitable as a non-pozzolanic material.
  • Individual particles generally have a size (primary) of the order of 20 nm.
  • the individual particles agglomerate into aggregates having a (secondary) size of about 0.1 to 1 ⁇ .
  • the aggregates themselves form clusters having a size (ternary) greater than 1 ⁇ .
  • a non-pozzolanic material or a mixture of non-pozzolanic materials may be used, for example ground calcium carbonate, ground quartz or precipitated calcium carbonate or a mixture thereof.
  • a mixture of pozzolanic materials or a mixture of pozzolanic and non-pozzolanic materials can also be used.
  • the photovoltaic concrete according to the invention can be used in combination with reinforcing elements, for example metal and / or organic fibers and / or glass fibers and / or other reinforcing elements described hereinafter.
  • reinforcing elements for example metal and / or organic fibers and / or glass fibers and / or other reinforcing elements described hereinafter.
  • the photovoltaic concrete according to the invention may comprise metal fibers and / or organic fibers and / or glass fibers.
  • the amount by volume of fibers is generally from 0.5 to 8% relative to the volume of the hardened concrete.
  • the amount of metal fiber expressed in terms of volume of the final hardened concrete is generally less than 4%, for example 0.5 to 3.5%, preferably about 2%.
  • the amount of organic fibers, expressed on the same basis, is generally 1 to 8%, preferably 2 to 5%.
  • the metal fibers are generally selected from steel fibers, such as high strength steel fibers, amorphous steel fibers or stainless steel fibers.
  • the steel fibers may optionally be coated with a non-ferrous metal such as copper, zinc, nickel (or their alloys).
  • the individual length (I) of the metal fibers is generally at least 2 mm and is preferably 10 to 30 mm.
  • the ratio l / d (d being the fiber diameter) is generally 10 to 300, preferably 30 to 300, preferably 30
  • Fibers having a variable geometry may be used: they may be creped, waved or hooked at the ends. The roughness of the fibers may also be modified and / or fibers of variable cross section may be used.
  • the fibers can be obtained by any suitable technique, including braiding or wiring multiple wires, to form a twisted assembly.
  • Organic fibers include polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) fibers, polyethylene (PE) fibers, high density polyethylene (HDPE) fibers, polypropylene (PP) fibers, homopolymers or copolymers, polyamide or polyimide fibers. Blends of these fibers can also be used.
  • the organic reinforcing fibers used in the invention can be classified as follows: high modulus reactive fibers, low modulus nonreactive fibers and low modulus reactive fibers. The presence of organic fibers makes it possible to modify the behavior of concrete in heat or fire.
  • the organic fibers may be present as individual filaments or as bundles of several filaments.
  • the diameter of the single filament or the bundle of multiple filaments is preferably from 10 m to 800 ⁇ .
  • the organic fibers may also be used in the form of woven structures or nonwoven structures or a hybrid bundle comprising different filaments.
  • the individual length of the organic fibers is preferably from 5 mm to 40 mm, preferably from 6 to 12 mm.
  • the organic fibers are preferably PVA fibers.
  • organic fibers used generally depends on the geometry of the fibers, their chemical nature and their intrinsic mechanical properties (eg elastic modulus, yield point, strength).
  • the ratio l / d, d being the fiber diameter and the length, is generally 10 to 300, preferably 30 to 90.
  • the glass fibers may be single filament (monofilament fiber) or multiple filament (multifilament fiber) each individual fiber then comprising a plurality of filaments.
  • the glass fibers may be formed by pouring molten glass into a die.
  • a conventional aqueous sizing composition can then be applied to glass fibers.
  • Aqueous sizing compositions may include a lubricant, a coupling agent and a film former and optionally other additives.
  • the treated fibers are generally heated to remove water and heat-treat the sizing composition on the surface of the fibers.
  • the volume percentage of glass fibers in the concrete is preferably greater than 1% by volume, for example from 2 to 5%, preferably from about 2 to 3%, a preferred value being about 2%.
  • the diameter of the individual filaments in the multifilament fibers is generally less than about 30 ⁇ .
  • the number of individual filaments in each individual fiber is generally 50 to 200, preferably about 100.
  • the composite diameter of the multifilament fibers is generally 0.1 to 0.5 mm, preferably about 0.3 mm. . They generally have an approximately circular shape in cross section.
  • the glass generally has a Young's modulus greater than or equal to 60 GPa, preferably 70 to 80 GPa, for example 72 to 75 GPa, preferably about 72 GPa.
  • the length of the glass fibers is generally greater than the particle size of the granulate (or sand).
  • the length of the fibers is preferably at least three times larger than the particle size.
  • a mixture of lengths can be used.
  • the length of the glass fibers is generally 3 to 20 mm, for example 4 to 20 mm, preferably 4 to 12 mm, for example about 6 mm.
  • the tensile strength of the multifilament glass fibers is about 1700 MPa or more.
  • the saturation dose of the glass fibers (S f ) in the composition is expressed by the formula:
  • V f is the actual volume of the fibers.
  • S f is generally from 0.5 to 5, preferably from 0.5 to 3.
  • S f can generally be up to about 2
  • the actual volume can be calculated from the weight and density of the glass fibers.
  • Binary hybrid fibers comprising glass fibers and (a) metal fibers or (b) organic fibers and ternary hybrid fibers comprising glass fibers, metal fibers and organic fibers may also be used.
  • a mixture of glass fibers, organic fibers and / or metal fibers can also be used: a "hybrid" composite is thus obtained whose mechanical behavior can be adapted according to the desired performance.
  • the compositions preferably comprise polyvinyl alcohol (PVA) fibers.
  • PVA fibers generally have a length of 6 to 12 mm. They generally have a diameter of 0.1 to 0.3 mm.
  • Portland cements without fumed silica described in the book "Lea's Chemistry of Cernent and Concrete”.
  • Portland cements include slag, pozzolana, fly ash, shale, limestone and composite cements.
  • a preferred cement for the invention is CEM I.
  • the cement of the concrete according to the invention is for example a white cement.
  • the water / cement mass ratio of the concrete according to the invention may vary if substitutes for the cement are used, more particularly pozzolanic materials.
  • the water / binder ratio is defined as the mass ratio between the quantity of water E and the sum of the quantities of cement and of all pozzolanic materials: it is generally from 15 to 30%, preferably from 20% to 25%, percentage in mass.
  • the water / binder ratio may be adjusted using, for example, water reducing agents and / or superplasticizers.
  • a water reducer is defined as an additive that reduces the amount of mixing water for a concrete for a given workability typically of 10 to 15%.
  • Water reducers include, for example, lignosulphates, hydroxycarboxylic acids, carbohydrates, and other specialized organic compounds, for example glycerol, polyvinyl alcohol, sodium aluminum-methyl-siliconate, sulfanilic acid and casein.
  • Superplasticizers belong to a new class of water reducers that are chemically different from normal water reducers and capable of reducing the amount of mixing water by about 30%.
  • Superplasticizers have been broadly classified into four groups: sulphonated naphthalene formaldehyde condensate (or SNF), (generally a sodium salt); sulphonated formaldehyde melamine condensate (or SMF, acronym for Sulphonated Melamine Formaldehyde Condensate); modified lignosulphonates (or MLS, acronym for Modified Lignosulfonates); and others.
  • SNF sulphonated naphthalene formaldehyde condensate
  • SMF sulphonated formaldehyde melamine condensate
  • modified lignosulphonates or MLS, acronym for Modified Lignosulfonates
  • Next generation superplasticizers include polycarboxylic compounds such as polyacrylates.
  • the superplasticizer is preferably a new generation of superplasticizer, for example a copolymer containing polyethylene glycol as a graft and carboxylic functions in the main chain such as a polycarboxylic ether. Sodium polysulphonate polycarboxylate and sodium polyacrylates may also be used.
  • the amount of superplasticizer generally required depends on the reactivity of the cement. The lower the reactivity of the cement, the lower the required amount of superplasticizer. In order to reduce the total amount of alkaline, the superplasticizer can be used as a calcium salt rather than a sodium salt.
  • additives may be added to the concrete used in the process according to the invention, for example an antifoam agent (for example, polydimethylsiloxane). It is also silicones in the form of a solution, a solid or preferably in the form of a resin, an oil or an emulsion, preferably in water.
  • an antifoam agent for example, polydimethylsiloxane
  • silicones in the form of a solution, a solid or preferably in the form of a resin, an oil or an emulsion, preferably in water.
  • the amount of such an agent in the composition is generally at most 5 parts by weight relative to the weight of the cement.
  • the concretes used in the process according to the invention may also comprise hydrophobic agents for increasing the repulsion of water and reducing the absorption of water and the penetration into solid structures comprising concretes according to the invention.
  • agents include silanes, siloxanes, silicones and siliconates; commercially available products include liquid and solid products which can be diluted in a solvent, for example into granules.
  • the concrete used in the process according to the invention can be prepared by known methods, in particular the mixing of solid components and water, the shaping (molding, casting, injection, pumping, extrusion, calendering) then hardening.
  • the constituents and the reinforcing fibers are mixed with water.
  • the following order of mixing may, for example, be adopted: mixing of the powder constituents of the matrix; introduction of water and a fraction, for example half, of adjuvants; mixed ; introduction of the remaining fraction of adjuvants; mixed ; introduction of reinforcing fibers and other constituents; mixed.
  • Reinforcing means used in combination with the concrete used in the process according to the invention also comprise prestressing reinforcing means, for example, by adhering yarns or by adherent strands, or by posttensioning, by non-adherent strands or by cables or sheaths or bars, the cable comprising a set of wires or comprising strands.
  • the materials in the form of particles other than cement may be introduced as premixes or dry premix of diluted or concentrated aqueous powders or suspensions.
  • the specific surfaces of the materials are measured by the BET method using a Beckman Coulter SA 3100 apparatus with nitrogen as the adsorbed gas.
  • the concrete used in the process according to the invention is a self-compacting concrete, that is to say that it is put in place under the sole effect of gravity without the need to vibrate.
  • the concrete according to the invention is a self-consolidating concrete as described in documents EP981506 or EP981505.
  • the invention also relates to a use of a polymer film obtained by polymerization under the action of radiation and a photovoltaic thin layer, to produce electricity on a concrete surface.
  • the invention also relates to an element for the field of construction comprising a photovoltaic concrete according to the invention as defined above.
  • element for the field of construction any element of a construction such as for example a foundation, a base, a wall, a beam, a pillar, a bridge stack, a block, post, staircase, panel (including facade panel), cornice, tile or roof terrace.
  • the photovoltaic concrete according to the invention could possibly be used in "thin elements", for example those having a ratio between length and thickness greater than about 10, generally having a thickness of 10 to 30 mm, for example coating elements.
  • the invention finally relates to a method of manufacturing the above element, comprising the method described above.
  • FIG. 1 illustrates the device for measuring the permeability of a concrete.
  • the Portland cement is of the type CEM I 52.5 PMES according to the standard EN 197-1 of February 2001.
  • the adjuvant Ductal F2 is a superplasticizer comprising a polyoxyalkylene polycarboxylate in aqueous phase at 30% solids.
  • the silica fume has a median particle size of about 1 micron.
  • the water / cement ratio is 0.26. It is a concrete with a compressive strength at 28 days greater than 100 MPa.
  • the ultra high performance concrete according to the formulation (1) was produced using a RAYNERI type kneader. The entire operation was performed at 20 ° C.
  • the method of preparation includes the following steps:
  • Plates (dimensions 150x100x10 mm) were made by molding the concrete according to the formulation (1) in a polyvinyl chloride (PVC) mold. Each plate was demolded 18 hours after contact between cement and water. Each demolded plate was stored at 25 ° C for 14 days.
  • PVC polyvinyl chloride
  • the coating (1) according to the invention was applied to one face of the first plate.
  • Comparative coatings (2) and (3) were applied to one side of the second and third plates. No coating was placed on the fourth plate.
  • Photomer TM are sold by IGM Resins and Irgacure is marketed by Ciba.
  • the compounds of the coating (1) were loaded into a mixer and then stirred at ambient temperature until a homogeneous mixture was obtained. The mixture was stable and it could be stored for several months at room temperature and away from direct sunlight. This mixture was applied to the ultra high performance concrete (1) using an applicator roller and then cured under the action of UV radiation. UV can decompose the photoinitiator which leads to the polymerization of acrylic functions.
  • the polymerization was carried out at a speed of passage under the UV lamp from 5 meters / minute to 30 meters / minute, the received energy dose was sufficient to obtain the most complete polymerization possible and avoid any sticky effect on the surface of the polymer film.
  • the process was carried out at 20 ° C. and included, after waiting for 14 days after demolding the concrete to be treated, depositing, on the face of the concrete element to be treated, an aqueous emulsion (composed of methacrylate butyl, aliphatic esters, carboxylic acids and ether glycol), corresponding to the PROTECTGUARD TM Effect Wet Gloss product marketed by Guard Industrie.
  • the coating was deposited by means of a roller moistened with this liquid. Two layers were deposited (2 hours between each application).
  • the process was carried out at 20 ° C. and comprises, after waiting for 14 days after demolding the concrete to be treated, depositing, on the face of the concrete element to be treated, a first layer of a polymer acrylic diluted in an aqueous solvent (corresponding to Solarcir Primer Protec TM product marketed by Grace-Pieri).
  • the emulsion was pulverized in an amount of 40 g / m 2 .
  • This process then included a waiting time of 24 hours from the drying of the first layer, then the deposition of a second polyurethane-based layer (corresponding to the Solarcir Protec Mat TM product marketed by Grace-Pieri). This second layer was sprayed in an amount of 80 g / m 2 .
  • the concrete covered with the coating (1) according to the invention has no stain or bubble while the concrete covered with the coating (2) or (3) comparison have at least one of these defects.
  • Ra parameter Mean roughness measurements (Ra parameter) of the treated face of the plates (and uncoated plate) were performed before and after storage at 200 ° C for 2 hours under partial vacuum (pressure ⁇ 0.1 atmosphere) to verify the resistance to deformation of the surfaces in a constraining environment, close to that required for the deposition of photovoltaic thin layers.
  • the results of the roughness measurements are presented in the following table (4):
  • the concrete covered with the coating (1) according to the invention does not exhibit a variation of average roughness (Ra) whereas the concretes coated with the coating (2) or (3) of comparison show a greater surface deformation; the concrete covered with the coating (1) is therefore more favorable to photovoltaic thin film deposition.
  • Uncoated concrete has a higher average roughness than coated concrete (1), which is less favorable for photovoltaic thin film deposition.
  • plates were subjected to a scratch resistance test (according to ISO 2409: 2007 (Paints and varnishes - grid test) consisting of a grid with parallel and perpendicular incisions in the coating.
  • a scratch resistance test according to ISO 2409: 2007 (Paints and varnishes - grid test) consisting of a grid with parallel and perpendicular incisions in the coating.
  • the concrete covered with the coating (1) has scratch-resistant surface properties, with no incisions having cut through the entire thickness of the coating.
  • FIG. 1 represents the device 10 used for carrying out a measurement of the permeability of a plate 12, this measurement of water permeability being capable of characterizing the residual porosity of the surface of the concrete (with / without coatings) .
  • the plate 12 is disposed on spacers 14 to about 5 mm of a horizontal support 16.
  • the treated face of the plate 12 is the upper face 18.
  • a frustoconical funnel 20 with a vertical axis is placed on the upper face 18, the large-diameter end of the funnel 20 being in contact with the upper face 18. largest diameter of the funnel is 75 mm.
  • a seal 22 covers the contact zone between the funnel 20 and the face 18.
  • the end of smaller diameter of the funnel 20 is extended by a graduated pipette 24.
  • a seal 26 covers the contact zone between the funnel 20 and the pipette 24.
  • the permeability measurement test was performed for each plate after the surface treatment using the test device of Fig. 1 at a temperature of 20 ° C and a relative humidity of 65%. Water was poured into the pipette 24 so as to fill the funnel 20 and the pipette 24 to a height of 250 mm with respect to the face 18. The evolution of the amount of water entering the plate was measured on the pipette 24.
  • Table (6) The results have been presented in the following table (6):
  • the concrete covered with the coating (1) according to the invention is therefore more impervious than the concrete covered with the coating (2) or (3) of comparison, and also more impervious than the concrete not covered by a coating.
  • the high impermeability of the coated plate (1) according to the invention reflects a very low open surface porosity, which is very favorable to the photovoltaic thin film deposition for forming the photovoltaic concrete according to the invention.
  • the concrete In order to be able to withstand a homogeneous photovoltaic thin film deposition, in particular during partial vacuum deposition (10 "4 Torr) and with a concrete temperature brought to about 200 ° C (or more), the concrete should be:
  • the ultra-high performance concrete formulation (1) coated with the coating (1) is the one that has the best surface characteristics to receive an in-situ deposit of photovoltaic thin film.
