EP3152525A1 - Procédé de détermination du débit volumique d'un milieu en écoulement à travers une section de mesure et moyen de mesure associé - Google Patents

Procédé de détermination du débit volumique d'un milieu en écoulement à travers une section de mesure et moyen de mesure associé

Info

Publication number
EP3152525A1
EP3152525A1 EP15725992.0A EP15725992A EP3152525A1 EP 3152525 A1 EP3152525 A1 EP 3152525A1 EP 15725992 A EP15725992 A EP 15725992A EP 3152525 A1 EP3152525 A1 EP 3152525A1
Authority
EP
European Patent Office
Prior art keywords
temperature sensor
heating element
temperature
time
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15725992.0A
Other languages
German (de)
English (en)
Inventor
Christoph Sosna
Ulf Hammerschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physikalisch-Technische Bundesanstalt (PTB)
Diehl Metering GmbH
Original Assignee
Physikalisch-Technische Bundesanstalt (PTB)
Diehl Metering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physikalisch-Technische Bundesanstalt (PTB), Diehl Metering GmbH filed Critical Physikalisch-Technische Bundesanstalt (PTB)
Publication of EP3152525A1 publication Critical patent/EP3152525A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7084Measuring the time taken to traverse a fixed distance using thermal detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/7044Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter using thermal tracers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the invention relates to a method for determining the volume flow of a flowing medium through a measuring section.
  • the determination of a volume flow of a flowing medium is essential for many technical applications. In particular, depending on a volume flow measured in this way, a price for a quantity of gas withdrawn can be determined.
  • the disadvantage here is that in known (in particular thermal) method for determining a volume flow, the volume flow determination is dependent on gas parameters of the flowing medium. If a corresponding method is to be used for an always the same gas type or a substantially constant gas composition, the gas parameters can be taken into account by once calibrating a used measuring section to the corresponding medium. However, such a procedure leads to significant measurement errors in the determination of the volume flow, if the nature or the composition of the flowing medium changes.
  • the publication DE 10 2012 019 657 B3 proposes to take into account the influence of gas parameters by measuring a temperature profile of the medium at two distances from a heat source at which the medium is pulsed, after which a maximum value of the temperature profile at the first distance and a ximalwert the temperature profile in the second distance a thermal transport size, in particular a thermal conductivity, is determined. A flow rate is then determined as a function of the determined thermal transport size.
  • the invention is therefore based on the object of specifying a method with which an accurate determination of a volume flow is possible even without a preceding determination of medium-specific gas parameters.
  • the volume flow can be determined in particular from a flow velocity and a known geometry of the measuring section, which is in particular a measuring channel through which the medium flows in a laminar manner.
  • the control of the heating element, the detection of the data of the first and the second temperature sensor, the determination of the time difference and the determination of the volume flow are effected in particular by a control device associated with the measuring section.
  • the time difference between the first and the second time point can be taken into account as the only measured variable in the determination of the volume flow. All other variables taken into account, for example the dimensions of the measuring channel and the distances between the heating element and the temperature sensors, can be determined in advance of the start of the method be stored the controller and be determined regardless of the nature of the flowing medium.
  • the heating element may be a wire which runs substantially perpendicular to the main flow direction of the medium in the measuring section.
  • the heating element could also be a substantially punctiform heating element, ie a heating element with a very small heating surface.
  • the pulse-shaped heating can take place in particular by heating times of the heating element of a few 100 ps.
  • the controller may provide current pulses that are supplied to the heating element for heating.
  • a first temperature sensor can be used which is less than 100 ⁇ m, preferably between 15 ⁇ m and 50 ⁇ m, in particular between 20 ⁇ m and 30 ⁇ m, away from the heating element.
