EP3146593B1 - Système d'antennes pour réduire le couplage électromagnétique entre antennes - Google Patents

Système d'antennes pour réduire le couplage électromagnétique entre antennes Download PDF

Info

Publication number
EP3146593B1
EP3146593B1 EP15723030.1A EP15723030A EP3146593B1 EP 3146593 B1 EP3146593 B1 EP 3146593B1 EP 15723030 A EP15723030 A EP 15723030A EP 3146593 B1 EP3146593 B1 EP 3146593B1
Authority
EP
European Patent Office
Prior art keywords
neutralisation
lines
elements
activation
radiating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15723030.1A
Other languages
German (de)
English (en)
Other versions
EP3146593A1 (fr
Inventor
Philippe Le Thuc
Robert Staraj
Aliou Diallo
Michael Jeangeorges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Nice Sophia Antipolis UNSA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Nice Sophia Antipolis UNSA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Nice Sophia Antipolis UNSA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3146593A1 publication Critical patent/EP3146593A1/fr
Application granted granted Critical
Publication of EP3146593B1 publication Critical patent/EP3146593B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates generally to the field of antennas and more particularly that of miniature antennas of the type used in all kinds of mobile electronic devices equipped with wireless communication means capable of receiving and transmitting signals in one or more ranges of. frequencies expressed in gigahertz.
  • these devices must be able to receive and transmit in the different frequency ranges corresponding to the various wireless transmission technologies and standards that they incorporate. It has become common for a cell phone, for example: a mobile phone of the so-called GSM type, acronym for “Global System for Mobile communications”, also incorporates a short-range wireless link of the “Bluetooth” type. to be able to connect the phone to another nearby device, for example, to connect to a personal computer or a mobile headset.
  • GSM Global System for Mobile communications
  • Bluetooth Bluetooth
  • Recent high-end mobile phones called "Smart Phone” most often include a receiver for a geolocation system by satellites operating, for example with the GPS system, acronym for “Global Positioning System”.
  • these devices are also equipped to allow their connection to a local wireless network of the LAN type, acronym for “Local Area Network”.
  • a local wireless network of the LAN type acronym for “Local Area Network”.
  • Wi-Fi network obeying the group of so-called “802.11” standards published by the North American institute well known under the acronym “IEEE” which thus provides access to the network.
  • IEEE North American institute well known under the acronym “IEEE”
  • the addition of antennas in the same device is made necessary by the adoption, particularly in Wi-Fi from the 802.11n standard, of a more efficient mode of communication known by the acronym " MIMO ”from the English“ Multiple-Input, Multiple-Output ”.
  • MIMO multiple-Input, Multiple-Output
  • This mode of communication favors a "diversity" of implementation of the transmission and / or reception means for the same communication link, which typically results in the implementation of so-called spatial diversity and the simultaneous use of 'at least two reception and transmission antennas per link.
  • This “diversity” mode of transmission is intended in particular to take into account a particularly disturbing phenomenon, which very frequently appears in an urban environment or in a confined environment such as an office building, for example, places in which Wi-Fi networks are commonly deployed. Fi.
  • This technique consists in placing a metallic line, called neutralization line 130, between the two radiating elements, possibly different, 110 and 120.
  • the radiating elements typically form so-called PIFA antennas, acronym for “planar inverted-F antenna”. , that is to say “inverted F plane antenna”.
  • PIFA antennas acronym for “planar inverted-F antenna”.
  • RF radio frequency signals
  • This innovation makes it possible to create multi-antenna systems for MIMO type applications working in diversity or for multistandard applications as described above. It will be noted here that, as in any PIFA antenna, the opposite part, 112 and 122, of each of the supply ports of the radiating elements, 111 and 121, is connected by a short circuit to the ground of the PCB.
  • variable capacity type It is generally a type of diode called “varicap”, the capacitance value of which is adjustable as a function of the direct voltage (DC) present at its terminals.
  • DC direct voltage
  • Patent documents US 2011/237207 , US 2010/304688 and US 2008/258991 each disclose a system for neutralizing an unwanted coupling between antennas which share the same space in the structure of user equipment.
  • the objective of the present invention is therefore to propose a miniature antenna system reducing or eliminating at least some of the drawbacks mentioned above.
  • the invention aims to propose an antenna system in which the electromagnetic coupling between antennas is satisfactory for a greater variety of frequencies, thus allowing a wider range of possible applications while maintaining a reduced size.
  • the invention makes it possible to improve the insulation between the accesses of the two radiating elements, this insulation being degraded by the electromagnetic coupling which occurs all the more between two radiating elements the closer they are.
  • the invention thus offers the possibility of performing frequency hopping, thereby making it possible to switch easily from one application to another regardless of their respective operating frequencies. For example, by simply activating / deactivating the neutralization lines, it is possible to switch from an operating mode based on an operating frequency of 700 MHz to an operating mode based on an operating frequency of several GHz and obtain for each of these modes of operation zero or strongly attenuated electromagnetic coupling.
  • the invention thus makes it possible to activate very dissimilar personalization elements (neutralization or even short-circuit lines) which can make it possible to obtain large variations in the RF behavior of the antennas.
  • the invention may further have at least any one of the following optional features taken separately or in combination:
  • said activation elements are configured so as to allow simultaneous activation of at least the first neutralization line and the second line of neutralization.
  • the first neutralization line and the second neutralization line are actuated simultaneously by said activation elements.
  • the system is configured so that at least two neutralization lines are activated simultaneously.
  • at least one of the neutralization lines is always activated, that is to say it is always connected to the two radiating elements.
  • the neutralization line preferably, then does not include an activation element connecting it to the radiating elements but a simple permanent connection.
  • the neutralization lines are configured so that, depending on their activation / deactivation, they ensure maximum neutralization of the electromagnetic coupling of the radiating elements for a plurality of distinct and separate frequencies for at least two of them and of preferably separated from each other by at least a factor 1.1 and preferably at least a factor 1.2 and preferably at least a factor 1.5 and preferably at least a factor 2.
  • the system comprises at least one short-circuit line to a ground plane of the antenna system per radiating element.
  • the system comprises at least one additional short-circuit line per radiating element.
  • the antenna system comprises binary activation elements of at least part of the short-circuit lines.
  • the binary activation elements are configured to independently activate or deactivate the neutralization and short-circuit lines to the ground plane.
  • each of the neutralization lines has a geometry, in particular a length, a width, a shape and a thickness, shaped to ensure neutralization of the electromagnetic coupling of the radiating elements for at least one frequency and preferably for a plurality of frequencies.
  • a neutralization line according to the present invention, by virtue of its geometry, can behave, for example, like a capacitor, an inductance or even an impedance, as a function of the frequency.
  • At least two neutralization lines connecting the same two radiating elements have different lengths and / or shapes.
  • At least one neutralization line among the first and second neutralization lines consists of a tab or a microstrip line.
  • a microstrip line is, for example, an electrical line, serving as a guide for electromagnetic wave propagation, consisting of a conductive strip deposited on a dielectric substrate, the second metallized face of which acts as a ground plane.
  • the neutralization line does not include a discrete element, which makes it possible to reduce losses.
  • all the neutralization lines consist only of a tongue or of a microstrip line.
  • the activation elements are binary activation elements.
  • the activation elements are configured to selectively activate or deactivate each of the neutralization lines. They thus make it possible to ensure decoupling for a maximum frequency which depends on the activation of the neutralization lines.
  • At least one of the activation elements is a PIN diode.
  • all the activation elements are PIN diodes.
  • At least the activation elements of at least part of the neutralization lines are PIN diodes polarized with the aid of a direct signal (DC) superimposed on the RF signals conveyed by the system in order to selectively or make conductive the PIN diode and allow the radiating element to which it is attached to become active, or make the PIN diode non-conductive so that the radiating element to which it is attached becomes inactive.
  • DC direct signal
  • At least some of the activation elements of at least part of the neutralization lines are varicap type diodes.
  • the system comprises two radiating elements and comprises two neutralization lines interconnecting said two radiating elements.
  • the system comprises at least two radiating elements and comprises at least three neutralization lines interconnecting said two radiating elements.
  • the neutralization lines are suspended between the radiating elements.
  • the neutralization lines are arranged at a distance from the ground plane.
  • the neutralization lines are printed on an electronic card carrying the radiating elements.
  • the neutralization lines are integrated or printed in a layer.
  • the system then forms a stack of superimposed layers with no intermediate empty space between the layers, one layer of which forms the ground plane and another layer of which comprises the neutralization lines and the radiating elements. This makes it possible to simplify the construction of the system and its industrialization.
  • the neutralization lines are formed in part by the ground plane, to which are connected conductive elements connected to the radiating elements and in part by these conductive elements.
  • the system comprises at least three radiating elements and a plurality of neutralization lines interconnecting the radiating elements.
  • the length is measured along the largest dimension of the tongue.
  • the width corresponds to the width of the tongue.
  • the height corresponds to the distance between the tongue and the ground plane, the tongue extending in a plane parallel to that in which the ground plane extends.
  • each neutralization line is associated with supply lines of the radiating elements.
  • the neutralization lines are associated with lines of connection to the ground plane of the radiating elements.
  • the means forming a ground plane comprise a printed circuit board.
  • the radiating elements are of the PIFA type.
  • the invention relates to an antenna system comprising elements forming a ground plane and at least two radiating elements and a first coupling neutralization line of the radiating elements characterized in that it comprises at least one second coupling neutralization line of the two radiating elements.
  • the system further includes activation elements configured to selectively activate or deactivate each of the neutralization lines, thereby providing electromagnetic decoupling for a maximum frequency which depends on the activation of the neutralization lines by the activation elements.
  • the activation elements are configured to selectively activate or deactivate each of the neutralization lines by making each of the neutralization lines conductive or not respectively.
  • the first line of coupling neutralization of the radiating elements has a first electromagnetic property, typically a first impedance or a first inductance
  • the second line of coupling neutralization of the two radiating elements has a second electromagnetic property different from the first, typically a second impedance or a second inductance different from the first.
  • a telecommunications apparatus comprising a multiple antenna system according to any one of the embodiments of the invention.
