EP3146551B1 - Electrical switching apparatus for medium and high voltage - Google Patents

Electrical switching apparatus for medium and high voltage Download PDF

Info

Publication number
EP3146551B1
EP3146551B1 EP15733457.4A EP15733457A EP3146551B1 EP 3146551 B1 EP3146551 B1 EP 3146551B1 EP 15733457 A EP15733457 A EP 15733457A EP 3146551 B1 EP3146551 B1 EP 3146551B1
Authority
EP
European Patent Office
Prior art keywords
switching device
coating
filler
conductor elements
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15733457.4A
Other languages
German (de)
French (fr)
Other versions
EP3146551A1 (en
Inventor
Werner Hartmann
Steffen Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3146551A1 publication Critical patent/EP3146551A1/en
Application granted granted Critical
Publication of EP3146551B1 publication Critical patent/EP3146551B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/24Means for preventing discharge to non-current-carrying parts, e.g. using corona ring

Definitions

  • the invention relates to an electrical switching device, in particular for medium-voltage and / or high-voltage applications, comprising at least two contactable conductor elements that can be spaced apart by a movement device and a housing that defines a switching chamber and consists of an insulator that at least partially surrounds the conductor elements.
  • VEB vacuum circuit breakers
  • These are core components in power transmission and distribution, especially in their switching systems. They cover a large part of the medium-voltage switching applications, i.e. switching applications for example in the range from 1 kV to 52 kV, as well as a relevant part in low-voltage systems. Their use in high-voltage transmission systems, for example at voltages greater than 52 kV, is also increasing.
  • a VCB While a VCB is closed most of the time, thus providing contacting of the conductor elements, its main task is the interruption of currents in AC systems under nominal conditions, in particular for switching nominal currents on and off, or preferably for interrupting currents under fault conditions to break short circuits and protect the systems.
  • Other applications include pure switching of load currents using contacting conductor elements, which is mostly used in low and medium voltage systems.
  • the vacuum interruptor (VI, also vacuum interrupter) is the core element of a VCB.
  • a vacuum interrupter usually has a pair of contacts which are formed by corresponding conductor elements, at least one of which can be moved by means of a movement device in order to be able to bring about the open and closed states of the switching device.
  • one conductor element is moved axially with respect to the other fixed conductor element.
  • the contacts can be made on current-conducting bolts, in particular made of metal, which provide both current and heat conduction and the mechanical means for holding and / or moving the contacts.
  • a VI further comprises a vacuum-tight housing and the movement device mentioned and can also comprise a metal bellows which is connected on one side to the housing and on the other side to the moving conductor element, in particular the moving bolt.
  • the housing is essentially formed by an insulating component, that is to say an insulator, for example a ceramic tube which is connected to the conductor elements via connecting elements, metal caps or the like being used, for example, which terminate the insulating component in the axial direction to form the switching chamber .
  • a permanent high vacuum of less than 10 -8 Pa prevails within the sound chamber, which can be assured, for example, for operating periods of at least 30 years by appropriate design of the housing and the caps. The vacuum is necessary to assure the "make-break operations" and to ensure the insulation properties of the switching device in the open state.
  • the switching device If the switching device is in an open state, the nominal voltage of the system must be isolated on the one hand, and on the other hand also surge voltages of high amplitudes, for example can be triggered by a lightning strike in the system. If the switching device changes from the closed to the open state, and consequently the contacts of the conductor elements are spaced apart, nominal currents or short-circuit currents must be interrupted, which lead to the appearance of transient voltage peaks across the VI, which are significantly higher than the nominal AC voltages of the system.
  • High voltages in vacuum systems usually generate free electrons through field emission processes if the electric field strength is sufficiently high.
  • the acceleration of the electrons in the high electrical fields increases the kinetic energy of these electrons, for example up to energies that exceed a few tens or even hundreds of KeV.
  • the interaction of these high-energy electrons with the housing structures leads to the production of high-energy X-rays, which can leave the vacuum interrupter.
  • the fault current inside the vacuum interrupter is minimal and does not generate any significant X-ray radiation components, circumstances can arise, for example when temporary high-amplitude voltage peaks occur in which the resulting X-ray radiation generates free electrons on and / or near the outer surface of the insulator.
  • These electrons can be accelerated by the electrical fields on and near the insulator surface, disturb the electrical field distribution in sensitive areas and lead to gas breakdown, which leads to an error in the operation of the vacuum interrupter.
  • a shielding element in the contact area of the conductor elements, which may also be made of metal, for trapping free metal particles of the conductor elements, but which also has an influence on the field distribution within the switching chamber, but also on the insulator.
  • the insulator which is usually made of ceramic, must be able to withstand high voltages across its surface, even if X-rays and free electrons are present or, in some cases, even if the insulator is contaminated by dust particles that electrostatically attached to the outer surface of the insulator.
  • the insulator significantly adds to the cost of a vacuum interrupter (or other switching device) and also negatively affects the cost of other structural elements of the vacuum interrupter (or other switching device), it is necessary to optimize the insulator for maximum dielectric strength with a minimum size.
  • the document JP 2004 265801 A discloses a switching device according to the preamble of claim 1.
  • the invention is therefore based on the object of specifying a switching device with a housing comprising an insulator which, despite being simple to implement, reduces distortions in the electrical field in the region of the switching device due to surface charges.
  • an electrical switching device of the type mentioned which is characterized in that the housing has a resistive coating of a matrix material filled with a filler at least on one side, preferably on the outside, the surface resistance of the coating between 10 8 and 10 12 ⁇ at the operating field strength and the coating is conductively connected to the conductor elements, in particular by conductive caps closing the housing at the end and holding the conductor elements, the surface resistance being varied along the direction of extension of the conductor elements, the variation of the surface resistance being along the direction of extension is achieved by using different fillers and / or by varying the concentration of the single filler.
