EP3147028B1 - Method and system for magnetic separation of nano-beads - Google Patents

Method and system for magnetic separation of nano-beads Download PDF

Info

Publication number
EP3147028B1
EP3147028B1 EP15186924.5A EP15186924A EP3147028B1 EP 3147028 B1 EP3147028 B1 EP 3147028B1 EP 15186924 A EP15186924 A EP 15186924A EP 3147028 B1 EP3147028 B1 EP 3147028B1
Authority
EP
European Patent Office
Prior art keywords
sleeve body
magnet
magnetic field
fluid
nanobeads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15186924.5A
Other languages
German (de)
French (fr)
Other versions
EP3147028A1 (en
Inventor
Constantin Odefey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ODEFEY, CONSTANTIN
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP15186924.5A priority Critical patent/EP3147028B1/en
Publication of EP3147028A1 publication Critical patent/EP3147028A1/en
Application granted granted Critical
Publication of EP3147028B1 publication Critical patent/EP3147028B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/284Magnetic plugs and dipsticks with associated cleaning means, e.g. retractable non-magnetic sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications

Definitions

  • the present invention relates to a method and a system for the magnetic separation of nano-beads (also micro-beads or nano-beads) from a fluid or a solution, and in particular a method and a system for magnetic separation of nano-beads, each allow a faster and more reliable way of working and a beneficial automation of dealing with nano-beads.
  • Magnetic micro- or nano-beads are used as standard in chemistry and biochemistry. These iron-containing beads with partially functionalized surface, e.g. To bind antibodies must be removed at any given time from the respective reaction vessel. These nano-beads are used in the so-called Magnetic Cell Separation, also known as Magnetic Activated Cell Sorting and often abbreviated as MACS, or in water treatment. Cell separation becomes so much easier because you can pull the labeled with beads cells directly from any vessel. In the treatment of water you can not only remove the unwanted substances, you can also very easily take random samples in the flow process. If the beads have not bound any toxins, they can continue to be used, otherwise they will be replaced.
  • Magnetic Cell Separation also known as Magnetic Activated Cell Sorting and often abbreviated as MACS
  • the prior art uses various magnetic separators which produce a pellet of beads on the bottom or on the side of the reaction vessel. This pellet must be washed so that only the substances bound specifically to the beads (or the nano-beads with the substances) remain there and no nonspecific residues from the respective matrix can disturb the later reactions.
  • the nanobeads are initially in a liquid.
  • the nano-beads are extracted from the liquid by means of a magnet.
  • the magnet is surrounded by a kind of shell. The magnet attracts the nano-beads and collects them on the surface of the shell.
  • the magnet is then lifted out of the first fluid, together with the sheath and nano-beads, and into a second fluid, e.g. a wash solution, dipped.
  • the magnet is then pulled out of the shell.
  • the nano-beads are now no longer held on the shell and get into the wash solution. This process of collection and transfer to another liquid may need to be repeated several times until the nano-beads have been sufficiently washed and e.g. can be further processed or reused.
  • the invention is a simple, fast and inexpensive way to gently remove the beads from any sample vessel and clean. Automation is also much easier with the method and apparatus of the present invention. As well as a simple sample preparation with POCT (point of care testing). The separation and washing of the beads by means of a system or method according to the present invention requires only about 10 seconds. This applies to a single sample as well as to eg 96 samples (in parallel processing). For example, ELISA laboratory systems could also be retrofitted with a system according to the present invention.
  • US 2014/099658 A1 discloses a method of processing magnetic particles that selectively interact with a substance present in a liquid medium.
  • the particles are collected using a probe with a hollow shield and a probe magnet that can be moved up and down.
  • the lower end of the probe with the collected particles is located on a release point of a plate, below which release point is a release magnet.
  • Nano-beads are generally all particles which comprise magnetic or magnetizable particles, in particular all iron-, cobalt- or nickel-containing particles.
  • the shape does not necessarily have to be round, so it can also have a polygonal shape.
  • Their average size is usually between 30 nm and 5 ⁇ m (diameter).
  • a method of magnetically separating nano-beads from a first fluid comprising: providing the first fluid having the nano-beads therein; inserting a sleeve body into the first fluid; Sleeve body, a first magnet is arranged, which is displaceable along a longitudinal axis of the sleeve body, collecting nano-beads on the sleeve wall by the force of a first magnetic field of the first magnet, removing the sleeve body with the collected nano-beads from the first fluid, inserting the sleeve body with the collected nano-beads in a second fluid and providing a magnetic field whose magnetic pole alignment opposite to a pole orientation of the first magnet in the sleeve body, so that the first magnet in the sleeve body repelled from the magnetic field and ver in the sleeve body ver is pushed.
  • the method comprises further rinsing the pod body with the collected nano-beads after the step of removing the pod body with the collected nano-beads from the first fluid and before the step of inserting the pod body with the collected nano-beads in the second fluid.
  • the sleeve body has a cylindrical hollow central portion and the first magnet comprises a bar magnet whose diameter is slightly less than the inner diameter of the central portion of the sleeve body.
  • the second magnetic field is provided by a second magnet which is displaced in a longitudinal axis to the sleeve body with the collected nano-beads in the second fluid.
  • the second magnetic field is provided by at least one electromagnet.
  • the second magnetic field is provided by a plurality of electromagnets which generate a multipole field rotating about the longitudinal axis of the sleeve body which rotates by cyclically turning on and off individual electromagnets or by rotating the electromagnets about the longitudinal axis of the sleeve body.
  • the sleeve body has an elongate shape
  • the pole orientation of the first magnet is parallel to the longitudinal axis of the sleeve body
  • the nano-beads are collected at a lower end of the sleeve body by one of the poles of the first magnet.
  • a system for magnetically separating nano-beads from a first fluid comprising at least one sleeve body in which a first magnet is disposed along a longitudinal axis (A) of the first Sleeve body (110) is movable, and at least one second magnetic field providing device, wherein the magnetic pole orientation of the second magnetic field opposite to the polar orientation of the first magnet in the sleeve body and the second magnetic field providing device and the sleeve body in one direction do not overlap perpendicular to the longitudinal axis.
  • the sleeve body has a cylindrical hollow central portion and the first magnet comprises a bar magnet whose diameter is slightly less than the inner diameter of the central portion of the sleeve body.
  • the axial length of the central portion of the sleeve body is preferably selected so that the first magnet is sufficiently displaceable in the sleeve body, depending on the application of the present invention, e.g. Penetration depth into the fluid and magnetic strength.
  • the axial play of the magnet in the central part of the sleeve body is 0.1 cm to 5 cm, more preferably 0.2 cm to 3 cm, and most preferably 0.5 cm to 2 cm.
  • the device providing the second magnetic field comprises a second magnet slidable in a longitudinal axis to the sleeve body.
  • the device providing the second magnetic field comprises an electromagnet.
  • the device providing the second magnetic field comprises a plurality of electromagnets which generate a multipole field rotating about the longitudinal axis of the sleeve body by cycling individual electromagnets on and off or by rotating the electromagnets about the longitudinal axis of the sleeve body rotates.
  • the sleeve body has an elongated shape, the pole orientation of the first magnet being parallel to the longitudinal axis of the first magnet Sleeve body and the nano-beads are collected at a lower end of the sleeve body by at least one of the poles of the first magnet, depending on the depth of immersion of the sleeve body with the first magnet in the first or second fluid, for example by both poles of the first magnet.
  • an automated system for magnetically separating nano-beads from a first fluid comprising: a plurality of systems for magnetically separating nano-beads from a first one Fluid according to a system as described above, wherein the sleeve bodies and the devices providing the second magnetic field are each provided in a holder, a transport means which can move the holder with the sleeve bodies from a first position to a second position wherein the second position is directly above a position of the support with the devices providing the second magnetic field, and a control unit controls the movement of the transport device and the provision of the second magnetic field.
  • the magnetic fields are provided not by individual second magnets but by a single second magnet or a number of sufficiently large and strong second magnets that is less than the number of first magnets.
  • a computer readable storage medium includes program code that, when executed, performs a method as described above.
  • the subject of the invention is a simple, quick and inexpensive way of gently removing nano-beads from any sample vessel and using e.g. to clean or further process. Also, automation is much simpler by the method and apparatus of the present invention and a corresponding automated system is provided by the present invention.
  • the separation and washing of the beads by means of a system or method according to the present invention requires only about 10 seconds. This applies to a single sample as well as e.g. 96 samples (parallel processing). If e.g. If 1 billion beads were added to 1000 liters of water and 1 million beads were needed for an analysis, one would normally need to remove and examine one liter of water. But such a large volume is very unwieldy. With the method and system of the present invention, it is only necessary to move the sleeve body with the magnet through the water for a few seconds to bind enough beads.
  • Fig. 1 is a perspective view of a sleeve body with a magnet according to an embodiment of the present invention.
  • a sleeve body 110 is formed substantially cylindrical and closed at the top and bottom, respectively.
  • the sleeve body 110 may have a collar at a lower end (at which later the nano-beads are collected), which makes it difficult to collect nano-beads on the side wall of the sleeve body.
  • the shape of the sleeve body is not limited herein. Other oblong shapes with polygon cross section (rectangular, square, triangular, pentagonal, etc.) are also possible.
  • a magnet 112 is provided in the sleeve body 110.
  • the magnet 112 is arranged in the sleeve body along the longitudinal axis A movable or displaceable.
  • the magnet 112 is shown as a bar magnet with Polauscardicardi along the longitudinal axis A.
  • any other magnetic shape may be used as long as the magnet has opposite magnetic poles with respect to the longitudinal axis A (in FIG Fig. 1 exemplified by "N" and "S", without limitation) and is designed such that the poles can not be reversed.
  • the magnet has a diameter which is only slightly smaller than the inner diameter of the sleeve body, so that the magnet can not be reversed and the magnetic poles of the magnet with respect to the longitudinal axis A are aligned.
  • the axial length of a central portion of the sleeve body 110, in which the first magnet 112 can move, is preferably selected so that the first magnet 112 is sufficiently displaceable in the sleeve body 110, depending on the application of the present invention, eg penetration depth into the Fluid 152 and magnetic strength of the first and second magnets, respectively.
  • the axial play of the first magnet 112 in the central portion of the sleeve body 110 is 0.1 cm to 5 cm, more preferably 0.2 cm to 3 cm, and most preferably 0.5 cm to 2 cm.
  • the magnets used here are preferably neodymium bar magnets having a diameter which approximately corresponds to the inner diameter of the sleeve body used.
  • the adhesive force of the first magnets 112 is in each case preferably between 250 g and 750 g, particularly preferably between 350 g and 600 g.
  • Fig. 1 is indicated by the downward arrow P1 that the sleeve body is immersed in a first step of a method according to the present invention in a first vessel 150 with a first fluid 152.
  • first fluid usually a liquid
  • nano-beads are distributed.
  • nano-beads also nano-beads
  • Their size can range from one nm to a few microns in diameter, depending on the application.
  • chemistry and biochemistry they are used to selectively bind substances by means of functional surfaces or to attach themselves to surfaces of certain chemical compositions (hybridization reactions).
  • the sleeve body 110 e.g. in a manual operation, so far immersed in the fluid 152 that both poles of the first magnet 112 are below the surface of the fluid with the nano-beads.
  • the nano-beads then bind at the north pole and the south pole when the sleeve body 110 is immersed deep enough and then form two bands.
  • immersion of the sleeve body 110 into the fluid 152 is preferably only to be performed so far that only one pole of the magnet 112 lies below the surface of the fluid 152.
  • the nano-beads bind to only one pole of the magnet 112.
  • FIG. 15 are schematic cross-sectional views showing a method according to an embodiment of the present invention.
  • FIG. In Fig. 2A the situation is shown in which the sleeve body 110 is immersed with the magnet 112 in the vessel 150 with the first fluid 152. Through the points in the fluid, it is indicated in the drawings that the nano-beads are still distributed in the fluid.
  • Fig. 2B The nano-beads are already collected by the magnetic attraction of the magnet 112 on the lower surface of the sleeve body 110, which is represented by a pellet 154.
  • the upward arrow in Fig. 2B indicates that the sleeve body 110 can be removed with the bead pellet 154 and the magnet 112 from the first fluid.
  • a complete system according to the present invention is shown.
  • the sleeve body 110 with the bead pellet 154 and the magnet 112 is in Fig. 2C immersed in a second fluid 162 in a second vessel 160.
  • the second fluid is eg a washing solution or a liquid, in which further reactions between substances in the liquid and the nano-beads should proceed.
  • a second magnet 120 is shown, which is opposite to the polar orientation of the magnet 112 in its polar alignment and which, as indicated by the upward arrow, is moved in the direction of the second vessel 160.
  • the magnet 112 in the sleeve body becomes repulsive by the same poles of the first magnet 112 and the second magnet 120 (here, the N poles, whereupon the magnet) Invention is not limited), as indicated by the narrow arrow in Fig. 2D will be shown.
  • the nanobeads are no longer held by the first magnet 112 on the sleeve body wall and can be detached therefrom.
  • this solution process is promoted by the attractive effect of the second magnet, so that the nano-beads quickly collect in the lower region of the second vessel 160. This speeds up the process altogether.
  • the second magnet 120 may be moved up and down several times so as to create a movement of the nano-beads through the fluid, which may, for example, accelerate rinses.
  • the second magnet 120 is simply lowered again, so that the first magnet 112 attracts the nano-beads again and can then be removed from the second fluid (see FIGS. 2A and 2B ).
  • each sleeve body 110 in a holder can provide a single second magnet 120 as well as a large-area magnet for the entire holder. In the latter case, disturbing edge effects can be minimized.
  • FIG. 15 are schematic cross-sectional views showing a method according to another embodiment of the present invention.
  • FIG. This embodiment substantially corresponds to the embodiment of FIG Fig. 2A-2D ,
  • the devices and processes in FIGS. 3A-3B are identical to the devices and processes in Fig. 2A-2B ,
  • At least one solenoid 130 is provided.
  • the electromagnet is simply turned on and off to develop the desired effect on nano-beads and first magnets 112.
  • the first magnet 112 and the second magnet 120 and the solenoid 130 are selected and operated so that a sufficient repulsive force (or adhesive force) between the magnet is ensured.
  • a single, relatively strong magnet can be chosen as the first magnet for the lower magnet.
  • a single electromagnet can also have several electromagnets are provided, which generate a multipole field rotating about the longitudinal axis of the sleeve body, which rotates by cyclically turning on and off of individual electromagnets or by rotating the electromagnets about the longitudinal axis of the sleeve body.
  • Such multipole fields can together (with corresponding pole orientation) achieve the same repulsive effect as the field of a single magnet.
  • the basic function of the present invention would thus be ensured.
  • the locally different magnetic action by the multipole magnet creates potentials in the fluid along which the nano-beads flow. Due to the rotation of these multipole fields, the nano-beads can, after detachment from the sleeve body wall in Fig. 3D additionally be moved by the second fluid, which can promote and accelerate a flushing process.
  • FIG. 10 is a flowchart of a method according to an embodiment of the present invention.
  • FIG. According to Fig. 4
  • the first fluid with the nano-beads therein is provided.
  • a sleeve body is inserted into the first fluid, wherein in the sleeve body, a magnet is arranged, which is displaceable along a longitudinal axis A of the sleeve body.
  • the nano-beads are collected at the sleeve wall by the force of the magnetic field of the magnet.
  • the sleeve body is removed with the collected nano-beads from the first fluid.
  • the sleeve body is inserted with the collected nano-beads in a second fluid and an electromagnetic field (magnetic field) is provided, the magnetic pole alignment of which is opposite to the polar orientation of the magnet in the sleeve body.
  • an electromagnetic field magnetic field
  • the sleeve body 110 can be removed from the second fluid 160.
  • rinsing may be performed after the step of removing the pod body 110 with the collected nano-beads from the first fluid 150 and before the step of inserting the pod body 110 with the collected nano-beads into the second fluid 160.
  • An interesting application is to coat the outside of the sleeve body with antibodies: if e.g. Using two different monoclonal antibodies, each capable of binding to a specific epitope of an antigen (e.g., protein), one can bind the first antibody to the beads and the second antibody to the outside of the sleeve body. Then you give the beads with their bound first antibodies in the sample and wait a few minutes. Then immerse the sleeve body, on the outside of which the second antibodies are in the sample.
  • an antigen e.g., protein
  • the beads are attracted. After a few seconds, remove the sleeve body from the sample and immerse it in a washing vessel, under the bottom of which there is a magnet with reverse polarity. If the respective antigen was not in the sample, the beads go into solution ( Fig. 2d ); If however, when the antigen is in the sample, the antigen-antibody reaction has taken place on the outside of the sheath body and the beads to whose antibodies the antigen is bound remain stuck to the sheath body. The antigen acts as a link between the two antibodies. Depending on the concentration of the antigen remain different amounts of beads stick, the rest goes into solution.