  • the deposition was carried out by cathodic sputtering on two substrates of formulation concrete (1) covered with the coating (1), under a pressure of 2 mTorr and an argon flow of 20 sccm.
  • the Argon plasma was created using radio frequencies (13.56 MHz) with a power of 300 W.
  • the molybdenum target was exposed to the argon ion flux, resulting in a deposition rate of 22.2 nm / min.
  • the two substrates were mounted on a rotating sample holder which rotates at about 5 rpm, and left 13'30 "under the molybdenum stream to obtain a 300 nm thick layer.
  • the Ra after deposition is 0.03 ⁇ ; the flatness of the No. 1 deposit is well preserved from the profilometer observations and the scanning electron microscope.
  • the formulation concrete substrate (1) coated with the coating (1) was previously treated for five minutes with a plasma of O 2 generated at about 0.1 mbar by radio frequencies at 100 W, with a flux of 0 2 of 5 sccm.
  • the chamber was changed to secondary vacuum (from 10 to 2 mbar) and the gold evaporated.
  • the substrate was then placed under the gold source when the sublimation started under heating caused by heating a tungsten filament.
  • the dull and dark appearance of the first gold evaporation deposit suggests that the polymer coating (1) has degraded during the deposition, and that part of this insulating coating is mixed with pulverized gold, thus making the deposit of gold much more resistive.
  • n ° 1 molybdenum
  • n ° 3 and 4 gold
  • the CZTS thin film deposition performed can serve as a basis for the realization of a complete photovoltaic cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The invention relates to concrete with a smooth surface, coated completely or partially with a polymer film obtained by means of radiation-induced polymerisation, said film in turn being coated completely or partially with a thin photovoltaic film.

Description

BETON PHOTOVOLTAÏQUE, SON PROCEDE DE FABRICATION ET ELEMENT DE CONSTRUCTION COMPRENANT UN TEL BETON  PHOTOVOLTAIC CONCRETE, METHOD FOR MANUFACTURING THE SAME, AND CONSTRUCTION ELEMENT COMPRISING SUCH CONCRETE
La présente invention se rapporte à un béton photovoltaïque, à un procédé de fabrication d'un tel béton, à un élément pour le domaine de la construction comprenant un tel béton, ainsi qu'à un procédé de fabrication de cet élément.  The present invention relates to a photovoltaic concrete, a method of manufacturing such a concrete, a member for the field of construction comprising such a concrete, and a method of manufacturing this element.
La présente invention vise le domaine technique de la production d'électricité à partir d'énergies renouvelables, en particulier l'énergie solaire, grâce à l'effet photovoltaïque.  The present invention aims at the technical field of the production of electricity from renewable energies, in particular solar energy, thanks to the photovoltaic effect.
Les villes comprennent de nombreux bâtiments, immeubles, ouvrages d'art ou infrastructures (notamment de transport) offrant de grande capacité de surface, qu'il serait pertinent d'utiliser pour produire de l'électricité à partir de l'énergie solaire. Dans ce but, il devient intéressant d'utiliser les surfaces en bétons disponibles sur les nombreux ouvrages présents dans les villes. Cependant, l'application de panneaux solaires sur les façades ou plus généralement sur les surfaces en béton est longue et coûteuse, et nécessite beaucoup de main d'oeuvre. De plus, cela nécessite préalablement de fabriquer en usine les panneaux solaires.  Cities include many buildings, buildings, structures or infrastructure (including transportation) with high surface capacity, which would be relevant to use to produce electricity from solar energy. For this purpose, it becomes interesting to use the concrete surfaces available on the many works present in the cities. However, the application of solar panels on the facades or more generally on concrete surfaces is long and expensive, and requires a lot of manpower. In addition, it requires prior manufacture of solar panels in the factory.
Il est également connu de part le document EP 2 190 032 un panneau à base de fibrociment sur lequel est appliquée par collage une couche mince photovoltaïque. Ce collage a lieu en utilisant un adhésif appliqué par lamination sous vide et à chaud sur le panneau de fibrociment, préalablement revêtu d'un film polymère.  It is also known from EP 2 190 032 a fiber cement panel on which is applied by gluing a photovoltaic thin layer. This bonding takes place using an adhesive applied by vacuum lamination and hot on the fiber cement board, previously coated with a polymer film.
Aussi le problème technique que se propose de résoudre l'invention est de fournir un béton destiné à la réalisation de bâtiments, immeubles, ouvrage d'art ou infrastructures et capable de produire de l'électricité, sans avoir recours à l'utilisation et à la pose de panneaux solaires ou au collage de couche mince photovoltaïque.  Therefore, the technical problem to be solved by the invention is to provide a concrete intended for the construction of buildings, buildings, structures or infrastructures and capable of producing electricity, without having recourse to the use and the installation of solar panels or photovoltaic thin film bonding.
Dans ce but, la présente invention a pour objet un béton présentant une surface lisse, revêtue en tout ou partie d'un film polymère par polymérisation sous l'action de radiations, ledit film étant lui-même revêtu en tout ou partie d'une couche mince photovoltaïque.  For this purpose, the subject of the present invention is a concrete having a smooth surface, coated in whole or in part with a polymer film by polymerization under the action of radiation, said film itself being coated in whole or in part with a photovoltaic thin layer.
De façon surprenante, les inventeurs ont montré que le fait de recouvrir un béton présentant une surface lisse, au moyen d'un premier film polymère puis de recouvrir ledit film d'une couche mince photovoltaïque permet d'obtenir un béton photovoltaïque qui peut transformer l'énergie photovoltaïque issue du rayonnement solaire en une énergie électrique.  Surprisingly, the inventors have shown that the fact of covering a concrete having a smooth surface, by means of a first polymer film and then covering said film with a photovoltaic thin film makes it possible to obtain a photovoltaic concrete which can transform the photovoltaic energy from solar radiation into electrical energy.
Avantageusement, la surface lisse du béton combinée à la très faible porosité intrinsèque du film polymère permet d'obtenir une surface permettant d'obtenir une bonne adhérence de la couche mince photovoltaïque. L'invention offre comme autre avantage que le béton se caractérise par un état de surface lisse, très peu rugueux et homogène, avec des tailles de défauts de surface (profondeur des stries et/ou hauteurs des aspérités) inférieures au micromètre. Advantageously, the smooth surface of the concrete combined with the very low intrinsic porosity of the polymer film makes it possible to obtain a surface that makes it possible to obtain good adhesion of the photovoltaic thin film. The invention offers another advantage that the concrete is characterized by a smooth surface condition, very little rough and homogeneous, with sizes of surface defects (depth of the grooves and / or heights of asperities) less than one micrometer.
De plus, le béton utilisé selon l'invention peut être un béton structurel, c'est-à-dire présentant de préférence des performances conformes la norme NF EN 1992-1 -1 d'octobre 2005.  In addition, the concrete used according to the invention may be a structural concrete, that is to say preferably having performance in accordance with the NF EN 1992-1 -1 standard of October 2005.
L'avantage du procédé selon l'invention est qu'il ne nécessite pas d'étape de collage de la couche mince photovoltaïque. En effet selon le procédé de l'invention, la couche mince photovoltaïque est directement fabriquée dans la couche formée par le film polymère. Cette fabrication ne consiste pas en un assemblage ou un collage entre le film polymère et la couche mince photovoltaïque. Il s'agit d'une fabrication in situ de la couche mince photovoltaïque. Il n'y a pas d'assemblage selon le procédé de l'invention, d'élément préfabriqué, de même le procédé selon l'invention ne nécessite pas de collage par une colle.  The advantage of the process according to the invention is that it does not require a bonding step of the photovoltaic thin film. Indeed, according to the method of the invention, the photovoltaic thin film is directly manufactured in the layer formed by the polymer film. This manufacture does not consist in an assembly or bonding between the polymer film and the photovoltaic thin film. This is an in situ fabrication of the photovoltaic thin film. There is no assembly according to the method of the invention, of prefabricated element, likewise the method according to the invention does not require adhesive bonding.
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre.  Other advantages and characteristics of the invention will become clear from reading the description and examples given by way of purely illustrative and nonlimiting that will follow.
Par l'expression « liant hydraulique », on entend selon la présente invention un matériau qui prend et durcit par hydratation, par exemple un ciment.  By the term "hydraulic binder" is meant according to the present invention a material which takes and hardens by hydration, for example a cement.
Par le terme « béton », on entend un mélange de liant hydraulique (par exemple du ciment), de granulats, d'eau, éventuellement d'adjuvants, et éventuellement d'additions minérales, comme par exemple le béton à haute performance, le béton à ultra haute performance, le béton autoplaçant, le béton autonivelant, le béton autocompactant, le béton fibré, le béton prêt à l'emploi ou le béton coloré. On entend également selon cette définition le béton précontraint. Le terme « béton » comprend les mortiers. Dans ce cas précis, le béton comprend un mélange de liant hydraulique, de sable, d'eau et éventuellement d'additifs et éventuellement d'additions minérales. Le terme « béton » selon l'invention désigne indistinctement le béton à l'état frais et à l'état durci, et inclue également un coulis de ciment ou un mortier.  By the term "concrete" is meant a mixture of hydraulic binder (for example cement), aggregates, water, optionally adjuvants, and possibly mineral additives, such as for example high performance concrete, Ultra-high performance concrete, self-compacting concrete, self-leveling concrete, self-compacting concrete, fiber concrete, ready-mix concrete or colored concrete. According to this definition, prestressed concrete is also meant. The term "concrete" includes mortars. In this specific case, the concrete comprises a mixture of hydraulic binder, sand, water and possibly additives and possibly mineral additions. The term "concrete" according to the invention indistinctly refers to the concrete in the fresh state and in the cured state, and also includes a cement slurry or a mortar.
Procédé  Process
Tout d'abord, l'invention se rapporte à un procédé de fabrication d'un béton photovoltaïque, comprenant les étapes suivantes :  First, the invention relates to a method of manufacturing a photovoltaic concrete, comprising the following steps:
- disposer d'un béton ;  - have a concrete;
- appliquer une composition comprenant des monomères et/ou des prépolymères réactifs non polymérisés sur tout ou partie de la surface du béton ;  - Applying a composition comprising monomers and / or unpolymerized reactive prepolymers on all or part of the surface of the concrete;
- polymériser cette composition sous l'action de radiations, de façon à obtenir un film polymère recouvrant en tout ou partie la surface du béton ; - appliquer par pulvérisation cathodique, par dépôt chimique en phase vapeur, par dépôt ionique, par dépôt plasma, par bombardement électronique, par ablation laser, par épitaxie par jets moléculaires, ou par thermo-évaporation au moins une couche mince photovoltaïque directement sur le film polymère. - Polymerize this composition under the action of radiation, so as to obtain a polymer film covering all or part of the concrete surface; - Sputtering, chemical vapor deposition, ion deposition, plasma deposition, electron bombardment, laser ablation, molecular beam epitaxy, or thermo-evaporation of at least one photovoltaic thin film directly onto the film polymer.
De façon avantageuse, la température de la composition, au moment où elle est appliquée sur le béton, est inférieure à 35°C, de préférence inférieure à 30°C. Cette caractéristique est avantageuse, car elle permet de limiter la hausse locale de température au niveau de la surface du béton, lorsqu'elle est recouverte par la composition. De manière également avantageuse, cette composition est appliquée sur le béton sans être chauffée. La température exacte de cette composition, lors de son dépôt sur le béton, dépend des conditions opératoires et, le cas échéant, des conditions climatiques.  Advantageously, the temperature of the composition, at the moment when it is applied to the concrete, is less than 35 ° C., preferably less than 30 ° C. This characteristic is advantageous because it makes it possible to limit the local rise in temperature at the surface of the concrete, when it is covered by the composition. Also advantageously, this composition is applied to the concrete without being heated. The exact temperature of this composition, when it is deposited on the concrete, depends on the operating conditions and, where appropriate, on the climatic conditions.
Cette composition comprenant des monomères et/ou des prépolymères réactifs non polymérisés peut être appliquée par rouleau ou pulvérisation, ce qui permet une bonne répartition du revêtement. Cette composition est susceptible de réticuler sous l'action de radiations, en particulier sous rayonnement ultra-violets. Ceci garantit une réticulation très rapide, de l'ordre de quelques secondes, et complète du monomère, en particulier supérieure à 90%, voire supérieure à 99 % ; le revêtement obtenu étant homogène et réticulé sur toute son épaisseur.  This composition comprising monomers and / or unpolymerized reactive prepolymers may be applied by roller or spray, which allows a good distribution of the coating. This composition is capable of crosslinking under the action of radiation, in particular under ultraviolet radiation. This guarantees a very rapid crosslinking, of the order of a few seconds, and completes the monomer, in particular greater than 90%, or even greater than 99%; the coating obtained being homogeneous and crosslinked throughout its thickness.
Le procédé selon l'invention peut éventuellement comprendre une étape de polissage de la surface en béton avant l'application de la composition comprenant des monomères et/ou des prépolymères réactifs non polymérisés.  The method according to the invention may optionally comprise a step of polishing the concrete surface before the application of the composition comprising monomers and / or unpolymerized reactive prepolymers.
Selon une autre variante, le procédé selon l'invention peut comprendre une étape après durcissement du béton, de traitement mécanique par dégrossissage, puis polissage. Ce traitement donne une surface parfaitement lisse.  According to another variant, the method according to the invention may comprise a step after hardening of the concrete, mechanical treatment by roughing, and then polishing. This treatment gives a perfectly smooth surface.
Avantageusement, le procédé comprend en outre un démoulage et/ou un traitement thermique du béton. Les étapes d'application de la composition et de polymérisation sous l'action de radiations peuvent intervenir entre le démoulage du béton et le traitement thermique.  Advantageously, the method further comprises demolding and / or heat treatment of the concrete. The steps of application of the composition and polymerization under the action of radiation may occur between the release of the concrete and the heat treatment.
Avantageusement, le procédé selon l'invention ne comprend pas d'étape de collage de la couche mince photovoltaïque sur le film polymère.  Advantageously, the method according to the invention does not include a step of bonding the photovoltaic thin film to the polymer film.
Ce traitement thermique du béton, encore dénommé cure thermique, est généralement réalisé sur des bétons à ultra haute performance, à une température supérieure à la température ambiante (par exemple de 20°C à 90°C), de préférence de 60°C à 90°C. La température du traitement thermique est de préférence inférieure au point d'ébullition de l'eau à la pression ambiante. La température du traitement thermique est généralement inférieure à 100°C. L'utilisation d'un autoclave dans lequel le traitement thermique est réalisé à haute pression permet également l'utilisation de températures de traitement thermique plus élevées. This thermal treatment of concrete, also called thermal curing, is generally carried out on ultra-high performance concretes, at a temperature above ambient temperature (for example from 20 ° C. to 90 ° C.), preferably from 60 ° C. to 90 ° C. The temperature of the heat treatment is preferably less than the boiling point of the water at ambient pressure. The temperature of the heat treatment is generally less than 100 ° C. The use of an autoclave in which the heat treatment is carried out at high pressure also allows the use of higher heat treatment temperatures.
Le traitement thermique peut durer, par exemple, de 6 heures à 4 jours, de préférence environ 2 jours. Le traitement thermique débute après la prise, généralement au moins un jour après que la prise a commencé, et de préférence sur du béton qui a vieilli de 1 jour à environ 7 jours à 20°C.  The heat treatment may last, for example, from 6 hours to 4 days, preferably about 2 days. The heat treatment begins after setting, usually at least one day after setting has started, and preferably on concrete which has aged from 1 day to about 7 days at 20 ° C.
La réticulation du polymère, constitutif du film, induit une forte adhésion avec l'élément sorti du moule, ainsi qu'une étanchéité de la surface du béton à l'égard du flux d'eau et de sels de calcium. De plus, la réticulation du polymère a l'avantage d'être rapide (inférieure à 5 minutes, voire à 1 minute), ce qui réduit les temps de cycles et de stockage liés à l'application et au séchage des pièces. Enfin, l'intérêt d'un film très fortement réticulé est de présenter une surface très résistante à la rayure.  The crosslinking of the polymer constituting the film induces a strong adhesion with the element exiting the mold, as well as sealing the surface of the concrete with respect to the flow of water and calcium salts. In addition, the crosslinking of the polymer has the advantage of being fast (less than 5 minutes, or even 1 minute), which reduces the cycle and storage times associated with the application and drying of the parts. Finally, the advantage of a highly crosslinked film is to have a very scratch-resistant surface.
De préférence, le béton mis en œuvre selon le procédé de l'invention présente une surface, avant revêtement par le film polymère, ayant une rugosité Ra comprise de 0,5 μηη à 10 μηι, de préférence de 0,5 à 7 μηι, encore plus préférentiellement de 0,5 à 5 μηι, avantageusement de 0,5 à 3 μηι.  Preferably, the concrete used according to the process of the invention has a surface, before coating with the polymer film, having a roughness Ra of from 0.5 μηη to 10 μηι, preferably from 0.5 to 7 μηι, even more preferably from 0.5 to 5 μηι, advantageously from 0.5 to 3 μηι.