  • the property spectrum of the coating is preferably further improved in that the non-linear exponent describing the slope in the current-voltage characteristic of the coating is less than 6.
  • the invention presented here is based on a special coating, which is preferably applied to the outside of the insulator and can be applied before or during the manufacturing process of the housing, for example as a glazing process of the housing made of ceramic, or spraying on at the end of the manufacturing process or other suitable application processes so that a well-defined coating is created.
  • Suitable measures for setting the desired surface resistance can already be taken during production, after a skillful choice of the grain size of the filler or of a conductive material or a conductive coating of particles from which the filler consists can reduce the surface resistance, with an appropriate doping also an increase in the sheet resistance can be achieved.
  • a well-known example of a material combination that is suitable for such a coating is shown by DE 198 39 285 C1 described. Although this is about a smoldering protective tape, it has been shown that the combination there of a carrier material and an inorganic filler which has tin oxide is also suitable for producing a coating in the context of the present invention in order to achieve the desired properties of the coating .
  • variables influencing the resistance / conductivity of the coating are, in addition to their thickness, the amount of doping, the concentration of the filler, the conductivity of the filler itself and the particle size of the filler.
  • the coating is generally conductive, even if there is a high resistance, but this means that a fault current is deliberately impressed into the switching device in order to optimize its electrical field distribution under operating conditions.
  • the conductive coating of the present invention causes surface charges to dissipate that would otherwise accumulate on the insulator and result in distortion of the electrical field.
  • the coating according to the invention thus allows the field distribution on the surface of the insulator to be homogenized.
  • the coating is ohmic as much as possible, which means that it has as little dependency on the applied voltage (and thus on the applied electric field).
  • the non-linear exponent describing the slope in the current-voltage characteristic of the coating is less than 6. This occurs, for example, for the already mentioned tin oxide, SnO 2 , but also for the silicon carbide, SiC, which is also mentioned, and consequently also for the corresponding fillers.
  • the non-linearity exponent mentioned, which is usually referred to as ⁇ is known in connection with voltage-dependent resistors (varistors).
  • Known combinations of coating materials use materials whose varistor properties are more pronounced, for example fillers with zinc oxide, ZnO. This class of materials has highlighted switching characteristics, so it shows a strong non-linear behavior above a certain threshold value of the electric field. Within the scope of the application of the present invention, this would lead to a drastic disturbance of the field distribution as soon as even a portion of the coating exceeds this threshold value, which itself can already lead to a malfunction of the switching device.
  • Coatings that use graphite as part of the filler are also rather unsuitable for the application described here, since this is the disadvantage there is that the resistance to corrosion, in particular the resistance to partial discharge erosion, is significantly worse than in the materials described by the present invention; furthermore, the conductivity of such a coating would be significantly too high, so that the Joule heating occurring within the conductive coating would be too high.
  • the soft characteristics of the material composition serve to gradually reduce the surface charges that would otherwise accumulate and / or lead to electron avalanches near the surface, so that the coating according to the invention provides a strong one Distortion of the electrical field distribution is avoided. Electrons that are released by X-rays, charge accumulation or electron avalanches are thus quickly removed from the surface of the insulator, so that field distortions are largely avoided. As a result, the electrical field strength on the surface of the switching device, and consequently of the housing, becomes extremely homogeneous, which in turn results in a reduction in size, in particular the length, and other geometrical requirements for the switching device.
  • the switching device can be implemented inexpensively.
  • the filler is or comprises SnO 2 or silicon carbide SiC. If the conductivity properties of these substances are to be adapted by doping, a preferred embodiment of the invention provides that the filler is or comprises tin oxide doped with antimony and / or silicon carbide doped with aluminum. For example a doping of 0 to 15 mol% of antimony (Sb) in tin oxide (SnO 2 ) can be provided.
  • the matrix material can be selected from the group comprising elastomers, thermosets, thermoplastics and glass.
  • the various coating methods for producing the coating can be selected accordingly.
  • the matrix material can therefore be organic, for example as a polymer, or inorganic, for example as glass, in which the filler is introduced. It is expedient if the filler concentration is 10 to 90% by weight, in particular 40 to 60% by weight. The preferred range from 40 to 60% by weight corresponds to a volume fraction of about 20 to 30% by volume when tin oxide is used on mica platelets.
  • the thickness of the coating also influences how high the surface conductivity of the coating is; In addition, thicker coatings tend to have more stable surface resistance properties with certain material combinations. In the context of the present invention, coating thicknesses of 100 ⁇ m to 500 ⁇ m have proven to be expedient.
  • the filler can consist of particles with a grain size of 100 nm to 300 ⁇ m, preferably 1 ⁇ m to 50 ⁇ m. If inorganic particles in the micrometer range, for example silicon carbide, are used, a carrier material is not absolutely necessary, although it can also be expedient, in particular if a filler comprising tin oxide SnO 2 is used if the particles are platelets made of a carrier material, in particular mica , are those with the resistance material defining the resistance properties, in particular tin oxide SnO 2 or silicon carbide SiC, are coated, preferably with a layer thickness in the range from 10 to 100 nm.
  • mica platelets can be used which are coated with a layer of semiconducting material, in particular tin oxide.
  • An alternative to using such platelets is quartz flour.
  • the aspect ratio also plays a role in the properties of the coating. For example, in the case of platelets, an aspect ratio less than or equal to five can be set for width to height. If a filler with an emphasized aspect ratio, for example platelets, is used, it is, as already explained at the beginning, particularly advantageously possible to reach a range in which the surface resistance no longer depends significantly on the concentration of the filler, which reduces the reproducibility of the filler Coating increased.