  • the temperature profile at this temperature sensor is essentially independent of the flow velocity of the flowing medium and thus of the volume flow and depends almost exclusively on the type or composition of the flowing medium, ie the type of gas or the composition of a gas mixture.
  • the temperature profile at the second temperature sensor depends both on the flow velocity of the flowing medium and on the type or composition of the flowing medium . According to the invention, use is made of the fact that the time difference between the first and the second time in this case is essentially independent of gas species. When determining the volume flow from this time difference so no further parameters of the flowing medium must be considered.
  • a predetermined calibration curve can be used.
  • a predetermined calibration curve for determining the flow velocity from the time difference and known dimensions of the measurement path for the subsequent determination of the volume flow from the flow velocity can be used.
  • the calibration curve can depend exclusively on the properties of the measuring section and not on the properties of the flowing medium. It is thus possible to use the same calibration curve independent of gas type.
  • a calibration curve may in particular be implemented as a value table which is stored in the control device. It is possible that for a time difference, the is between two points of the value table, an interpolation of the adjacent values is done, the next neighbor is selected or the like.
  • a common calibration curve will be used for gases with different thermal diffusivity.
  • a gas mixture can be used as the medium, with a common calibration curve being used for gas mixtures with different water content fractions.
  • a common calibration curve for several different gases and / or gas mixtures is used.
  • a common calibration curve can be used for all gases and gas mixtures.
  • a gas parameter can be determined as a function of the time interval between the time of heating and the detected first time.
  • the determination of the gas parameter can be independent of other
  • a further gas parameter can be determined depending on the temperature measurement value at the temperature maximum of the first temperature sensor and the temperature value at the temperature maximum of the second temperature sensor.
  • the further gas parameter can be determined in particular independently of further measured values.
  • the further gas parameter can additionally be determined as a function of a gas parameter determined from the time interval between the time of heating and the detected first time or as a function of the time interval itself.
  • a thermal conductivity can be determined as a further gas parameter. If both a gas parameter and a further gas parameter are determined as explained, in particular a clear determination of a gas or a composition of a gas mixture is possible that forms the flowing medium.
  • the invention relates to a measuring device for determining a volume flow of a gas, comprising a measuring section with a heating element, a first adjacent to the heating element upstream or downstream adjacent first temperature sensor and a second downstream of the heating element arranged second temperature sensor, the second temperature sensor further from the heating element is spaced as the first temperature sensor, and wherein the measuring device for Implementation of the method according to the invention is formed.
  • the measuring device may comprise a control device which is designed to control energization of the heating element, to detect the temperature values of the temperature sensors and to process the measured data.
  • the distance between the heating element and the first temperature sensor in the measuring device according to the invention is less than 100 ⁇ , preferably between 15 ⁇ m and 50 ⁇ , in particular between 20 ⁇ and 30 ⁇ .
  • the distance between the first and the second temperature sensor may be at least 100 ⁇ m, preferably between 150 ⁇ m and 550 ⁇ m, in particular between 150 ⁇ m and 350 ⁇ m.
  • the distance between the first and the second temperature sensor can also be between 200 mm and 400 mm, but also greater than 500 mm.
  • the distance between the heating element and the first temperature sensor and between the first and the second temperature sensor is achieved that the time at which a temperature maximum is detected at the first temperature sensor is substantially independent of a flow rate or a volume flow of the medium and the second time at which a temperature maximum occurs at the second temperature sensor has a significant dependence on the flow velocity or of the volume flow of the medium.
  • the first temperature sensor and the second temperature sensor may preferably be formed by wires or thin-film films exposed through the measurement channel.
  • the wires or thin-film films may extend in this case, in particular without an underlying substrate via a recess in a substrate or between two substrates.