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

Technischer HintergrundTechnical background

Die vorliegende Erfindung betrifft ein Verfahren und ein System zur magnetischen Trennung von Nano-Beads (auch Micro-Beads oder Nano-Kügelchen) aus einem Fluid bzw. einer Lösung und insbesondere ein Verfahren und ein System zur magnetischen Trennung von Nano-Beads, die jeweils eine schnellere und zuverlässigere Arbeitsweise sowie eine vorteilhafte Automatisierung des Umgangs mit Nano-Beads zulassen.The present invention relates to a method and a system for the magnetic separation of nano-beads (also micro-beads or nano-beads) from a fluid or a solution, and in particular a method and a system for magnetic separation of nano-beads, each allow a faster and more reliable way of working and a beneficial automation of dealing with nano-beads.

Magnetische Mikro- bzw. Nano-Beads werden in der Chemie und Biochemie standardmäßig verwendet. Diese eisenhaltigen Beads mit teilweise funktionalisierter Oberfläche, um z.B. Antikörper zu binden, müssen zu einem bestimmten Zeitpunkt aus dem jeweiligen Reaktionsgefäß entfernt werden. Verwendung finden diese Nano-Beads bei der so genannten Magnetic Cell Separation, auch als Magnetic Activated Cell Sorting bezeichnet und oft abgekürzt als MACS, oder bei der Wasseraufbereitung. Die Zellseparation wird so viel einfacher, da man die mit Beads markierten Zellen direkt aus jedem beliebigen Gefäß herausziehen kann. Bei der Wasseraufbereitung kann man nicht nur die jeweils unerwünschten Stoffe entfernen, man kann auch sehr einfach Stichproben im Durchflussverfahren nehmen. Wenn die Beads noch keine Toxine gebunden haben, können sie weiterverwendet werden, ansonsten werden sie ausgetauscht.Magnetic micro- or nano-beads are used as standard in chemistry and biochemistry. These iron-containing beads with partially functionalized surface, e.g. To bind antibodies must be removed at any given time from the respective reaction vessel. These nano-beads are used in the so-called Magnetic Cell Separation, also known as Magnetic Activated Cell Sorting and often abbreviated as MACS, or in water treatment. Cell separation becomes so much easier because you can pull the labeled with beads cells directly from any vessel. In the treatment of water you can not only remove the unwanted substances, you can also very easily take random samples in the flow process. If the beads have not bound any toxins, they can continue to be used, otherwise they will be replaced.

Dafür verwendet man im Stand der Technik verschiedene magnetische Separatoren, die am Boden oder an der Seite des Reaktionsgefäßes ein Pellet aus Beads erzeugen. Dieses Pellet muss gewaschen werden, damit nur die spezifisch an die Beads gebundenen Stoffe (bzw. die Nano-Beads mit den Stoffen) dort verbleiben und keine unspezifische Rückstände aus der jeweiligen Matrix die späteren Reaktionen stören können.For this purpose, the prior art uses various magnetic separators which produce a pellet of beads on the bottom or on the side of the reaction vessel. This pellet must be washed so that only the substances bound specifically to the beads (or the nano-beads with the substances) remain there and no nonspecific residues from the respective matrix can disturb the later reactions.