  • a further possibility for adapting the surface resistance is a surface treatment of the particles, it being possible, for example, for the particles to be coated on the outside with an electrically conductive layer, in particular titanium oxide TiO 2 .
  • an electrically conductive layer in particular titanium oxide TiO 2 .
  • a conductive coating preferably with titanium oxide, can be expedient in order to produce the desired conductivity properties and thus surface resistances.
  • the use of background knowledge for local variation of the surface resistance leads to improved results, so that, for example, in Areas in which it is known that, for example due to other components of the switching device, high fields occur anyway, a lower surface resistance can be selected so that charges are distributed faster than in areas of smaller operating field strengths.
  • the invention provides that the surface resistance is varied along the direction of extension of the conductor elements, in particular depending on a change in the electrical field under operating conditions along the direction of extension of the conductor elements.
  • Such a variation of the resistance along the direction of extension is achieved by using different fillers and / or by varying the concentration of a single filler, for which suitable manufacturing techniques are already known in the prior art.
  • the variation of the surface resistance along the direction of extension can additionally be achieved by varying the thickness of the coating.
  • a certain course of the sheet resistance can be realized over the length of the switching device, be it by changing the thickness of the coating, by using different fillers with different conductivities, the respective concentration of which changes along the length of the switching device, or by varying the Concentration of the single filler over the length of the switching device.
  • the switching device can in particular be designed as a vacuum interrupter. It is now further provided that the vacuum interrupter in the contacting area of the conductor elements has a shielding element which influences the electrical field on the insulator and is arranged within the switching chamber and / or held between two housing parts of the housing Intercepting free metal particles of the conductor elements, the shield element (which can also be referred to as a vapor shield) frequently also causes field distortion, which can be significantly homogenized or compensated for by the use of the coating in the context of the present invention, and its effects, for example charge accumulations , can be avoided.
  • the shield element which can also be referred to as a vapor shield
  • the operating field strength may weaken in the area of the shielding element itself, that is to say behind or next to the shielding element, while larger operating field strengths may occur on the insulator after the length of the shielding element.
  • This knowledge can also be used to vary the surface resistance depending on the location, as has just been explained.
  • Fig. 1 shows in the form of a schematic diagram a first embodiment of a switching device 1 according to the invention, here a vacuum interrupter.
  • a housing 3 composed here of two tubular ceramic parts, that is to say insulators 2, is closed off by metal caps 4 and defines a switching chamber 5 into which two conductor elements 6 with contacts 7, for example designed as bolts, are guided.
  • the lower of the conductor elements 6 is designed to be movable according to the arrow 8 and the indicated movement device 9 and can be displaced in the direction of extension 10 of the conductor elements 6, which also forms the axis of symmetry of the switching device 1, in order to bring the contacts 7 into contact or at a distance, an open state of the switching device 1 being shown here.
  • the metal caps 4 are thus conductively connected to the conductor elements 6 on both sides.
  • a vacuum prevails within the switching chamber 5, in the present case with a pressure of ⁇ 10 -8 pa.
  • a metal shielding element 12 steam shield
  • this shield element 12 now also provides for a distortion of the electric field, so that a lower electric field would be present in operation in an area 13 behind the screen elements than in areas 14, where, for example, charges can accumulate and thus can cause further field distortions that could question the functionality of the switching device 1.
  • the outside of the insulator 2 (and therefore the housing 3 in the region of the insulator 2) is provided with a resistive coating 15 which covers the entire outer surface of the insulator 2 and makes conductive contact with the caps 4 on both sides of the switching device 1, for example by a solder connection or the like.
  • the resistive but conductive coating 15 therefore provides a conductive connection between the conductor elements 6, so that a small fault current arises, but is not essential due to the high resistance of the coating 15, in the present case in the range of 10 10 ⁇ contributes to field alignment and the removal of surface charges.
  • the coating 15 consists of a material composition which initially comprises a carrier material, in the present case glass, in which a filler is provided.
  • the filler is 50% by weight.
  • the filler is tin oxide, SnO 2 , which is applied as a resistance material to mica platelets which have an aspect ratio of width to height of less than 5 and have sizes in the range from 1 to 50 ⁇ m.
  • the thickness of the layer of resistance material on the plate is between 10 and 100 nm, the total thickness of the coating 15 here being 250 ⁇ m.
  • Exemplary embodiments are conceivable in which the resistance material is still doped, in the example described here of tin oxide (SnO 2 ) with antimony (Sb), the doping here being able to be achieved with 0 to 15 mol%.
  • tin oxide SnO 2
  • Sb antimony
  • Another embodiment provides that titanium oxide, TiO 2 , is additionally applied to the platelets if the conductivity is to be increased.
  • prior knowledge is incorporated in order to implement a variation of the surface resistance as a function of the position in the extension direction 10, that is to say the longitudinal direction of the switching device 1, so that, for example, a higher surface resistance can be present in the area 13 behind the shield element 12 than in FIG the areas 14.
  • Fig. 2 shown schematically, the surface resistance R ?? against the position 1 in the direction of extension 10 and the areas 13 and 14. It can be seen that the course 16 of the surface resistance in area 13 shows an increase.
  • Fig. 3 shows a second, slightly modified embodiment of a switching device 1 'according to the invention, again a vacuum interrupter.
  • a switching device 1 ' according to the invention, again a vacuum interrupter.
  • functionally identical components are provided with the same reference symbols.
  • the housing 3 again consists of two insulators 2, that is to say tubular ceramic parts, which in this case are spaced apart, however, since the shield element 12, which has a correspondingly larger radius, is held in the contacting area 13 between them.
  • the coating 15 extends along the outside of the insulators 2 and is not only conductively connected to the caps 4, but of course also correspondingly to the (metal) shield element 12.
  • silicon carbide can also be used as an alternative for tin oxide, aluminum (Al) being preferred as the doping material if doping is also to be provided there.