Par l'expression « rugosité », on entend les irrégularités de l'ordre du micromètre d'une surface qui sont définies par comparaison avec une surface de référence, et sont classées en deux catégorie : des aspérités ou « pics » ou « protubérances », et des cavités ou « creux ». La rugosité d'une surface donnée peut être déterminée par la mesure d'un certain nombre de paramètres. Dans la suite de la description, on utilise le paramètre Ra (mesuré par un profilomètre optique confocal Micromesure full-field 3D), tel que défini par les normes NF EN 05-015 et DIN EN ISO 4287 d'octobre 1998, correspondant à la moyenne arithmétique de toutes les ordonnées du profil à l'intérieur d'une longueur de base (dans nos exemples, cette dernière a été fixée à 12,5 mm).  By the term "roughness" is meant the irregularities of the order of one micrometer of a surface which are defined by comparison with a reference surface, and are classified in two categories: asperities or "peaks" or "protuberances" , and cavities or "hollows". The roughness of a given surface can be determined by measuring a number of parameters. In the remainder of the description, parameter Ra (measured by a confocal Micromesure full-field 3D confocal optical profilometer) is used, as defined by standards NF EN 05-015 and DIN EN ISO 4287 of October 1998, corresponding to the arithmetic mean of all the ordinates of the profile within a base length (in our examples, the latter was set at 12.5 mm).
La résistance du revêtement à la rayure est pratiquée en utilisant le test dit du « quadrillage », selon la norme ISO 2409:2007 (Peintures et vernis - essai de quadrillage). Son principe consiste à effectuer un quadrillage en réalisant des incisions parallèles et perpendiculaires dans le revêtement. Les incisions doivent pénétrer jusqu'au substrat. Les incisions sont au nombre de 6 et espacées de 1 mm.  The resistance of the coating to the scratch is practiced using the so-called "grid" test, according to ISO 2409: 2007 (Paints and varnishes - grid test). Its principle is to make a grid by making parallel and perpendicular incisions in the coating. The incisions must penetrate to the substrate. The incisions are 6 in number and spaced 1 mm apart.
De préférence, le béton mis en œuvre selon le procédé de l'invention présente une surface, après revêtement par le film polymère, ayant une rugosité Ra comprise de 0,1 μηη à 5 μηι, de préférence de 0,2 à 3 μηι, encore plus préférentiellement de 0,3 à 1 μηη, avantageusement de 0,4 à 0,6 μηη. Ceci permet avantageusement d'obtenir un béton revêtu homogène, apte à être recouvert par une couche mince photovoltaïque.  Preferably, the concrete used according to the process of the invention has a surface, after coating with the polymer film, having a roughness Ra of from 0.1 μηη to 5 μηι, preferably from 0.2 to 3 μηι, more preferably from 0.3 to 1 μηη, advantageously from 0.4 to 0.6 μηη. This advantageously makes it possible to obtain a homogeneous coated concrete capable of being covered by a thin photovoltaic layer.
Le procédé selon l'invention comprend une étape d'obtention d'un film polymère par polymérisation sous l'action de radiations. Ce type de film polymère obtenu par polymérisation sous l'action de radiations est également appelé polymère photoréticulé ou résine filmogène réticulable ou résine photosensible. The method according to the invention comprises a step of obtaining a polymer film by polymerization under the action of radiation. This type of polymer film obtained by Radiation polymerization is also called photocrosslinked polymer or crosslinkable film-forming resin or photoresist.
Une composition de monomères et/ou de prépolymères réactifs non polymérisés est appliquée en tout ou partie sur la surface du béton. De préférence, cette composition est une composition de monomères et de prépolymères réactifs non polymérisés. Cette composition comprend généralement des précurseurs suivants :  A composition of unpolymerized reactive monomers and / or prepolymers is applied in whole or in part to the surface of the concrete. Preferably, this composition is a composition of unpolymerized reactive monomers and prepolymers. This composition generally comprises the following precursors:
un prépolymère comprenant une résine, laquelle résine comprend un ou plus, par exemple 1 , 2, 3 ou 4 groupe(s) polymérisable(s) (qui peuvent être les mêmes ou différents), tels que des groupes insaturés ou des groupes époxy. Des groupes polymérisables incluent acrylate, méthacrylate, allyl, vinyl, époxy et glycidyl. Des prépolymères incluent une résine acrylique, une résine méthacrylique une résine de polyester, une résine de polyester chlorée, une résine époxyde, une résine de mélamine, une résine de polyamide, une résine de silicone, une résine polyéther, une résine de polyuréthane, une résine polyurée-uréthane et/ou leurs mélanges, les résines comprenant un ou plusieurs groupe(s) polymérisable(s), tels que ceux listés ci-dessus. Parmi ces résines, les résines comprenant le groupe acrylate peuvent être partiellement modifiées par l'action d'une aminé, généralement appelée « aminés synergistes ». Parmi ces résines, les polyuréthanes comprenant des groupes acrylates et les époxydes comprenant des groupes acrylates sont particulièrement préférés selon l'invention.  a prepolymer comprising a resin, which resin comprises one or more, for example 1, 2, 3 or 4 polymerizable group (s) (which may be the same or different), such as unsaturated groups or epoxy groups. Polymerizable groups include acrylate, methacrylate, allyl, vinyl, epoxy and glycidyl. Prepolymers include an acrylic resin, a methacrylic resin a polyester resin, a chlorinated polyester resin, an epoxy resin, a melamine resin, a polyamide resin, a silicone resin, a polyether resin, a polyurethane resin, a polyurea resin and / or mixtures thereof, the resins comprising one or more polymerizable group (s), such as those listed above. Among these resins, the resins comprising the acrylate group may be partially modified by the action of an amine, generally called "synergistic amines". Among these resins, polyurethanes comprising acrylate groups and epoxides comprising acrylate groups are particularly preferred according to the invention.
un monomère comprenant un ou plus, par exemple 1 , 2, 3 ou 4 groupe(s) réactif(s) (qui peuvent être les mêmes ou différents), tels que des groupes insaturés ou des groupes époxy. Des groupes réactifs incluent acrylate, méthacrylate, allyl, vinyl, époxy et glycidyl. Parmi ces monomères les esters acryliques d'alcools comme l'isobornyl acrylate (IBOA), de diols comme le diéthylène glycol diacrylate (DEGDA), le tripropylène glycol diacrylate (TPGDA), le bisphénol A diacrylate, ou de polyols comme le triméthylolpropane triacrylate (TMPTA), le glycérol propoxylé triacrylate (GPTA), le pentaerythritol tri- et tetra- acrylate, sont utilisables selon l'invention. Le méthyl pentanediol diacrylate a monomer comprising one or more, for example 1, 2, 3 or 4 reactive group (s) (which may be the same or different), such as unsaturated groups or epoxy groups. Reactive groups include acrylate, methacrylate, allyl, vinyl, epoxy and glycidyl. Among these monomers, the acrylic esters of alcohols such as isobornyl acrylate (IBOA), diols such as diethylene glycol diacrylate (DEGDA), tripropylene glycol diacrylate (TPGDA), bisphenol A diacrylate, or polyols such as trimethylolpropane triacrylate ( TMPTA), propoxylated glycerol triacrylate (GPTA), pentaerythritol tri- and tetra-acrylate, are usable according to the invention. Methyl pentanediol diacrylate
(MPDDA) est particulièrement préféré selon l'invention. (MPDDA) is particularly preferred according to the invention.
un photoinitiateur, comme par exemple les mélanges de dérivés de benzophénone et d'amines tertiaires ou les systèmes cationiques tel le triphénylsulphonium hexafluoroantimonate ou comme par exemple un mélange d'oxide acyl phosphines tel l'Irgacure™ 819 (BAPO) ou le Darocur™ TPO a photoinitiator, such as mixtures of benzophenone derivatives and tertiary amines or cationic systems such as triphenylsulphonium hexafluoroantimonate or such as a mixture of oxide acyl phosphines such as Irgacure ™ 819 (BAPO) or Darocur ™ TPO
(Mono acyl phosphine (MAPO)), le Darocure™ 4265 (mélange de MAPO et d'a- hydroxycétone 50/50) commercialisé par la société Ciba et d'acétophénone-a- hydroxy- α,β-di-substitué. Le 2 hydroxy-2methyl-1 phenyl-propan-1 one (Darocure™ 1 173, commercialisé par la société Ciba) et le 1 -hydroxy- cyclohexyl-phenylcétone (Irgacure™ 184, commercialisé par la société Ciba) sont particulièrement préférés selon l'invention. (Mono acyl phosphine (MAPO)), Darocure ™ 4265 (a mixture of MAPO and 50/50 hydroxyketone) sold by the company Ciba and acetophenone-α-hydroxy-α, β-di-substituted. 2-hydroxy-2-methyl-1-phenylpropan-1-one (Darocure ™ 1173, sold by the company Ciba) and 1-hydroxy-cyclohexyl phenyl ketone (Irgacure ™ 184, sold by the company Ciba) are particularly preferred according to US Pat. 'invention.
Une des compositions préférées selon l'invention de monomères et/ou de prépolymères réactifs non polymérisés comprend :  One of the preferred compositions according to the invention of monomers and / or unpolymerized reactive prepolymers comprises:
Oligomère d'époxy acrylate  Oligomer of epoxy acrylate
- Methyl pentanediol diacrylate (MPDDA)  - Methyl pentanediol diacrylate (MPDDA)
- Oligomère d'uréthane acrylate  - urethane acrylate oligomer
2-hydroxy-2methyl-1 phenyl-propan-1 one ou 1 -hydroxy-cyclohexyl-phenylcétone. La composition de monomères et/ou de prépolymères réactifs non polymérisés mis en œuvre dans le procédé selon l'invention peut comprendre de 1 % à 10 % en masse de photoinitiateur, préférentiellement de 2 % à 8 % et plus préférentiellement de 3 % à 6 %.  2-hydroxy-2-methyl-1-phenylpropan-1-one or 1-hydroxy-cyclohexyl-phenylketone. The composition of unpolymerized reactive monomers and / or prepolymers used in the process according to the invention may comprise from 1% to 10% by weight of photoinitiator, preferably from 2% to 8% and more preferably from 3% to 6% by weight. %.
De préférence, cette composition comprend à la fois des monomères et des prépolymères réactifs non polymérisés. Dans ce cas, l'ensemble constitué par les monomères et les prépolymères, en dehors de tout autre composant, peut comprendre de 10% à 90% en masse de monomères, préférentiellement de 20 % à 80 %, et 10% à 90% en masse de prépolymères, préférentiellement de 20 % à 80 %.  Preferably, this composition comprises both monomers and unpolymerized reactive prepolymers. In this case, the group constituted by the monomers and prepolymers, apart from any other component, may comprise from 10% to 90% by weight of monomers, preferably from 20% to 80%, and 10% to 90% by weight. prepolymer mass, preferably from 20% to 80%.
La composition de monomères et/ou de prépolymères réactifs non polymérisés peut être préparée par simple mélange de ses composants, à l'aide de tout type de mélangeur. Le mélange obtenu est stable et il peut être conservé plusieurs mois à température ambiante et à l'abri de la lumière directe du soleil.  The composition of monomers and / or unpolymerized reactive prepolymers can be prepared by simple mixing of its components, using any type of mixer. The resulting mixture is stable and can be stored for several months at room temperature and away from direct sunlight.
La composition de monomères et/ou de prépolymères réactifs non polymérisés est appliquée en tout ou partie sur le béton à l'aide d'un rouleau applicateur, d'un pinceau ou d'un pulvérisateur ou de tout autre moyen permettant de déposer une couche fine et relativement homogène en épaisseur de composition sur le parement.  The composition of unpolymerized reactive monomers and / or prepolymers is applied in whole or in part to the concrete by means of an applicator roller, a brush or a spray or any other means for depositing a layer thin and relatively homogeneous in composition thickness on the facing.
La composition de monomères et/ou de prépolymères réactifs non polymérisés peut être appliquée en une couche ou plus. L'épaisseur totale de ladite composition déposée sur le béton est préférentiellement de 5 à 100 micromètres, plus préférentiellement de 10 à 60 micromètres et encore plus préférentiellement de 15 à 50 micromètres. Une polymérisation peut, ou non, être effectuée entre les couches. Selon une variante préférée de l'invention la composition de monomères et/ou de pré- polymères réactifs non polymérisés est appliquée en deux couches de 20 micromètres avec une polymérisation entre les deux applications, au lieu de l'application d'une seule couche de 40 micromètres. The composition of unpolymerized reactive monomers and / or prepolymers may be applied in one or more layers. The total thickness of said composition deposited on the concrete is preferably from 5 to 100 microns, more preferably from 10 to 60 microns and even more preferably from 15 to 50 microns. A polymerization may or may not be carried out between the layers. According to a preferred variant of the invention the composition of monomers and / or unpolymerized reactive prepolymers is applied in two layers of 20 micrometers with a polymerization between the two applications, instead of the application of a single layer of 40 micrometers.
La polymérisation des monomères et/ou des pré-polymères réactifs a lieu sous l'action de radiations, de préférence sous l'action d'ondes dont la longueur d'ondes se situe dans le spectre visible à ultraviolet, ou dont la longueur d'ondes est plus courte encore. Il est également envisageable que la polymérisation ait lieu sous l'action de rayons infrarouges. Les radiations provoquent la polymérisation par des réactions de condensation ou d'additions des précurseurs du polymère, en particulier les radiations provoquent la réticulation des précurseurs du polymère. Il est également envisageable que la polymérisation ait lieu sous l'action d'un faisceau d'électrons. Dans ce cas, la composition de monomères et/ou de pré-polymères réactifs non polymérisés ne comprend pas de photo-initiateur, puisque l'énergie des faisceaux d'électrons est suffisante pour créer les radicaux libres nécessaires à la polymérisation.  The polymerization of the reactive monomers and / or prepolymers takes place under the action of radiation, preferably under the action of waves whose wavelength is in the visible ultraviolet spectrum, or the length of which is wave is shorter still. It is also conceivable that the polymerization takes place under the action of infrared rays. The radiations cause the polymerization by condensation reactions or additions of the precursors of the polymer, in particular the radiation causes the crosslinking of the precursors of the polymer. It is also conceivable that the polymerization takes place under the action of an electron beam. In this case, the composition of unpolymerized reactive monomers and / or prepolymers does not include a photoinitiator, since the energy of the electron beams is sufficient to create the free radicals necessary for the polymerization.
De préférence, le film polymère est obtenu par la polymérisation sous l'action de radiations ultra-violettes. Les rayons ultra-violets (UV) permettent d'exciter ou de décomposer le photoinitiateur et de provoquer la formation de radicaux libres ou d'ions ce qui conduit à la polymérisation du prépolymère avec le monomère.  Preferably, the polymer film is obtained by the polymerization under the action of ultraviolet radiation. Ultraviolet (UV) rays can excite or decompose the photoinitiator and cause the formation of free radicals or ions which leads to the polymerization of the prepolymer with the monomer.
Les polymérisations peuvent être réalisées à une vitesse de passage sous la lampe UV de 5 mètres / minute à 30 mètres / minute. La dose totale d'énergie reçue (en une fois ou plus si nécessaire) par la composition de monomères et/ou de prépolymères réactifs est préférentiellement de 300 à 1200 mJ/cm2. The polymerizations can be carried out at a speed of passage under the UV lamp from 5 meters / minute to 30 meters / minute. The total dose of energy received (in one or more times if necessary) by the composition of monomers and / or reactive prepolymers is preferably 300 to 1200 mJ / cm 2 .
La polymérisation peut être réalisée en présence d'un gaz inerte, tel que l'azote, ceci permettant de réduire les quantités de photo-initiateur dans la composition, et également de durcir la surface du film polymère.  The polymerization can be carried out in the presence of an inert gas, such as nitrogen, thereby reducing the amounts of photoinitiator in the composition, and also hardening the surface of the polymer film.
La polymérisation provoque la formation du film polymère. Ce film polymère est de préférence continu. Selon une première variante, ce film polymère est localisé sur un seul côté du béton ou de l'élément de construction qui comprend ce béton. En particulier, un coté du béton ou de l'élément de construction qui comprend ce béton est revêtu en totalité par le film polymère.  The polymerization causes the formation of the polymer film. This polymer film is preferably continuous. According to a first variant, this polymer film is located on one side of the concrete or the construction element which comprises this concrete. In particular, one side of the concrete or the construction element which comprises this concrete is entirely coated with the polymer film.
Selon une autre variante de l'invention, il est possible d'appliquer deux films polymère ou plus, l'un sur l'autre, sur le béton. En conséquence, les performances du béton et de l'élément de construction qui comprend ce béton sont améliorées.  According to another variant of the invention, it is possible to apply two or more polymer films, one on top of the other, on the concrete. As a result, the performance of the concrete and the construction element that includes this concrete is improved.