  • a film of a conductive material having a thickness of a few micrometers or a thickness of less than one micrometer can be used as the thin-film film.
  • a thin-film film may be a few hundred nanometers thick.
  • a wire preferably a wire with a diameter of less than 10 m can be used.
  • the heating element may be formed as a wire or thin film, which is arranged on a membrane or exposed by the measuring channel.
  • the heating element and / or the first and / or the second temperature sensor may be formed from metal, a metallic alloy or a semiconductor material.
  • the semiconductor material may include in particular silicon.
  • Fig. 1 shows schematically an embodiment of a measuring device according to the invention
  • FIG. 2 schematically shows a perspective view of the measuring device shown in FIG. 1, FIG.
  • FIG. 5 schematically shows a diagram of the relationship between a volume flow and the time interval between the time of heating and the detected first time for three different flowing media
  • Fig. 6 shows schematically the relationship between the flow and the
  • Fig. 7 shows schematically the relationship between the volume flow and the
  • FIG. 1 and FIG. 2 show a measuring device 1 for determining a gas-volume-independent volume flow of a flowing medium.
  • 1 shows a schematic Representation from above
  • Fig. 2 is a perspective view of the measuring device 1.
  • a flowing medium 2 which is shown schematically in Fig. 1 and 2 as arrows, flows through the measuring section of the measuring device 1.
  • the flowing medium 2 is in a measuring channel, not shown , which is formed by a tube having a substantially rectangular cross-section, guided in a laminar manner.
  • the flowing medium 2 sweeps over a heating element 4, a first temperature sensor 5 arranged downstream of the heating element 4 and a second temperature sensor 6 spaced apart from the heating element 4 by a greater distance than the first temperature sensor 5.
  • the heating element 4 and the temperature sensors 5, 6 are here Wires formed, which extend between two substrates 3 exposed through the measuring channel.
  • the temperature sensors 5, 6 and the heating element 4 are here Wires formed, which extend between two substrates 3 exposed through the measuring channel.
  • the heating element 4 and the first temperature sensor 5 are arranged in a distance indicated by the double arrow 7 of less than 50 pm from each other.
  • the distance between the second temperature sensor 6 and the heating element 4, which is indicated by the arrow 8, is significantly greater than the distance to the first temperature sensor 5 and the heating element, namely z. B. 450 pm.
  • a control device To measure a volume flow, a control device, not shown, energizes the heating element 4 with time-spaced current pulses, whereby the temperature at the heating element 4 is raised almost pulse-shaped for a short period of time of less than 00 ps.
  • the control device By the control device, the time profiles of the temperatures at the first temperature sensor 5 and the second temperature sensor 6 are detected after each heat pulse. Due to the small distance of the temperature sensor 5 from the heating element 4, the temporal temperature profile at the temperature sensor 5 is almost independent of the flow velocity or the volume flow of the flowing medium 2. Since the second temperature sensor 6 is significantly further away from the heating element 4, the time course at the second temperature sensor 6 strongly influenced by the flow velocity of the flowing medium and thus by the volume flow. As explained in more detail below with reference to FIG.
  • step S1 a heating element 4 is energized by a control device 4 with a short current pulse of less than 100 ⁇ , whereby the temperature at the heating element changes almost in a pulse shape.
  • the temperature profile at the first temperature sensor 5 and in step S3 the temperature profile at the second temperature sensor 6 are detected by the control device simultaneously in step S2.
  • the change in the temperatures at the temperature sensors 5, 6 are on the one hand by processes that take place even in a stationary medium, for example, by diffusion, on the other by the movement of the flowing medium via the heating element 4 in the direction of the second temperature sensor 6 influenced
  • the temperature profile at the heating element 4 and the measured values for the temperature sensor 5 and the temperature sensor 6 detected by the control device are shown schematically in FIG. 4 for a flow velocity of a flowing medium.
  • the solid line shows the pulse-like temperature change at the heating element 4.