Landscapes

  • Contacts (AREA)
  • Thermistors And Varistors (AREA)
  • Laminated Bodies (AREA)

Description

Die Erfindung betrifft eine elektrische Schaltvorrichtung, insbesondere für Mittel- und/oder Hochspannungsanwendungen, aufweisend wenigstens zwei über eine Bewegungseinrichtung beabstandbare, kontaktierbare Leiterelemente und ein eine Schaltkammer definierendes Gehäuse aus einem Isolator, das die Leiterelemente wenigstens teilweise umgibt.The invention relates to an electrical switching device, in particular for medium-voltage and / or high-voltage applications, comprising at least two contactable conductor elements that can be spaced apart by a movement device and a housing that defines a switching chamber and consists of an insulator that at least partially surrounds the conductor elements.

Bei Mittel- und/oder Hochspannungsanwendungen, allgemein gesagt also bei Spannungen, die größer als 1 kV sind, werden aufgrund der hohen Spannungen komplexere Schaltvorrichtungen benötigt, die den auftretenden elektrischen Feldern standhalten können, möglichst resistent gegen Degradierungseffekte sind und auch Übersprungvorgänge außerhalb der eigentlichen Schaltkammer vermeiden sollen.In medium and / or high voltage applications, generally speaking at voltages that are greater than 1 kV, the high voltages require more complex switching devices that can withstand the electrical fields that occur, are as resistant to degradation effects as possible, and also skip processes outside the actual switching chamber should avoid.

Ein klassisches Beispiel hierfür sind die Vakuum-Leistungsschalter (vacuum circuit breakers - VCB), die Kernkomponenten bei der Energieübertragung und Verteilung sind, insbesondere in deren Schaltsystemen. Sie decken einen großen Teil der Mittelspannungs-Schaltanwendungen ab, also der Schaltanwendungen beispielsweise im Bereich von 1 kV bis 52 kV, sowie einen relevanten Teil in Niedrigspannungssystemen. Auch ihre Nutzung in Hochspannungs-Transmissionssystemen, beispielsweis also bei Spannungen größer als 52 kV, nimmt zu. Während ein VCB die meiste Zeit geschlossen ist, mithin eine Kontaktierung der Leiterelemente vorsieht, ist seine hauptsächliche Aufgabe die Unterbrechung von Strömen in Wechselstrom-Systemen bei Nennbedingungen, insbesondere also zum Anund Ausschalten von Nennströmen, oder aber bevorzugt zum Unterbrechen von Strömen bei Fehlerbedingungen, insbesondere um Kurzschlüsse zu unterbrechen und das Systemen zu schützen. Andere Anwendungen umfassen das reine Schalten von Lastströmen unter Verwendung von kontaktierenden Leiterelementen, das meist in Niedrig- und Mittelspannungssystemen verwendet wird.A classic example of this are the vacuum circuit breakers (VCB), which are core components in power transmission and distribution, especially in their switching systems. They cover a large part of the medium-voltage switching applications, i.e. switching applications for example in the range from 1 kV to 52 kV, as well as a relevant part in low-voltage systems. Their use in high-voltage transmission systems, for example at voltages greater than 52 kV, is also increasing. While a VCB is closed most of the time, thus providing contacting of the conductor elements, its main task is the interruption of currents in AC systems under nominal conditions, in particular for switching nominal currents on and off, or preferably for interrupting currents under fault conditions to break short circuits and protect the systems. Other applications include pure switching of load currents using contacting conductor elements, which is mostly used in low and medium voltage systems.