Le film polymère peut comprendre en outre un agent anti-fongique, un agent colorant, des pigments, un agent ou une charge minérale permettant d'améliorer l'accrochage d'un joint ou d'une peinture ou de toute autre application de surface susceptible d'être déposé sur le béton (comme par exemple de la silice, du carbonate de calcium, du dioxyde de titane, du carbonate de magnésium, du sulfate de calcium, de l'oxyde de magnésium, de l'hydroxyde de calcium ou un solide pulvérulent). The polymer film may further comprise an anti-fungal agent, a coloring agent, pigments, an agent or a mineral filler for improving the adhesion of a joint or a paint or other surface application susceptible to be deposited on the concrete (as for example silica, carbonate calcium, titanium dioxide, magnesium carbonate, calcium sulphate, magnesium oxide, calcium hydroxide or a powdery solid).
Avantageusement l'étape de polymérisation sous l'action de radiations est mise en œuvre sans délai, après la fin de l'étape d'application de la composition. Ceci permet d'éviter toute dégradation intempestive de la composition réactive, recouvrant tout ou partie du béton.  Advantageously, the polymerization step under the action of radiation is implemented without delay, after the end of the application step of the composition. This avoids any inadvertent degradation of the reactive composition, covering all or part of the concrete.
Avantageusement les étapes d'application de la composition et de polymérisation sous l'action de radiations sont mises en œuvre le plus rapidement possible, après la fin de l'étape de démoulage.  Advantageously, the steps of applying the composition and polymerization under the action of radiation are implemented as quickly as possible after the end of the demolding step.
De préférence, le film polymère est obtenu par polymérisation sous l'action de radiations ultra-violettes. Dans ce cas, le film présente notamment une résistance très importante vis-à-vis de l'abrasion et de la rayure, mais aussi une grande stabilité vis-à- vis des hautes températures sous vide partiel.  Preferably, the polymer film is obtained by polymerization under the action of ultraviolet radiation. In this case, the film has in particular a very high resistance to abrasion and scratching, but also a high stability vis-à-vis high temperatures under partial vacuum.
Avantageusement les étapes d'application de la couche mince photovoltaïque sur le film polymère se fait notamment par pulvérisation cathodique, par dépôt chimique en phase vapeur, par dépôt ionique, par dépôt plasma, par bombardement électronique, par ablation laser, par épitaxie par jets moléculaires, par thermo-évaporation ; le principe général de ces techniques étant de déposer ou de condenser le matériau recouvrant (formant la couche mince) sous vide partiel (par exemple, en utilisant une pression de 10"2 à 10"4 Torr) alors que le matériau support est chauffé à une température constante. Advantageously, the steps for applying the photovoltaic thin film to the polymer film are in particular by sputtering, chemical vapor deposition, ion deposition, plasma deposition, electron bombardment, laser ablation, and molecular beam epitaxy. by thermal evaporation; the general principle of these techniques is to deposit or condense the covering material (forming the thin layer) under partial vacuum (e.g., using a pressure of 10 "2-10" 4 Torr) while the carrier material is heated to a constant temperature.
Avantageusement, le procédé selon l'invention ne comprend pas d'étape de collage de la couche mince photovoltaïque sur le film polymère.  Advantageously, the method according to the invention does not include a step of bonding the photovoltaic thin film to the polymer film.
Le procédé ci-dessus est notamment adapté au traitement d'un béton à haute performance, présentant au moins une des caractéristiques ci-dessus.  The above method is particularly suitable for treating a high performance concrete having at least one of the above characteristics.
Béton photovoltaïque  Photovoltaic concrete
L'invention a également pour objet un béton photovoltaïque susceptible d'être obtenu par le procédé selon l'invention et décrit ci-dessus.  The invention also relates to a photovoltaic concrete that can be obtained by the method according to the invention and described above.
Le béton photovoltaïque selon l'invention est de préférence un béton structurel, présentant généralement une résistance à la compression mesurée à 28 jours supérieure ou égale à 12MPa, notamment comprise de 12 MPa à 300 MPa. Ce béton peut être utilisé dans la structure porteuse d'un ouvrage. Une structure porteuse est généralement l'ensemble des éléments d'un ouvrage portant plus que leur propre poids. A titre d'exemple d'élément qui peut être porteur, on peut citer les poteaux, les planchers, les murs, les poutres, les linteaux, les trumeaux, les acrotères.  The photovoltaic concrete according to the invention is preferably a structural concrete, generally having a compressive strength measured at 28 days greater than or equal to 12 MPa, in particular ranging from 12 MPa to 300 MPa. This concrete can be used in the supporting structure of a structure. A supporting structure is generally all the elements of a structure carrying more than their own weight. As an example of an element that can be a carrier, there may be mentioned poles, floors, walls, beams, lintels, piers, acroteria.
De préférence le béton photovoltaïque selon l'invention présente une couche mince photovoltaïque produisant de l'électricité grâce à l'effet photovoltaïque. De préférence, la couche mince photovoltaïque est à base de composés minéraux, de composé métalliques, de composés organiques ou de composés hybrides organique-minéral (couches minces appelées aussi cellules photovoltaïques hydrides). Preferably the photovoltaic concrete according to the invention has a photovoltaic thin film producing electricity thanks to the photovoltaic effect. Preferably, the photovoltaic thin film is based on inorganic compounds, metal compounds, organic compounds or organic-inorganic hybrid compounds (thin layers also called hybrid photovoltaic cells).
Il peut aussi être envisager que la couche mince photovoltaïque peut être composée de pigments photosensibles; on parlera alors de cellule à colorants ou de cellule de Graëtzel (dit aussi DSSC ou DSC).  It may also be envisaged that the photovoltaic thin film may be composed of photosensitive pigments; we will then speak of dye cell or Graëtzel cell (also called DSSC or DSC).
Les composés minéraux ou métalliques convenant pour réaliser la couche mince photovoltaïque peuvent être à base de silicium amorphe, de silicium liquide, de tellure de cadmium, de cuivre-indium-sélénium, de cuivre-indium-gallium-sélénium, de cuivre- indium-gallium-disélénide-disulphide, d'arsénure de gallium, d'oxyde d'indium-étain, de cuivre, de molybdène, de chalcopyrite ou leurs mélanges.  The inorganic or metallic compounds suitable for producing the photovoltaic thin film may be based on amorphous silicon, liquid silicon, cadmium telluride, copper-indium selenium, copper-indium-gallium selenium, copper-indium, gallium-diselenide-disulphide, gallium arsenide, indium-tin oxide, copper oxide, molybdenum oxide, chalcopyrite oxide or mixtures thereof.
Les composés organiques convenant pour réaliser la couche mince photovoltaïque peuvent être à base de deux composés, l'un donneur d'électrons et l'autre accepteur d'électrons. Parmi les donneurs d'électrons, on peut citer les polyarylènes, les poly(arylène-vinylène)s, les poly(arylènes-éthynylène)s ou leurs mélanges. A titre d'exemple, on peut citer du poly 3-hexyl thiophène (dit aussi P3HT)) ou du poly[2-méthoxy-5-(3,7-diméthyloctyloxy)-1 ,4-phénylène-vinylène] (dit aussi MDMO-PPV).  Organic compounds suitable for producing the photovoltaic thin film may be based on two compounds, one electron donor and the other electron acceptor. Among the electron donors, mention may be made of polyarylenes, poly (arylene-vinylene) s, poly (arylene-ethynylene) s or mixtures thereof. By way of example, mention may be made of poly-3-hexylthiophene (also known as P3HT)) or of poly [2-methoxy-5- (3,7-dimethyloctyloxy) -1,4-phenylenevinylene] (also called MDMO-PPV).
Parmi les accepteurs d'électron on peut citer les composés à base de fullerène tel que le [6,6]-phényl-C61 -butanoate de méthyle (dit aussi PCBM).  Among the electron acceptors there may be mentioned compounds based on fullerene such as methyl [6,6] -phenyl-C61-butanoate (also known as PCBM).
Parmi les pigments photosensibles composant les cellules photovoltaïques à colorants ou de Graëtzel, on pourra citer le dioxyde de titane.  Among the photosensitive pigments constituting photovoltaic cells with dyes or Graëtzel, mention may be made of titanium dioxide.
De préférence le béton selon l'invention a généralement une porosité à l'eau inférieure à 14 %, de préférence inférieure à 12 %, par exemple, moins de 10 % (déterminée par la méthode décrite dans le compte-rendu Journées Techniques, AFPC- AFREM, Décembre 1997, pages 121 à 124).  Preferably the concrete according to the invention generally has a porosity to water of less than 14%, preferably less than 12%, for example less than 10% (determined by the method described in the report Technical Days, PSAC - AFREM, December 1997, pages 121 to 124).
De préférence le béton photovoltaïque selon l'invention est un béton à ultra haute performance (BUHP). Ce béton à haute performance a de préférence un rapport eau sur ciment (E/C) d'au plus 0,45, de préférence au plus 0,32, plus préférentiellement de 0,20 à 0,27. Le béton peut être un béton contenant de la fumée de silice.  Preferably the photovoltaic concrete according to the invention is an ultra-high performance concrete (BUHP). This high-performance concrete preferably has a water-cement ratio (W / C) of at most 0.45, preferably at most 0.32, more preferably from 0.20 to 0.27. The concrete may be a concrete containing silica fume.
De préférence, le béton à ultra haute performance comprend, en parties en masse : 100 de ciment Portland ;  Preferably, the ultra-high performance concrete comprises, in parts by weight: 100 of Portland cement;
50 à 200 d'un sable ayant une granulométrie unique avec un D10 à un D90 de 0,063 à 5 mm, ou un mélange de sables, le sable le plus fin ayant un D10 à un D90 de 0,063 à 1 mm et le sable le plus grossier ayant un D10 à un D90 de 1 à 5 mm, par exemple entre 1 et 4 mm ; 0 à 70 d'un matériau pouzzolanique ou non-pouzzolanique de particules, ou d'un mélange de ceux-ci, ayant une taille moyenne de particules inférieure à 15 μηη ; 50 to 200 of sand having a single particle size with a D10 at a D90 of 0.063 to 5 mm, or a mixture of sands, the finest sand having a D10 at a D90 of 0.063 to 1 mm and the sand the most coarse having a D10 to a D90 of 1 to 5 mm, for example between 1 and 4 mm; 0 to 70 of a pozzolanic or non-pozzolanic material of particles, or a mixture thereof, having an average particle size of less than 15 μηη;
0,1 à 10 d'un superplastifiant réducteur d'eau ; et  0.1 to 10 of a water reducing superplasticizer; and
10 à 32 d'eau, notamment 20 à 32 d'eau.  10 to 32 of water, especially 20 to 32 of water.
Le béton à ultra haute performance mentionné ci-avant a généralement une résistance à la compression mesurée à 28 jours supérieure ou égale à 50MPa, notamment comprise de 50 MPa à 300 MPa, en particulier supérieure ou égale à 80 MPa, notamment comprise de 80 à 250 MPa. Le béton est de préférence un béton à ultra haute performance (BUHP), par exemple contenant des fibres. Un béton à ultra haute performance est un type particulier de béton à haute performance et a généralement une résistance à la compression à 28 jours supérieure ou égale à 100 MPa et en particulier supérieure ou égale à 120 MPa. Le film polymère et la couche mince photovoltaïque selon l'invention, sont appliquées de préférence sur des éléments fabriqués avec les bétons à ultra haute performance décrits dans les brevets US6478867 et US6723162 ou les demandes de brevet EP1958926 et EP2072481 .  The ultra-high performance concrete mentioned above generally has a compressive strength measured at 28 days greater than or equal to 50 MPa, in particular ranging from 50 MPa to 300 MPa, in particular greater than or equal to 80 MPa, especially from 80 to 80 MPa. 250 MPa. The concrete is preferably ultra-high performance concrete (BUHP), for example containing fibers. An ultra high performance concrete is a particular type of high performance concrete and generally has a compressive strength at 28 days greater than or equal to 100 MPa and in particular greater than or equal to 120 MPa. The polymer film and the photovoltaic thin film according to the invention are preferably applied to elements made with ultra-high performance concretes described in patents US6478867 and US6723162 or patent applications EP1958926 and EP2072481.
Le D90, également noté Dv90, correspond au 90eme centile de la distribution en volume de taille des grains, c'est-à-dire que 90 % des grains ont une taille inférieure au D90 et 10 % ont une taille supérieure au D90. De même, le D10, également noté Dv10, correspond au i oeme centile de la distribution en volume de taille des grains, c'est-à-dire que 10 % des grains ont une taille inférieure au D10 et 90 % ont une taille supérieure au D10. D90, also D v 90, is the 90 th percentile of the grain size volume distribution, ie 90% of the grains are smaller than D90 and 10% are larger than D90. Similarly, D10, also denoted D v 10 corresponds to the io th percentile of the distribution by volume of grain size, that is to say 10% of the grains have a size smaller than the D10 and 90% have larger than the D10.
Le sable est généralement un sable de silice ou de calcaire, une bauxite calcinée ou des particules de résidus de la métallurgie, le sable peut également comprendre un matériau minéral dense broyé, par exemple, un laitier vitrifié broyé.  The sand is usually silica sand or limestone sand, calcined bauxite or metallurgical waste particles, the sand may also comprise a crushed mineral hard material, for example, a crushed vitrified slag.
Les BUHPs ont généralement un retrait plus important à la prise en raison de leur teneur plus élevée en ciment. Le retrait total peut être réduit par l'inclusion, en général de 2 à 8, de préférence de 3 à 5, par exemple d'environ 4 parties, de chaux vive, de chaux surcuite ou d'oxyde de calcium dans le mélange avant l'addition d'eau.  BUHPs generally have greater shrinkage at setting due to their higher cement content. The total shrinkage can be reduced by the inclusion, generally from 2 to 8, preferably from 3 to 5, for example about 4 parts, of quicklime, lime or calcium oxide in the mixture before the addition of water.
Des matériaux pouzzolaniques adaptés comprennent les fumées de silice, également connues sous le nom de micro-silice, qui sont un sous-produit de la production de silicium ou d'alliages de ferrosilicium. Il est connu comme un matériau pouzzolanique réactif.  Suitable pozzolanic materials include fumed silica, also known as micro-silica, which is a by-product of the production of silicon or ferrosilicon alloys. It is known as a pozzolanic reactive material.
Son principal constituant est le dioxyde de silicium amorphe. Les particules individuelles ont généralement un diamètre d'environ 5 à 10 nm. Les particules individuelles s'agglomèrent pour former des agglomérats de 0,1 à 1 μηη, et puis peuvent s'agréger ensemble en agrégats de 20 à 30 μηη. Les fumées de silice ont généralement une surface BET de 10 à 30 m2/g. D'autres matériaux pouzzolaniques comprennent des matériaux riches en aluminosilicate tels que le métakaolin et les pouzzolanes naturelles ayant des origines volcaniques, sédimentaires, ou diagéniques. Its main constituent is amorphous silicon dioxide. The individual particles generally have a diameter of about 5 to 10 nm. The individual particles agglomerate to form agglomerates of 0.1 to 1 μηη, and can then aggregate together into aggregates of 20 to 30 μηη. The silica fumes generally have a BET surface area of 10 to 30 m 2 / g. Other pozzolanic materials include materials rich in aluminosilicate such as metakaolin and natural pozzolans with volcanic, sedimentary, or diagenic origins.
Des matériaux non-pouzzolaniques adaptés comprennent également des matériaux contenant du carbonate de calcium (par exemple du carbonate de calcium broyé ou précipité), de préférence un carbonate de calcium broyé. Le carbonate de calcium broyé peut, par exemple, être le Durcal® 1 (OMYA, France). Suitable non-pozzolanic materials also include materials containing calcium carbonate (eg ground or precipitated calcium carbonate), preferably ground calcium carbonate. Ground calcium carbonate may, for example, be the Durcal ® 1 (OMYA, France).
Les matériaux non-pouzzolaniques ont de préférence une taille moyenne de particules inférieure à 5 μηη, par exemple de 1 à 4 μηη. Les matériaux non- pouzzolaniques peuvent être un quartz broyé, par exemple le C800 qui est un matériau de remplissage de silice sensiblement non-pouzzolanique fourni par Sifraco, France.  The non-pozzolanic materials preferably have an average particle size of less than 5 μηη, for example from 1 to 4 μηη. Non-pozzolanic materials may be ground quartz, for example C800 which is a substantially non-pozzolanic silica filler supplied by Sifraco, France.
La surface BET préférée (déterminée par des méthodes connues) du carbonate de calcium ou du quartz broyé est de 2 à 10 m2/g, généralement moins de 8 m2/g, par exemple de 4 à 7 m2/g, de préférence moins de 6 m2/g. The preferred BET surface (determined by known methods) of calcium carbonate or crushed quartz is from 2 to 10 m 2 / g, generally less than 8 m 2 / g, for example from 4 to 7 m 2 / g, preferably less than 6 m 2 / g.