  • the apparatus also includes a receiver and / or a transmitter coupled to said multiple antenna system.
  • the telecommunications apparatus may be an apparatus for receiving or / and transmitting wireless communications. It is for example a cell phone.
  • the figures 2a and 2b describe an example of an antenna system according to the invention.
  • the invention consists in improving the technique of the neutralization line described in figure 1 by using simple binary switching components which can then be directly controlled by a digital circuit without the need to generate an analog DC voltage as is necessary with a varicap diode.
  • the binary switching components which are likely to be suitable include in particular the so-called PIN diodes which include, in addition to the P-type and N-type doped zones of a conventional diode, an undoped or intrinsic intermediate zone (I).
  • PIN diodes which include, in addition to the P-type and N-type doped zones of a conventional diode, an undoped or intrinsic intermediate zone (I).
  • I undoped or intrinsic intermediate zone
  • diodes which can be directly controlled by a digital circuit of the integrated circuit (IC) 101 type, make it possible to easily modify, on the fly, the behavior of the PIFA antennas without having to resort to the components of the varicap diode type as described in section figure 1 .
  • the invention combines the use of diodes, on the one hand, with several spatial arrangements of the short-circuit lines, 212 and 222, of the radiating elements; and on the other hand, with the addition of at least a second switchable neutralization line 230 in addition to the first neutralization line 130.
  • neutralization line is understood to mean a line connected between two radiating elements 110, 120 allowing, when it is passive, to isolate or improve the insulation between the supply ports of two radiating elements in order to reduce the coupling. observed between said radiating elements 110, 120, for a given frequency band.
  • At least one neutralization line 130, 230 does not include a discrete element.
  • the neutralization line 130, 230 consists of a microstrip line.
  • the neutralization line 130, 230 consists of a tab.
  • the neutralization line 130, 230 is advantageously in the form of a metal strip. It does not have a discrete element. Only its ends are connected to the activation elements which will be defined in detail below and which enable or disable the neutralization line.
  • each of the neutralization lines has a geometry, in particular a length, a width, a shape and a thickness, shaped to ensure neutralization of the electromagnetic coupling of the radiating elements for at least one frequency and preferably for a plurality of frequencies.
  • a neutralization line according to the present invention, by virtue of its geometry, can behave, for example, like a capacitor, an inductance or even an impedance, as a function of the frequency.
  • the radiating elements are for example PIFA antennas described in the figure 1 .
  • diodes are typically, as shown, discrete components that can be welded to the various metallic elements constituting the PIFA antennas used in this example intended to illustrate an implementation of the invention.
  • the switching between the multiple possible physical configurations thus obtained makes it possible to selectively activate or deactivate the short-circuits and the neutralization lines, and thus to control individually the frequencies at which the antennas are both adapted and isolated.
  • the neutralization is thus adjusted in order to simultaneously obtain an adequate decoupling of the two radiating elements for each operating mode of the antenna system.
  • the overall structure can thus adopt several behaviors precisely defined by the applications considered: diversity, multistandards or multi-access.
  • the components used are PIN diodes.
  • the binary behavior of these diodes, used in the on or off state, is fixed by a DC voltage higher or lower than a threshold voltage applied directly to the terminals thereof.
  • the direct voltage injected into the antenna system does not disturb not the RF signal intended to be radiated by the antennas.
  • FIG. 2 highlights the use of two separate locations for the short-circuit tabs, 212 and 222, of each antenna which are programmable using activation elements, preferably diodes 241 to 244, as well as the use of two neutralization lines, one fixed 130 and the other programmable 230 using activation elements 245, 246.
  • the activation elements are diodes.
  • At least one of the neutralization lines, the line 130 on the embodiment of the figure 2a is always activated, that is to say that it is always connected to the two radiating elements 110, 120.
  • the neutralization line 130 then does not include any activation element connecting it to the. radiating elements 110, 120 but a simple permanent connection.
  • the diodes In the example of the antenna system of the figure 2a it is possible, using the six diodes, to make already four combinations of antennas shown in the table below.
  • the diodes In this table, the diodes, the reference of which appears on the first line, are biased so as to be conductive if there is a "1" in the corresponding box and blocked if there is a "0".
  • the diodes 242, 244, 245, 246 are activated (“ON” state).
  • a diversity behavior is obtained with the two radiating elements 110, 120 in the same band (GPS).
  • the second neutralization line 230 makes it possible to decouple the operation of the radiating elements 110, 120 for these high frequencies.
  • the present invention therefore makes it possible to propose a multi-standard, multi-port system which can operate in diversity. This is made possible by the actuation independently but also and advantageously simultaneously of the neutralization lines 130, 230.
  • the radiating metallic elements 110 and 120 and the neutralization lines, 130 and 230 may form part of a raised printed circuit 102 on which the customization diodes 245 and 246 will also be soldered.
  • RF of the antennas, 211 and 221, as well as the short-circuit lines of the PIFA antennas, 212 and 222, will then be metal vias crossing the dielectric of the printed circuit 102 to be connected to the PCB 100 supporting the integrated circuit.
  • the thickness 103 of the circuit 102 will be adapted to meet the geometric characteristics defined for the PIFA antennas considered.
  • the figure 2a shows how diodes 241 to 246 are electrically connected in this exemplary embodiment of the invention.
  • the figure 3 shows the feasibility of the concept.
  • a significant electromagnetic coupling between two nearby radiating elements results in a generally high value of the transmission coefficient between the two so-called S21 antennas 310 measured or simulated between the two access ports 211 and 221.
  • the line of fixed neutralization 130 makes it possible to obtain a significant drop in coefficient S21, and therefore to obtain a strong isolation between ports (thus a weak electromagnetic coupling) for the working frequencies of the antennas operating in the PDC band centered on 1.483 GHz.
  • These simulation results are obtained by activating the short-circuit lines of the PIFA antennas corresponding to the diodes 241 and 243 in accordance with the table above. There is indeed a diversity operation with the two antennas operating in the same band, that known as PDC in this case.
  • the parameter S21 corresponding to the curve 310 is part of the so-called S parameters, standing for “scattering parameters” or “S-parameters” widely used in microwave frequencies in particular to characterize the behavior of passive or active dipoles. These parameters are used to measure the values of the incident waves, reflected and transmitted by the quadrupoles studied. As indicated above, S21 in this case measures the transmission coefficient between antennas.
  • the two almost superimposed curves 320 correspond for their part to the so-called parameters S11 and S22, also called the reflection coefficients of each of the antennas.
  • the figure 4 shows the simulation results obtained with the diodes 242, 244, 245 and 246 activated in their on state as shown in the table above.
  • Activation of the second neutralization line 230, using diodes 245 and 246, makes it possible to decouple the antennas for these frequencies higher than the previous ones in combination with the activation of the short-circuit lines of the corresponding PIFA antennas. to diodes 242 and 244.
  • This figure shows the same type of curves as in the previous figure, that is to say the parameter S21 410 corresponding to the transmission coefficient between the two antennas and the parameters S11 and S22 or coefficients of reflection of each of the antennas corresponding to the almost superimposed curves 420.
  • the polarization of the diodes 245 and 246 may require having to apply an intermediate independent polarization to the neutralization line 230 which will only act in DC.
  • this may take the form of a thin conductive vertical wire 231 connected to the PCB ground plane.
  • the vertical wire 231 allowing the DC polarization of the line 230 and therefore those of the diodes 245 and 246, could advantageously be designed and dimensioned in such a way that it alone constitutes a "coil of dc. 'stop' or 'shock choke' for transmitted or received RF signals. It could also be combined with a discrete component (not shown) to constitute a function of the choke type for the transmitted RF signals.
  • the figure 5 shows the results obtained with only the activation of the diode 241 and the corresponding short-circuit line 212.
  • the system thus operates only at the frequencies of the PDC band on the only antenna whose radiating element is 110.
  • This solution can be combined optionally depending on the applications with the case of figure 6 which follows in which the diodes 244, 245 and 246 are activated in their on state so as to activate the second neutralization line 230 and the short-circuit line 222 corresponding to the diode 244, to allow the operation of the single antenna of which the radiating element is 120 in the GPS frequency band in this case, thus forming a multiport system (PDC or GPS).
  • PDC multiport system
  • the invention therefore makes it possible to provide a multistandard and multiport system which can also operate in diversity. All of these functions are achieved with only two compact antennas close together and a few simple low cost components (PIN diodes) widely used by the electronics industry. This innovation drastically reduces the complexity of transmission systems traditionally using more antennas with reduced performance due to the electromagnetic coupling existing between antennas located close to each other on the same PCB.
  • the technique of the invention can easily be extended to other frequency bands and be applied to multiple wireless communication technologies. It is also possible to add other switchable short-circuit lines on each antenna to work on a greater number of frequency bands simultaneously. In this case, the addition of one or more switchable neutralization lines may be necessary.
  • the signal is included in a frequency band and ⁇ corresponds to the central frequency of the frequency band.
  • the range of the central operating frequencies of the system according to the invention can typically extend from 700 MHz to approximately 6 GHz.
  • the system can therefore be applied to all standards operating on this frequency band, including the following standards: LTE, GSM, DCS, PCS, UMTS, GPS, WiFI, Bluetooth, Zigbee, WLAN, etc.
  • the figure 7 shows the possible use of one or more additional neutralization lines 731 and 733 in addition to line 130.
  • line 130 is fixed, that is to say it is always activated (always connected to the two radiating elements).
  • the invention also encompasses systems in which all the lines are non-fixed, that is to say can be activated or deactivated.
  • neutralization lines may be of various shapes and sizes which are best suited by those skilled in the art, in particular with a view to obtaining a minimum coupling between antennas for the applications considered in a manner similar to this. which has been described for the antennas of the GPS and PDC bands in the previous figures.
  • the neutralization and short-circuit lines may optionally be fixed, or programmable in particular using diodes (not shown in this figure), in order to obtain several operating modes from the same antenna system. according to the invention.
  • the figure 8 illustrates the case where the antennas and their radiating elements have been multiplied.
  • they are four in number: 810, 820, 830 and 840. They are separated in this case by three neutralization lines 835, 837 and 839.
  • the lines of 'supply of RF signals 811, 821, 831 and 841, constituting the input ports of the antenna system, as well as the short-circuit lines: 812, 822, 832 and 842.
  • short lines -circuit and Additional programmable neutralization may optionally also be present in this structure.
  • At least some of the radiating elements are connected to one another by several neutralization lines.
  • the radiating elements are identical, the invention covers the embodiments in which the radiating elements of the same system are different.