Der Vakuum-Interruptor (VI, auch Vakuumschaltröhre) ist das Kernelement eines VCB. Eine Vakuumschaltröhre weist meist ein Paar von Kontakten auf, die durch entsprechende Leiterelemente gebildet werden, von denen wenigstens eines mittels einer Bewegungseinrichtung bewegt werden kann, um die geöffneten und geschlossenen Zustände der Schaltvorrichtung herbeiführen zu können. Üblicherweise wird dabei ein Leiterelement axial bezüglich des anderen fixierten Leiterelements bewegt. Die Kontakte können auf stromleitenden, insbesondere aus Metall bestehenden Bolzen gefertigt sein, welche sowohl Strom- als auch Wärmeleitung zur Verfügung stellen sowie die mechanischen Mittel, um die Kontakte zu halten und/oder zu bewegen.The vacuum interruptor (VI, also vacuum interrupter) is the core element of a VCB. A vacuum interrupter usually has a pair of contacts which are formed by corresponding conductor elements, at least one of which can be moved by means of a movement device in order to be able to bring about the open and closed states of the switching device. Usually, one conductor element is moved axially with respect to the other fixed conductor element. The contacts can be made on current-conducting bolts, in particular made of metal, which provide both current and heat conduction and the mechanical means for holding and / or moving the contacts.

Ein VI umfasst ferner ein vakuumdichtes Gehäuse und die erwähnte Bewegungseinrichtung und kann zudem einen Metall-Balg umfassen, welcher auf einer Seite mit dem Gehäuse, auf der anderen Seite mit dem bewegten Leiterelement, insbesondere dem bewegten Bolzen, verbunden ist. Das Gehäuse wird im Wesentlichen durch ein isolierendes Bauteil, also einen Isolator, gebildet, beispielsweise ein keramisches Rohr, welches über Verbindungselemente mit den Leiterelementen verbunden ist, wobei beispielsweise Metallkappen oder dergleichen genutzt werden, die zur Bildung der Schaltkammer das isolierende Bauteil in axialer Richtung abschließen. Innerhalb der Schallkammer herrscht ein permanentes Hochvakuum kleiner als 10-8 Pa, welches beispielsweise für Betriebsperioden von wenigstens 30 Jahren durch entsprechende Ausgestaltung des Gehäuses und der Kappen zugesichert werden kann. Das Vakuum ist notwendig, um die "make-break-Operationen" zuzusichern und die Isolationseigenschaften der Schaltvorrichtung im offenen Zustand zu gewährleisten.A VI further comprises a vacuum-tight housing and the movement device mentioned and can also comprise a metal bellows which is connected on one side to the housing and on the other side to the moving conductor element, in particular the moving bolt. The housing is essentially formed by an insulating component, that is to say an insulator, for example a ceramic tube which is connected to the conductor elements via connecting elements, metal caps or the like being used, for example, which terminate the insulating component in the axial direction to form the switching chamber . A permanent high vacuum of less than 10 -8 Pa prevails within the sound chamber, which can be assured, for example, for operating periods of at least 30 years by appropriate design of the housing and the caps. The vacuum is necessary to assure the "make-break operations" and to ensure the insulation properties of the switching device in the open state.

Wenn die Schaltvorrichtung in einem offenen Zustand ist, muss zum einen die Nennspannung des Systems isoliert werden, zum anderen aber auch Stoßspannungen hoher Amplituden, die beispielsweise durch einen Blitzeinschlag in das System ausgelöst werden können. Wenn die Schaltvorrichtung vom geschlossenen in den offenen Zustand übergeht, mithin die Kontakte der Leiterelemente beabstandet werden, müssen Nennströme oder Kurzschlussströme unterbrochen werden, die zum Auftauchen vorübergehender Spannungsspitzen über den VI führen, die deutlich höher als die Nenn-Wechselspannungen des Systems sind.If the switching device is in an open state, the nominal voltage of the system must be isolated on the one hand, and on the other hand also surge voltages of high amplitudes, for example can be triggered by a lightning strike in the system. If the switching device changes from the closed to the open state, and consequently the contacts of the conductor elements are spaced apart, nominal currents or short-circuit currents must be interrupted, which lead to the appearance of transient voltage peaks across the VI, which are significantly higher than the nominal AC voltages of the system.

Hohe Spannungen in Vakuumsystemen erzeugen üblicherweise freie Elektronen durch Feldemissionsprozesse, wenn die elektrische Feldstärke hinreichend hoch ist. Die Beschleunigung der Elektronen in den hohen elektrischen Feldern erhöht die kinetische Energie dieser Elektronen, beispielsweise bis hin zu Energien, die einige zehn oder sogar hunderte von KeV überschreiten. Die Interaktion dieser hochenergetischen Elektronen mit den Gehäusestrukturen führt zur Produktion hochenergetischer Röntgenstrahlung, die die Vakuumschaltröhre verlassen kann. Während unter üblichen Bedingungen der Fehlerstrom innerhalb der Vakuumschaltröhre minimal ist und keine nennenswerten Röntgenstrahlungsanteile erzeugt, können Umstände auftreten, beispielsweise wenn vorübergehende Spannungsspitzen hoher Amplitude auftreten, in denen die entstehende Röntgenstrahlung freie Elektronen an und/oder nahe der äußeren Oberfläche des Isolators erzeugt. Diese Elektronen können durch die elektrischen Felder auf der Isolatoroberfläche und in ihrer Nähe beschleunigt werden, die elektrische Feldverteilung in empfindlichen Bereichen stören und zu Gasdurchschlag führen, was zu einem Fehler im Betrieb der Vakuumschaltröhre führt.High voltages in vacuum systems usually generate free electrons through field emission processes if the electric field strength is sufficiently high. The acceleration of the electrons in the high electrical fields increases the kinetic energy of these electrons, for example up to energies that exceed a few tens or even hundreds of KeV. The interaction of these high-energy electrons with the housing structures leads to the production of high-energy X-rays, which can leave the vacuum interrupter. While under normal conditions the fault current inside the vacuum interrupter is minimal and does not generate any significant X-ray radiation components, circumstances can arise, for example when temporary high-amplitude voltage peaks occur in which the resulting X-ray radiation generates free electrons on and / or near the outer surface of the insulator. These electrons can be accelerated by the electrical fields on and near the insulator surface, disturb the electrical field distribution in sensitive areas and lead to gas breakdown, which leads to an error in the operation of the vacuum interrupter.