Le carbonate de calcium précipité convient également comme matériau non- pouzzolanique. Les particules individuelles ont généralement une taille (primaire) de l'ordre de 20 nm. Les particules individuelles s'agglomèrent en agrégats ayant une taille (secondaire) d'environ 0,1 à 1 μηη. Les agrégats forment eux-mêmes des amas ayant une taille (ternaire) supérieure à 1 μηη.  Precipitated calcium carbonate is also suitable as a non-pozzolanic material. Individual particles generally have a size (primary) of the order of 20 nm. The individual particles agglomerate into aggregates having a (secondary) size of about 0.1 to 1 μηη. The aggregates themselves form clusters having a size (ternary) greater than 1 μηη.
Un matériau non-pouzzolanique ou un mélange de matériaux non-pouzzolaniques peut être utilisé, par exemple du carbonate de calcium broyé, du quartz broyé ou du carbonate de calcium précipité ou un mélange de ceux-ci. Un mélange de matériaux pouzzolaniques ou un mélange de matériaux pouzzolaniques et non-pouzzolaniques peuvent également être utilisés.  A non-pozzolanic material or a mixture of non-pozzolanic materials may be used, for example ground calcium carbonate, ground quartz or precipitated calcium carbonate or a mixture thereof. A mixture of pozzolanic materials or a mixture of pozzolanic and non-pozzolanic materials can also be used.
Le béton photovoltaïque selon l'invention peut être utilisé en association avec des éléments de renfort, par exemple des fibres métalliques et/ou organiques et/ou des fibres de verre et/ou d'autres éléments de renfort décrits ci-après.  The photovoltaic concrete according to the invention can be used in combination with reinforcing elements, for example metal and / or organic fibers and / or glass fibers and / or other reinforcing elements described hereinafter.
Le béton photovoltaïque selon l'invention peut comprendre des fibres métalliques et/ou des fibres organiques et/ou des fibres de verre. La quantité en volume de fibres est généralement de 0,5 à 8 % par rapport au volume du béton durci. La quantité de fibres métalliques, exprimée en termes de volume du béton durci final est généralement inférieure à 4 %, par exemple de 0,5 à 3,5 %, de préférence d'environ 2 %. La quantité de fibres organiques, exprimée sur la même base, est généralement de 1 à 8 %, de préférence de 2 à 5 %. Les fibres métalliques sont généralement choisies parmi les fibres d'acier, telles que les fibres d'acier à haute résistance, les fibres d'acier amorphe ou les fibres d'acier inoxydable. Les fibres d'acier peuvent éventuellement être revêtues d'un métal non ferreux comme le cuivre, le zinc, le nickel (ou leurs alliages). La longueur individuelle (I) des fibres métalliques est généralement d'au moins 2 mm et est de préférence de 10 à 30 mm. Le rapport l/d (d étant le diamètre des fibres) est généralement de 10 à 300, de préférence de 30 à 300, de préférence de 30 à 100. The photovoltaic concrete according to the invention may comprise metal fibers and / or organic fibers and / or glass fibers. The amount by volume of fibers is generally from 0.5 to 8% relative to the volume of the hardened concrete. The amount of metal fiber expressed in terms of volume of the final hardened concrete is generally less than 4%, for example 0.5 to 3.5%, preferably about 2%. The amount of organic fibers, expressed on the same basis, is generally 1 to 8%, preferably 2 to 5%. The metal fibers are generally selected from steel fibers, such as high strength steel fibers, amorphous steel fibers or stainless steel fibers. The steel fibers may optionally be coated with a non-ferrous metal such as copper, zinc, nickel (or their alloys). The individual length (I) of the metal fibers is generally at least 2 mm and is preferably 10 to 30 mm. The ratio l / d (d being the fiber diameter) is generally 10 to 300, preferably 30 to 300, preferably 30 to 100.
Des fibres ayant une géométrie variable peuvent être utilisées : elles peuvent être crêpées, ondulées ou en crochet aux extrémités. La rugosité des fibres peut également être modifiée et/ou des fibres de section variable peuvent être utilisées. Les fibres peuvent être obtenues par toute technique appropriée, y compris par tressage ou câblage de plusieurs fils métalliques, pour former un assemblage torsadé.  Fibers having a variable geometry may be used: they may be creped, waved or hooked at the ends. The roughness of the fibers may also be modified and / or fibers of variable cross section may be used. The fibers can be obtained by any suitable technique, including braiding or wiring multiple wires, to form a twisted assembly.
Les fibres organiques comprennent les fibres d'alcool polyvinylique (PVA), les fibres de polyacrylonitrile (PAN), les fibres de polyéthylène (PE), les fibres de polyéthylène haute densité (PEHD), les fibres de polypropylène (PP), les homo- ou copolymères, les fibres de polyamide ou de polyimide. Les mélanges de ces fibres peuvent également être utilisés. Les fibres de renfort organiques utilisées dans l'invention peuvent être classées comme suit : fibres réactives de module élevé, fibres non réactives de faible module et fibres réactives de faible module. La présence de fibres organiques rend possible la modification du comportement du béton à la chaleur ou au feu.  Organic fibers include polyvinyl alcohol (PVA) fibers, polyacrylonitrile (PAN) fibers, polyethylene (PE) fibers, high density polyethylene (HDPE) fibers, polypropylene (PP) fibers, homopolymers or copolymers, polyamide or polyimide fibers. Blends of these fibers can also be used. The organic reinforcing fibers used in the invention can be classified as follows: high modulus reactive fibers, low modulus nonreactive fibers and low modulus reactive fibers. The presence of organic fibers makes it possible to modify the behavior of concrete in heat or fire.
La fusion des fibres organiques rend possible le développement de voies par lesquelles de la vapeur ou de l'eau sous pression peut s'échapper lorsque le béton est exposé à des températures élevées.  The fusion of organic fibers makes possible the development of ways in which steam or pressurized water can escape when the concrete is exposed to high temperatures.
Les fibres organiques peuvent être présentes sous la forme de filaments individuels ou de faisceaux de plusieurs filaments. Le diamètre du filament unique ou du faisceau de filaments multiples est de préférence de 10 m à 800 μηη. Les fibres organiques peuvent également être utilisées sous la forme de structures tissées ou de structures non-tissées ou d'un faisceau hybride comprenant des filaments différents.  The organic fibers may be present as individual filaments or as bundles of several filaments. The diameter of the single filament or the bundle of multiple filaments is preferably from 10 m to 800 μηη. The organic fibers may also be used in the form of woven structures or nonwoven structures or a hybrid bundle comprising different filaments.
La longueur individuelle des fibres organiques est de préférence de 5 mm à 40 mm, de préférence de 6 à 12 mm. Les fibres organiques sont de préférence des fibres PVA.  The individual length of the organic fibers is preferably from 5 mm to 40 mm, preferably from 6 to 12 mm. The organic fibers are preferably PVA fibers.
La quantité optimale de fibres organiques utilisées dépend en général de la géométrie des fibres, de leur nature chimique et de leurs propriétés mécaniques intrinsèques (par exemple, le module élastique, le seuil d'écoulement, la résistance mécanique).  The optimum amount of organic fibers used generally depends on the geometry of the fibers, their chemical nature and their intrinsic mechanical properties (eg elastic modulus, yield point, strength).
Le rapport l/d, d étant le diamètre de la fibre et I la longueur, est généralement de 10 à 300, de préférence de 30 à 90.  The ratio l / d, d being the fiber diameter and the length, is generally 10 to 300, preferably 30 to 90.
Les fibres de verre peuvent être à filament unique (fibre monofilament) ou à multiples filaments (fibre multifilament) chaque fibre individuelle comprenant alors une pluralité de filaments.  The glass fibers may be single filament (monofilament fiber) or multiple filament (multifilament fiber) each individual fiber then comprising a plurality of filaments.
Les fibres de verre peuvent être formées par écoulement de verre fondu dans une filière. Une composition aqueuse d'ensimage classique peut alors être appliquée aux fibres de verre. Des compositions aqueuses d'ensimage peuvent comporter un lubrifiant, un agent de couplage et un agent de formation de film et éventuellement d'autres additifs. Les fibres traitées sont généralement chauffées pour éliminer l'eau et effectuer un traitement thermique de la composition d'ensimage sur la surface des fibres. The glass fibers may be formed by pouring molten glass into a die. A conventional aqueous sizing composition can then be applied to glass fibers. Aqueous sizing compositions may include a lubricant, a coupling agent and a film former and optionally other additives. The treated fibers are generally heated to remove water and heat-treat the sizing composition on the surface of the fibers.
Le pourcentage en volume de fibres de verre dans le béton est de préférence supérieur à 1 % en volume, par exemple de 2 à 5 %, de préférence environ de 2 à 3 %, une valeur préférée étant d'environ 2 %.  The volume percentage of glass fibers in the concrete is preferably greater than 1% by volume, for example from 2 to 5%, preferably from about 2 to 3%, a preferred value being about 2%.
Le diamètre des filaments individuels dans les fibres multifilament est généralement inférieur à environ 30 μηη. Le nombre de filaments individuels dans chaque fibre individuelle est généralement de 50 à 200, de préférence d'environ 100. Le diamètre composite des fibres multifilament est généralement de 0,1 à 0,5 mm, de préférence d'environ 0,3 mm. Elles ont généralement une forme approximativement circulaire en section transversale.  The diameter of the individual filaments in the multifilament fibers is generally less than about 30 μηη. The number of individual filaments in each individual fiber is generally 50 to 200, preferably about 100. The composite diameter of the multifilament fibers is generally 0.1 to 0.5 mm, preferably about 0.3 mm. . They generally have an approximately circular shape in cross section.
Le verre a généralement un module de Young supérieur ou égal à 60 GPa, de préférence de 70 à 80 GPa, par exemple de 72 à 75 GPa, de préférence d'environ 72 GPa.  The glass generally has a Young's modulus greater than or equal to 60 GPa, preferably 70 to 80 GPa, for example 72 to 75 GPa, preferably about 72 GPa.
La longueur des fibres de verre est généralement supérieure à la taille des particules du granulat (ou du sable). La longueur des fibres est de préférence au moins trois fois plus grande que la taille des particules. Un mélange de longueurs peut être utilisé. La longueur des fibres de verre est généralement de 3 à 20 mm, par exemple de 4 à 20 mm, de préférence de 4 à 12 mm, par exemple d'environ 6 mm.  The length of the glass fibers is generally greater than the particle size of the granulate (or sand). The length of the fibers is preferably at least three times larger than the particle size. A mixture of lengths can be used. The length of the glass fibers is generally 3 to 20 mm, for example 4 to 20 mm, preferably 4 to 12 mm, for example about 6 mm.
La résistance à la traction des fibres de verre multifilament est d'environ 1700 MPa ou davantage.  The tensile strength of the multifilament glass fibers is about 1700 MPa or more.
La dose de saturation des fibres de verre (Sf) dans la composition est exprimée par la formule : The saturation dose of the glass fibers (S f ) in the composition is expressed by the formula:
Sf = Vf x L/D S f = V f x L / D
où Vf est le volume réel des fibres. Dans les compositions ductiles selon l'invention Sf est généralement de 0,5 à 5, de préférence de 0,5 à 3. Afin d'obtenir une bonne fluidité du mélange de béton frais Sf peut aller généralement jusqu'à environ 2. Le volume réel peut être calculé à partir du poids et la densité des fibres de verre. where V f is the actual volume of the fibers. In the ductile compositions according to the invention S f is generally from 0.5 to 5, preferably from 0.5 to 3. In order to obtain a good fluidity of the fresh concrete mixture S f can generally be up to about 2 The actual volume can be calculated from the weight and density of the glass fibers.
Des fibres hybrides binaires comprenant des fibres de verre et (a) des fibres métalliques ou (b) des fibres organiques et des fibres hybrides ternaires comprenant des fibres de verre, des fibres métalliques et des fibres organiques peuvent également être utilisées. Un mélange de fibres de verre, de fibres organiques et/ou de fibres métalliques peut également être utilisé : un composite "hybride" est ainsi obtenu dont le comportement mécanique peut être adapté en fonction de la performance souhaitée. Les compositions comprennent de préférence des fibres d'alcool polyvinylique (PVA). Les fibres PVA ont généralement une longueur de 6 à 12 mm. Elles ont généralement un diamètre de 0,1 à 0,3 mm. Binary hybrid fibers comprising glass fibers and (a) metal fibers or (b) organic fibers and ternary hybrid fibers comprising glass fibers, metal fibers and organic fibers may also be used. A mixture of glass fibers, organic fibers and / or metal fibers can also be used: a "hybrid" composite is thus obtained whose mechanical behavior can be adapted according to the desired performance. The compositions preferably comprise polyvinyl alcohol (PVA) fibers. PVA fibers generally have a length of 6 to 12 mm. They generally have a diameter of 0.1 to 0.3 mm.
L'utilisation de mélanges de fibres ayant des propriétés et des longueurs différentes permet la modification des propriétés du béton qui les contient.  The use of fiber mixtures with different properties and lengths makes it possible to modify the properties of the concrete that contains them.
Des ciments qui conviennent au béton selon l'invention sont les ciments Portland sans fumée de silice décrits dans l'ouvrage « Lea's Chemistry of Cernent and Concrète ». Les ciments Portland incluent les ciments de laitier, de pouzzolane, de cendres volantes, de schistes brûlés, de calcaire et les ciments composites. Un ciment préféré pour l'invention est le CEM I. Le ciment du béton selon l'invention est par exemple un ciment blanc.  Cements which are suitable for the concrete according to the invention are Portland cements without fumed silica described in the book "Lea's Chemistry of Cernent and Concrete". Portland cements include slag, pozzolana, fly ash, shale, limestone and composite cements. A preferred cement for the invention is CEM I. The cement of the concrete according to the invention is for example a white cement.
Le rapport massique eau/ciment du béton selon l'invention peut varier si des substituts au ciment sont utilisés, plus particulièrement des matériaux pouzzolaniques. Le rapport eau/liant est défini comme le rapport massique entre la quantité d'eau E et la somme des quantités de ciment et de tous matériaux pouzzolaniques : il est généralement de 15 à 30 %, de préférence de 20 % à 25 %, pourcentage en masse. Le rapport eau/liant peut être ajusté en utilisant, par exemple, des agents réducteurs d'eau et/ou des superplastifiants.  The water / cement mass ratio of the concrete according to the invention may vary if substitutes for the cement are used, more particularly pozzolanic materials. The water / binder ratio is defined as the mass ratio between the quantity of water E and the sum of the quantities of cement and of all pozzolanic materials: it is generally from 15 to 30%, preferably from 20% to 25%, percentage in mass. The water / binder ratio may be adjusted using, for example, water reducing agents and / or superplasticizers.
Dans l'ouvrage "Concrète Admixtures Handbook, Properties Science and Technology", V.S. Ramachandran, Noyés Publications, 1984 :  In the book "Concrete Admixtures Handbook, Properties Science and Technology", V.S. Ramachandran, Noyes Publications, 1984:
Un réducteur d'eau est défini comme un additif qui réduit la quantité d'eau de mélange pour un béton pour une ouvrabilité donnée typiquement de 10 à 15 %. Les réducteurs d'eau comprennent, par exemple, les lignosulfates, les acides hydroxycarboxyliques, les hydrates de carbone, et d'autres composés organiques spécialisés, par exemple le glycérol, l'alcool polyvinylique, le sodium alumino-méthyl- siliconate, l'acide sulfanilique et la caséine.  A water reducer is defined as an additive that reduces the amount of mixing water for a concrete for a given workability typically of 10 to 15%. Water reducers include, for example, lignosulphates, hydroxycarboxylic acids, carbohydrates, and other specialized organic compounds, for example glycerol, polyvinyl alcohol, sodium aluminum-methyl-siliconate, sulfanilic acid and casein.