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • La présente invention concerne de manière générale le domaine des antennes et plus particulièrement celui des antennes miniatures du type utilisé dans toutes sortes d'appareils électroniques mobiles équipés de moyens de communication sans-fil aptes à recevoir et transmettre des signaux dans une ou plusieurs gammes de fréquences s'exprimant en gigahertz.
  • ÉTAT DE LA TECHNIQUE
  • L'évolution rapide du marché de l'industrie électronique conduit à devoir concevoir des appareils communicants sans-fil de plus en plus compacts offrant toujours plus de fonctionnalités. Ces appareils nécessitent presque toujours des systèmes antennaires multiples qui répondent à plusieurs besoins.
  • D'une part, ces appareils doivent pouvoir recevoir et transmettre dans les différentes gammes de fréquences correspondant aux diverses technologies et normes de transmission sans-fil qu'ils intègrent. Il est devenu courant qu'un téléphone cellulaire, par exemple: un téléphone mobile de type dit GSM, acronyme de l'anglais « Global System for Mobile communications », intègre également une liaison sans-fil à courte portée de type dit « Bluetooth » pour pouvoir connecter le téléphone à un autre appareil situé à proximité, par exemple, pour se connecter à un ordinateur personnel ou à un casque mobile. Les téléphones mobiles récents haut de gamme dit « Smart Phone » incluent le plus souvent un récepteur pour système de géolocalisation par satellites fonctionnant, par exemple avec le système GPS, acronyme de l'anglais « Global Positionning System ». De plus ces appareils sont aussi équipés pour permettre leur connexion à un réseau local sans-fil de type LAN, acronyme de l'anglais « Local Area Network ». Typiquement, il s'agit alors d'un réseau dit Wi-Fi obéissant au groupe des normes dites « 802.11 » publiées par l'institut nord-américain bien connu sous l'acronyme « IEEE » qui permet ainsi d'accéder à l'Internet dans tous les bâtiments et lieux publiques fournissant les points d'accès sans-fil appropriés.
  • D'autre part, l'ajout d'antennes dans un même appareil est rendu nécessaire par l'adoption, notamment en Wi-Fi à partir de la norme 802.11n, d'un mode de communication plus performant connu sous l'acronyme « MIMO » de l'anglais « Multiple-Input, Multiple-Output ». Ce mode de communication privilégie une « diversité » de mise en oeuvre des moyens de transmission et/ou de réception pour un même lien de communication ce qui se traduit typiquement par la mise en oeuvre d'une diversité dite spatiale et l'utilisation simultanée d'au moins deux antennes de réception et de transmission par lien. Ce mode de transmission « en diversité » est destiné notamment à prendre en compte un phénomène particulièrement perturbant, qui apparaît très fréquemment en milieu urbain ou dans un environnement confiné de type immeuble de bureaux par exemple, lieux dans lesquels sont couramment déployés les réseaux Wi-Fi. On peut constater en effet un évanouissement du signal reçu, connu sous le nom de « Rayleigh fading », qui provient de ce que le récepteur reçoit simultanément plusieurs copies déphasées à travers des trajets différents d'un même signal émis. Celles-ci peuvent s'ajouter mais aussi se soustraire jusqu'à, sinon annuler, au moins très fortement atténuer le signal reçu. Le principe de base de la diversité est que le récepteur doit pouvoir disposer d'au moins deux copies indépendantes d'un même signal et de préférence les plus indépendantes possibles. La probabilité est alors faible qu'ils s'évanouissent au même moment préservant un rapport signal sur bruit (SNR) suffisant pour une bonne réception des informations transmises.
  • Quelles que soient les motivations qui poussent les concepteurs d'appareils communicants mobiles à multiplier le nombre d'antennes au sein d'un même boitier, il reste que celles-ci doivent rester indépendantes d'un point de vue électromagnétique, en dépit du fait que la taille des boitiers qui les accueillent tend à diminuer accroissant leur proximité, ce afin de pouvoir effectivement tirer avantage notamment du mode de transmission en diversité et d'une façon générale pour garantir l'indépendance des signaux reçus et transmis.
  • En effet lorsque les antennes sont proches une partie de l'énergie injectée dans une antenne est absorbée par l'autre antenne et n'est donc pas rayonnée. Ce couplage électromagnétique entre antennes dégrade considérablement les performances du système.
  • Pour répondre à ce problème, comme illustré sur la figure 1, une technique innovante réduction du couplage électromagnétique qui se manifeste entre deux éléments rayonnants, 110 et 120, disposés à proximité l'un de l'autre sur un même support 100, par exemple un circuit imprimé dit PCB de l'anglais « printed circuit board », a déjà été décrite dans la demande de brevet FR2968845A1 portant le titre « Système d'antenne en diversité » publiée le 15 juin 2012. Cette technique permet d'améliorer l'isolation entre les accès des deux éléments rayonnants, 110 et 120, cette isolation étant dégradée par le couplage électromagnétique qui se manifeste d'autant plus entre deux éléments rayonnants que ceux-ci sont proches.
  • Cette technique consiste à placer une ligne métallique, appelée ligne de neutralisation 130, entre les deux éléments rayonnants, possiblement différents, 110 et 120. Les éléments rayonnants forment typiquement des antennes dites PIFA, acronyme de l'anglais « planar inverted-F antenna », c'est-à-dire « antenne plane en F inversé ». La demande ci-dessus montre qu'une amélioration importante de l'isolation peut être alors obtenue entre les ports d'alimentation, 111 et 121, c'est-à-dire entre les ports d'entrée par lesquels les signaux radio fréquence (RF) alimentent chacune des deux antennes, pour une bande de fréquence donnée. Cette innovation permet de créer des systèmes multi-antennes pour des applications de type MIMO travaillant en diversité ou des applications multistandards comme décrits plus haut. On notera ici que, comme dans toute antenne PIFA, la partie opposée, 112 et 122, de chacun des ports d'alimentation des éléments rayonnants, 111 et 121, est reliée par un court-circuit à la masse du PCB.
  • Une autre amélioration est aussi décrite dans la demande ci-dessus qui consiste à utiliser un ou plusieurs composants actifs de type capacité variable. Il s'agit généralement d'un type de diode dit « varicap » dont la valeur de la capacité est ajustable en fonction de la tension continue (DC) présente à ses bornes. L'insertion d'un tel dispositif 140 au sein d'une ligne de neutralisation permet de modifier de manière dynamique et à volonté la bande de fréquence pour laquelle la neutralisation maximale est obtenue.
  • Cette solution présente néanmoins des limitations. Notamment, la variation effective de capacité que l'on peut obtenir avec un tel dispositif s'avère être limitée, limitant par là même les applications qui peuvent être couvertes avec un même système antennaire.
  • Cette solution n'est donc pas pleinement satisfaisante.
  • Par ailleurs, d'autres solutions ont été développées pour réduire le couplage entre antennes tout en conservant un encombrement limité.
  • Certaines de ces solutions consistent à créer dans le plan de masse des fentes pour limiter le transfert de courants de couplage entre les antennes.
  • D'autres de ces solutions prévoient quant à elles d'utiliser des méta-matériaux pour créer des filtres coupe-bande entre les antennes grâce à leurs propriétés liées à la périodicité.
  • Ces solutions nécessitent des modifications spécifiques du circuit servant de support à l'ensemble des composants électroniques de l'objet dont notamment la carte comprenant le circuit imprimé (PCB), ce qui est pénalisant en termes de coût et de complexité de réalisation.
  • Les documents de brevet US 2011/237207 , US 2010/304688 et US 2008/258991 divulguent chacun un système de neutralisation d'un couplage indésirable entre des antennes qui partagent un même espace dans la structure d'un équipement utilisateur.
  • La présente invention a donc pour objectif de proposer un système d'antennes miniatures réduisant ou supprimant au moins certains des inconvénients mentionnés ci-dessus. En particulier, l'invention vise à proposer un système d'antennes dans lequel le couplage électromagnétique entre antennes est satisfaisant pour une plus grande variétés de fréquences, permettant ainsi une plus large gamme d'applications possibles tout en conservant un encombrement réduit.
  • RÉSUMÉ DE L'INVENTION
  • Selon un mode de réalisation, l'invention porte sur un système d'antennes multiple comportant au moins deux éléments rayonnants, une première ligne de neutralisation de couplage électromagnétique reliant entre eux les au moins deux éléments rayonnants, au moins une ligne d'alimentation radio fréquence (RF) pour chaque élément rayonnant.
    Le système antennaire comprend en outre :
    • au moins une deuxième ligne de neutralisation de couplage électromagnétique reliant entre eux lesdits au moins deux éléments rayonnants,
    • des éléments d'activation d'au moins une partie des lignes de neutralisation.
    • Le système est essentiellement tel qu'il comprend en outre :au moins une première ligne de court-circuit reliant l'un des deux éléments rayonnants à un plan de masse du système antennaire,
    • au moins une deuxième ligne de court-circuit reliant l'autre des deux éléments rayonnants au plan de masse du système antennaire, et
    • des éléments d'activation (241 à 244) d'au moins une partie des lignes de court-circuit,
    et tel que les éléments d'activation sont configurés pour sélectivement activer ou désactiver une partie au moins des lignes de neutralisation et des lignes de court-circuit, de manière à ce qu'n fonction de leur activation/désactivation, les lignes de neutralisation et de court-circuit assurent une neutralisation maximale du couplage électromagnétique des éléments rayonnants pour une pluralité de fréquences.
  • Ainsi, en fonction de l'activation/désactivation d'une partie au moins des lignes de neutralisation par lesdits éléments d'activation, on obtient une pluralité de modes de fonctionnement RF distincts pour lesquels l'isolation des éléments rayonnant est différente et pour lesquels on n'observe pas de couplage électromagnétique significatif entre les éléments rayonnants.
  • Ainsi, en commandant l'activation des lignes de neutralisation, on réduit voire on supprime le couplage électromagnétique entre les éléments rayonnants et ce pour différentes fréquences de fonctionnement des éléments rayonnants. Ainsi, l'invention permet d'améliorer l'isolation entre les accès des deux éléments rayonnants, cette isolation étant dégradée par le couplage électromagnétique qui se manifeste d'autant plus entre deux éléments rayonnants que ceux-ci sont proches.
  • On peut ainsi réduire le couplage électromagnétique pour des fréquences de fonctionnement distinctes et possiblement éloignées.
  • L'invention offre ainsi la possibilité de réaliser des sauts en fréquence, permettant de ce fait de passer aisément d'une application à une autre quelle que soient leurs fréquences respectives de fonctionnement. Par exemple, par une simple activation/désactivation des lignes de neutralisation on peut passer d'un mode de fonctionnement basé sur une fréquence de fonctionnement de 700MHz à un mode de fonctionnement basé sur une fréquence de fonctionnement de plusieurs GHz et obtenir pour chacun de ces modes de fonctionnement un couplage électromagnétique nul ou fortement atténué.
  • A l'inverse, la solution décrite dans le brevet FR2968845A1 mentionné ci-dessus ne permet que de modifier la fréquence de fonctionnement de manière continue et dans une plage restreinte.
  • L'invention permet ainsi d'activer des éléments de personnalisation (lignes de neutralisation voire de court-circuit) très dissemblables qui peuvent permettre d'obtenir de grandes variations de comportement RF des antennes.
  • L'invention offre d'autres avantages parmi lesquels :
    • les lignes de neutralisation assurent une neutralisation maximale du couplage électromagnétique des éléments rayonnants pour une fréquence donnée, cette fréquence donnée dépendant de l'activation/désactivation des éléments d'activation. Ainsi en modifiant l'activation/désactivation des éléments d'activation d'activation. Ainsi en modifiant l'activation/désactivation des éléments d'activation du système, on fait varier la fréquence pour laquelle la neutralisation du couplage électromagnétique est maximale. En effet pour chaque activation/désactivation des éléments d'activation du système on fait varier l'isolation entre les éléments rayonnant.