  • the dashed line shows the measured temperature profile at the first temperature sensor 5 and the dot-dash line the temperature profile at the second temperature sensor 6. It is between the temperature profile at the heating element 4, the temperature profile at the first temperature sensor 5 and the temperature profile at the second temperature sensor 6 to detect each a reduction in the maximum detected temperature and a broadening of the temperature maximum.
  • FIG. 5 shows the relationship between a volume flow and a time interval between the time of heating and the detected first time for three different gases.
  • the measured values for nitrogen are shown as diamonds, the measured values for methane as crosses and the measured values for another natural gas as circles. It can be seen that the time interval between the time of heating and the first detected time is substantially independent of the volume flow of the gas.
  • step S5 a second point in time is determined at which the temperature profile at the second temperature sensor 6, that is to say, for example, the dot-dash line in FIG. 4, has a maximum.
  • Fig. 6 shows the time intervals between the time of heating and the second time, again for the three different gases shown in Fig. 5. It can be seen that the time difference shown in Fig. 6 depends primarily on the volume flow of the gases, but the time intervals depending on the gas have a deviation of up to about 20% with the same volume flow. A determination of the volume flow with a common calibration curve for the gas species shown would thus lead to relatively large measurement errors.
  • step S6 the time difference between the first and second times is calculated. This corresponds to subtracting the measured values shown in FIG. 5 from the measured values shown in FIG. The result of this calculation is again shown in Fig. 7 for the three gases and for different volume flows. The time differences for the different gases are almost identical for each volume flow. Therefore, in step S7, a common calibration curve can be used which depends exclusively on properties of the measuring device 1 and the surrounding measuring channel and which is stored in the control device in order to convert the time difference calculated in step S6 into a volume flow.
  • a second calibration curve stored in the control device is used to determine a first gas parameter, namely a value from the time interval between the time of heating and the first detected time determined in step S4 Thermal conductivity to determine.
  • a first gas parameter namely a value from the time interval between the time of heating and the first detected time determined in step S4 Thermal conductivity to determine.
  • step S9 the temperature value at the temperature maximum of the first temperature sensor, ie the maximum of the dashed curve in Fig. 4, and determined in step S10, the temperature value at the temperature maximum of the second temperature sensor 6, ie the maximum of the dotted line in Fig. 4.
  • a further gas parameter namely the thermal conductivity determined in step S1 1 and also determines which gas or which gas mixture forms the flowing medium.
  • multidimensional calibration curves or value tables can be used for this purpose.
  • a thermal conductivity from the temperature values calculated in steps S9 and S10 and to determine a type of gas or the composition of a gas mixture from the thermal conductivity determined in step S8 and the determined thermal conductivity.
  • a hydrogen content can be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un procédé de détermination, sensiblement indépendamment du type de gaz, du débit volumique d'un milieu en écoulement à travers une section de mesure, comprenant les étapes consistant à : - chauffer par impulsions le milieu au moyen d'un élément chauffant, - détecter un premier instant auquel se produit un maximum de température au niveau d'un capteur de température disposé de façon adjacente en aval ou en amont de l'élément chauffant, - détecter un deuxième instant auquel un maximum de température se produit au niveau d'un second capteur de température disposé en aval de l'élément chauffant, le second capteur de température étant plus éloigné de la source de chaleur que le premier capteur de température, - déterminer une différence de temps entre les premier et second instants, et - déterminer le débit volumique en fonction de la différence de temps.
EP15725992.0A 2014-06-03 2015-05-20 Procédé de détermination du débit volumique d'un milieu en écoulement à travers une section de mesure et moyen de mesure associé Withdrawn EP3152525A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014008284.9A DE102014008284A1 (de) 2014-06-03 2014-06-03 Verfahren zur Bestimmung des Volumenflusses eines strömenden Mediums durch eine Messstrecke und zugeordnete Messeinrichtung
PCT/EP2015/001027 WO2015185185A1 (fr) 2014-06-03 2015-05-20 Procédé de détermination du débit volumique d'un milieu en écoulement à travers une section de mesure et moyen de mesure associé