Les superplastifiants appartiennent à une nouvelle classe de réducteurs d'eau chimiquement différents des réducteurs d'eau normaux et capables de réduire la quantité d'eau de mélange d'environ 30 %. Les superplastifiants ont été classés de façon générale en quatre groupes : condensât de naphtalène formaldéhyde sulfoné (ou SNF, acronyme anglais pour Sulphonated Naphtalène Formaldéhyde condensate) (généralement un sel de sodium) ; condensât de mélamine formaldéhyde sulfoné (ou SMF, acronyme anglais pour Sulphonated Melamine Formaldéhyde condensate) ; des lignosulfonates modifiés (ou MLS, acronyme anglais pour Modified Lignosulfonates) ; et autres. Des superplastifiants de nouvelle génération comprennent des composés polycarboxyliques tels que les polyacrylates. Le superplastifiant est de préférence une nouvelle génération de superplastifiant, par exemple un copolymère contenant du polyéthylène glycol comme greffon et des fonctions carboxyliques dans la chaîne principale telle qu'un éther polycarboxylique. Des polysulphonates-polycarboxylate de sodium et des polyacrylates de sodium peuvent également être utilisés. La quantité de superplastifiants généralement requis dépend de la réactivité du ciment. Plus la réactivité du ciment est faible, plus la quantité requise de superplastifiant est faible. Afin de réduire la quantité totale d'alcalins, le superplastifiant peut être utilisé comme un sel de calcium plutôt que d'un sel de sodium. Superplasticizers belong to a new class of water reducers that are chemically different from normal water reducers and capable of reducing the amount of mixing water by about 30%. Superplasticizers have been broadly classified into four groups: sulphonated naphthalene formaldehyde condensate (or SNF), (generally a sodium salt); sulphonated formaldehyde melamine condensate (or SMF, acronym for Sulphonated Melamine Formaldehyde Condensate); modified lignosulphonates (or MLS, acronym for Modified Lignosulfonates); and others. Next generation superplasticizers include polycarboxylic compounds such as polyacrylates. The superplasticizer is preferably a new generation of superplasticizer, for example a copolymer containing polyethylene glycol as a graft and carboxylic functions in the main chain such as a polycarboxylic ether. Sodium polysulphonate polycarboxylate and sodium polyacrylates may also be used. The amount of superplasticizer generally required depends on the reactivity of the cement. The lower the reactivity of the cement, the lower the required amount of superplasticizer. In order to reduce the total amount of alkaline, the superplasticizer can be used as a calcium salt rather than a sodium salt.
D'autres additifs peuvent être ajoutés au béton mis en œuvre dans le procédé selon l'invention, par exemple, un agent antimousse (par exemple, du polydiméthylsiloxane). Il s'agit également des silicones sous la forme d'une solution, d'un solide ou de préférence sous la forme d'une résine, d'une huile ou d'une émulsion, de préférence dans l'eau.  Other additives may be added to the concrete used in the process according to the invention, for example an antifoam agent (for example, polydimethylsiloxane). It is also silicones in the form of a solution, a solid or preferably in the form of a resin, an oil or an emulsion, preferably in water.
La quantité d'un tel agent dans la composition est généralement au plus de 5 parties en masse par rapport à la masse du ciment.  The amount of such an agent in the composition is generally at most 5 parts by weight relative to the weight of the cement.
Les bétons mis en œuvre dans le procédé selon l'invention peuvent également comprendre des agents hydrophobes pour augmenter la répulsion de l'eau et réduire l'absorption de l'eau et la pénétration dans des structures solides comprenant des bétons selon l'invention. De tels agents comprennent les silanes, les siloxanes, les silicones et les siliconates ; des produits disponibles dans le commerce comprennent des produits liquides et solides diluables dans un solvant, par exemple en granulés.  The concretes used in the process according to the invention may also comprise hydrophobic agents for increasing the repulsion of water and reducing the absorption of water and the penetration into solid structures comprising concretes according to the invention. Such agents include silanes, siloxanes, silicones and siliconates; commercially available products include liquid and solid products which can be diluted in a solvent, for example into granules.
Le béton mis en œuvre dans le procédé selon l'invention peut être préparé par des méthodes connues, notamment le mélange des composants solides et de l'eau, la mise en forme (moulage, coulage, injection, pompage, extrusion, calandrage) puis le durcissement.  The concrete used in the process according to the invention can be prepared by known methods, in particular the mixing of solid components and water, the shaping (molding, casting, injection, pumping, extrusion, calendering) then hardening.
Afin de préparer le béton mis en œuvre dans le procédé selon l'invention, les constituants et les fibres de renfort sont mélangés avec de l'eau. L'ordre suivant de mélange peut, par exemple, être adopté : mélange des constituants pulvérulents de la matrice ; introduction de l'eau et d'une fraction, par exemple la moitié, des adjuvants ; mélange ; introduction de la fraction restante des adjuvants ; mélange ; introduction des fibres de renfort et des autres constituants ; mélange.  In order to prepare the concrete used in the process according to the invention, the constituents and the reinforcing fibers are mixed with water. The following order of mixing may, for example, be adopted: mixing of the powder constituents of the matrix; introduction of water and a fraction, for example half, of adjuvants; mixed ; introduction of the remaining fraction of adjuvants; mixed ; introduction of reinforcing fibers and other constituents; mixed.
Des moyens de renfort utilisés en association avec le béton mis en œuvre dans le procédé selon l'invention comprennent également des moyens de renfort par précontrainte, par exemple, par fils adhérents ou par torons adhérents, ou par posttension, par des torons non adhérents ou par des câbles ou par des gaines ou des barres, le câble comprenant un ensemble de fils ou comprenant des torons.  Reinforcing means used in combination with the concrete used in the process according to the invention also comprise prestressing reinforcing means, for example, by adhering yarns or by adherent strands, or by posttensioning, by non-adherent strands or by cables or sheaths or bars, the cable comprising a set of wires or comprising strands.
Dans le mélange des composants du béton mis en œuvre dans le procédé selon l'invention, les matériaux sous forme de particules autres que le ciment peuvent être introduits comme pré-mélanges ou premix sec de poudres ou de suspensions aqueuses diluées ou concentrées. In the mixture of the concrete components used in the process according to the invention, the materials in the form of particles other than cement may be introduced as premixes or dry premix of diluted or concentrated aqueous powders or suspensions.
Les surfaces spécifiques des matériaux sont mesurées par la méthode BET en utilisant un appareil Beckman Coulter SA 3100 avec de l'azote comme gaz adsorbé.  The specific surfaces of the materials are measured by the BET method using a Beckman Coulter SA 3100 apparatus with nitrogen as the adsorbed gas.
De préférence le béton mis en œuvre dans le procédé selon l'invention est un béton autoplaçant, c'est-à-dire qu'il se met en place sous le seul effet de la gravité sans qu'il soit nécessaire de le vibrer. Notamment, le béton selon l'invention est un béton autoplaçant tel que décrit dans les documents EP981506 ou EP981505.  Preferably the concrete used in the process according to the invention is a self-compacting concrete, that is to say that it is put in place under the sole effect of gravity without the need to vibrate. In particular, the concrete according to the invention is a self-consolidating concrete as described in documents EP981506 or EP981505.
L'invention a également pour objet une utilisation d'un film polymère obtenu par polymérisation sous l'action de radiations et d'une couche mince photovoltaïque, pour produire de l'électricité sur une surface en béton.  The invention also relates to a use of a polymer film obtained by polymerization under the action of radiation and a photovoltaic thin layer, to produce electricity on a concrete surface.
L'invention a également pour objet un élément pour le domaine de la construction comprenant un béton photovoltaïque selon l'invention tel que défini ci-dessus.  The invention also relates to an element for the field of construction comprising a photovoltaic concrete according to the invention as defined above.
Par l'expression « élément pour le domaine de la construction », on entend selon la présente invention tout élément d'une construction comme par exemple une fondation, un soubassement, un mur, une poutre, un pilier, une pile de pont, un parpaing, un bloc, un poteau, un escalier, un panneau (notamment un panneau de façade), une corniche, une tuile ou un toit terrasse.  By the term "element for the field of construction" is meant according to the present invention any element of a construction such as for example a foundation, a base, a wall, a beam, a pillar, a bridge stack, a block, post, staircase, panel (including facade panel), cornice, tile or roof terrace.
Le béton photovoltaïque selon l'invention pourrait éventuellement être utilisé dans les "éléments minces", par exemple ceux ayant un rapport entre la longueur et l'épaisseur supérieur à environ 10, ayant généralement une épaisseur de 10 à 30 mm, par exemple, des éléments de revêtement.  The photovoltaic concrete according to the invention could possibly be used in "thin elements", for example those having a ratio between length and thickness greater than about 10, generally having a thickness of 10 to 30 mm, for example coating elements.
L'invention a enfin pour objet un procédé de fabrication de l'élément ci-dessus, comprenant le procédé décrit ci-avant.  The invention finally relates to a method of manufacturing the above element, comprising the method described above.
Dans la présente description, y compris les revendications, sauf indication contraire, les pourcentages sont indiqués en masse.  In the present description, including the claims, unless otherwise indicated, the percentages are indicated by weight.
L'invention sera décrite plus en détail au moyen des exemples suivants, donnés à titre non limitatif, en relation avec la figure 1 qui illustre le dispositif de mesure de la perméabilité d'un béton.  The invention will be described in more detail by means of the following examples, given in a non-limiting manner, in relation with FIG. 1 which illustrates the device for measuring the permeability of a concrete.
EXEMPLES EXAMPLES
Les exemples qui suivent montrent comment la surface du béton revêtu selon l'invention résiste aux conditions de dépôt de couches minces photovoltaïques tout en permettant d'obtenir des propriétés de surfaces adéquates pour les applications photovoltaïques. Formulation de béton (1 ) à ultra haute performance : The following examples show how the surface of the concrete coated according to the invention withstands the conditions of deposition of photovoltaic thin layers while allowing to obtain suitable surface properties for photovoltaic applications. Ultra High Performance Concrete Formulation (1):
La formulation (1 ) de béton à ultra haute performance utilisée pour réaliser les essais est décrite dans le tableau (1 ) suivant :  The formulation (1) of ultra-high performance concrete used to carry out the tests is described in Table (1) below:
Tableau (1 )  Table (1)
Les composants utilisés sont disponibles auprès des fournisseurs suivants : The components used are available from the following suppliers:
(1 ) Ciment Portland blanc CEM I 52.5 PMES : Lafarge-France Le Teil  (1) White Portland cement CEM I 52.5 PMES: Lafarge-France Le Teil
(2) Filler calcaire DURCAL 1 (taille moyenne de particules de 2,44 μηη) : OMYA  (2) DURCAL 1 limestone filler (average particle size of 2.44 μηη): OMYA
(3) Fumées de silice MST : SEPR (Société Européenne des Produits Réfractaires) (4) Sable BE01 (D50 à 307 μηι et D10 à 253 μπι) : Sibelco France (Carrière de SIFRACO BEDOIN)  (3) Silica fumes MST: SEPR (European Society of Refractory Products) (4) Sand BE01 (D50 at 307 μηι and D10 at 253 μπι): Sibelco France (Career of SIFRACO BEDOIN)
(5) Adjuvant Ductal F2 : Chryso  (5) Ductal Adjuvant F2: Chryso
Le ciment Portland est du type CEM I 52,5 PMES selon la norme EN 197-1 dé février 2001. L'adjuvant Ductal F2 est un superplastifiant comprenant un polycarboxylate polyoxyalkylène en phase aqueuse à 30% d'extrait sec. La fumée de silice possède une taille médiane des particules d'environ 1 micromètre. Le rapport eau/ciment est de 0,26. Il s'agit d'un béton ayant une résistance à la compression à 28 jours supérieure à 100 MPa.  The Portland cement is of the type CEM I 52.5 PMES according to the standard EN 197-1 of February 2001. The adjuvant Ductal F2 is a superplasticizer comprising a polyoxyalkylene polycarboxylate in aqueous phase at 30% solids. The silica fume has a median particle size of about 1 micron. The water / cement ratio is 0.26. It is a concrete with a compressive strength at 28 days greater than 100 MPa.
Le béton à ultra haute performance selon la formulation (1 ) a été réalisé au moyen d'un malaxeur de type RAYNERI. L'ensemble de l'opération a été réalisé à 20°C. La méthode de préparation comprend les étapes suivantes :  The ultra high performance concrete according to the formulation (1) was produced using a RAYNERI type kneader. The entire operation was performed at 20 ° C. The method of preparation includes the following steps:
• A T = 0 seconde : mettre le ciment, le filler calcaire, les fumées de silice et le sable dans le bol malaxeur et malaxer durant 7 minutes (15 tours/min) ; • At T = 0 seconds: put the cement, calcareous filler, silica fumes and sand in the mixing bowl and knead for 7 minutes (15 rpm);
• A T = 7 minutes : ajouter l'eau et la moitié de la masse d'adjuvant et malaxer pendant 1 minute (15 tours/min) ; • At T = 7 minutes: add water and half of the adjuvant mass and knead for 1 minute (15 rpm);
• A T = 8 minutes : ajouter le restant d'adjuvant et malaxer pendant 1 minute (15 tours/min) ; • A T = 9 minutes : malaxer pendant 8 minutes (50 tours/min) ; • At T = 8 minutes: Add the remaining adjuvant and knead for 1 minute (15 rpm); • At T = 9 minutes: mix for 8 minutes (50 rpm);
• A T = 17 minutes : malaxer pendant 1 minute (15 tours/min).  • AT = 17 minutes: knead for 1 minute (15 rpm).
• A partir de T = 18 minutes : couler le béton à plat dans le ou les moules prévus à cet effet.  • From T = 18 minutes: pour the concrete flat in the mold or molds provided for this purpose.
Des plaques (dimensions 150x 100x 10 mm) ont été réalisées par moulage du béton selon la formulation (1 ) dans un moule en polychlorure de vinyle (PVC). Chaque plaque a été démoulée 18 heures après le contact entre le ciment et l'eau. Chaque plaque démoulée a été stockée à 25°C pendant 14 jours.  Plates (dimensions 150x100x10 mm) were made by molding the concrete according to the formulation (1) in a polyvinyl chloride (PVC) mold. Each plate was demolded 18 hours after contact between cement and water. Each demolded plate was stored at 25 ° C for 14 days.
Après le stockage de 14 jours, un traitement de surface des plaques a été réalisé. Le revêtement (1 ) selon l'invention a été appliqué sur une face de la première plaque. Les revêtements (2) et (3) de comparaison ont été appliqués sur une face de la deuxième et de la troisième plaque. Aucun revêtement n'a été disposé sur la quatrième plaque.  After storage for 14 days, a surface treatment of the plates was performed. The coating (1) according to the invention was applied to one face of the first plate. Comparative coatings (2) and (3) were applied to one side of the second and third plates. No coating was placed on the fourth plate.
Procédé de dépôt d'un revêtement (1 ) selon l'invention d'une composition comprenant des monomères et/ou des prépolymères réactifs :  Process for depositing a coating (1) according to the invention of a composition comprising monomers and / or reactive prepolymers:
Les composés chimiques suivants ont été utilisés pour réaliser le revêtement (1 ) The following chemical compounds were used to make the coating (1)
Tableau (2)  Table (2)
Composition du revêtement (1 )  Composition of the coating (1)
"Les Photomer™ sont commercialisés par la société IGM Resins. Le Irgacure est commercialisé par la société Ciba.  Photomer ™ are sold by IGM Resins and Irgacure is marketed by Ciba.
Les composés du revêtement (1 ) ont été chargés dans un mélangeur, puis agités à température ambiante jusqu'à l'obtention d'un mélange homogène. Le mélange était stable et il a pu être conservé plusieurs mois à température ambiante et à l'abri de la lumière directe du soleil. Ce mélange a été appliqué sur le béton (1 ) à ultra-haute performance, à l'aide d'un rouleau applicateur puis mis à polymériser sous l'action des radiations UV. Les UV permettent de décomposer le photo-initiateur ce qui conduit à la polymérisation des fonctions acryliques. The compounds of the coating (1) were loaded into a mixer and then stirred at ambient temperature until a homogeneous mixture was obtained. The mixture was stable and it could be stored for several months at room temperature and away from direct sunlight. This mixture was applied to the ultra high performance concrete (1) using an applicator roller and then cured under the action of UV radiation. UV can decompose the photoinitiator which leads to the polymerization of acrylic functions.
La polymérisation a été réalisée à une vitesse de passage sous la lampe UV de 5 mètres/minute à 30 mètres/minute, la dose d'énergie reçue était suffisante pour obtenir la polymérisation la plus complète possible et éviter tout effet collant à la surface du film de polymère. The polymerization was carried out at a speed of passage under the UV lamp from 5 meters / minute to 30 meters / minute, the received energy dose was sufficient to obtain the most complete polymerization possible and avoid any sticky effect on the surface of the polymer film.
Procédé de dépôt d'un revêtement (2) de comparaison :  Method for depositing a coating (2) for comparison:
Le procédé a été réalisé à 20°C et comprenait, après une attente de 14 jours après le démoulage du béton à traiter, le dépôt, sur la face de l'élément de béton à traiter, d'une émulsion aqueuse (composée de méthacrylate de butyle, d'esters aliphatiques, d'acides carboxyliques et d'éther glycol), correspondant au produit PROTECTGUARD™ Effet Mouillé Brillant commercialisé par la société Guard Industrie. Le revêtement a été déposé au moyen d'un rouleau humidifié par ce liquide. Deux couches ont été déposées (2 heures entre chaque application).  The process was carried out at 20 ° C. and included, after waiting for 14 days after demolding the concrete to be treated, depositing, on the face of the concrete element to be treated, an aqueous emulsion (composed of methacrylate butyl, aliphatic esters, carboxylic acids and ether glycol), corresponding to the PROTECTGUARD ™ Effect Wet Gloss product marketed by Guard Industrie. The coating was deposited by means of a roller moistened with this liquid. Two layers were deposited (2 hours between each application).