In einem Beispiel für ein herkömmliches Verfahren befinden sich die Nano-Beads zunächst in einer Flüssigkeit. Zuerst werden die Nano-Beads mittels eines Magneten aus der Flüssigkeit extrahiert. Um die spätere Trennung zu erleichtern, wird der Magnet durch eine Art Hülle umgeben. Der Magnet zieht die Nano-Beads an und sammelt diese an der Oberfläche der Hülle. Der Magnet wird anschließend mitsamt Hülle und Nano-Beads aus der ersten Flüssigkeit gehoben und in eine zweite Flüssigkeit, z.B. eine Waschlösung, getaucht. Der Magnet wird dann aus der Hülle herausgezogen. Die Nano-Beads werden nun nicht mehr an der Hülle gehalten und gelangen so in die Waschlösung. Dieser Vorgang des Sammelns und Überführens in eine andere Flüssigkeit muss unter Umständen mehrmals wiederholt werden, bis die Nano-Beads ausreichend gewaschen wurden und z.B. weiterverarbeitet oder wiederverwendet werden können.In one example of a conventional process, the nanobeads are initially in a liquid. First, the nano-beads are extracted from the liquid by means of a magnet. To facilitate the later separation, the magnet is surrounded by a kind of shell. The magnet attracts the nano-beads and collects them on the surface of the shell. The magnet is then lifted out of the first fluid, together with the sheath and nano-beads, and into a second fluid, e.g. a wash solution, dipped. The magnet is then pulled out of the shell. The nano-beads are now no longer held on the shell and get into the wash solution. This process of collection and transfer to another liquid may need to be repeated several times until the nano-beads have been sufficiently washed and e.g. can be further processed or reused.

Diese und andere gängige Methoden sind zeitaufwendig, umständlich und benötigen eine mechanische Vorrichtung z.B. eine Pipette, magnetische Separatoren etc. Ein exaktes Arbeiten ist unerlässlich. Bei den Waschschritten gehen Beads verloren und verklumpen im Pellet; außerdem verliert man bei jedem Waschschritt die an die Beads gebundenen Stoffe z.B. Bakterien oder Viren.These and other common methods are time consuming, cumbersome and require a mechanical device, e.g. a pipette, magnetic separators, etc. Precise work is essential. In the washing steps beads are lost and clump in the pellet; In addition, at each washing step, the substances bound to the beads, e.g. Bacteria or viruses.

Gegenstand der Erfindung ist eine einfache, schnelle und preiswerte Möglichkeit, die Beads schonend aus jedem beliebigen Probengefäß herauszuholen und zu reinigen. Auch eine Automatisation ist durch das Verfahren und die Vorrichtung der vorliegenden Erfindung viel einfacher. Ebenso wie eine einfache Probenvorbereitung bei POCT (point of care testing). Das Separieren und Waschen der Beads mittels eines Systems bzw. Verfahrens gemäß der vorliegenden Erfindung benötigt nur ca. 10 Sekunden. Das gilt für eine einzelne Probe genauso wie für z.B. 96 Proben (bei Parallelverarbeitung). So könnten etwa auch ELISA-Laborsysteme nachträglich mit einem System gemäß der vorliegenden Erfindung ausgerüstet werden.The invention is a simple, fast and inexpensive way to gently remove the beads from any sample vessel and clean. Automation is also much easier with the method and apparatus of the present invention. As well as a simple sample preparation with POCT (point of care testing). The separation and washing of the beads by means of a system or method according to the present invention requires only about 10 seconds. This applies to a single sample as well as to eg 96 samples (in parallel processing). For example, ELISA laboratory systems could also be retrofitted with a system according to the present invention.

US 2014/099658 A1 offenbart ein Verfahren zur Verarbeitung von magnetischen Partikeln, die selektiv mit einer in einem flüssigen Medium vorhandenen Substanz wechselwirken. Die Partikel werden mit einer Sonde mit einer Hohlabschirmung und einem auf und ab bewegbaren Sondenmagneten gesammelt. Das untere Ende der Sonde mit den gesammelten Partikeln befindet sich auf einer Freigabestelle einer Platte, unterhalb welcher Freigabestelle ein Freigabemagnet ist. US 2014/099658 A1 discloses a method of processing magnetic particles that selectively interact with a substance present in a liquid medium. The particles are collected using a probe with a hollow shield and a probe magnet that can be moved up and down. The lower end of the probe with the collected particles is located on a release point of a plate, below which release point is a release magnet.

Kurze Beschreibung der ErfindungBrief description of the invention

Die vorliegende Erfindung wird durch die beigefügten Ansprüche 1 und 8 bereitgestellt. Vorteilhafte Ausführungsformen sind in den abhängigen Ansprüchen offenbart. Nano-Beads sind im Allgemeinen alle Partikel, die magnetische oder magnetisierbare Partikel umfassen, insbesondere alle Eisen-, Kobalt- oder Nickel-haltigen Partikel. Die Form muss nicht unbedingt rund sein, sie können also auch eine polygonale Form aufweisen. Ihre durchschnittliche Größe liegt normalerweise zwischen 30 nm und 5 µm (Durchmesser).The present invention is provided by the appended claims 1 and 8. Advantageous embodiments are disclosed in the dependent claims. Nano-beads are generally all particles which comprise magnetic or magnetizable particles, in particular all iron-, cobalt- or nickel-containing particles. The shape does not necessarily have to be round, so it can also have a polygonal shape. Their average size is usually between 30 nm and 5 μm (diameter).

In einer ersten bevorzugten Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur magnetischen Trennung von Nano-Beads aus einem ersten Fluid bereitgestellt, das umfasst: Bereitstellen des ersten Fluids mit den darin befindlichen Nano-Beads, Einführen eines Hülsenkörpers in das erste Fluid, wobei in dem Hülsenkörper ein erster Magnet angeordnet ist, der entlang einer Längsachse des Hülsenkörpers verschiebbar ist, Sammeln von Nano-Beads an der Hülsenwand durch die Kraftwirkung eines ersten magnetischen Feldes des ersten Magneten, Entfernen des Hülsenkörpers mit den gesammelten Nano-Beads aus dem ersten Fluid, Einführen des Hülsenkörpers mit den gesammelten Nano-Beads in ein zweites Fluid und Bereitstellen eines magnetischen Feldes, dessen magnetische Polausrichtung einer Polausrichtung des ersten Magneten in dem Hülsenkörper entgegengesetzt ist, so dass der erste Magnet in dem Hülsenkörper von dem magnetischen Feld abgestoßen und in dem Hülsenkörper verschoben wird.In a first preferred embodiment of the present invention, there is provided a method of magnetically separating nano-beads from a first fluid, comprising: providing the first fluid having the nano-beads therein; inserting a sleeve body into the first fluid; Sleeve body, a first magnet is arranged, which is displaceable along a longitudinal axis of the sleeve body, collecting nano-beads on the sleeve wall by the force of a first magnetic field of the first magnet, removing the sleeve body with the collected nano-beads from the first fluid, inserting the sleeve body with the collected nano-beads in a second fluid and providing a magnetic field whose magnetic pole alignment opposite to a pole orientation of the first magnet in the sleeve body, so that the first magnet in the sleeve body repelled from the magnetic field and ver in the sleeve body ver is pushed.

In einer Ausführungsform der vorliegenden Erfindung umfasst das Verfahren weiterhin das Spülen des Hülsenkörpers mit den gesammelten Nano-Beads nach dem Schritt des Entfernens des Hülsenkörpers mit den gesammelten Nano-Beads aus dem ersten Fluid und vor dem Schritt des Einführens des Hülsenkörpers mit den gesammelten Nano-Beads in das zweite Fluid.In one embodiment of the present invention, the method comprises further rinsing the pod body with the collected nano-beads after the step of removing the pod body with the collected nano-beads from the first fluid and before the step of inserting the pod body with the collected nano-beads in the second fluid.

In einer Ausführungsform der vorliegenden Erfindung weist der Hülsenkörper einen zylindrischen hohlen Mittelteil auf und der erste Magnet umfasst einen Stabmagneten, dessen Durchmesser etwas geringer ist als der Innendurchmesser des Mittelteils des Hülsenkörpers.In one embodiment of the present invention, the sleeve body has a cylindrical hollow central portion and the first magnet comprises a bar magnet whose diameter is slightly less than the inner diameter of the central portion of the sleeve body.

In einer Ausführungsform der vorliegenden Erfindung wird das zweite magnetische Feld durch einen zweiten Magneten bereitgestellt, der in einer Längsachse zu dem Hülsenkörper mit den gesammelten Nano-Beads in dem zweites Fluid verschoben wird.In one embodiment of the present invention, the second magnetic field is provided by a second magnet which is displaced in a longitudinal axis to the sleeve body with the collected nano-beads in the second fluid.

In einer Ausführungsform der vorliegenden Erfindung wird das zweite magnetische Feld durch wenigstens einen Elektromagneten bereitgestellt.In an embodiment of the present invention, the second magnetic field is provided by at least one electromagnet.

In einer Ausführungsform der vorliegenden Erfindung wird das zweite magnetische Feld durch mehrere Elektromagneten bereitgestellt, die ein um die Längsachse des Hülsenkörpers rotierendes Multipolfeld erzeugen, das durch zyklisches An- und Abschalten einzelner Elektromagneten oder durch Rotieren der Elektromagneten um die Längsachse des Hülsenkörpers rotiert.In one embodiment of the present invention, the second magnetic field is provided by a plurality of electromagnets which generate a multipole field rotating about the longitudinal axis of the sleeve body which rotates by cyclically turning on and off individual electromagnets or by rotating the electromagnets about the longitudinal axis of the sleeve body.