    • les éléments d'activation sont configurés pour sélectivement activer ou désactiver une partie au moins des lignes de neutralisation, de manière à ce qu'en fonction de leur activation/désactivation, les lignes de neutralisation permettent une isolation au moins partielle entre les éléments rayonnants, afin de diminuer le couplage électromagnétique entre lesdits éléments rayonnants, pour une bande de fréquence donnée.
    • en fonction de l'activation/désactivation des éléments d'activation, on modifie la configuration de l'isolation entre les éléments rayonnants modifiant de ce fait le couplage électromagnétique entre lesdits éléments rayonnants.
    • Pour une fréquence ou des fréquences ou une bande de fréquences de fonctionnement souhaitées des éléments rayonnant, on active/désactive les éléments d'activation de manière à ce que les lignes de neutralisation assurent une neutralisation maximale du couplage électromagnétique des éléments rayonnants pour ladite fréquence ou lesdites fréquences ou ladite bande de fréquences de fonctionnement souhaitées.
    • au moins une première et une deuxième lignes de court-circuit à un plan de masse du système antennaire, par élément rayonnant et comportant des éléments d'activation d'au moins une partie des lignes de court-circuit,
    • au moins une ligne de neutralisation et de préférence toutes les lignes de neutralisation sont exemptes d'élément discret.
    • La au moins une ligne de neutralisation ne comprend pas d'élément discret. Ainsi, et de manière particulièrement avantageuse, le système selon la présente invention permet de réduire, voire supprimer, les pertes liées aux composants discrets. Par ailleurs, le fait de proposer une alternative à l'utilisation des éléments discrets permet, non seulement, de réduire les pertes, mais également d'augmenter le rendement, donc l'efficacité, par une diminution des pertes de puissance.
    • De manière particulièrement avantageuse, les lignes de neutralisation peuvent être actionnées de manière indépendante ainsi que de manière simultanée. Dans le cas où deux lignes de neutralisation sont activées et donc fonctionnent en même temps (ce qui sous-entend que certains des éléments d'activation sont activés), le découplage est avantageusement dans la bande de fréquence de travail haute. A l'inverse, quand une seule ligne de neutralisation est activée (sous-entendant que certains des éléments d'activation sont activés), le découplage est dans la bande de fréquences de travail basse. Lorsque l'on désactive une ligne de neutralisation, cela fait chuter les fréquences de fonctionnement.
    • Selon un mode de réalisation, une ligne de neutralisation est activée lorsqu'elle est rendue passante. Elle permet ainsi une connexion électrique entre les deux éléments rayonnants. Une ligne de neutralisation est désactivée lorsqu'elle est rendue non passante. Elle ne permet alors pas une connexion électrique entre les deux éléments rayonnants.
    • Le pilotage des lignes de neutralisation, en plus de celui des antennes, par les éléments d'activation, procure une synergie, rendue possible par la présence des languettes de court-circuits commutables. De manière particulièrement avantageuse, la présente invention permet que le système soit découplé dans deux bandes de fonctionnement différentes pour les éléments rayonnants, c'est-à-dire les antennes.
    • Les éléments de personnalisation peuvent être nombreux ce qui permet d'obtenir potentiellement de nombreux modes de fonctionnement RF possiblement très différents. Ainsi, même avec deux antennes seulement compactes sur un même plan de masse on peut obtenir les modes de fonctionnement suivant : diversité, multi-port, multi-standard.
    • La solution du brevet FR2968845A1 avec utilisation d'une diode varicap demande que l'on sache générer de manière analogique la tension DC qui doit être appliquée à ses bornes afin d'obtenir la valeur de capacité souhaitée pour l'application. La présente invention permet d'avoir une commande numérique, c'est-à-dire binaire ou ON/OFF, qui active des modes de fonctionnement RF préétablis et qui seront beaucoup moins susceptibles de dériver qu'un système analogique avec une capacité variable sur laquelle il faut appliquer une tension continue variable. Pour améliorer la fiabilité de la solution du brevet FR2968845A1 , il faudrait produire une tension continue variable et l'asservir pour obtenir un fonctionnement qui ne dérive pas, mais cela serait très pénalisant en termes de coûts.
  • De manière facultative, l'invention peut en outre présenter au moins l'une quelconque des caractéristiques optionnelles suivantes prises séparément ou en combinaison:
    Avantageusement, lesdits éléments d'activation sont configurés de manière à permettre l'activation simultanée d'au moins la première ligne de neutralisation et la deuxième ligne de neutralisation. De manière particulièrement avantageuse, la première ligne de neutralisation et la deuxième ligne de neutralisation sont actionnées de manière simultanée par lesdits éléments d'activation. De manière plus générale le système est configuré de manière à ce qu'au moins deux lignes de neutralisation soient activées simultanément. Dans un mode de réalisation non limitatif, au moins l'une des lignes de neutralisation est toujours activée, c'est-à-dire qu'elle est toujours connectée aux deux éléments rayonnants. Dans ce mode de réalisation, la ligne de neutralisation, de préférence, ne comprend alors pas d'élément d'activation la connectant aux éléments rayonnants mais une simple connexion permanente. Avantageusement, les lignes de neutralisation sont configurées de manière à ce qu'en fonction de leur activation/désactivation elles assurent une neutralisation maximale du couplage électromagnétique des éléments rayonnants pour une pluralité de fréquences distinctes et séparées pour au moins deux d'entre elles et de préférence séparées les unes des autres d'au moins un facteur 1.1 et de préférence d'au moins un facteur 1.2 et de préférence d'au moins un facteur 1.5 et de préférence d'au moins un facteur 2.
  • Ainsi, il est par exemple possible par une simple commutation des lignes de neutralisation réalisée par les éléments activables de passer d'une atténuation maximale du couplage pour une fréquence de 1GHz à une atténuation maximale du couplage pour une fréquence de 1.1 GHz ou 1.2GHz ou 1.5GHz ou 2GHz.
  • Selon un mode de réalisation, le système comprend au moins une ligne de court-circuit à un plan de masse du système antennaire par élément rayonnant.
  • Selon un mode de réalisation, le système comprend au moins une ligne de court-circuit supplémentaire par élément rayonnant. Selon un mode de réalisation, le système antennaire comporte des éléments d'activation binaires d'au moins une partie des lignes de court-circuit.
  • Selon un mode de réalisation, les éléments d'activation binaires sont configurés pour indépendamment activer ou désactiver les lignes de neutralisation et de court-circuit au plan de masse.
  • Avantageusement, chacune des lignes de neutralisation présente une géométrie, en particulier une longueur, une largeur, une forme et une épaisseur, conformée pour assurer une neutralisation du couplage électromagnétique des éléments rayonnants pour au moins une fréquence et de préférence pour une pluralité de fréquences. Une ligne de neutralisation, selon la présente invention, de par sa géométrie, peut se comporter, par exemple, comme une capacité, une inductance ou encore une impédance, en fonction de la fréquence.
  • Selon un mode de réalisation, au moins deux lignes de neutralisation reliant les deux mêmes éléments rayonnants présentent des longueurs et/ou des formes différentes.
  • A titre préféré, au moins une ligne de neutralisation parmi les première et deuxième lignes de neutralisation est constituée d'une languette ou d'une ligne micro-ruban. Une ligne micro-ruban est par exemple une ligne électrique, servant de guide à une propagation d'onde électromagnétique, constituée d'un ruban conducteur déposé sur un substrat diélectrique dont la seconde face métallisée fait office de plan de masse. Avantageusement, la ligne de neutralisation ne comprend pas d'élément discret, ce qui permet de réduire les pertes. Selon un mode de réalisation avantageux, toutes les lignes de neutralisation sont constituées uniquement d'une languette ou d'une ligne micro-ruban.
  • Selon un mode de réalisation, les éléments d'activation sont des éléments d'activation binaires.
  • Selon un mode de réalisation, les éléments d'activation, également désignés éléments de commutation, sont configurés pour sélectivement activer ou désactiver chacune des lignes de neutralisation. Ils permettent ainsi d'assurer un découplage pour une fréquence maximale qui dépend de l'activation des lignes de neutralisation.
  • Avantageusement, au moins l'un des éléments d'activation est une diode PIN. Avantageusement, tous les éléments d'activation sont des diodes PIN.
  • Avantageusement, au moins les éléments d'activation d'au moins une partie des lignes de neutralisation sont des diodes PIN polarisées à l'aide d'un signal continu (DC) superposé aux signaux RF véhiculé par le système pour sélectivement, soit rendre conductrice la diode PIN et permettre que l'élément rayonnant auquel elle est attachée devienne actif, soit rendre non conductrice la diode PIN de telle sorte que l'élément rayonnant auquel elle est attachée devienne inactif.
  • Alternativement, au moins certains des éléments d'activation d'au moins une partie des lignes de neutralisation sont des diodes de type varicap.
  • Selon un mode de réalisation, le système comprend deux éléments rayonnants et comprend deux lignes de neutralisation reliant entre eux lesdits deux éléments rayonnants.
  • Selon un mode de réalisation, le système comprend au moins deux éléments rayonnants et comprend au moins trois lignes de neutralisation reliant entre eux lesdits deux éléments rayonnants.
  • Selon un mode de réalisation, les lignes de neutralisation sont suspendues entre les éléments rayonnants. Les lignes de neutralisation sont disposées à distance du plan de masse.
  • Alternativement, les lignes de neutralisation sont imprimées sur une carte électronique portant les éléments rayonnants.
  • Selon un mode de réalisation particulier, les lignes de neutralisation sont intégrées ou imprimées dans une couche. Le système forme alors un empilement de couches superposées sans espace vide intermédiaire entre les couches et dont une couche forme le plan de masse et dont une autre couche comprend les lignes de neutralisation et les éléments rayonnants. Cela permet de simplifier la réalisation du système et son industrialisation.
  • Alternativement, les lignes de neutralisation sont formées en partie par le plan de masse, auquel sont raccordés des éléments conducteurs reliés aux éléments rayonnants et en partie par ces éléments conducteurs.
  • Selon un mode de réalisation particulier, le système comprend au moins trois éléments rayonnants et une pluralité de lignes de neutralisation reliant entre eux les éléments rayonnants.
  • Selon un mode de réalisation particulier, au moins certains et de préférence tous les éléments rayonnants présentent chacun une forme générale de languette et présentent les dimensions suivantes :
    • une longueur comprise entre λ/2 et λ/6 et de préférence de λ/4,
    • une largeur comprise entre λ/10 et λ/20 et de préférence de λ/20,
    • une hauteur comprise entre λ/30 et λ/15 et de préférence comprise entre À/28 et λ/20 ;
    λ étant la longueur d'onde du signal que l'élément rayonnant est destiné à recevoir/émettre.
  • De préférence, la longueur se mesure selon la dimension la plus grande de la languette. De préférence, la largeur correspond à la largeur de la languette. De préférence, la hauteur correspond à la distance entre la languette et le plan de masse, la languette s'étendant dans un plan parallèle à celui dans lequel s'étend le plan de masse.
  • Selon un mode de réalisation, chaque ligne de neutralisation est associée à des lignes d'alimentation des éléments rayonnants.
  • Selon un mode de réalisation, les lignes de neutralisation sont associées à des lignes de raccordement au plan de masse des éléments rayonnants.
  • Selon un mode de réalisation, les moyens formant plan de masse comportent une plaque de circuit imprimé.