Procédé de dépôt d'un revêtement (3) de comparaison :  Method for depositing a comparison coating (3):
Le procédé a été réalisé à 20°C et comprend, après une attente de 14 jours après le démoulage du béton à traiter, le dépôt, sur la face de l'élément de béton à traiter, d'une première couche d'un polymère acrylique dilué dans un solvant aqueux (correspondant au produit Solarcir Primer Protec™ commercialisé par la société Grace- Pieri). L'émulsion a été pulvérisée en une quantité de 40 g/m2. Ce procédé comprenait ensuite une attente de 24 heures à partir du séchage de la première couche, puis le dépôt d'une seconde couche à base de polyuréthane (correspondant au produit Solarcir Protec Mat™ commercialisé par Grace-Pieri). Cette seconde couche a été pulvérisée en une quantité de 80 g/m2. The process was carried out at 20 ° C. and comprises, after waiting for 14 days after demolding the concrete to be treated, depositing, on the face of the concrete element to be treated, a first layer of a polymer acrylic diluted in an aqueous solvent (corresponding to Solarcir Primer Protec ™ product marketed by Grace-Pieri). The emulsion was pulverized in an amount of 40 g / m 2 . This process then included a waiting time of 24 hours from the drying of the first layer, then the deposition of a second polyurethane-based layer (corresponding to the Solarcir Protec Mat ™ product marketed by Grace-Pieri). This second layer was sprayed in an amount of 80 g / m 2 .
Les plaques ont ensuite été utilisées pour réalisées les différentes tests et mesures décrits ci-après.  The plates were then used to perform the various tests and measurements described below.
Durabilité de l'aspect visuel de surface :  Durability of the surface visual aspect:
Après le traitement de surface, des plaques ont été stockées à 200°C pendant 2 heures sous vide partiel (pression < 0.1 atmosphère) pour vérifier la résistance à la déformation des surfaces dans un environnent contraignant, proche de celui requis pour le dépôt de couches minces photovoltaïques. Une inspection visuelle a ensuite été réalisée pour examiner les surfaces des plaques et détecter de possibles défauts. Les résultats des inspections visuelles sont présentés dans le tableau (3) suivant : Tableau (3) After the surface treatment, plates were stored at 200 ° C for 2 hours under partial vacuum (pressure <0.1 atmosphere) to check the resistance to deformation of the surfaces in a constraining environment, close to that required for the deposition of layers thin photovoltaic. A visual inspection was then performed to examine the plate surfaces and detect possible defects. The results of the visual inspections are presented in the following table (3): Table (3)
Le béton recouvert du revêtement (1 ) selon l'invention ne présente pas de tache ni de bulle alors que les bétons recouverts du revêtement (2) ou (3) de comparaison présentent au moins un de ces défauts.  The concrete covered with the coating (1) according to the invention has no stain or bubble while the concrete covered with the coating (2) or (3) comparison have at least one of these defects.
Variation de la rugosité et résistance à la déformation :  Variation of roughness and resistance to deformation:
Des mesures de rugosité moyenne (paramètre Ra) de la face traitée des plaques (et de la plaque non revêtue) ont été réalisées avant et après stockage à 200°C pendant 2 heures sous vide partiel (pression < 0,1 atmosphère) pour vérifier la résistance à la déformation des surfaces dans un environnent contraignant, proche de celui requis pour le dépôt de couches minces photovoltaïques. Les résultats des mesures de rugosité sont présentés dans le tableau (4) suivant :  Mean roughness measurements (Ra parameter) of the treated face of the plates (and uncoated plate) were performed before and after storage at 200 ° C for 2 hours under partial vacuum (pressure <0.1 atmosphere) to verify the resistance to deformation of the surfaces in a constraining environment, close to that required for the deposition of photovoltaic thin layers. The results of the roughness measurements are presented in the following table (4):
Tableau (4) Table (4)
Le béton recouvert du revêtement (1 ) selon l'invention ne présente pas de variation de rugosité moyenne (Ra) alors que les bétons recouverts du revêtement (2) ou (3) de comparaison présentent une plus forte déformation de surface ; le béton recouvert du revêtement (1 ) est donc plus favorable au dépôt de couche mince photovoltaïque. Le béton non recouvert par un revêtement présente une rugosité moyenne plus importante que celle du béton recouvert du revêtement (1 ), ce qui est moins favorable au dépôt de couche mince photovoltaïque. The concrete covered with the coating (1) according to the invention does not exhibit a variation of average roughness (Ra) whereas the concretes coated with the coating (2) or (3) of comparison show a greater surface deformation; the concrete covered with the coating (1) is therefore more favorable to photovoltaic thin film deposition. Uncoated concrete has a higher average roughness than coated concrete (1), which is less favorable for photovoltaic thin film deposition.
Dureté et résistance à la rayure :  Hardness and scratch resistance:
Après le traitement de surface, des plaques ont été soumises à un test de résistance à la rayure (selon la norme ISO 2409:2007 (Peintures et vernis - essai de quadrillage) consistant à effectuer un quadrillage en réalisant des incisions parallèles et perpendiculaires dans le revêtement.  After the surface treatment, plates were subjected to a scratch resistance test (according to ISO 2409: 2007 (Paints and varnishes - grid test) consisting of a grid with parallel and perpendicular incisions in the coating.
Après la réalisation des incisions, une photographie de la surface de chaque plaque a alors été prise. Les résultats d'une comparaison visuelle des deux photographies ont été présentés dans le tableau (5) suivant :  After making the incisions, a photograph of the surface of each plate was then taken. The results of a visual comparison of the two photographs were presented in the following table (5):
Tableau (5) Table (5)
Le béton recouvert du revêtement (1 ) présente des propriétés de surface permettant de résister aux rayures, aucune incision n'ayant entaillé toute l'épaisseur du revêtement.  The concrete covered with the coating (1) has scratch-resistant surface properties, with no incisions having cut through the entire thickness of the coating.
Porosité ouverte de surface et perméabilité aux liquides  Surface open porosity and liquid permeability
La figure 1 représente le dispositif 10 utilisé pour la réalisation d'une mesure de la perméabilité d'une plaque 12, cette mesure de perméabilité à l'eau étant capable de caractériser la porosité résiduelle de la surface du béton (avec/sans revêtements). La plaque 12 est disposée sur des entretoises 14 à environ 5 mm d'un support 16 horizontal. La face traitée de la plaque 12 est la face supérieure 18. Un entonnoir tronconique 20 d'axe vertical est placé sur la face supérieure 18, l'extrémité de grand diamètre de l'entonnoir 20 étant en contact avec la face supérieure 18. Le plus grand diamètre de l'entonnoir est de 75 mm. Un joint d'étanchéité 22 recouvre la zone de contact entre l'entonnoir 20 et la face 18. L'extrémité de plus petit diamètre de l'entonnoir 20 se prolonge par une pipette graduée 24. Un joint d'étanchéité 26 recouvre la zone de contact entre l'entonnoir 20 et la pipette 24. FIG. 1 represents the device 10 used for carrying out a measurement of the permeability of a plate 12, this measurement of water permeability being capable of characterizing the residual porosity of the surface of the concrete (with / without coatings) . The plate 12 is disposed on spacers 14 to about 5 mm of a horizontal support 16. The treated face of the plate 12 is the upper face 18. A frustoconical funnel 20 with a vertical axis is placed on the upper face 18, the large-diameter end of the funnel 20 being in contact with the upper face 18. largest diameter of the funnel is 75 mm. A seal 22 covers the contact zone between the funnel 20 and the face 18. The end of smaller diameter of the funnel 20 is extended by a graduated pipette 24. A seal 26 covers the contact zone between the funnel 20 and the pipette 24.
L'essai de mesure de la perméabilité a été réalisé pour chaque plaque après le traitement de surface en utilisant le dispositif de test de la figure 1 à une température de 20 °C et une humidité relative de 65 %. De l'eau a été versée dans la pipette 24 de façon à remplir l'entonnoir 20 et la pipette 24 jusqu'à une hauteur de 250 mm par rapport à la face 18. L'évolution de la quantité d'eau pénétrant dans la plaque a été mesurée sur la pipette 24. Les résultats ont été présentés dans le tableau (6) suivant :  The permeability measurement test was performed for each plate after the surface treatment using the test device of Fig. 1 at a temperature of 20 ° C and a relative humidity of 65%. Water was poured into the pipette 24 so as to fill the funnel 20 and the pipette 24 to a height of 250 mm with respect to the face 18. The evolution of the amount of water entering the plate was measured on the pipette 24. The results have been presented in the following table (6):
Tableau (6)  Table (6)
Le béton recouvert du revêtement (1 ) selon l'invention est donc plus imperméable que le béton recouvert du revêtement (2) ou (3) de comparaison, et également plus imperméable que le béton non recouvert par un revêtement. La forte imperméabilité de la plaque revêtue (1 ) selon l'invention traduit une très faible porosité ouverte de surface, ce qui est très favorable au dépôt de couche mince photovoltaïque permettant de former le béton photovoltaïque selon l'invention.  The concrete covered with the coating (1) according to the invention is therefore more impervious than the concrete covered with the coating (2) or (3) of comparison, and also more impervious than the concrete not covered by a coating. The high impermeability of the coated plate (1) according to the invention reflects a very low open surface porosity, which is very favorable to the photovoltaic thin film deposition for forming the photovoltaic concrete according to the invention.
Pour être capable de supporter un dépôt homogène de couche mince photovoltaïque, notamment lors de phases de dépôt s'effectuant sous vide partiel (10"4 Torr) et avec une température du béton portée à environ 200°C (ou plus), le béton devrait avantageusement être : In order to be able to withstand a homogeneous photovoltaic thin film deposition, in particular during partial vacuum deposition (10 "4 Torr) and with a concrete temperature brought to about 200 ° C (or more), the concrete should be:
- le plus lisse et ne pas présenter de déformation de surface (tableaux 3 et 4),  - the smoothest and no surface deformation (Tables 3 and 4),
- être le plus résistant possible aux rayures (tableau 5),  - be as resistant as possible to scratches (Table 5),
- présenter une porosité ouverte de surface la plus faible possible (tableau 6). A la lecture des résultats, le béton à ultra haute performance de formulation (1 ) recouvert du revêtement (1 ) est celui qui présente les meilleures caractéristiques de surface pour recevoir un dépôt in-situ de couche mince photovoltaïque. - have the lowest possible surface porosity (Table 6). Upon reading the results, the ultra-high performance concrete formulation (1) coated with the coating (1) is the one that has the best surface characteristics to receive an in-situ deposit of photovoltaic thin film.
Après avoir sélectionné le revêtement (1 ) pour recouvrir une surface du béton à ultra haute performance de formulation (1 ), des essais de dépôt d'une couche conductrice pour réaliser le contact arrière des couches minces photovoltaïques ont été réalisés avec différents matériaux et selon différents procédés.  After having selected the coating (1) to cover a surface of the ultra high performance concrete formulation (1), tests for depositing a conductive layer to make the rear contact of the photovoltaic thin layers have been made with different materials and according to different processes.
1 ) 1 er essai de dépôt de Molybdène par pulvérisation cathodique (dépôt n°1 ) :  1) 1st test of Molybdenum deposition by sputtering (deposit n ° 1):
Le dépôt a été effectué par pulvérisation cathodique sur deux substrats de béton de formulation (1 ) recouvert du revêtement (1 ), sous une pression de 2 mTorr et un flux d'argon de 20 sccm. Le plasma d'Argon a été créé à l'aide de radiofréquences (13.56 MHz) d'une puissance de 300 W.  The deposition was carried out by cathodic sputtering on two substrates of formulation concrete (1) covered with the coating (1), under a pressure of 2 mTorr and an argon flow of 20 sccm. The Argon plasma was created using radio frequencies (13.56 MHz) with a power of 300 W.
Une fois ces paramètres stabilisés, la cible de Molybdène a été exposée au flux d'ions argon, ce qui a engendré une vitesse de dépôt de 22,2 nm/min. Les deux substrats ont été montés sur un porte-échantillon rotatif qui tourne à 5 rpm environ, et laissé 13'30" sous le flux de molybdène pour obtenir une couche de 300 nm d'épaisseur.  Once these parameters were stabilized, the molybdenum target was exposed to the argon ion flux, resulting in a deposition rate of 22.2 nm / min. The two substrates were mounted on a rotating sample holder which rotates at about 5 rpm, and left 13'30 "under the molybdenum stream to obtain a 300 nm thick layer.
En termes de rugosité, le Ra après dépôt est de 0,03 μηη ; la planéité du dépôt n°1 est bien conservée d'après les observations au profilomètre et au microscope électronique à balayage. Ces deux nouveaux substrats sont donc aptes à supporter un futur dépôt de couches CZTS en vue d'obtenir le béton photovoltaïque selon l'invention.  In terms of roughness, the Ra after deposition is 0.03 μηη; the flatness of the No. 1 deposit is well preserved from the profilometer observations and the scanning electron microscope. These two new substrates are therefore able to support a future deposit of CZTS layers in order to obtain the photovoltaic concrete according to the invention.
2) 1 er essai de dépôt d'or par évaporation sous vide (dépôt n°2) :  2) 1 st test of gold deposit by evaporation under vacuum (deposit n ° 2):
Le substrat de béton de formulation (1 ) recouvert du revêtement (1 ) a au préalable été traité durant cinq minutes par un plasma de d'02 généré à environ 0,1 mbar par des radiofréquences à 100 W, avec un flux d'02 de 5 sccm. The formulation concrete substrate (1) coated with the coating (1) was previously treated for five minutes with a plasma of O 2 generated at about 0.1 mbar by radio frequencies at 100 W, with a flux of 0 2 of 5 sccm.
Une fois ce traitement effectué, la chambre a été passée en vide secondaire (de 10 à 2 mbar) et l'or s'est évaporé. Le substrat a alors été placé sous la source d'or lorsque la sublimation a commencé sous l'effet du chauffage provoqué par réchauffement d'un filament de tungstène.  After this treatment, the chamber was changed to secondary vacuum (from 10 to 2 mbar) and the gold evaporated. The substrate was then placed under the gold source when the sublimation started under heating caused by heating a tungsten filament.
Un premier dépôt d'or par évaporation a donc été effectué. Des problèmes de calibration de balance à quartz et de stabilité de la sublimation ont entraîné un dépôt d'or de 730 nm, une épaisseur inutilement élevée et donc peu uniforme.  A first deposit of gold by evaporation has been made. Problems with quartz balance calibration and sublimation stability resulted in a 730 nm gold deposit, an unnecessarily high and therefore uneven thickness.
Néanmoins, les mesures par profilométrie ont montré que le dépôt n°2 était aussi lisse que celui du Molybdène (Ra = 0.034 μηι) et donc potentiellement apte à supporter un futur dépôt de couches CZTS en vue d'obtenir le béton photovoltaïque selon l'invention. 3) 2ème et 3ème essais de dépôt d'or par évaporation sous vide (dépôts n°3 et n°4) Après calibration de l'appareil, des dépôts par évaporation de plus fines couches d'or, respectivement de 55 et 150 nm, ont été réalisés selon un procédé identique à celui décrit ci-dessus pour le dépôt n°2. Nevertheless, the measurements by profilometry showed that the deposit n ° 2 was as smooth as that of Molybdenum (Ra = 0.034 μηι) and thus potentially able to support a future deposit of CZTS layers in order to obtain the photovoltaic concrete according to the invention. 3) 2nd and 3rd gold vapor deposition tests (deposits # 3 and # 4) After calibration of the unit, evaporation deposits of finer gold layers, respectively 55 and 150 nm , were carried out according to a process identical to that described above for the deposit No. 2.
Mesure de "résistivité"  Measurement of "resistivity"
En appliquant une tension et en mesurant le courant il a été possible de mesurer la résistance des dépôts métalliques et ainsi de remonter de manière très approximative à leur résistivité, notamment en utilisant la méthode de Van der Pauw.  By applying a voltage and measuring the current, it was possible to measure the resistance of the metal deposits and thus to go back very closely to their resistivity, in particular by using the Van der Pauw method.
Ces mesures de résistivité sont réunies dans le tableau ci-après :  These resistivity measurements are summarized in the table below:
Ces mesures de résistivité ont permis de constater que les dépôts n°1 et n°3 étaient conducteurs mais que le dépôt n°2 ne l'était pas. These resistivity measurements showed that the deposits n ° 1 and n ° 3 were conductive but that the deposit n ° 2 was not.