In einer Ausführungsform der vorliegenden Erfindung weist der Hülsenkörper eine längliche Form auf, ist die Polausrichtung des ersten Magneten parallel zur Längsachse des Hülsenkörpers und die Nano-Beads werden an einem unteren Ende des Hülsenkörpers durch einen der Pole des ersten Magneten gesammelt.In one embodiment of the present invention, the sleeve body has an elongate shape, the pole orientation of the first magnet is parallel to the longitudinal axis of the sleeve body, and the nano-beads are collected at a lower end of the sleeve body by one of the poles of the first magnet.

In einer zweiten bevorzugten Ausführungsform wird ein System zur magnetischen Trennung von Nano-Beads aus einem ersten Fluid bereitgestellt, das wenigstens einen Hülsenkörper, in dem ein erster Magnet angeordnet ist, der entlang einer Längsachse (A) des Hülsenkörpers (110) bewegbar ist, und wenigstens eine ein zweites magnetisches Feld bereitstellende Vorrichtung umfasst, wobei die magnetische Polausrichtung des zweiten magnetischen Feldes der Polausrichtung des ersten Magneten in dem Hülsenkörper entgegengesetzt ist und die ein zweites magnetisches Feld bereitstellende Vorrichtung und der Hülsenköper in einer Richtung senkrecht zur Längsachse nicht überlappen.In a second preferred embodiment, there is provided a system for magnetically separating nano-beads from a first fluid comprising at least one sleeve body in which a first magnet is disposed along a longitudinal axis (A) of the first Sleeve body (110) is movable, and at least one second magnetic field providing device, wherein the magnetic pole orientation of the second magnetic field opposite to the polar orientation of the first magnet in the sleeve body and the second magnetic field providing device and the sleeve body in one direction do not overlap perpendicular to the longitudinal axis.

In einer Ausführungsform der vorliegenden Erfindung weist der Hülsenkörper einen zylindrischen hohlen Mittelteil auf und der erste Magnet umfasst einen Stabmagneten, dessen Durchmesser etwas geringer ist als der Innendurchmesser des Mittelteils des Hülsenkörpers. Die axiale Länge des Mittelteils des Hülsenköpers ist bevorzugt so gewählt, dass der erste Magnet ausreichend weit in dem Hülsenkörper verschiebbar ist, je nach Anwendung der vorliegenden Erfindung, z.B. Eindringtiefe in das Fluid und Magnetstärke. Bevorzugt beträgt das axiale Spiel des Magneten im Mittelteil des Hülsenköpers 0,1 cm bis 5 cm, insbesondere bevorzugt 0,2 cm bis 3 cm und am bevorzugtesten 0,5 cm bis 2 cm.In one embodiment of the present invention, the sleeve body has a cylindrical hollow central portion and the first magnet comprises a bar magnet whose diameter is slightly less than the inner diameter of the central portion of the sleeve body. The axial length of the central portion of the sleeve body is preferably selected so that the first magnet is sufficiently displaceable in the sleeve body, depending on the application of the present invention, e.g. Penetration depth into the fluid and magnetic strength. Preferably, the axial play of the magnet in the central part of the sleeve body is 0.1 cm to 5 cm, more preferably 0.2 cm to 3 cm, and most preferably 0.5 cm to 2 cm.

In einer Ausführungsform der vorliegenden Erfindung umfasst die Vorrichtung, die das zweite magnetische Feld bereitstellt, einen zweiten Magneten, der in einer Längsachse zu dem Hülsenkörper verschiebbar ist.In an embodiment of the present invention, the device providing the second magnetic field comprises a second magnet slidable in a longitudinal axis to the sleeve body.

In einer Ausführungsform der vorliegenden Erfindung umfasst die Vorrichtung, die das zweite magnetische Feld bereitstellt, einen Elektromagneten.In an embodiment of the present invention, the device providing the second magnetic field comprises an electromagnet.

In einer Ausführungsform der vorliegenden Erfindung umfasst die Vorrichtung, die das zweite magnetische Feld bereitstellt, mehrere Elektromagneten, die ein um die Längsachse des Hülsenkörpers rotierendes Multipolfeld erzeugen, das durch zyklisches An- und Abschalten einzelner Elektromagneten oder durch Rotieren der Elektromagneten um die Längsachse des Hülsenkörpers rotiert.In one embodiment of the present invention, the device providing the second magnetic field comprises a plurality of electromagnets which generate a multipole field rotating about the longitudinal axis of the sleeve body by cycling individual electromagnets on and off or by rotating the electromagnets about the longitudinal axis of the sleeve body rotates.

In einer Ausführungsform der vorliegenden Erfindung weist der Hülsenkörper eine längliche Form auf, ist die Polausrichtung des ersten Magneten parallel zur Längsachse des Hülsenkörpers und werden die Nano-Beads an einem unteren Ende des Hülsenkörpers durch wenigstens einen der Pole des ersten Magneten gesammelt, je nach Eintauchtiefe des Hülsenkörpers mit dem ersten Magneten in das erste bzw. zweite Fluid z.B. durch beide Pole des ersten Magneten.In one embodiment of the present invention, the sleeve body has an elongated shape, the pole orientation of the first magnet being parallel to the longitudinal axis of the first magnet Sleeve body and the nano-beads are collected at a lower end of the sleeve body by at least one of the poles of the first magnet, depending on the depth of immersion of the sleeve body with the first magnet in the first or second fluid, for example by both poles of the first magnet.

In einer dritten bevorzugten Ausführungsform wird ein automatisiertes System zur magnetischen Trennung von Nano-Beads aus einem ersten Fluid bereitgestellt, das umfasst: eine Vielzahl von Systemen zur magnetischen Trennung von Nano-Beads aus einem ersten Fluid gemäß einem System, wie es oben beschrieben wurde, wobei die Hülsenkörper und die Vorrichtungen, die das zweite magnetische Feld bereitstellen jeweils in einer Halterung bereitgestellt sind, eine Transporteinrichtung, die die Halterung mit den Hülsenkörpern von einer ersten Position zu einer zweiten Position bewegen kann, wobei die zweite Position direkt oberhalb einer Position der Halterung mit den Vorrichtungen, die das zweite magnetische Feld bereitstellen, liegt und eine Steuerungseinheit, die die Bewegung der Transporteinrichtung und das Bereitstellen des zweiten magnetischen Feldes steuert. In einer bevorzugten Ausführungsform werden die magnetischen Felder nicht durch einzelne zweite Magneten, sondern durch einen einzelnen zweiten Magneten oder eine Anzahl an ausreichend großen und starken zweiten Magneten bereitgestellt, die geringer ist, als die Anzahl der ersten Magneten.In a third preferred embodiment, there is provided an automated system for magnetically separating nano-beads from a first fluid, comprising: a plurality of systems for magnetically separating nano-beads from a first one Fluid according to a system as described above, wherein the sleeve bodies and the devices providing the second magnetic field are each provided in a holder, a transport means which can move the holder with the sleeve bodies from a first position to a second position wherein the second position is directly above a position of the support with the devices providing the second magnetic field, and a control unit controls the movement of the transport device and the provision of the second magnetic field. In a preferred embodiment, the magnetic fields are provided not by individual second magnets but by a single second magnet or a number of sufficiently large and strong second magnets that is less than the number of first magnets.

In einer vierten bevorzugten Ausführungsform wird ein computerlesbares Speichermedium bereitgestellt, das Programmcode umfasst, der, falls ausgeführt, ein Verfahren ausführt, wie es oben beschreiben wurde.In a fourth preferred embodiment, a computer readable storage medium is provided that includes program code that, when executed, performs a method as described above.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Alle hier gezeigten Zeichnungen sind schematischer Natur und gezeigte Bestandteile sollten lediglich in Bezug zueinander interpretiert werden. Die Zeichnungen und die Beschreibung verwenden Bezugszeichen, um das Verständnis der vorliegenden Erfindung zu erleichtern. Wo immer es angebracht ist, wurden gleiche Bezugszeichen verwendet, um gleiche oder ähnliche Teile zu bezeichnen.

  • Fig. 1 ist eine Perspektivansicht eines Hülsenkörpers mit einem Magneten gemäß einer Ausführungsform der vorliegenden Erfindung.
  • Fig. 2A-2D sind schematische Querschnittsansichten, die ein Verfahren gemäß einer Ausführungsform der vorliegenden Erfindung zeigen.
  • Fig. 3A-3D sind schematische Querschnittsansichten, die ein Verfahren gemäß einer anderen Ausführungsform der vorliegenden Erfindung zeigen.
  • Fig. 4 ist ein Flussdiagramm eines Verfahrens gemäß einer Ausführungsform der vorliegenden Erfindung.
All drawings shown here are schematic in nature and components shown should only be interpreted in relation to each other. The drawings and the description use reference numerals to facilitate the understanding of the present invention. Wherever appropriate, like reference numerals have been used to designate the same or similar parts.
  • Fig. 1 is a perspective view of a sleeve body with a magnet according to an embodiment of the present invention.
  • Fig. 2A-2D FIG. 15 are schematic cross-sectional views showing a method according to an embodiment of the present invention. FIG.
  • Fig. 3A-3D FIG. 15 are schematic cross-sectional views showing a method according to another embodiment of the present invention. FIG.
  • Fig. 4 FIG. 10 is a flowchart of a method according to an embodiment of the present invention. FIG.