  • Selon un mode de réalisation, les éléments rayonnants sont de type PIFA.
  • Selon un autre mode de réalisation l'invention porte sur un système d'antennes comportant des éléments formant plan de masse et aux moins deux éléments rayonnants et une première ligne de neutralisation de couplage des éléments rayonnants caractérisé en ce qu'il comprend au moins une deuxième ligne de neutralisation de couplage des deux éléments rayonnants. Le système comprend en outre des éléments d'activation configurés pour sélectivement activer ou désactiver chacune des lignes de neutralisation, permettant ainsi d'assurer un découplage électromagnétique pour une fréquence maximale qui dépend de l'activation des lignes de neutralisation par les éléments d'activation.
  • De préférence, les éléments d'activation sont configurés pour sélectivement activer ou désactiver chacune des lignes de neutralisation en rendant respectivement passante ou non passante chacune des lignes de neutralisation.
  • De préférence, la première ligne de neutralisation de couplage des éléments rayonnants présente une première propriété électromagnétique, typiquement une première impédance ou une première inductance et la deuxième ligne de neutralisation de couplage des deux éléments rayonnants présente une deuxième propriété électromagnétique différente de la première, typiquement une deuxième impédance ou une deuxième inductance différente la première.
  • Un autre aspect de la présente invention concerne un appareil de télécommunication comprenant un système d'antennes multiple selon l'un quelconque des modes de réalisation de l'invention. L'appareil comprend également un récepteur et/ou un émetteur couplé audit système d'antennes multiple. L'appareil de télécommunication peut être un appareil de réception ou/et de transmission de communications sans fil. Il est par exemple un téléphone portable.
  • BRÈVE DESCRIPTION DES FIGURES
  • Les buts, objets, ainsi que les caractéristiques et avantages de l'invention ressortiront mieux de la description détaillée d'un mode de réalisation de cette dernière qui est illustré par les dessins d'accompagnement suivants dans lesquels :
    • La FIGURE 1 illustre un système antennaire de l'art antérieur.
    • Les FIGURE 2a et 2b illustrent un système antennaire selon un mode de réalisation de l'invention incluant une ligne de neutralisation et des lignes de court-circuit programmables à l'aide de diodes. Dans ce mode de réalisation, le système comprend deux éléments rayonnants et deux lignes de neutralisation.
    • La FIGURE 3 illustre le fonctionnement du système antennaire double selon l'invention opérant dans la bande de fréquences PDC.
    • La FIGURE 4 illustre le fonctionnement du système antennaire double selon l'invention opérant dans la bande de fréquences GPS.
    • La FIGURE 5 illustre le fonctionnement d'une seule des deux antennes dans la bande de fréquences PDC.
    • La FIGURE 6 illustre le fonctionnement d'une seule des deux antennes dans la bande de fréquences GPS.
    • La FIGURE 7 montre une mise en oeuvre de l'invention avec des lignes de neutralisation de dimensions et de formes diverses.
    • La FIGURE 8 montre une mise en oeuvre de l'invention comprenant plus de deux éléments rayonnants séparés par plus d'une ligne de neutralisation.
  • Les dessins sont donnés à titre d'exemples et ne sont pas limitatifs de l'invention. Ils constituent des représentations schématiques de principe destinées à faciliter la compréhension de l'invention et ne sont pas nécessairement à l'échelle des applications pratiques. En particulier les dimensions relatives des différents éléments ne sont pas représentatives de la réalité.
  • DESCRIPTION DÉTAILLÉE DE L'INVENTION
  • Les figures 2a et 2b décrivent un exemple de système antennaire selon l'invention.
  • L'invention consiste à améliorer la technique de la ligne de neutralisation décrite en figure 1 en utilisant de simples composants de commutation binaires qui pourront alors être directement commandés par un circuit numérique sans avoir besoin de générer une tension DC analogique comme cela est nécessaire avec une diode varicap. Les composants de commutation binaires qui sont susceptibles de convenir comprennent notamment les diodes dites PIN qui incluent, outre les zones dopées de type P et de type N d'une diode classique, une zone intermédiaire non-dopée ou intrinsèque (I). Une telle structure, polarisée dans le sens passant, présente avantageusement une impédance dynamique extrêmement faible pour les signaux RF qui la traversent. Polarisée dans le sens inverse, c'est-à-dire bloquée, elle présente alors au contraire une très grande impédance avec une très faible capacité. Ces diodes, qui peuvent être directement commandées par un circuit numérique de type circuit intégré (CI) 101, permettent de modifier facilement, à la volée, le comportement des antennes PIFA sans avoir recours aux composants de type diode varicap comme décrit dans la figure 1.
  • Pour obtenir ce résultat l'invention combine l'utilisation de diodes, d'une part, avec plusieurs dispositions spatiales des lignes de court-circuit, 212 et 222, des éléments rayonnants; et d'autre part, avec l'adjonction d'au moins une deuxième ligne de neutralisation commutable 230 en complément de la première ligne de neutralisation 130.
  • On entend par ligne de neutralisation, une ligne connectée entre deux éléments rayonnants 110, 120 permettant, lorsqu'elle est passive, d'isoler ou d'améliorer l'isolation entre les ports d'alimentation de deux éléments rayonnants afin de diminuer le couplage observé entre lesdits éléments rayonnants 110, 120, pour une bande de fréquence donnée.
  • De manière particulièrement avantageuse, au moins une ligne de neutralisation 130, 230 ne comprend pas d'élément discret. Avantageusement, la ligne de neutralisation 130, 230 est constituée d'une ligne micro-ruban. Selon un autre mode de réalisation, la ligne de neutralisation 130, 230 est constituée d'une languette. La ligne de neutralisation 130, 230 se présente avantageusement sous la forme d'un ruban métallique. Elle ne comporte pas d'élément discret. Seules ses extrémités sont connectées aux éléments d'activation qui seront définis en détail ci-dessous et qui permettent d'activer ou de désactiver la ligne de neutralisation.
  • Avantageusement, chacune des lignes de neutralisation présente une géométrie, en particulier une longueur, une largeur, une forme et une épaisseur, conformée pour assurer une neutralisation du couplage électromagnétique des éléments rayonnants pour au moins une fréquence et de préférence pour une pluralité de fréquences. Une ligne de neutralisation, selon la présente invention, de par sa géométrie, peut se comporter, par exemple, comme une capacité, une inductance ou encore une impédance, en fonction de la fréquence.
  • Pour configurer une ligne de neutralisation, en particulier pour déterminer sa géométrie et afin qu'elle permette d'assurer une neutralisation efficace à la ou aux fréquences souhaitées, on pourra par exemple se reporter aux publications suivantes :
    • "Study and Réduction of the Mutual Coupling Between Two Mobile Phone PIFAs Operating in the DCS1800 and UMTS Bands", publiée dans IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 11, NOVEMBER 2006, p. 3063-3074, et dont les auteurs sont Aliou Diallo, Cyril Luxey, Philippe Le Thuc, Robert Staraj, and Georges Kossiavas. On se référera par exemple aux sections IV A et IV B. - « SYTEMES MULTI-ANTENNES POUR DIVERSITE ET MIMO » thèse doctorat de Aliou DIALLO, UNIVERSITE NICE-SOPHIA ANTIPOLIS, 2007. Cette thèse est notamment disponible auprès de la base de données suivante : https://tel.archives-ouvertes.fr/tel-00454612/document. On se référera par exemple aux pages 90 à 100.
  • Les éléments rayonnants sont par exemple des antennes PIFA décrites dans la figure 1.
  • Les diodes sont au nombre de six, portant les références 241 à 246, dans l'exemple particulier de la figure 2 qui n'est qu'un exemple spécifique, non limitatif, de mise en œuvre de l'invention.
  • Ces diodes sont typiquement, comme représentés, des composants discrets soudables aux différents éléments métalliques constitutifs des antennes PIFA utilisées dans cet exemple destiné à illustrer une mise en oeuvre de l'invention.
  • La commutation entre les multiples configurations physiques possibles ainsi obtenues, par l'intermédiaire d'une polarisation adéquate des diodes, permet de sélectivement activer ou désactiver les courts-circuits et les lignes de neutralisation, et ainsi de piloter individuellement les fréquences auxquelles les antennes sont à la fois adaptées et isolées. La neutralisation est ainsi ajustée afin d'obtenir simultanément un découplage adéquat des deux éléments rayonnants pour chaque mode de fonctionnement du système antennaire. La structure globale pourra ainsi adopter plusieurs comportements précisément définis par les applications considérées : diversité, multistandards ou multi-accès.
  • Dans la figure 2a, servant à illustrer un exemple particulier de mise en oeuvre de l'invention, les composants utilisés sont des diodes PIN. Le comportement binaire de ces diodes, utilisées dans l'état passant ou bloqué, est fixé par une tension continue supérieure ou inférieure à une tension de seuil appliquée directement aux bornes de celles-ci. Dans une mise en oeuvre simple permettant d'obtenir la commutation des diodes on peut avantageusement, par exemple, injecter directement la tension continue au niveau des ports d'accès des antennes, 211 et 221. La tension continue injectée dans le système antennaire ne perturbe pas le signal RF destiné à être rayonné par les antennes.
  • Dans le cas de systèmes complexes impliquant de multiples diodes, comme celui illustré par la figure 2a, il est nécessaire de créer les découplages RF/DC qui permettent de polariser de façon adéquate les diodes de personnalisation. L'exemple de la figure 2 met en évidence l'utilisation de deux emplacements distincts pour les languettes de court-circuit, 212 et 222, de chaque antenne qui sont programmables à l'aide d'éléments d'activation, avantageusement des diodes 241 à 244, ainsi que l'utilisation de deux lignes de neutralisation, l'une fixe 130 et l'autre programmable 230 à l'aide d'éléments d'activation 245, 246. Avantageusement les éléments d'activation sont des diodes.
  • Toutes les configurations illustrées par la figure 2a sont donc réalisables grâce à l'utilisation des six diodes 241 à 246 sur cet exemple. Elles permettent d'activer ou de désactiver n'importe quelles languettes de court-circuit, 212 et 222, ainsi que la seconde ligne de neutralisation 230. La première ligne 130, qui est fixe, relie toujours dans cet exemple les éléments rayonnants, 110 et 120, des deux antennes.
  • Dans un mode de réalisation non limitatif tel que celui illustré en figure 2a, au moins l'une des lignes de neutralisation, la ligne 130 sur le mode de réalisation de la figure 2a, est toujours activée, c'est-à-dire qu'elle est toujours connectée aux deux éléments rayonnants 110, 120. Dans ce mode de réalisation, la ligne de neutralisation 130 ne comprend alors pas d'élément d'activation la connectant aux éléments rayonnants 110, 120 mais une simple connexion permanente.
  • L'exemple non limitatif suivant montre comment on peut choisir un mode désiré de fonctionnement du système multi-antennaire, même dans le cas de deux standards très proches (PDC et GPS) :
    • la bande dite PDC (acronyme de l'anglais « personal digital cellular » faisant référence à un standard mis en oeuvre essentiellement au Japon), allant de 1465 à 1501 MHz, soit une bande de 36 MHz centrée sur 1483 MHz.
    • la bande GPS (standard déjà mentionné), allant de 1555 à 1595 MHz, soit une bande de 40 MHz centrée sur 1575 MHz.
  • Dans l'exemple du système d'antennes de la figure 2a on peut, à l'aide des six diodes, réaliser déjà quatre combinaisons d'antennes figurant dans le tableau ci-après. Dans ce tableau les diodes, dont la référence figure sur la première ligne, sont polarisées pour être passantes s'il y a un « 1 » dans la case correspondante et bloquées s'il y a un « 0 ».
    Figure imgb0001
  • Dans l'exemple « Div2 », les diodes 242, 244, 245, 246 sont activées (état « ON »). On obtient dans cet exemple, un comportement en diversité avec les deux éléments rayonnants 110, 120 dans la même bande (GPS). La deuxième ligne de neutralisation 230 permet de découpler le fonctionnement des éléments rayonnants 110, 120 pour ces hautes fréquences.