L'aspect mat et sombre du premier dépôt par évaporation d'or (dépôt n°2) laisse à penser que le revêtement de polymère (1 ) s'est dégradé au cours du dépôt, et qu'une partie de ce revêtement isolant s'est mêlé à l'or pulvérisé, rendant ainsi le dépôt d'or beaucoup plus résistif.  The dull and dark appearance of the first gold evaporation deposit (deposit No. 2) suggests that the polymer coating (1) has degraded during the deposition, and that part of this insulating coating is mixed with pulverized gold, thus making the deposit of gold much more resistive.
Les dépôts n°1 (molybdène) et n°3 et 4 (or), de plus faible épaisseur que le dépôt n°2, sont mieux maîtrisés, et présentent une résistivité correcte compatible avec des applications de couches minces photovoltaïques décrites dans l'état de la technique.  The deposits n ° 1 (molybdenum) and n ° 3 and 4 (gold), of smaller thickness than the deposit n ° 2, are better controlled, and present a resistivity correct compatible with applications of thin photovoltaic layers described in the state of the art.
Test d'adhérence  Adhesion test
Les tests d'adhérence effectués selon la norme ASTM D 3359 ont démontré que les couches de molybdène et d'or avaient toute bien adhérées avec le substrat de béton de formulation (1 ) recouvert du revêtement de polymère (1 ).  The adhesion tests carried out according to ASTM D 3359 showed that the molybdenum and gold layers had all adhered well with the formulation concrete substrate (1) covered with the polymer coating (1).
Des essais de dépôt de couches CZTS ont ensuite été réalisés sur certaines couches conductrices décrites ci-dessus.  Deposition tests of CZTS layers were then carried out on certain conductive layers described above.
4) Dépôt de couches CZTS sur substrats de béton de formulation (1 ) recouvert du revêtement de polymère (1 ) préalablement recouverts d'une couche de molybdène (dépôt n°1 ) ou d'une couche d'or (dépôt n°3) Les couches de CZTS ont été déposées en deux temps : 4) Deposition of CZTS layers on concrete substrates (1) coated with the polymer coating (1) previously covered with a layer of molybdenum (deposit No. 1) or a layer of gold (deposit No. 3 ) The layers of CZTS have been deposited in two stages:
4.1 . D'abord il a été réalisé une co-évaporation de ZnS, de Cu2S et de SnS. Ces trois composés métalliques ont été chauffés par conduction dans des creusets sous vide, la pression lors du dépôt était de l'ordre de 10"6 mbar, celle-ci pouvait monter à 5x10"5 mbar voire plus lors du dépôt mais ne devait pas dépasser 1 x10"5 mbar. Les vitesses de dépôt (en nm/s) et températures des métaux (°C) sont indiquées dans le tableau ci-dessous : 4.1. First, co-evaporation of ZnS, Cu2S and SnS was performed. These three metal compounds were heated by conduction in vacuum crucibles, the pressure during the deposition was of the order of 10 "6 mbar, it could rise to 5x10 " 5 mbar or more during the deposit but should not . more than 1 x10 "5 mbar deposition rates (in nm / s) and metal temperatures (° C) are shown in the table below:
Le but était d'obtenir du Cu2ZnSnS4, les ratios de vitesses théoriques étaient queThe goal was to obtain Cu2ZnSnS 4 , the theoretical velocity ratios were that
- le dépôt de SnS se faisait 1 ,22 fois plus vite que le ZnS, et que - the deposit of SnS was 1, 22 times faster than the ZnS, and that
- le dépôt de Cu2S se faisait 1 ,2 fois plus vite que le ZnS.  - Cu2S deposition was 1, 2 times faster than ZnS.
4.2. Une fois le dépôt réalisé, une couche de Cu2-xZnSn1 +yS3+z a été obtenue. Il a alors été effectué une sulfurisation. Pour cela, les échantillons ont été placés dans un four avec des creusets contenant du soufre solide. L'atmosphère du four était un flux de diazote de manière à stabiliser la pression à 1 mTorr. Les échantillons ont chauffé 1 heure à 60°C, puis 3 minutes à 120°C et enfin un quart d'heure à 500°C. 4.2. Once the deposit was made, a layer of Cu2-xZnSn1 + yS3 + z was obtained. It was then performed a sulfurization. For this, the samples were placed in an oven with crucibles containing solid sulfur. The furnace atmosphere was a stream of dinitrogen so as to stabilize the pressure at 1 mTorr. The samples were heated for 1 hour at 60 ° C, then 3 minutes at 120 ° C and finally a quarter of an hour at 500 ° C.
Caractéristiques après dépôt :  Characteristics after deposit:
Des mesures de composition chimiques par spectroscopie électronique de rayons X Measurements of chemical composition by electron spectroscopy of X-rays
(XPS) ont permis de confirmer que les différentes couches avaient été bien déposées sur les substrats de béton de formulation (1 ) recouvert du revêtement de polymère (1 ) préalablement recouverts d'une couche de molybdène (dépôt n°1 ) ou d'une couche d'or (dépôt n°3). (XPS) confirmed that the various layers had been well deposited on the substrates of formulation concrete (1) covered with the polymer coating (1) previously covered with a layer of molybdenum (deposit No. 1) or with a layer of gold (deposit No. 3).
Les mesures par profilométrie donnent une rugosité finale (Ra) après dépôt du The measurements by profilometry give a final roughness (Ra) after deposit of the
CZTS de 0.35 μηη dans les deux cas. CZTS of 0.35 μηη in both cases.
Le dépôt de couches minces CZTS réalisé est susceptible de servir de base à la réalisation d'une cellule photovoltaïque complète.  The CZTS thin film deposition performed can serve as a basis for the realization of a complete photovoltaic cell.

Claims

REVENDICATIONS
1 . Procédé de fabrication d'un béton photovoltaïque, comprenant les étapes suivantes : 1. Method of manufacturing a photovoltaic concrete, comprising the following steps:
- disposer d'un béton ; - have a concrete;
- appliquer une composition comprenant des monomères et/ou des prépolymères réactifs non polymérisés sur tout ou partie de la surface du béton ;  - Applying a composition comprising monomers and / or unpolymerized reactive prepolymers on all or part of the surface of the concrete;
- polymériser cette composition sous l'action de radiations, de façon à obtenir un film polymère recouvrant en tout ou partie la surface du béton ;  - Polymerize this composition under the action of radiation, so as to obtain a polymer film covering all or part of the concrete surface;
- appliquer par pulvérisation cathodique, par dépôt chimique en phase vapeur, par dépôt ionique, par dépôt plasma, par bombardement électronique, par ablation laser, par épitaxie par jets moléculaires, ou par thermo-évaporation au moins une couche mince photovoltaïque directement sur le film polymère. - Sputtering, chemical vapor deposition, ion deposition, plasma deposition, electron bombardment, laser ablation, molecular beam epitaxy, or thermo-evaporation at least one photovoltaic thin film directly onto the film polymer.
Procédé selon la revendication 1 , dans lequel la température de la composition, au moment où elle est appliquée sur le béton, est inférieure à 35°C, de préférence inférieure à 30°C. The method of claim 1, wherein the temperature of the composition, when applied to the concrete, is less than 35 ° C, preferably less than 30 ° C.
Procédé selon la revendication 1 ou 2, comprenant en outre un démoulage et/ou un traitement thermique du béton. The method of claim 1 or 2, further comprising demolding and / or heat treating the concrete.
Procédé selon l'une quelconque des revendications 1 à 3 ne comprenant pas d'étape de collage de la couche mince photovoltaïque sur le film polymère. Process according to any one of claims 1 to 3, comprising no step of bonding the photovoltaic thin film to the polymer film.
Procédé selon l'une quelconque des revendications 1 à 4 pour lequel le béton mis en œuvre présente une surface, avant revêtement par le film polymère, ayant une rugosité Ra comprise de 0,5 μηη à 10 μηι, de préférence de 0,5 à 7 μηι, encore plus préférentiellement de 0,5 à 5 μηι, avantageusement de 0,5 à 3 μηι. Process according to any one of claims 1 to 4 for which the concrete used has a surface, before coating with the polymer film, having a roughness Ra of from 0.5 μηη to 10 μηι, preferably from 0.5 to 7 μηι, still more preferably from 0.5 to 5 μηι, advantageously from 0.5 to 3 μηι.
Procédé selon l'une quelconque des revendications 1 à 5, pour lequel le béton mis en œuvre présente une surface, après revêtement par le film polymère, ayant une rugosité Ra comprise de 0,1 m à 5 μηι, de préférence de 0,2 à 3 μηη, encore plus préférentiellement de 0,3 à 1 μηη, avantageusement de 0,4 à 0,6 μπι. Process according to any one of Claims 1 to 5, for which the concrete used has a surface, after coating with the polymer film, having a roughness Ra of from 0.1 m to 5 μηι, preferably of 0.2 at 3 μηη, more preferably from 0.3 to 1 μηη, advantageously from 0.4 to 0.6 μπι.
Béton photovoltaïque susceptible d'être obtenu par le procédé de l'une quelconque des revendications 1 à 6. Photovoltaic concrete obtainable by the process of any one of claims 1 to 6.
8. Béton selon la revendication 7 caractérisé en ce qu'il s'agit d'un béton à ultra haute performance. 8. Concrete according to claim 7 characterized in that it is an ultra high performance concrete.
9. Béton selon l'une quelconque des revendications 7 à 8, dont la couche mince photovoltaïque produit de l'électricité grâce à l'effet photovoltaïque. 9. Concrete according to any one of claims 7 to 8, the photovoltaic thin film produces electricity through the photovoltaic effect.
10. Utilisation d'un film polymère obtenu par polymérisation sous l'action de radiations et d'une couche mince photovoltaïque, pour produire de l'électricité sur une surface en béton. 10. Use of a polymer film obtained by polymerization under the action of radiation and a photovoltaic thin film, for producing electricity on a concrete surface.
1 1 . Elément pour le domaine de la construction comprenant un béton photovoltaïque selon l'une quelconque des revendications 7 à 9. 1 1. Element for the field of construction comprising a photovoltaic concrete according to any one of claims 7 to 9.
Procédé de fabrication de l'élément selon la revendication 1 1 , comprenant procédé selon l'une des revendications 1 à 6. A method of manufacturing the element according to claim 1 1, comprising method according to one of claims 1 to 6.
EP15727958.9A 2014-06-13 2015-06-05 Photovoltaic concrete, production method thereof and construction element comprising such concrete Withdrawn EP3154919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455388A FR3022240A1 (en) 2014-06-13 2014-06-13 CONCRETE COATED WITH A THIN PHOTOVOLTAIC THIN LAYER, PROCESS FOR PRODUCING THE SAME, AND CONSTRUCTION ELEMENT COMPRISING SUCH A CONCRETE
PCT/EP2015/062541 WO2015189096A1 (en) 2014-06-13 2015-06-05 Photovoltaic concrete, production method thereof and construction element comprising such concrete

Publications (1)

Publication Number Publication Date
EP3154919A1 true EP3154919A1 (en) 2017-04-19

Family

ID=51905226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15727958.9A Withdrawn EP3154919A1 (en) 2014-06-13 2015-06-05 Photovoltaic concrete, production method thereof and construction element comprising such concrete

Country Status (6)

Country Link
US (1) US20170141719A1 (en)
EP (1) EP3154919A1 (en)
CA (1) CA2951332A1 (en)
FR (1) FR3022240A1 (en)
MA (1) MA39974A (en)
WO (1) WO2015189096A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041668B1 (en) 2015-09-25 2018-06-22 Lafarge Sa METHOD FOR MANUFACTURING PREFABRICATED AND PHOTOVOLTAIC CONSTRUCTION ELEMENT
EP3205634A1 (en) 2016-02-09 2017-08-16 Holcim Technology Ltd. Method of manufacturing a photovoltaic concrete
US10532956B2 (en) 2017-08-11 2020-01-14 Questech Corporation Natural stone sealer compositions
EP3453506A1 (en) 2017-09-11 2019-03-13 Holcim Technology Ltd. Method of manufacturing a concrete element
US10669201B2 (en) 2018-05-03 2020-06-02 King Fahd University Of Petroleum And Minerals Structural lightweight concrete comprising waste plastics
IT201800005605A1 (en) * 2018-05-22 2019-11-22 Corrado Izzo METHOD FOR COATING A SURFACE
BR112022015947A2 (en) 2020-02-12 2022-10-04 Questech Corp TWO-PART COMPOSITION, AND METHOD FOR PRODUCING A TWO-PART COMPOSITION
CN115893919B (en) * 2021-08-18 2024-04-16 中国石油化工股份有限公司 Oil well cement paste system, preparation method thereof and application thereof in well cementation without metal casing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093126A (en) * 1996-09-17 1998-04-10 Sekisui Chem Co Ltd Manufacture of roof tile with solar battery
FR2763064B1 (en) 1997-05-12 1999-07-30 Lafarge Sa SELF-LEVELING CONCRETE AND METHOD FOR MAKING A CONSTRUCTION PART
FR2763065B1 (en) 1997-05-12 1999-07-30 Lafarge Sa SELF-LEVELING CEMENT-BASED COMPOSITION
US6013871A (en) * 1997-07-02 2000-01-11 Curtin; Lawrence F. Method of preparing a photovoltaic device
FR2771406B1 (en) 1997-11-27 2000-02-11 Bouygues Sa METAL FIBER CONCRETE, CEMENT MATRIX AND PREMIXES FOR THE PREPARATION OF THE MATRIX AND CONCRETE
FR2778654B1 (en) 1998-05-14 2000-11-17 Bouygues Sa CONCRETE COMPRISING ORGANIC FIBERS DISPERSED IN A CEMENTITIOUS MATRIX, CONCRETE CEMENTITIOUS MATRIX AND PREMIXES
US7666466B2 (en) * 2006-05-03 2010-02-23 Michael Gumm Elastomeric waterproofing and weatherproofing photovoltaic finishing method and system
EP1958926A1 (en) 2007-01-24 2008-08-20 Lafarge New concrete composition
US8017859B2 (en) * 2007-10-17 2011-09-13 Spansion Llc Photovoltaic thin coating for collector generator
EP2072481A1 (en) 2007-12-21 2009-06-24 Lafarge Concrete composition
EP2190032A1 (en) * 2008-11-25 2010-05-26 Redco S.A. Photovoltaic fibre reinforced cement panel
IT1399627B1 (en) * 2010-04-20 2013-04-26 Italcementi Spa CEMENTITIOUS MANUFACTURE SUITABLE FOR A PARTICULAR WHICH SUPPORT FOR A PHOTOVOLTAIC THIN FILM MODULE, AND METHOD FOR ITS PRODUCTION
ITMI20111950A1 (en) * 2011-10-27 2013-04-28 Italcementi Spa PREPARATION OF CEMENT-BASED FINISHES WITH HIGH SURFACE FINISH FOR USE IN ELECTRICAL DEVICES

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2015189096A1 *

Also Published As

Publication number Publication date
CA2951332A1 (en) 2015-12-17
WO2015189096A1 (en) 2015-12-17
MA39974A (en) 2015-12-17
FR3022240A1 (en) 2015-12-18
US20170141719A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
EP3154919A1 (en) Photovoltaic concrete, production method thereof and construction element comprising such concrete
FR2968653A1 (en) CONCRETE ELEMENT COVERED WITH PHOTOCATALYTIC COATING
EP2576478B1 (en) Hydraulic binder or mortar having a stable volume
EP3352959B1 (en) Method for manufacturing a pre-fabricated photovoltaic construction element
EP1392616B1 (en) Cement binder based board
EP2401239B1 (en) Powder insulating mortar, and layered insulating mortar
FR2947259A1 (en) CONCRETE COMPOSITION
WO2016042248A1 (en) Substrate made of a construction material, coated with a layer of polymers deposited by plasma technology and a thin film
EP3414213B1 (en) Method of manufacturing a photovoltaic concrete
FR2999567A1 (en) Ultra high-performance concrete covered by a polymeric film obtained by polymerization under the action of radiation, useful in an element for the field of construction
FR2530615A1 (en) PROCESS FOR THE RECONSTITUTION OF ROCKS AND PARTICULARLY SLATE
WO2019049036A1 (en) Method of manufacturing a concrete element
BE1022300B1 (en) SUSTAINABLE CONCRETE PERMEABLE.
WO2018096293A1 (en) Novel composition that can be used for preparing concrete, grout or mortar
FR2963789A1 (en) CONCRETE ELEMENT WHOSE SURFACE IS WITH LOW OPEN POROSITY
FR2697042A1 (en) Low porosity cement-based covering material for roads, paved areas - contains fine sand and polymer particles to fill pores left when cement sets
EP2193111B1 (en) Single layer plaster for facade and production thereof
FR3130271A1 (en) PHOTOCURING COMPOSITION FOR THREE-DIMENSIONAL PRINTING OF CERAMIC OBJECTS BASED ON POLYCRYSTALLINE SILICON CARBIDE
FR2633277A1 (en) Composition and process for preparing a concrete intended for producing prefabricated components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103