Detaillierte Beschreibung der ErfindungDetailed description of the invention

Gegenstand der Erfindung ist eine einfache, schnelle und preiswerte Möglichkeit, Nano-Beads schonend aus einem beliebigen Probengefäß zu entfernen und z.B. zu reinigen oder weiterzuverarbeiten. Auch eine Automatisation ist durch das Verfahren und die Vorrichtung der vorliegenden Erfindung viel einfacher und ein entsprechendes automatisiertes System wird durch die vorliegende Erfindung bereitgestellt. Das Separieren und Waschen der Beads mittels eines Systems bzw. Verfahrens gemäß der vorliegenden Erfindung benötigt nur ca. 10 Sekunden. Das gilt für eine einzelne Probe genauso wie für z.B. 96 Proben (bei Parallelverarbeitung). Wenn z.B. 1 Milliarde Beads in 1000 Liter Wasser gegeben werden und für eine Analyse 1 Million Beads benötige, müsste man normalerweise einen Liter Wasser entnehmen und untersuchen. So ein großes Volumen ist jedoch sehr unhandlich. Mit dem Verfahren und dem System der vorliegenden Erfindung muss man lediglich den Hülsenkörper mit dem Magneten nur wenige Sekunden durch das Wasser bewegen, um genügend Beads zu binden.The subject of the invention is a simple, quick and inexpensive way of gently removing nano-beads from any sample vessel and using e.g. to clean or further process. Also, automation is much simpler by the method and apparatus of the present invention and a corresponding automated system is provided by the present invention. The separation and washing of the beads by means of a system or method according to the present invention requires only about 10 seconds. This applies to a single sample as well as e.g. 96 samples (parallel processing). If e.g. If 1 billion beads were added to 1000 liters of water and 1 million beads were needed for an analysis, one would normally need to remove and examine one liter of water. But such a large volume is very unwieldy. With the method and system of the present invention, it is only necessary to move the sleeve body with the magnet through the water for a few seconds to bind enough beads.

Fig. 1 ist eine Perspektivansicht eines Hülsenkörpers mit einem Magneten gemäß einer Ausführungsform der vorliegenden Erfindung. In der dargestellten Ausführungsform ist ein Hülsenkörper 110 im Wesentlichen zylindrisch ausgebildet und an der Ober- und Unterseite jeweils verschlossen. Der Hülsenkörper 110 kann an einem unteren Ende (an dem später die Nano-Beads gesammelt werden) einen Kragen aufweisen, der ein Sammeln von Nano-Beads an der Seitenwand des Hülsenkörpers erschwert. Es sei jedoch angemerkt, dass die Form des Hülsenkörpers hierin nicht beschränkt ist. Andere längliche Formen mit Polygonquerschnitt (rechteckigem, quadratischem, dreieckigem, fünfeckigem, etc.) sind ebenfalls möglich. Fig. 1 is a perspective view of a sleeve body with a magnet according to an embodiment of the present invention. In the illustrated embodiment, a sleeve body 110 is formed substantially cylindrical and closed at the top and bottom, respectively. The sleeve body 110 may have a collar at a lower end (at which later the nano-beads are collected), which makes it difficult to collect nano-beads on the side wall of the sleeve body. It should be noted, however, that the shape of the sleeve body is not limited herein. Other oblong shapes with polygon cross section (rectangular, square, triangular, pentagonal, etc.) are also possible.

In dem Hülsenkörper 110 ist ein Magnet 112 vorgesehen. Der Magnet 112 ist in dem Hülsenkörper entlang der Längsachse A bewegbar bzw. verschiebbar angeordnet. In Fig. 1 ist der Magnet 112 als Stabmagnet mit Polausrichtung entlang der Längsachse A dargestellt. Anstatt eines Stabmagneten kann auch jede andere Magnetform verwendet werden, solange der Magnet bezüglich der Längsachse A gegenüberliegende Magnetpole aufweist (in Fig. 1 beispielhaft durch "N" und "S" angedeutet, ohne darauf einzuschränken) und derart ausgeführt ist, dass die Pole nicht vertauscht werden können. In der vorliegenden Ausführungsform wird dies erreicht indem der Magnet einen Durchmesser aufweist, der nur geringfügig kleiner ist, als der Innendurchmesser des Hülsenkörpers, so dass der Magnet nicht umgedreht werden kann und die Magnetpole des Magneten bezüglich der Längsachse A fest ausgerichtet sind. Die axiale Länge eines Mittelteils des Hülsenköpers 110, in dem sich der erste Magnet 112 bewegen kann, ist dabei bevorzugt so gewählt, dass der erste Magnet 112 ausreichend weit in dem Hülsenkörper 110 verschiebbar ist, je nach Anwendung der vorliegenden Erfindung, z.B. Eindringtiefe in das Fluid 152 und Magnetstärke des ersten bzw. des zweiten Magneten. Bevorzugt beträgt das axiale Spiel des ersten Magneten 112 im Mittelteil des Hülsenköpers 110 0,1 cm bis 5 cm, insbesondere bevorzugt 0,2 cm bis 3 cm und am bevorzugtesten 0,5 cm bis 2 cm. Die hier verwendeten Magnete sind vorzugsweise Neodym Stabmagneten mit einem Durchmesser, der annähernd dem Innendurchmesser des verwendeten Hülsenkörpers entspricht. So eignen sich z.B. für kleine Reaktionsgefäße mit etwa 0,5 ml bis 1,5 ml Magnete mit einem Durchmesser zwischen 2 mm und 4 mm und einer Länge zwischen 5 mm und 15 mm. Die Haftkraft der ersten Magnete 112 liegt jeweils bevorzugt zwischen 250g und 750g, insbesondere bevorzugt zwischen 350g und 600g.In the sleeve body 110, a magnet 112 is provided. The magnet 112 is arranged in the sleeve body along the longitudinal axis A movable or displaceable. In Fig. 1 the magnet 112 is shown as a bar magnet with Polausrichtung along the longitudinal axis A. Instead of a bar magnet, any other magnetic shape may be used as long as the magnet has opposite magnetic poles with respect to the longitudinal axis A (in FIG Fig. 1 exemplified by "N" and "S", without limitation) and is designed such that the poles can not be reversed. In the present embodiment, this is achieved by the magnet has a diameter which is only slightly smaller than the inner diameter of the sleeve body, so that the magnet can not be reversed and the magnetic poles of the magnet with respect to the longitudinal axis A are aligned. The axial length of a central portion of the sleeve body 110, in which the first magnet 112 can move, is preferably selected so that the first magnet 112 is sufficiently displaceable in the sleeve body 110, depending on the application of the present invention, eg penetration depth into the Fluid 152 and magnetic strength of the first and second magnets, respectively. Preferably, the axial play of the first magnet 112 in the central portion of the sleeve body 110 is 0.1 cm to 5 cm, more preferably 0.2 cm to 3 cm, and most preferably 0.5 cm to 2 cm. The magnets used here are preferably neodymium bar magnets having a diameter which approximately corresponds to the inner diameter of the sleeve body used. Thus, for example, for small reaction vessels with about 0.5 ml to 1.5 ml magnets with a diameter between 2 mm and 4 mm and a length between 5 mm and 15 mm. The adhesive force of the first magnets 112 is in each case preferably between 250 g and 750 g, particularly preferably between 350 g and 600 g.

In Fig. 1 ist durch den nach unten gerichteten Pfeil P1 angedeutet, dass der Hülsenkörper in einem ersten Schritt eines Verfahrens gemäß der vorliegenden Erfindung in ein erstes Gefäß 150 mit einem ersten Fluid 152 eingetaucht wird. In dem ersten Fluid, für gewöhnlich eine Flüssigkeit, sind Nano-Beads verteilt. Mit Nano-Beads (auch Nano-Kügelchen) sind in der vorliegenden Erfindung alle Arten von im Wesentlichen kugelförmigen und magnetisierbaren (bzw. magnetisierten) Körpern gemeint. Ihre Größe kann zwischen einem nm bis einigen µm Durchmesser liegen, je nach Anwendung. In der Chemie und Biochemie werden sie genutzt, um Stoffe mittels funktionaler Oberflächen gezielt zu binden bzw. sich an Oberflächen bestimmter chemischer Zusammensetzungen zu setzen (Hybridisierungsreaktionen).In Fig. 1 is indicated by the downward arrow P1 that the sleeve body is immersed in a first step of a method according to the present invention in a first vessel 150 with a first fluid 152. In the first fluid, usually a liquid, nano-beads are distributed. With nano-beads (also nano-beads) are in the present invention, all kinds of substantially meant spherical and magnetizable (or magnetized) bodies. Their size can range from one nm to a few microns in diameter, depending on the application. In chemistry and biochemistry they are used to selectively bind substances by means of functional surfaces or to attach themselves to surfaces of certain chemical compositions (hybridization reactions).

In einer Ausführungsform der vorliegenden Erfindung kann der Hülsenkörper 110, z.B. bei einem Handbetrieb, so weit in das Fluid 152 eingetaucht werden, dass beide Pole des ersten Magneten 112 unterhalb der Oberfläche des Fluids mit den Nano-Beads sind. Die Nano-Beads binden dann am Nordpol und am Südpol, wenn der Hülsenkörper 110 tief genug eingetaucht wird und bilden dann zwei Banden. Man kann so den Hülsenkörper 110 mit seinem Magneten 112 wie einen Löffel in einem Becherglas zum Umrühren gebrauchen; in wenigen Sekunden binden so alle Beads. Jedoch ist in der vorliegenden Erfindung das Eintauchen des Hülsenkörpers 110 in das Fluid 152 bevorzugt nur soweit durchzuführen, dass lediglich ein Pol des Magneten 112 unterhalb der Oberfläche des Fluid 152 liegt. So binden die Nano-Beads an nur einem Pol des Magneten 112.In one embodiment of the present invention, the sleeve body 110, e.g. in a manual operation, so far immersed in the fluid 152 that both poles of the first magnet 112 are below the surface of the fluid with the nano-beads. The nano-beads then bind at the north pole and the south pole when the sleeve body 110 is immersed deep enough and then form two bands. One can thus use the sleeve body 110 with its magnet 112 like a spoon in a beaker for stirring; in a few seconds so bind all the beads. However, in the present invention, immersion of the sleeve body 110 into the fluid 152 is preferably only to be performed so far that only one pole of the magnet 112 lies below the surface of the fluid 152. Thus, the nano-beads bind to only one pole of the magnet 112.