Auch in Fällen, in denen keine feststellbare Röntgenstrahlung existiert, beispielsweise in Niedrig- und Mittelspannungsanwendungen, können die hohen elektrischen Felder in kritischen Bereichen der Vakuumschaltröhre, beispielsweise an der Verbindung des Isolators und der Metallkappen durch Löten (Hartlöten), zum Ausstoß von Elektronen führen, was zu einer nennenswerten Menge an Feldemission führt. Auch diese Elektronen können lokal das elektrische Feld stören und zu weiterer Feldverstärkung und/oder zur Ladungsvervielfachung durch Elektronenlawinen führen, welche wiederum den Verlust der Isolationsstärke und/oder des Spannungswiderstands der Vakuumschaltröhre zur Folge haben können.Even in cases where there is no detectable X-ray radiation, e.g. in low and medium voltage applications, the high electrical fields in critical areas of the vacuum interrupter, e.g. at the connection of the insulator and the metal caps by soldering (brazing), can lead to the emission of electrons, which leads to a significant amount of field emission. These electrons can also locally disturb the electric field and others Field strengthening and / or lead to the multiplication of charges by electron avalanches, which in turn can result in the loss of the insulation strength and / or the voltage resistance of the vacuum interrupter.

Auf den inneren Oberflächen der Vakuumschaltröhre existieren ähnliche Herausforderungen, während ein zusätzliches Problem gelöst werden muss. Durch die Unterbrechung des Stroms (Nennstrom wie auch Kurzschlussstrom) werden Teile des Kontaktmaterials verdampft und innerhalb der Schaltkammer als heißer Metalldampf verteilt. Dieser Metalldampf kann sich auf der Isolatoroberfläche absetzen und baut mit der Zeit eine leitfähige Metallschicht auf. Diese Metallschicht, auch wenn sie nur schwach leitfähig ist, kann ebenso das elektrische Feld außerhalb und innerhalb der Vakuumschaltröhre stören und mithin über die Zeit die Spannungswiderstandsfähigkeit der Vakuumschaltröhre verschlechtern. Zwar wurde in diesem Kontext vorgeschlagen, im Kontaktierungsbereich der Leiterelemente ein Schirmelement, welches ebenso aus Metall bestehen kann, zum Abfangen freier Metallpartikel der Leiterelemente vorzusehen, welches jedoch auch einen Einfluss auf die Feldverteilung innerhalb der Schaltkammer, aber auch am Isolator hat.Similar challenges exist on the inner surfaces of the vacuum interrupter while an additional problem must be solved. Due to the interruption of the current (nominal current as well as short-circuit current), parts of the contact material are evaporated and distributed as hot metal vapor within the switching chamber. This metal vapor can settle on the insulator surface and builds up a conductive metal layer over time. This metal layer, even if it is only weakly conductive, can also disrupt the electrical field outside and inside the vacuum interrupter and therefore deteriorate the voltage resistance of the vacuum interrupter over time. In this context, it was proposed to provide a shielding element in the contact area of the conductor elements, which may also be made of metal, for trapping free metal particles of the conductor elements, but which also has an influence on the field distribution within the switching chamber, but also on the insulator.

Aus den genannten Gründen muss der meist aus Keramik realisierte Isolator in der Lage sein, hohen Spannungen über seine Oberfläche Stand zu halten, auch wenn Röntgenstrahlung und freie Elektronen vorliegen oder, in einigen Fällen, sogar dann, wenn der Isolator durch Staubpartikel verschmutzt ist, die elektrostatisch an der äußeren Oberfläche des Isolators angelagert werden. Nachdem der Isolator nennenswert zu den Kosten einer Vakuumschaltröhre (oder sonstigen Schaltvorrichtungen) beiträgt und auch die Kosten anderer struktureller Elemente der Vakuumschaltröhre (oder sonstigen Schaltvorrichtungen) negativ beeinflusst, ist es notwendig, den Isolator im Hinblick auf maximale dielektrische Stärke bei minimaler Größe zu optimieren.For the reasons mentioned, the insulator, which is usually made of ceramic, must be able to withstand high voltages across its surface, even if X-rays and free electrons are present or, in some cases, even if the insulator is contaminated by dust particles that electrostatically attached to the outer surface of the insulator. After the insulator significantly adds to the cost of a vacuum interrupter (or other switching device) and also negatively affects the cost of other structural elements of the vacuum interrupter (or other switching device), it is necessary to optimize the insulator for maximum dielectric strength with a minimum size.