  • Dans l'exemple « Multi1 », seule une diode 241 est activée. Le système fonctionne ainsi uniquement à la fréquence PDC au niveau du port d'accès 211. Si seule la diode 243 est activée, le système fonctionne aussi uniquement à la fréquence PDC mais par un autre port d'accès 221. Le standard PDC dispose ainsi de deux ports d'accès distincts. Cette solution « Multi1 » se combine avec la solution de l'exemple « Multi2 » (activation des diodes 244, 245, 246 pour un fonctionnement à la fréquence GPS par l'accès 221, activation des diodes 242, 245, 246 pour un fonctionnement à la fréquence GPS par l'accès 211) de sorte à former un système multi-ports.
  • La présente invention permet donc de proposer un système multi-standard, multi-port qui peut fonctionner en diversité. Cela est rendu possible par l'actionnement de manière indépendante mais également et de manière avantageuse de manière simultanée des lignes de neutralisation 130, 230.
  • Afin de faciliter la fabrication du système antennaire de la figure 2a et assurer sa robustesse les éléments métalliques rayonnants 110 et 120 et les lignes de neutralisation, 130 et 230, pourront faire partie d'un circuit imprimé surélevé 102 sur lequel on viendra aussi souder les diodes de personnalisation 245 et 246. Les lignes d'alimentation RF des antennes, 211 et 221, ainsi que les lignes de court-circuit des antennes PIFA, 212 et 222, seront alors des vias métalliques traversant le diélectrique du circuit imprimé 102 pour être connectés sur le PCB 100 supportant le circuit intégré. L'épaisseur 103 du circuit 102 sera adaptée pour répondre aux caractéristiques géométriques définies pour les antennes PIFA considérées.
  • La figure 2a montre comment les diodes 241 à 246 sont connectées électriquement dans cet exemple de mise en oeuvre de l'invention.
  • La figure 3 montre la faisabilité du concept.
  • Un couplage électromagnétique important entre deux éléments rayonnants proches se traduit par une valeur généralement élevée du coefficient de transmission entre les deux antennes dit S21 310 mesuré ou simulé entre les deux ports d'accès 211 et 221. Sur cette figure, on observe que la ligne de neutralisation fixe 130 permet d'obtenir une chute importante du coefficient S21, et donc l'obtention d'une forte isolation entre accès (donc un faible couplage électromagnétique) pour les fréquences de travail des antennes opérant dans la bande PDC centrée sur 1,483 GHz. Ces résultats de simulation sont obtenus par l'activation des lignes de court-circuit des antennes PIFA correspondant aux diodes 241 et 243 conformément au tableau ci-dessus. On constate bien un fonctionnement en diversité avec les deux antennes fonctionnant dans une même bande, celle dite PDC dans ce cas.
  • On notera ici que le paramètre S21 correspondant à la courbe 310, fait partie des paramètres dit S, de l'anglais « scattering parameters » ou « S-parameters » largement utilisés en hyperfréquences pour caractériser notamment le comportement de dipôles passifs ou actifs. Ces paramètres servent à mesurer les valeurs des ondes incidentes, réfléchies et transmises par les quadripôles étudiés. Comme indiqué plus haut, S21 mesure dans ce cas le coefficient de transmission entre antennes. Les deux courbes quasi superposées 320 correspondent quant à elles aux paramètres dits S11 et S22 aussi appelés coefficients de réflexion de chacune des antennes.
  • La figure 4 montre les résultats de simulation obtenus avec les diodes 242, 244, 245 et 246 activées dans leur état passant comme montré dans le tableau ci-dessus. On constate bien un comportement en diversité avec les deux antennes opérant dans une même bande de fréquences, celle dite GPS cette fois centrée sur 1,575 GHz. L'activation de la seconde ligne de neutralisation 230, à l'aide des diodes 245 et 246, permet de découpler les antennes pour ces fréquences plus élevées que les précédentes en combinaison avec l'activation des lignes de court-circuit des antennes PIFA correspondant aux diodes 242 et 244. On retrouve sur cette figure le même type de courbes que dans la figure précédente, c'est-à-dire le paramètre S21 410 correspondant au coefficient de transmission entre les deux antennes et les paramètres S11 et S22 ou coefficients de réflexion de chacune des antennes correspondant aux courbes quasi superposées 420.
  • En référence à la figure 2b on notera ici que la polarisation des diodes 245 et 246 pourra nécessiter de devoir appliquer une polarisation indépendante intermédiaire sur la ligne de neutralisation 230 qui n'agira qu'en DC. Par exemple, cela peut prendre la forme d'un fil vertical conducteur fin 231 connecté au plan de masse du PCB. Aux fréquences transmises, qui s'expriment en GHz, le fil vertical 231 permettant la polarisation DC de la ligne 230 et donc celles des diodes 245 et 246, pourra avantageusement être conçu et dimensionné de telle façon qu'il constitue seul une « bobine d'arrêt » ou « self de choc » pour les signaux RF transmis ou reçus. Il pourra également être combiné avec un composant discret (non représenté) pour constituer une fonction de type bobine d'arrêt pour les signaux RF transmis.
  • La figure 5 montre les résultats obtenus avec seulement l'activation de la diode 241 et de la ligne de court-circuit 212 correspondante. Le système fonctionne ainsi uniquement aux fréquences de la bande PDC sur la seule antenne dont l'élément rayonnant est 110. Cette solution se combine optionnellement en fonction des applications avec le cas de la figure 6 qui suit dans lequel les diodes 244, 245 et 246 sont activées dans leur état passant de manière à activer la seconde ligne de neutralisation 230 et la ligne de court-circuit 222 correspondant à la diode 244, pour permettre le fonctionnement de la seule antenne dont l'élément rayonnant est 120 dans la bande des fréquences GPS dans ce cas, formant ainsi un système multiport (PDC ou GPS). On retrouve sur ces figures les paramètres S déjà décrits.
  • L'invention permet donc de proposer un système multistandard et multiport qui peut aussi fonctionner en diversité. L'ensemble de ces fonctionnalités est réalisé avec seulement deux antennes compactes proches l'une de l'autre et quelques composants simples à faible coût (diodes PIN) largement utilisées par l'industrie électronique. Cette innovation réduit drastiquement la complexité des systèmes de transmission utilisant traditionnellement plus d'antennes avec des performances réduites en raison du couplage électromagnétique existant entre antennes situées à proximité l'une de l'autre sur un même PCB.
  • La technique de l'invention peut aisément être étendue à d'autres bandes de fréquences et s'appliquer à de multiples technologies de communication sans-fil. Il est également possible d'ajouter d'autres lignes de court-circuit commutables sur chaque antenne pour travailler sur un plus grand nombre de bandes de fréquences simultanément. Dans ce cas, l'ajout d'une ou plusieurs lignes de neutralisation commutables pourra être nécessaire.
  • L'exemple de système d'antennes illustré en figure 2a et 2b va maintenant être décrit plus en détail. Chaque antenne présente une forme générale de languette. Chaque languette présente les dimensions suivantes, λ étant la longueur d'onde du signal émis/reçu par l'élément rayonnant :
    • Une longueur comprise entre λ/2 et λ/6 et de préférence de λ/4, De préférence, la longueur se mesure selon la dimension la plus grande de la languette.
    • Une largeur comprise entre λ/10 et λ/20 et de préférence de λ/20. De préférence, la largeur correspond à la largeur de la languette.
    • Une hauteur comprise entre λ/30 et λ/15 et de préférence comprise entre λ/28 et λ/20. La hauteur correspond à la distance entre le plan dans lequel s'étend la languette et le plan de masse, typiquement le circuit intégré le circuit imprimé destiné à recevoir les autres composants électroniques.
  • Plus précisément, pour chaque application le signal est compris dans une bande de fréquences et λ correspond à la fréquence centrale de la bande de fréquence.
  • Plus généralement, la plage des fréquences centrales de fonctionnement du système selon l'invention peut typiquement s'étendre de 700MHz à environ 6 GHz. Le système peut ainsi s'appliquer à tous les standards fonctionnant sur cette bande de fréquence dont notamment les standards suivants : LTE, GSM, DCS, PCS, UMTS, GPS, WiFI, Bluetooth, Zigbee, WLAN, etc.
  • Parmi toutes les mises en oeuvre possibles de l'invention deux sont plus particulièrement illustrées dans les figures qui suivent.
  • La figure 7 montre l'utilisation possible d'une ou plusieurs lignes de neutralisation supplémentaires 731 et 733 en plus de la ligne 130. Sur cet exemple non limitatif la ligne 130 est fixe, c'est-à-dire qu'elle est toujours activée (toujours connectée aux deux éléments rayonnants). Naturellement, l'invention englobe également les systèmes dans lesquels toutes les lignes sont non fixes, c'est-à-dire activables ou désactivables.
  • D'une façon générale, toutes les lignes de neutralisation pourront être de formes et de dimensions diverses qui sont adaptées au mieux par l'homme du métier notamment en vue d'obtenir un couplage minimum entre antennes pour les applications considérées de manière similaire à ce qui a été décrit pour les antennes des bandes GPS et PDC dans les figures précédentes. Comme précédemment, les lignes de neutralisation et de court-circuit pourront optionnellement être fixes, ou programmables notamment à l'aide de diodes (non représentées dans cette figure), afin d'obtenir plusieurs modes de fonctionnement à partir d'un même système antennaire selon l'invention.
  • La figure 8 illustre le cas où les antennes et leurs éléments rayonnants ont été multipliés. Dans l'exemple de la figure 8 ils sont au nombre de quatre : 810, 820, 830 et 840. Ils sont séparés dans ce cas par trois lignes de neutralisation 835, 837 et 839. Pour compléter les quatre antennes PIFA de cet exemple on retrouve, comme précédemment, les lignes d'alimentation des signaux RF : 811, 821, 831 et 841, constituant les ports d'entrée du système antennaire, ainsi que les lignes de court-circuit : 812, 822, 832 et 842. Comme ci-dessus, des lignes de court-circuit et de neutralisation programmables supplémentaires (non représentées) pourront optionnellement également être présentes dans cette structure.
  • Dans un autre mode de réalisation non illustré, au moins certains des éléments rayonnants sont reliés entre eux par plusieurs lignes de neutralisation.
  • Au vu de la description qui précède il apparaît clairement que l'invention propose une solution simple, fiable dans le temps et permettant notamment d'offrir les avantages suivants :
    • Possibilité d'activer des éléments de personnalisation (lignes de neutralisation et de court-circuit) très dissemblables qui peuvent permettre d'obtenir de grandes variations de comportement RF des antennes (fonctionnement en diversité, multi-port, multi-standard), et ceci même avec deux antennes seulement sur un même plan de masse et dans un encombrement réduit.
    • Possibilité de réaliser des sauts en fréquence, même pour des fréquences éloignées, de manière à couvrir de nombreuses applications possiblement très différentes. Les éléments de personnalisation peuvent être nombreux on peut obtenir potentiellement de nombreux modes de fonctionnement RF possiblement très différents.
    • Activation simple à l'aide d'une commande binaire (ON/OFF) d'éléments soigneusement précalculés qui ne risquent pas de varier dans le temps en fonction, par exemple, de l'environnement.
    • Coût moindre dans la mesure où on peut utiliser directement les signaux binaires venant directement du circuit intégré.
    • Compacité améliorée. A performances égales, sans ligne de neutralisation, il faudrait en effet que les éléments soient plus éloignés l'un de l'autre.
  • L'invention n'est pas limitée aux modes de réalisations précédemment décrits et s'étend à tous les modes de réalisation couverts par les revendications.
  • En particulier, bien que l'on ait expliqué ci-dessus les avantages liés à l'utilisation d'élément d'activation sous forme de diodes PIN pour sélectivement activer/désactiver les lignes de neutralisation, tous les modes de réalisation précédemment décrits peuvent utiliser des diodes varicap en alternative ou en combinaison avec les diodes PIN.
  • Par ailleurs, bien que sur les figures les éléments rayonnants soient identiques, l'invention couvre les modes de réalisation dans lesquels les éléments rayonnants d'un même système sont différents.