Fig. 2A-2D sind schematische Querschnittsansichten, die ein Verfahren gemäß einer Ausführungsform der vorliegenden Erfindung zeigen. In Fig. 2A ist die Situation dargestellt, in der der Hülsenkörper 110 mit dem Magneten 112 in das Gefäß 150 mit dem ersten Fluid 152 eingetaucht ist. Durch die Punkte in dem Fluid wird in den Zeichnungen angedeutet, dass die Nano-Beads noch in dem Fluid verteilt sind. In Fig. 2B sind die Nano-Beads bereits durch die magnetische Anziehungskraft des Magneten 112 an der unteren Fläche des Hülsenkörpers 110 gesammelt, was durch ein Pellet 154 dargestellt wird. Der nach oben gerichtete Pfeil in Fig. 2B zeigt an, dass der Hülsenkörper 110 mit dem Bead-Pellet 154 und dem Magneten 112 aus dem ersten Fluid herausgenommen werden kann. Fig. 2A-2D FIG. 15 are schematic cross-sectional views showing a method according to an embodiment of the present invention. FIG. In Fig. 2A the situation is shown in which the sleeve body 110 is immersed with the magnet 112 in the vessel 150 with the first fluid 152. Through the points in the fluid, it is indicated in the drawings that the nano-beads are still distributed in the fluid. In Fig. 2B The nano-beads are already collected by the magnetic attraction of the magnet 112 on the lower surface of the sleeve body 110, which is represented by a pellet 154. The upward arrow in Fig. 2B indicates that the sleeve body 110 can be removed with the bead pellet 154 and the magnet 112 from the first fluid.

In Fig. 2C ist erstmals ein komplettes System gemäß der vorliegenden Erfindung gezeigt. Der Hülsenkörper 110 mit dem Bead-Pellet 154 und dem Magneten 112 wird in Fig. 2C in ein zweites Fluid 162 in einem zweiten Gefäß 160 eingetaucht. Das zweite Fluid ist dabei z.B. eine Waschlösung oder eine Flüssigkeit, in der weitere Reaktionen zwischen Stoffen in der Flüssigkeit und den Nano-Beads ablaufen sollen. Im unteren Bereich ist ein zweiter Magnet 120 gezeigt, der in seiner Polausrichtung der Polausrichtung des Magneten 112 entgegengesetzt ist und der, durch den nach oben gerichteten Pfeil angedeutet, in Richtung des zweiten Gefäßes 160 bewegt wird. Wenn das Magnetfeld des zweiten Magneten 120 nahe genug an den Magneten 112 in dem Hülsenkörper gelangt, wird der Magnet 112 in dem Hülsenkörper durch die abstoßende Wirkung der gleichen Pole des ersten Magneten 112 und des zweiten Magneten 120 (hier die N-Pole, worauf die Erfindung nicht begrenzt ist) angehoben, wie durch den schmalen Pfeil in Fig. 2D gezeigt wird.In Fig. 2C For the first time, a complete system according to the present invention is shown. The sleeve body 110 with the bead pellet 154 and the magnet 112 is in Fig. 2C immersed in a second fluid 162 in a second vessel 160. The second fluid is eg a washing solution or a liquid, in which further reactions between substances in the liquid and the nano-beads should proceed. In the lower area, a second magnet 120 is shown, which is opposite to the polar orientation of the magnet 112 in its polar alignment and which, as indicated by the upward arrow, is moved in the direction of the second vessel 160. When the magnetic field of the second magnet 120 comes close enough to the magnet 112 in the sleeve body, the magnet 112 in the sleeve body becomes repulsive by the same poles of the first magnet 112 and the second magnet 120 (here, the N poles, whereupon the magnet) Invention is not limited), as indicated by the narrow arrow in Fig. 2D will be shown.

Dieses Anheben des Magneten 112 hat zwei wichtige und synergetische Effekte. Zum einen werden die Nano-Beads nicht mehr durch den ersten Magneten 112 an der Hülsenkörperwand gehalten und können sich von dieser lösen. Zum anderen wird dieser Lösungsvorgang durch die anziehende Wirkung des zweiten Magneten gefördert, so dass sich die Nano-Beads schnell im unteren Bereich des zweiten Gefäßes 160 sammeln. Dadurch wird der Vorgang insgesamt beschleunigt. Optional kann der zweite Magnet 120 mehrmals herauf und hinab bewegt werden, um so eine Bewegung der Nano-Beads durch das Fluid zu erzeugen, was z.B. Spülvorgänge beschleunigen kann. Zum Entfernen der Nano-Beads aus dem zweiten Fluid 162 wird der zweite Magnet 120 einfach wieder abgesenkt, so dass der erste Magnet 112 die Nano-Beads erneut anzieht und diese anschließend aus dem zweiten Fluid entfernt werden können (siehe Fig. 2A und 2B).This lifting of the magnet 112 has two important and synergetic effects. Firstly, the nanobeads are no longer held by the first magnet 112 on the sleeve body wall and can be detached therefrom. On the other hand, this solution process is promoted by the attractive effect of the second magnet, so that the nano-beads quickly collect in the lower region of the second vessel 160. This speeds up the process altogether. Optionally, the second magnet 120 may be moved up and down several times so as to create a movement of the nano-beads through the fluid, which may, for example, accelerate rinses. To remove the nano-beads from the second fluid 162, the second magnet 120 is simply lowered again, so that the first magnet 112 attracts the nano-beads again and can then be removed from the second fluid (see FIGS. 2A and 2B ).

Es sei an dieser Stelle angemerkt, dass auch mehrere Hülsenkörper 110 zusammen (parallel) verwendet und bewegt werden können. So sind in dem vorliegenden technischen Gebiet häufig 96-Arrays (8x12) im Einsatz. Solche Arrays oder Halterungen können von Hand oder automatisch (durch eine Transporteinrichtung, z.B. durch einen Roboterarm oder dergleichen) bewegt werden. In diesem Fall wird eine geeignete Computersteuerung bereitgestellt, die die Bewegung der Transporteinrichtung und der zweiten Magneten 120 steuert. In anderen Ausführungsformen kann die Steuerung auch andere Faktoren, wie Ströme zur Aktivierung von Elektromagneten 130 steuern, worauf die Erfindung jedoch nicht beschränkt werden sollte. Es ist sowohl möglich für jeden Hülsenkörper 110 in einer Halterung einen einzelnen zweiten Magneten 120 bereitzustellen als auch einen großflächigen Magneten für die gesamte Halterung. Im letzteren Fall können störende Randeffekte minimiert werden.It should be noted at this point that a plurality of sleeve body 110 together (parallel) can be used and moved. Thus 96-arrays (8x12) are frequently used in the present technical field. Such arrays or supports can be moved by hand or automatically (by a transport device, eg by a robotic arm or the like). In this case, a suitable computer control is provided which controls the movement of the transport means and the second magnets 120. In other embodiments, the controller may also control other factors, such as currents to activate electromagnets 130, but the invention is not should be limited. It is possible for each sleeve body 110 in a holder to provide a single second magnet 120 as well as a large-area magnet for the entire holder. In the latter case, disturbing edge effects can be minimized.

Fig. 3A-3D sind schematische Querschnittsansichten, die ein Verfahren gemäß einer anderen Ausführungsform der vorliegenden Erfindung zeigen. Diese Ausführungsform entspricht im Wesentlichen der Ausführungsform der Fig. 2A-2D. Insbesondere die Vorrichtungen und Vorgänge in Fig. 3A-3B sind identisch zu den Vorrichtungen und Vorgängen in Fig. 2A-2B. Fig. 3A-3D FIG. 15 are schematic cross-sectional views showing a method according to another embodiment of the present invention. FIG. This embodiment substantially corresponds to the embodiment of FIG Fig. 2A-2D , In particular, the devices and processes in FIGS. 3A-3B are identical to the devices and processes in Fig. 2A-2B ,

Anstatt des zweiten Magneten 120 ist in Fig. 3C-3D wenigstens ein Elektromagnet 130 bereitgestellt. Anstatt den (Elektro-)Magneten nach oben und unten zu fahren, wie in Fig. 2C und 2D, wird der Elektromagnet einfach an- und ausgeschalten, um die gewünschte Wirkung auf Nano-Beads und ersten Magneten 112 zu entfalten. Generell werden der erste Magnet 112 und der zweite Magnet 120 bzw. der Elektromagnet 130 so gewählt und betrieben, dass eine ausreichende Abstoßungskraft (bzw. Haftkraft) zwischen den Magneten gewährleistet wird. So kann für den unteren Magneten z.B. im Zusammenspiel mit einem 96-Array als erster Magnet ein einzelner, relativ starker Magnet gewählt werden. Beträgt bei einem 96-Array die Haftkraft der oberen Magneten und des/der unteren Magneten in der Summe jeweils 600g, so reicht die Abstoßende Wirkung aus für einen Abstand zwischen ersten und zweiten Magneten von ca. 1-2 cm (vertikaler Abstand zwischen den Polen, d.h. nur Überwindung der Schwerkraftwirkung auf den ersten Magneten und gegebenenfalls der Überwindung der Anziehungskraft der Nano-Beads). Erhöht man die Haftkraft des/der unteren Magneten auf insgesamt 6 Kg reicht die Abstoßung für einen Abstand von ca. 5cm. Die Haftkraft und das Gewicht der verwendeten Magnete sind auch stark von anderen Faktoren abhängig, wie z.B. von der Füllhöhe des Gefäßes 150. Ein Fachmann kann die Werte für Gewicht, Haftkraft der Magnete, Eintauchtiefe etc. ohne Probleme anpassen.Instead of the second magnet 120 is in Fig. 3C-3D at least one solenoid 130 is provided. Instead of driving the (electric) magnet up and down as in Fig. 2C and 2D , the electromagnet is simply turned on and off to develop the desired effect on nano-beads and first magnets 112. In general, the first magnet 112 and the second magnet 120 and the solenoid 130 are selected and operated so that a sufficient repulsive force (or adhesive force) between the magnet is ensured. For example, in combination with a 96-array, a single, relatively strong magnet can be chosen as the first magnet for the lower magnet. In the case of a 96-array, when the adhesion force of the upper magnets and the lower magnet (s) is 600g in total, the repulsive effect is sufficient for a distance between the first and second magnets of about 1-2 cm (vertical distance between the poles ie only overcoming the gravitational effect on the first magnet and possibly overcoming the attraction force of the nano-beads). Increasing the adhesive force of the lower magnet (s) to a total of 6 kg, the repulsion is sufficient for a distance of about 5 cm. The adhesive force and the weight of the magnets used are also highly dependent on other factors, such as the filling height of the vessel 150. A person skilled in the art can easily adjust the values for weight, adhesive force of the magnets, immersion depth, etc.