Publications (1)

Publication Number Publication Date
EP3152525A1 true EP3152525A1 (fr) 2017-04-12

Family

ID=53276052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15725992.0A Withdrawn EP3152525A1 (fr) 2014-06-03 2015-05-20 Procédé de détermination du débit volumique d'un milieu en écoulement à travers une section de mesure et moyen de mesure associé

Country Status (5)

Country Link
US (1) US20170102256A1 (fr)
EP (1) EP3152525A1 (fr)
CN (1) CN106537100A (fr)
DE (1) DE102014008284A1 (fr)
WO (1) WO2015185185A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016105501A1 (de) 2016-03-23 2017-09-28 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie, Dieses Vertreten Durch Den Präsidenten Der Physikalisch-Technischen Bundesanstalt Durchflussmessvorrichtung zum Messen eines Durchflussparameters eines Fluids und Verfahren zur Durchflussmessung
DE102016117215A1 (de) 2016-09-13 2018-03-15 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie, Dieses Vertreten Durch Den Präsidenten Der Physikalisch-Technischen Bundesanstalt Verfahren zum Bestimmen einer Zusammensetzung eines gasförmigen Fluids und Gas-Zusammensetzungssensor
FR3065281B1 (fr) * 2017-04-18 2019-06-14 Centre National De La Recherche Scientifique Dispositif de mesure de vitesse ou de debit de gaz
WO2019063076A1 (fr) 2017-09-27 2019-04-04 Bundesrepublik Deutschland, Vertreten Durch Das Bundesministerium Für Wirtschaft Und Energie, Dieses Vertreten Durch Den Präsidenten Der Physikalisch-Technischen Bundesanstalt Débitmètre destiné à la mesure d'un paramètre de débit d'un fluide, et procédé de mesure de débit
DE102018006868B4 (de) 2018-08-30 2020-03-19 Diehl Metering Gmbh Messeinrichtung zur Ermittlung der Wärmeleitfähigkeit eines Fluids
DE102018008286A1 (de) * 2018-10-19 2020-04-23 Diehl Metering Gmbh Thermischer Gassensor, Verfahren zur Messung der Temperaturleitfähigkeit eines Gases oder Gasgemischs und Verfahren zur Messung der Wärmeleitfähigkeit eines Gases oder Gasgemischs
EP3682972B1 (fr) * 2019-01-17 2024-04-10 Aptar Radolfzell GmbH Distributeur destiné à l'application du liquide, en particulier à l'application d'un liquide pharmaceutique ainsi qu'ensemble comprenant un tel distributeur
EP3812753B1 (fr) * 2019-10-24 2023-11-29 Sensirion AG Détermination de paramètres spécifiques aux gaz à partir d'un transfert de chaleur dans le régime de saut de température
DE102021110254A1 (de) 2021-04-22 2022-03-17 Fink Chem + Tec GmbH Kalorimetrischer Durchflussmesser, Verfahren zur Kalibrierung eines kalorimetrischen Durchflussmessers sowie Steuerungs- und Auswerteeinheit für einen Durchflussmesser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002164A1 (fr) * 1993-07-07 1995-01-19 Ic Sensors, Inc. Systeme de capteurs thermiques pulses de debit

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347876A (en) 1992-01-07 1994-09-20 Gas Research Institute Gas flowmeter using thermal time-of-flight principle
GB9305088D0 (en) * 1993-03-12 1993-04-28 Wrc Plc Improvements in and relating to measurement of fluid flow velocity
US5629481A (en) * 1995-09-06 1997-05-13 General Motors Corporation Mass air flow measurement system and method
US6169965B1 (en) * 1997-12-31 2001-01-02 Honeywell International Inc. Fluid property and flow sensing via a common frequency generator and FFT
US6234016B1 (en) * 1997-12-31 2001-05-22 Honeywell International Inc. Time lag approach for measuring fluid velocity
DE19858388A1 (de) * 1998-12-17 2000-06-21 Bsh Bosch Siemens Hausgeraete Verfahren zur Strömungsgeschwindigkeits- und Durchflußmessung sowie Sensor zur Durchführung des Verfahrens und nach diesem Verfahren arbeitender Durchflußmesser
DE10356443A1 (de) * 2003-12-03 2005-07-07 Digmesa Ag Verfahren und Vorrichtung zum berührungslosen Messen von Durchflüssen
JP5623015B2 (ja) * 2005-10-24 2014-11-12 ヘレーウス ゼンゾール テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングHeraeus Sensor Technology GmbH 流量センサ素子および流量センサ素子の自浄作用
IL171764A (en) * 2005-11-03 2011-02-28 G R T Dev Ltd Apparatus and method for measuring a fluid flow- rate within a narrow conduit
JP2007248118A (ja) * 2006-03-14 2007-09-27 Surpass Kogyo Kk 熱信号を用いた流速検出方法及び流速検出装置
WO2009029236A1 (fr) * 2007-08-24 2009-03-05 Siargo, Inc. Configuration et procédés de fabrication de capteur de débit massique à système micro-électromécanique à temps de vol
JP5695671B2 (ja) * 2010-01-06 2015-04-08 コーニンクレッカ フィリップス エヌ ヴェ 流体の流速測定システム
GB2507909B (en) * 2011-08-19 2017-09-27 Statoil Petroleum As Characterizing multiphase fluid flow
DE102012019657B3 (de) 2012-10-08 2013-10-31 Bundesrepublik Deutschland, endvertreten durch die Physikalisch-Technische Bundesanstalt Verfahren zum Ermitteln einer thermischen Transportgröße und einer Strömungsgeschwindigkeit in einem strömenden Medium und Thermotransportgrößen-Messanordnung
US20140208824A1 (en) * 2013-01-30 2014-07-31 Integra Biosciences Ag Calibration System and Method
WO2016054210A1 (fr) * 2014-10-01 2016-04-07 Sierra Instruments, Inc. Débitmètres à tube de capteur à capillaires et organes de commande
EP3423685B1 (fr) * 2016-03-02 2020-11-18 Watlow Electric Manufacturing Company Systeme de mesure du flux de fluide et chauffeur a double fonction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995002164A1 (fr) * 1993-07-07 1995-01-19 Ic Sensors, Inc. Systeme de capteurs thermiques pulses de debit