Diese Problemstellung wurde bislang dadurch gelöst, dass die innere und die äußere Geometrie der Vakuumschaltröhre derart gewählt wurde, dass die erwarteten elektrischen Feldstärken nicht empirisch abgeleitete Grenzen für eine bestimmte Geometrie der Vakuumschaltröhre überschreiten. Nachdem diese Begrenzungen nicht präzise vorhergesagt werden können, insbesondere für Tripelpunkt-Bereiche und scharfe Metallkanten, hängt die Auslegung von Vakuumschaltröhren nicht nur von Berechnungen zum elektrischen Feld während des Entwicklungsprozesses ab, sondern benötigt auch eine große Menge empirischer Optimierung. Dies bezieht sich auch auf den Aufbau von metallischen Schichten aus den inneren Oberflächen des Isolators, welche, wie bereits erwähnt, heute üblicherweise durch Verwendung von Schirmstrukturen (Schirmelemente) innerhalb der Schaltkammer vermieden werden sollen. Dennoch können heutzutage die Ablagerungen des Metalldampfes und ihr Einfluss auf die dielektrische Stärke des Vakuuminteruptors nicht quantitativ in einer hinreichend genauen Art vorhergesagt werden. Ferner ist anzumerken, dass die genannten Designprozesse allesamt zu einer Reduzierung der Isolationseigenschaften der Außenstruktur der Vakuumschaltröhre deutlich unter die dielektrische Stärke von Luft oder anderen Gasen, die die Vakuumschaltröhre umgeben, führt, so dass Isolatorgrößen (Länge, Durchmesser) benötigt werden, die hinsichtlich der Kosten und des Bauraums nicht optimal sind. Die Hinzufügung von Schirmelementen bezüglich der Metalldämpfe führt zu Verzerrungen der im Betrieb auftretenden elektrischen Felder am Isolator, was zu starken Feldern an bestimmten Stellen und mithin zu einer Überbelastung des Isolators führen kann, die durch sich dort aufbauende Ladungen entstehen. Doch auch andere Ursachen führen, wie bereits dargestellt wurde, zu derartig lokalen hohen Feldern am Isolator des Gehäuses der Vakuumschaltröhre, wobei die hier dargelegten Probleme auch bei anderen Schaltvorrichtungen neben der beispielhaft genannten Vakuumschaltröhre gelten.This problem has been solved so far by selecting the inner and outer geometry of the vacuum interrupter in such a way that the expected electric field strengths do not exceed empirically derived limits for a specific geometry of the vacuum interrupter. Since these limitations cannot be predicted precisely, especially for triple point areas and sharp metal edges, the design of vacuum interrupters not only depends on calculations for the electrical field during the development process, but also requires a large amount of empirical optimization. This also relates to the build-up of metallic layers from the inner surfaces of the insulator, which, as already mentioned, are usually to be avoided today by using shield structures (shield elements) within the switching chamber. Nevertheless, the deposits of metal vapor and their influence on the dielectric strength of the vacuum interrupter cannot be predicted quantitatively in a sufficiently precise manner today. It should also be noted that the design processes mentioned all lead to a reduction in the insulation properties of the outer structure of the vacuum interrupter well below the dielectric strength of air or other gases which surround the vacuum interrupter, so that isolator sizes (length, diameter) are required which are necessary with regard to the Costs and space are not optimal. The addition of shielding elements with regard to the metal vapors leads to distortion of the electrical fields occurring during operation at the insulator, which can lead to strong fields at certain points and thus to an overload of the insulator, which is caused by the charges that build up there. However, other causes, as has already been shown, lead to such local high fields on the insulator of the housing of the vacuum interrupter, the problems described here also applying to other switching devices in addition to the vacuum interrupter mentioned as an example.

Das Dokument JP 2004 265801 A offenbart eine Schaltvorrichtung gemäß dem Oberbegriff des Anspruchs 1.The document JP 2004 265801 A discloses a switching device according to the preamble of claim 1.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Schaltvorrichtung mit einem einen Isolator umfassenden Gehäuse anzugeben, die trotz einfacher Realisierbarkeit Verzerrungen des elektrischen Feldes im Bereich der Schaltvorrichtung aufgrund von Oberflächenladungen reduziert.The invention is therefore based on the object of specifying a switching device with a housing comprising an insulator which, despite being simple to implement, reduces distortions in the electrical field in the region of the switching device due to surface charges.

Zur Lösung dieser Aufgabe ist eine elektrische Schaltvorrichtung der eingangs genannten Art vorgesehen, die sich dadurch auszeichnet, dass das Gehäuse wenigstens auf einer Seite, bevorzugt auf der Außenseite, eine resistive Beschichtung aus einem mit einem Füllstoff gefüllten Matrixmaterial aufweist, wobei der Flächenwiderstand der Beschichtung zwischen 108 und 1012 Ω bei Betriebsfeldstärke liegt und die Beschichtung leitend mit den Leiterelementen verbunden ist, insbesondere durch das Gehäuse endseitig schließende, die Leiterelemente halternde, leitende Kappen, wobei der Flächenwiderstand entlang der Erstreckungsrichtung der Leiterelemente variiert ist, wobei die Variation des Flächenwiderstandes entlang der Erstreckungsrichtung durch Verwendung unterschiedlicher Füllstoffe und/oder durch Variation der Konzentration des einzigen Füllstoffes erreicht ist.To solve this problem, an electrical switching device of the type mentioned is provided, which is characterized in that the housing has a resistive coating of a matrix material filled with a filler at least on one side, preferably on the outside, the surface resistance of the coating between 10 8 and 10 12 Ω at the operating field strength and the coating is conductively connected to the conductor elements, in particular by conductive caps closing the housing at the end and holding the conductor elements, the surface resistance being varied along the direction of extension of the conductor elements, the variation of the surface resistance being along the direction of extension is achieved by using different fillers and / or by varying the concentration of the single filler.