Anstatt eines einzelnen Elektromagneten können auch mehrere Elektromagneten bereitgestellt werden, die ein um die Längsachse des Hülsenkörpers rotierendes Multipolfeld erzeugen, das durch zyklisches An- und Abschalten einzelner Elektromagneten oder durch rotieren der Elektromagneten um die Längsachse des Hülsenkörpers rotiert. Solche Multipolfelder können zusammen (bei entsprechender Polausrichtung) die gleiche abstoßende Wirkung erzielen, wie das Feld eines einzelnen Magneten. Die grundlegende Funktion der vorliegenden Erfindung wäre somit gewährleistet. Die lokal unterschiedliche magnetische Wirkung durch den Multipol-Magneten erzeugt jedoch in dem Fluid Potentiale entlang derer die Nano-Beads strömen bzw. gelenkt werden. Durch die Rotation dieser Multipolfelder können die Nano-Beads nach dem Ablösen von der Hülsenkörperwand in Fig. 3D zusätzlich durch das zweite Fluid bewegt werden, was einen Spülvorgang fördern und beschleunigen kann.Instead of a single electromagnet can also have several electromagnets are provided, which generate a multipole field rotating about the longitudinal axis of the sleeve body, which rotates by cyclically turning on and off of individual electromagnets or by rotating the electromagnets about the longitudinal axis of the sleeve body. Such multipole fields can together (with corresponding pole orientation) achieve the same repulsive effect as the field of a single magnet. The basic function of the present invention would thus be ensured. However, the locally different magnetic action by the multipole magnet creates potentials in the fluid along which the nano-beads flow. Due to the rotation of these multipole fields, the nano-beads can, after detachment from the sleeve body wall in Fig. 3D additionally be moved by the second fluid, which can promote and accelerate a flushing process.

Fig. 4 ist ein Flussdiagramm eines Verfahrens gemäß einer Ausführungsform der vorliegenden Erfindung. Gemäß Fig. 4 wird in einem besonders bevorzugten Verfahren der vorliegenden Erfindung das erste Fluid mit den darin befindlichen Nano-Beads bereitgestellt. Ein Hülsenkörper wird in das erste Fluid eingeführt, wobei in dem Hülsenkörper ein Magnet angeordnet ist, der entlang einer Längsachse A des Hülsenkörpers verschiebbar ist. Die Nano-Beads werden an der Hülsenwand durch die Kraftwirkung des magnetischen Feldes des Magneten gesammelt. Der Hülsenkörper wird mit den gesammelten Nano-Beads aus dem ersten Fluid entfernt. Der Hülsenkörper wird mit den gesammelten Nano-Beads in ein zweites Fluid eingeführt und ein elektromagnetisches Feld (magnetisches Feld) wird bereitgestellt, dessen magnetische Polausrichtung der Polausrichtung des Magneten in dem Hülsenkörper entgegengesetzt ist. Anschließend kann optional der Hülsenkörper 110 aus dem zweiten Fluid 160 entfernt werden. Optional kann nach dem Schritt des Entfernens des Hülsenkörpers 110 mit den gesammelten Nano-Beads aus dem ersten Fluid 150 und vor dem Schritt des Einführens des Hülsenkörpers 110 mit den gesammelten Nano-Beads in das zweite Fluid 160 ein Spülvorgang durchgeführt werden. Fig. 4 FIG. 10 is a flowchart of a method according to an embodiment of the present invention. FIG. According to Fig. 4 For example, in a particularly preferred method of the present invention, the first fluid with the nano-beads therein is provided. A sleeve body is inserted into the first fluid, wherein in the sleeve body, a magnet is arranged, which is displaceable along a longitudinal axis A of the sleeve body. The nano-beads are collected at the sleeve wall by the force of the magnetic field of the magnet. The sleeve body is removed with the collected nano-beads from the first fluid. The sleeve body is inserted with the collected nano-beads in a second fluid and an electromagnetic field (magnetic field) is provided, the magnetic pole alignment of which is opposite to the polar orientation of the magnet in the sleeve body. Subsequently, optionally, the sleeve body 110 can be removed from the second fluid 160. Optionally, after the step of removing the pod body 110 with the collected nano-beads from the first fluid 150 and before the step of inserting the pod body 110 with the collected nano-beads into the second fluid 160, rinsing may be performed.

Fig. 4 zeigt demnach:

  • S210 Bereitstellen des ersten Fluids mit darin befindlichen Nano-Beads;
  • S220 Einführen eines Hülsenkörpers in das erste Fluid, wobei in dem Hülsenkörper ein erster Magnet angeordnet ist, der entlang einer Längsachse (A) des Hülsenköpers verschiebbar ist;
  • S230 Sammeln von Nano-Beads an der Hülsenwand durch die Kraftwirkung eines ersten magnetischen Feldes des ersten Magneten;
  • S240 Entfernen des Hülsenköpers mit den gesammelten Nano-Beads aus dem ersten Fluid;
  • S250 Einführen des Hülsenköpers mit den gesammelten Nano-Beads in ein zweites Fluid; und
  • S260 Bereitstellen eines magnetischen Feldes, dessen magnetische Polausrichtung einer Polausrichtung des ersten Magneten in dem Hülsenkörper entgegengesetzt ist, so dass der erste Magnet in dem Hülsenkörper von dem magnetischen Feld abgestoßen und in dem Hülsenköper verschoben wird.
Fig. 4 shows:
  • S210, providing the first fluid having nano-beads therein;
  • S220 inserting a sleeve body in the first fluid, wherein in the sleeve body a first magnet is arranged, which is displaceable along a longitudinal axis (A) of the sleeve body;
  • S230 collecting nano-beads on the sleeve wall by the force of a first magnetic field of the first magnet;
  • S240 removing the sleeve body with the collected nano-beads from the first fluid;
  • S250 inserting the sleeve body with the collected nano-beads into a second fluid; and
  • S260 providing a magnetic field whose magnetic pole orientation is opposite to a pole orientation of the first magnet in the sleeve body, such that the first magnet in the sleeve body is repelled by the magnetic field and displaced in the sleeve body.

Anwendungsbeispiel 1Application example 1

Eine Möglichkeit der Anwendung der vorliegenden Erfindung wird im Folgenden mit praktischem Bezug dargelegt. Das Beispiel sollte jedoch nicht so interpretiert werden, dass es die vorliegende Erfindung einschränkt.One way of applying the present invention is set forth below with practical reference. However, the example should not be interpreted as limiting the present invention.

Eine interessante Anwendung ist es, die Außenseite des Hülsenkörpers mit Antikörpern zu beschichten: wenn z.B. zwei verschiedene monoklonale Antikörper verwendet werden, die jeweils an ein spezifisches Epitop eines Antigens (z.B. Proteins) binden können, kann man den ersten Antikörper an die Beads binden und den zweiten Antikörper an die Außenseite des Hülsenkörpers. Dann gibt man die Beads mit ihren gebundenen ersten Antikörpern in die Probe und wartet einige Minuten. Anschließend taucht man den Hülsenkörper, an deren Außenseite sich die zweiten Antikörper befinden, in die Probe.An interesting application is to coat the outside of the sleeve body with antibodies: if e.g. Using two different monoclonal antibodies, each capable of binding to a specific epitope of an antigen (e.g., protein), one can bind the first antibody to the beads and the second antibody to the outside of the sleeve body. Then you give the beads with their bound first antibodies in the sample and wait a few minutes. Then immerse the sleeve body, on the outside of which the second antibodies are in the sample.

Durch den Magneten im Inneren des Hülsenkörpers werden die Beads angezogen. Nach wenigen Sekunden entfernt man den Hülsenkörper aus der Probe und taucht ihn in ein Waschgefäß, unter dessen Boden sich ein Magnet mit umgekehrter Polung befindet. Wenn das jeweilige Antigen nicht in der Probe war, gehen die Beads in Lösung (Fig. 2d); wenn sich das Antigen jedoch in der Probe befindet, hat die Antigen-Antikörper-Reaktion auf der Außenseite des Hülsenkörpers stattgefunden und die Beads, an deren Antikörpern das Antigen gebunden ist, bleiben an dem Hülsenkörper kleben. Das Antigen wirkt als Bindeglied zwischen den beiden Antikörpern. Je nach der Konzentration des Antigens bleiben unterschiedliche Mengen von Beads kleben, der Rest geht in Lösung. Man zieht den Hülsenkörper aus dem Waschgefäß und führt ihn z.B. in ein Q-MAP Gerät (vgl. EP-A-1 664 747 ) ein, wo die Antigen-Antikörper-Bindung auflöst wird und die Beads sich nach wenigen Sekunden von dem Hülsenkörper lösen und direkt gemessen werden können, wobei das Messergebnis quantitativ verwertbar ist.Through the magnet inside the sleeve body, the beads are attracted. After a few seconds, remove the sleeve body from the sample and immerse it in a washing vessel, under the bottom of which there is a magnet with reverse polarity. If the respective antigen was not in the sample, the beads go into solution ( Fig. 2d ); If however, when the antigen is in the sample, the antigen-antibody reaction has taken place on the outside of the sheath body and the beads to whose antibodies the antigen is bound remain stuck to the sheath body. The antigen acts as a link between the two antibodies. Depending on the concentration of the antigen remain different amounts of beads stick, the rest goes into solution. Pull the sleeve body out of the washing vessel and insert it eg into a Q-MAP device (cf. EP-A-1 664 747 ), where the antigen-antibody binding dissolves and the beads detach from the sheath body after a few seconds and can be measured directly, the measurement result being quantitatively utilizable.