Also Published As

Publication number Publication date
CN106537100A (zh) 2017-03-22
US20170102256A1 (en) 2017-04-13
WO2015185185A1 (fr) 2015-12-10
DE102014008284A1 (de) 2015-12-03

Similar Documents

Publication Publication Date Title
EP3152525A1 (fr) Procédé de détermination du débit volumique d'un milieu en écoulement à travers une section de mesure et moyen de mesure associé
EP3234515B1 (fr) Appareil de mesure de débit thermique avec fonction de diagnostic
WO2019048210A1 (fr) Débitmètre thermique
DE102008043887B4 (de) Verfahren und Messsystem zur Bestimmung und/oder Überwachung einer Aggregatszustandsänderung eines Messmediums an einem thermischen Durchflussmessgerät
DE2350848A1 (de) Durchflussmengenmesser
EP3551981A1 (fr) Procédé d'étalonnage in situ d'un thermomètre
EP3084370B1 (fr) Dispositif et procédé servant à déterminer le débit d'un fluide
DE102009000067A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Massedurchflusses und Vorrichtung zur Bestimmung und/oder Überwachung einer Anlagerung einer Substanz
EP3234519B1 (fr) Débitmètre thermique muni d'une fonction de diagnostic
WO2016180760A1 (fr) Procédé de détermination d'un produit de la capacité thermique et de la masse volumique
EP3350557B1 (fr) Procédé d'étalonnage d'un capteur de température présent dans un processus de la technique d'automatisation
EP3887770B1 (fr) Capteur d'écoulement thermique et procédé pour le faire fonctionner
DE102010030952A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder eienr Durchflussgeschwindigkeit
WO2017140451A1 (fr) Procédé et dispositif pour déterminer la concentration de composants gazeux dans un mélange gazeux
DE102010018948B4 (de) Thermischer Massendurchflussmesser mit zusätzlichen Sensormitteln sowie Verfahren zum Betrieb desselben
DE102021117715A1 (de) Thermometer mit verbesserter Messgenauigkeit
EP4052004A1 (fr) Thermomètre non invasif
WO2021239349A1 (fr) Capteur de flux thermique et son procédé d'exploitation
EP3513178B1 (fr) Compteur à gaz
DE102021107080A1 (de) Thermischer Sensor und Verfahren zum Betreiben desselben
WO2017071950A1 (fr) Système et procédé pour surveiller un canal, notamment un canal mems
WO2023030844A1 (fr) Procédé de détection de bulles ou de gouttelettes d'un premier milieu dans un deuxième milieu fluide traversant un tube de mesure
EP3285048A1 (fr) Procédé et dispositif de capteur permettant de déterminer la température d'un milieu et le débit du milieu par une section transversale d'écoulement et son utilisation
WO2016096460A1 (fr) Débitmetre thermique à fonction de diagnostic
DE10355072A1 (de) Verfahren und Vorrichtung zur Überprüfung und/oder Messung der Dicke einer Beschichtung auf einem Werkstück

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191220