Claims (15)

  1. Système d'antennes multiple comportant au moins deux éléments rayonnants (110, 120), une première ligne de neutralisation (130) de couplage électromagnétique reliant entre eux les au moins deux éléments rayonnants (110, 120), au moins une ligne d'alimentation radio fréquence, RF, (211, 221) pour chaque élément rayonnant (110, 120),
    le système antennaire comprenant en outre :
    - au moins une deuxième ligne de neutralisation (230, 731, 733) de couplage électromagnétique reliant entre eux lesdits au moins deux éléments rayonnants (110, 120); et,
    - des éléments d'activation (245 et 246) d'au moins une partie des lignes de neutralisation (130, 230, 731, 733),
    - au moins une première ligne de court-circuit (212) reliant l'un des deux éléments rayonnants (110, 120) à un plan de masse (100) du système antennaire,
    - au moins une deuxième ligne de court-circuit (222) reliant l'autre des deux éléments rayonnants (110, 120) au plan de masse (100) du système antennaire, et
    - des éléments d'activation (241 à 244) d'au moins une partie des lignes de court-circuit (212, 222), les éléments d'activation (241 à 246) sont configurés pour sélectivement activer ou désactiver une partie au moins des lignes de neutralisation (130, 230, 731, 733) et des lignes de court-circuit (212, 222), de manière à ce qu'en fonction de leur activation/désactivation, les lignes de neutralisation (130, 230, 731, 733) et de court-circuit (212, 222) assurent une neutralisation maximale du couplage électromagnétique des éléments rayonnants (110, 120) pour une pluralité de fréquences.
  2. Système selon la revendication précédente dans lequel au moins une des lignes de neutralisation (130, 230, 731, 733) est exempte d'élément discret.
  3. Système selon l'une quelconque des revendications précédentes dans lequel lesdits éléments d'activation (241 à 246) sont configurés de manière à permettre l'activation simultanée d'au moins la première ligne de neutralisation (130) et la deuxième ligne de neutralisation (230, 731, 733).
  4. Système selon l'une quelconque des revendications précédentes dans lequel au moins une ligne de neutralisation (130, 230, 731, 733) est constituée d'une languette ou d'une ligne micro-ruban.
  5. Système selon l'une quelconque des revendications précédentes dans lequel les lignes de neutralisation (130, 230, 731, 733) sont configurées de manière à ce qu'en fonction de leur activation/désactivation elles assurent une neutralisation maximale du couplage électromagnétique des éléments rayonnants (110, 120) pour une pluralité de fréquences distinctes et séparées les unes des unes des autres d'au moins un facteur 1.1 et de préférence d'au moins un facteur 2.
  6. Système selon l'une quelconque des revendications précédentes dans lequel les éléments d'activation (241 à 246) sont configurés pour indépendamment activer ou désactiver les lignes de neutralisation (130, 230, 731, 733) et de court-circuit (212, 222) au plan de masse.
  7. Système selon l'une quelconque des revendications précédentes dans lequel au moins deux lignes de neutralisation (130, 230, 731, 733) reliant les deux mêmes éléments rayonnants (110, 120) présentent des longueurs et/ou des formes différentes.
  8. Système selon l'une quelconque des revendications précédentes dans lequel les éléments d'activation (241 à 246) sont des éléments d'activation binaires.
  9. Système selon l'une quelconque des revendications précédentes dans lequel au moins l'un des éléments d'activation (245, 246) est une diode PIN.
  10. Système selon l'une quelconque des revendications précédentes dans lequel au moins les éléments d'activation (245, 246) d'au moins une partie des lignes de neutralisation (130, 230, 731, 733) sont des diodes PIN polarisées à l'aide d'un signal continu, DC, superposé aux signaux RF véhiculé par le système pour sélectivement, soit rendre conductrice la diode PIN et permettre que l'élément rayonnant (110, 120) auquel elle est attachée devienne actif, soit rendre non conductrice la diode PIN de telle sorte que l'élément rayonnant (110, 120) auquel elle est attachée devienne inactif.
  11. Système selon l'une quelconque des revendications précédentes dans lequel les lignes de neutralisation (130, 731, 733) sont suspendues entre les éléments rayonnants (110, 120) et à distance du plan de masse (100).
  12. Système selon l'une quelconque des revendications 1 à 10 comprenant un empilement de couches superposées sans espace vide intermédiaire et dont une couche forme le plan de masse et dont une autre couche comprend les lignes de neutralisation et les éléments rayonnants.
  13. Système selon l'une quelconque des revendications précédentes comprenant au moins trois éléments rayonnants (810, 820, 830, 840) et une pluralité de lignes de neutralisation (835, 837, 839) reliant entre eux les éléments rayonnants (810, 820, 830, 840).
  14. Système selon l'une quelconque des revendications précédentes dans lequel au moins certains et de préférence tous les éléments rayonnants (110, 20, 810, 820, 830, 840) présentent chacun une forme générale de languette et présentent les dimensions suivantes :
    - une longueur comprise entre λ/2 et λ/6 et de préférence de λ/4,
    - une largeur comprise entre λ/10 et λ/20 et de préférence de λ/20,
    - une hauteur comprise entre λ/30 et λ/15 et de préférence comprise entre λ/28 et λ/20 ;
    λ étant la longueur d'onde du signal que l'élément rayonnant (110, 20, 810, 820, 830, 840) est destiné à recevoir/émettre.
  15. Appareil de télécommunication comprenant un système d'antennes multiple selon l'une quelconque des revendications précédentes et comprenant un récepteur et/ou un émetteur couplé audit système d'antennes multiple.
EP15723030.1A 2014-05-19 2015-05-19 Système d'antennes pour réduire le couplage électromagnétique entre antennes Active EP3146593B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454478A FR3021164B1 (fr) 2014-05-19 2014-05-19 Systeme d'antennes pour reduire le couplage electromagnetique entre antennes
PCT/EP2015/061025 WO2015177170A1 (fr) 2014-05-19 2015-05-19 Système d'antennes pour réduire le couplage électromagnétique entre antennes