Claims (15)

  1. Method for magnetic separation of nanobeads from a first fluid (152), comprising:
    providing (S210) the first fluid (152) containing nanobeads therein; inserting (S220) a sleeve body (110) in the first fluid (152), wherein in the sleeve body (110) a first magnet (112) is disposed, which is moveable along a longitudinal axis (A) of the sleeve body (110);
    collecting (S230) nanobeads on the sleeve wall by the force of a first magnetic field of the first magnet (112);
    removing (S240) the sleeve body (110) with the collected nanobeads from the first fluid (152); inserting (S250) the sleeve body (110) with the collected nanobeads in a second fluid (162); and
    providing (S260) a magnetic field by means of a device (120, 130) providing a second magnetic field, whose magnetic pole orientation is opposed to the pole orientation of the first magnet (112) in the sleeve body (110), so that the first magnet (112) in the sleeve body (110) is pushed away from the first magnetic field and is moved in the sleeve body (110), wherein the device (120, 130) providing a second magnetic field and the sleeve body (110) do not overlap in a direction perpendicular to the longitudinal axis (A).
  2. Method according to claim 1, further comprising:
    rinsing the sleeve body (110) with the collected nanobeads after the step of removing (S240) the sleeve body (110) with the collected nanobeads from the first fluid (152) and before the step of inserting (S250) the sleeve body (110) with the collected nanobeads in the second fluid (162).
  3. Method according to one of the preceding claims, wherein the sleeve body (110) comprises a cylindrical hollow central part and the first magnet (112) comprises a rod magnet, whose diameter is slightly less than the inner diameter of the central part of the sleeve body (110).
  4. Method according to one of the preceding claims, wherein the second magnetic field is provided by a second magnet (120), which is moved in a longitudinal axis (A) to the sleeve body (110) with the collected nanobeads in the second fluid (162).
  5. Method according to one of the claims 1-3, wherein the second magnetic field is provided by at least one electromagnet (130).
  6. Method according to claim 5, wherein the second magnetic field is provided by a plurality of electromagnets generating a multi-pole field rotating around the longitudinal axis (A) of the sleeve body (110) by cyclically switching on and off single electromagnets or by rotating of the electromagnets around the longitudinal axis (A) of the sleeve body (110).
  7. Method according to one of the preceding claims, wherein the sleeve body (110) has an elongated shape, the pole orientation of the first magnet (112) is parallel to the longitudinal axis (A) of the sleeve body (110) and the nanobeads are collected at a lower end of the sleeve body (110) by one of the poles of the first magnet (112).
  8. System for magnetic separation of nanobeads from a first fluid (152), comprising:
    at least one sleeve body (110), in which a first magnet (112) moveable along a longitudinal axis (A) of the sleeve body (110) is disposed; and at least one device (120, 130) providing a second magnetic field, wherein the magnetic pole orientation of the second magnetic field is opposite to the pole orientation of the first magnet (112) in the sleeve body (110) and the device (120, 130) providing a second magnetic field and the sleeve body (110) do not overlap in a direction perpendicular to the longitudinal axis (A).
  9. System according to claim 8, wherein the sleeve body (110) has a cylindrical hollow central part and the first magnet (112) comprises a rod magnet, whose diameter is slightly less than the inner diameter of the central part of the sleeve body (110).
  10. System according to one of the claims 8-9, wherein the device (120, 130) providing the second magnetic field, comprises a second magnet (120), which is moveable in a longitudinal axis (A) to the sleeve body (110).
  11. System according to one of the claims 8-9, wherein the device (120, 130), providing the second magnetic field, comprises an electromagnet (130).
  12. System according to claim 11, wherein the device (120, 130) providing the second magnetic field comprises a plurality of electromagnets generating a rotating multi-pole field around the longitudinal axis (A) of the sleeve body (110) by cyclically switching on and off single electromagnets or by rotating the electromagnets around the longitudinal axis (A) of the sleeve body (110).
  13. System according to one of the claims 8-12, wherein the sleeve body (110) has an elongated shape, the pole orientation of the first magnet (112) is parallel to the longitudinal axis (A) of the sleeve body (110), whereby the sleeve body (110) is adapted so that the nanobeads are collected at a lower end of the sleeve body (110) by one of the first poles of the first magnet (112).
  14. Automated system for magnetic separation of nanobeads from a first fluid (152), comprising:
    a plurality of systems for magnetic separation of nanobeads from a first fluid (152) according to one of the claims 8-13, wherein the sleeve bodies (110) and the devices (120, 130) providing the second magnetic field are each provided in a holder respectively;
    a transport unit, which is able to move the holder with the sleeve bodies (110) from a first position to a second position, wherein the second position is directly above a position of the holder with the devices (120, 130) providing the second magnetic field; and a control unit, which controls the movement of the transport unit and the provision of the second magnetic field.
  15. Computer-readable memory device, comprising a program code, which executes a method according to one of the claims 1-7, if executed.
EP15186924.5A 2015-09-25 2015-09-25 Method and system for magnetic separation of nano-beads Active EP3147028B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15186924.5A EP3147028B1 (en) 2015-09-25 2015-09-25 Method and system for magnetic separation of nano-beads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15186924.5A EP3147028B1 (en) 2015-09-25 2015-09-25 Method and system for magnetic separation of nano-beads

Publications (2)

Publication Number Publication Date
EP3147028A1 EP3147028A1 (en) 2017-03-29
EP3147028B1 true EP3147028B1 (en) 2019-06-19

Family

ID=54238274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15186924.5A Active EP3147028B1 (en) 2015-09-25 2015-09-25 Method and system for magnetic separation of nano-beads

Country Status (1)

Country Link
EP (1) EP3147028B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024175169A1 (en) 2023-02-20 2024-08-29 STILLER, Olaf Method for directly detecting the presence of a test substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046234A1 (en) * 2015-09-18 2017-03-23 Hamilton Bonaduz Ag Magnetic separating device with magnetic activation and deactivation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL123210A0 (en) * 1998-02-06 1998-09-24 Gombinsky Moshe A device and system for the collection of magnetic particles
DE10344924A1 (en) 2003-09-25 2005-05-04 Constantin Odefey Method and device for detecting very small amounts of particles
FI20115175A0 (en) * 2011-02-23 2011-02-23 Helsinki Thermo Fisher Scient Oy Particle processing
US20120315639A1 (en) * 2011-06-08 2012-12-13 Glenn Yaguang Deng Method and apparatus for single cell isolation and analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046234A1 (en) * 2015-09-18 2017-03-23 Hamilton Bonaduz Ag Magnetic separating device with magnetic activation and deactivation

Also Published As

Publication number Publication date
EP3147028A1 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
DE69329135T2 (en) Magnetic deposition method and apparatus
EP2033715B1 (en) Method for suspending or re-suspending particles in a solution and device adapted therefor
EP1843854B1 (en) Device and method for the elimination of magnetic or magnetizable particles from a liquid
DE69525465T2 (en) SEPARATION OF MAGNETIC MICROPARTICLES INCLUDING A PRE-CONCENTRATION STEP
DE10057396C1 (en) Separation of e.g. biomolecules from dispersion or solution, employs magnetic particles onto which substance is sorbed, and electromagnet for their extraction
EP0687505B1 (en) Magnetic separation method for components of a liquid
EP1446668B1 (en) Device and method for treating magnetic particles
EP1919625B1 (en) Device and method for the separation of magnetic particles from a liquid
EP1420888B1 (en) System for separating magnetically attractable particles
DE69420974T2 (en) SEPARATION PROCEDURE
DE69926218T2 (en) DEVICE AND METHOD FOR TRANSMITTING MAGNETIC PARTICLES
DE69520284T3 (en) MICROPARTICLE SEPARATOR WITH A MAGNETIC BAR
DE60207564T2 (en) TREATMENT METHOD FOR MAGNETIC PARTICLES AND BIOANALYSIS APPARATUS USING MAGNETIC APPLICATION
CH619537A5 (en)
EP0995096B1 (en) Magnetic pin for concentrating and separating particles
DE102008057317A1 (en) Device and method for the purification of biomolecules
DE102009005925B4 (en) Apparatus and method for handling biomolecules
EP3147028B1 (en) Method and system for magnetic separation of nano-beads
EP2192987A1 (en) Apparatus and method for the treatment of liquids with magnetic particles
WO2019057345A1 (en) Device and method for immobilising biomolecules using magnetic particles
DE60300580T2 (en) SEPARATION METHOD AND DEVICE FOR IMPLEMENTING SUCH A METHOD
DE112019004459T5 (en) ENRICHMENT OF SAMPLES BY MEANS OF MAGNETIC PARTICLES IN MICROCHANNELS
LU100772B1 (en) Method for producing at least one closed region on a carrier surface of a carrier
DE102005063572B3 (en) Swab extracting device comprises cavity into which sample carrier that carries the swab may be introduced, liquid inlet and outlet connected to the cavity, and interface to microfluid system into which liquid can be transferred
LU101421B1 (en) Method for generating at least one pattern on a carrier surface of a carrier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170926

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B03C 1/28 20060101AFI20181005BHEP

Ipc: B03C 1/01 20060101ALI20181005BHEP

Ipc: B03C 1/033 20060101ALI20181005BHEP

INTG Intention to grant announced

Effective date: 20181030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ODEFEY, CONSTANTIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ODEFEY, CONSTANTIN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015009363

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1144821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015009363

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200921

Year of fee payment: 6

Ref country code: GB

Payment date: 20200923

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150925

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1144821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210925

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240925

Year of fee payment: 10