Publications (2)

Publication Number Publication Date
EP3146593A1 EP3146593A1 (fr) 2017-03-29
EP3146593B1 true EP3146593B1 (fr) 2020-09-09

Family

ID=51570538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15723030.1A Active EP3146593B1 (fr) 2014-05-19 2015-05-19 Système d'antennes pour réduire le couplage électromagnétique entre antennes

Country Status (4)

Country Link
US (1) US10347984B2 (fr)
EP (1) EP3146593B1 (fr)
FR (1) FR3021164B1 (fr)
WO (1) WO2015177170A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394399A (zh) * 2017-06-23 2017-11-24 深圳市景程信息科技有限公司 频率可重构的双频缝隙mimo天线
TWM566918U (zh) * 2018-04-20 2018-09-11 明泰科技股份有限公司 Antenna architecture with low trace path
JP6678721B1 (ja) 2018-10-31 2020-04-08 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP6678722B1 (ja) * 2018-10-31 2020-04-08 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP6678723B1 (ja) * 2018-10-31 2020-04-08 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
CN112072303B (zh) * 2019-06-11 2021-07-06 苏州速感智能科技有限公司 一种解耦网络、安装解耦网络的方法和装置
JP7072725B2 (ja) * 2019-06-25 2022-05-20 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP7239513B2 (ja) * 2020-03-16 2023-03-14 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP7242598B2 (ja) * 2020-03-16 2023-03-20 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP7239514B2 (ja) * 2020-03-16 2023-03-14 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515625B1 (en) * 1999-05-11 2003-02-04 Nokia Mobile Phones Ltd. Antenna

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892482A (en) * 1996-12-06 1999-04-06 Raytheon Company Antenna mutual coupling neutralizer
JP2001057529A (ja) 1999-08-18 2001-02-27 Mitsubishi Electric Corp 無線装置
US7688275B2 (en) * 2007-04-20 2010-03-30 Skycross, Inc. Multimode antenna structure
US8170510B2 (en) * 2009-05-29 2012-05-01 Intel Mobile Communications GmbH Minimizing mutual coupling
JP2011035505A (ja) 2009-07-30 2011-02-17 Sony Ericsson Mobile Communications Ab アンテナ装置、放送受信装置および複合無線装置
KR101638798B1 (ko) 2010-01-21 2016-07-13 삼성전자주식회사 무선통신 시스템에서 다중 안테나 장치
WO2011119659A1 (fr) * 2010-03-23 2011-09-29 Rf Micro Devices, Inc. Réseau de neutralisation des antennes adaptatives
US8780002B2 (en) 2010-07-15 2014-07-15 Sony Corporation Multiple-input multiple-output (MIMO) multi-band antennas with a conductive neutralization line for signal decoupling
FR2968845B1 (fr) 2010-12-14 2013-01-11 Centre Nat Rech Scient Systeme d'antenne en diversite
TWI523324B (zh) * 2012-09-14 2016-02-21 宏碁股份有限公司 通訊裝置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515625B1 (en) * 1999-05-11 2003-02-04 Nokia Mobile Phones Ltd. Antenna

Also Published As

Publication number Publication date
FR3021164B1 (fr) 2018-05-11
FR3021164A1 (fr) 2015-11-20
WO2015177170A1 (fr) 2015-11-26
EP3146593A1 (fr) 2017-03-29
US10347984B2 (en) 2019-07-09
US20170084990A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
EP3146593B1 (fr) Système d'antennes pour réduire le couplage électromagnétique entre antennes
EP3669422B1 (fr) Antenne plaquée présentant deux modes de rayonnement différents à deux fréquences de travail distinctes, dispositif utilisant une telle antenne
EP1073143B1 (fr) Antenne imprimée bi-polarisation et réseau d'antennes correspondant
EP0890226B1 (fr) Station radio a antennes a polarisation circulaire
WO2008065311A2 (fr) Antenne multi secteurs
EP1589608A1 (fr) Antenne compacte RF
FR2826185A1 (fr) Antenne fil-plaque multifrequences
FR2709833A1 (fr) Instrument d'écoute large bande et bande basse pour applications spatiales.
FR2997236A1 (fr) Antenne fente compacte
EP2059973B1 (fr) Système multi-antenne à diversité de polarisation
EP1466384B1 (fr) Dispositif pour la reception et/ou l emission d ondes e lectromagnetiques a diversite de rayonnement
EP2095465A1 (fr) Antenne mono ou multi-frequences
FR2923658A1 (fr) Systeme de deux antennes isolees a une frequence de travail
FR3047846A1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
FR2831734A1 (fr) Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement
EP2879234B1 (fr) Appareil électronique avec antenne radio repliée dans un boîtier
EP3031097B1 (fr) Dispositif d'émission et/ou de réception de signaux radiofréquences
FR3013909A1 (fr) Cornet, antennaire elementaire, structure antennaire et procede de telecommunication associes
EP3942649B1 (fr) Antenne directive compacte, dispositif comportant une telle antenne
EP3641058B1 (fr) Antenne multibandes commutée et dispositif radiofréquence comprenant une telle antenne
FR2906937A1 (fr) Decouplage des reseaux d'elements rayonnants d'une antenne
EP1548877B1 (fr) Antenne à surface(s) rayonnante(s) plane(s) multibande et téléphone portable comportant une telle antenne
WO2008059161A1 (fr) Antenne agile en polarisation et frequence
EP4167378A1 (fr) Dispositif d'antennes radiofrequences isolees
Bizan Ultra Wideband Stacked Rectangular Dielectric Resonator Antenna

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200326

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STARAJ, ROBERT

Inventor name: JEANGEORGES, MICHAEL

Inventor name: DIALLO, ALIOU

Inventor name: LE THUC, PHILIPPE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1312712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015058747

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1312712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015058747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210519

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220519

Year of fee payment: 8

Ref country code: FR

Payment date: 20220524

Year of fee payment: 8

Ref country code: DE

Payment date: 20220511

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015058747

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230519