Dabei wird das Eigenschaftsspektrum der Beschichtung bevorzugt noch dadurch verbessert, dass der die Steigung in der Strom-Spannungskennlinie der Beschichtung beschreibende nichtlineare Exponent kleiner als 6 ist. Die hier vorgestellte Erfindung basiert auf einer speziellen Beschichtung, die bevorzugt außen auf den Isolator aufgebracht wird und vor oder während dem Herstellungsprozess des Gehäuses aufgebracht werden kann, beispielsweise als ein Lasierprozess des aus Keramik bestehenden Gehäuses, oder zum Ende des Herstellungsprozesses durch eine Eintauchbehandlung, Aufsprühen oder andere geeignete Aufbringprozesse, so dass eine wohldefinierte Beschichtung entsteht.The property spectrum of the coating is preferably further improved in that the non-linear exponent describing the slope in the current-voltage characteristic of the coating is less than 6. The invention presented here is based on a special coating, which is preferably applied to the outside of the insulator and can be applied before or during the manufacturing process of the housing, for example as a glazing process of the housing made of ceramic, or spraying on at the end of the manufacturing process or other suitable application processes so that a well-defined coating is created.

Zur Einstellung des gewünschten Flächenwiderstands können bereits bei der Herstellung geeignete Maßnahmen getroffen werden, nachdem über eine geschickte Wahl der Korngröße des Füllstoffs bzw. eines Leitstoffs bzw. eine leitende Beschichtung von Teilchen, aus denen der Füllstoff besteht, eine Erniedrigung des Flächenwiderstands erreicht werden kann, wobei über eine geeignete Dotierung auch eine Erhöhung des Flächenwiderstands erreicht werden kann.Suitable measures for setting the desired surface resistance can already be taken during production, after a skillful choice of the grain size of the filler or of a conductive material or a conductive coating of particles from which the filler consists can reduce the surface resistance, with an appropriate doping also an increase in the sheet resistance can be achieved.

Ein bekanntes Beispiel für eine Materialkombination, die im Rahmen einer solchen Beschichtung geeignet ist, wird durch DE 198 39 285 C1 beschrieben. Dort geht es zwar um ein Glimmschutzband, jedoch hat sich gezeigt, dass die dortige Kombination von einem Trägermaterial und einem anorganischen Füllstoff, der Zinnoxid aufweist, auch zur Herstellung einer Beschichtung im Rahmen der vorliegenden Erfindung geeignet ist, um die gewünschten Eigenschaften der Beschichtung zu erreichen.A well-known example of a material combination that is suitable for such a coating is shown by DE 198 39 285 C1 described. Although this is about a smoldering protective tape, it has been shown that the combination there of a carrier material and an inorganic filler which has tin oxide is also suitable for producing a coating in the context of the present invention in order to achieve the desired properties of the coating .

Wie bereits erwähnt wurde, sind den Widerstand/die Leitfähigkeit der Beschichtung beeinflussende Größen neben ihrer Dicke die Dotierungsmenge, die Konzentration des Füllstoffs, die Leitfähigkeit des Füllstoffs selbst und die Teilchengröße des Füllstoffs. Die Beschichtung ist also insgesamt, wenn auch bei hohem Widerstand, grundsätzlich leitfähig, was aber dazu führt, dass gezielt ein Fehlerstrom in die Schaltvorrichtung eingeprägt wird, um dessen elektrische Feldverteilung bei Betriebsbedingungen zu optimieren. Die leitfähige Beschichtung der vorliegenden Erfindung führt dazu, dass Oberflächenladungen zerstreut werden, die sich anderweitig auf dem Isolator ansammeln würden und eine Verzerrung des elektrischen Feldes zur Folge hätten. Unter geschickter Wahl der Eigenschaften, wie bereits angedeutet, entsteht eine äußerst stabile, gegen Korrosion resistente und reproduzierbare leitfähige Schicht mit einem gewünschten Flächenwiderstand.As already mentioned, variables influencing the resistance / conductivity of the coating are, in addition to their thickness, the amount of doping, the concentration of the filler, the conductivity of the filler itself and the particle size of the filler. Overall, the coating is generally conductive, even if there is a high resistance, but this means that a fault current is deliberately impressed into the switching device in order to optimize its electrical field distribution under operating conditions. The conductive coating of the present invention causes surface charges to dissipate that would otherwise accumulate on the insulator and result in distortion of the electrical field. With a skilful choice of properties, as already indicated, an extremely stable, corrosion-resistant and reproducible conductive layer with a desired surface resistance is created.

Die erfindungsgemäße Beschichtung erlaubt also eine Homogenisierung der Feldverteilung auf der Oberfläche des Isolators. Dabei ist die Beschichtung möglichst weitgehend ohmsch, das bedeutet, weist eine möglichst geringe Abhängigkeit von der anliegenden Spannung (und somit dem anliegenden elektrischen Feld) auf. Wie bereits dargelegt wurde, ist es besonders bevorzugt, wenn der die Steigung in der Strom-Spannungskennlinie der Beschichtung beschreibende nicht lineare Exponent kleiner als 6 ist. Dies tritt beispielsweise für das bereits genannte Zinnoxid, SnO2, zu, aber auch für das weiterhin genannte Siliziumcarbid, SiC, mithin auch für die entsprechenden Füllstoffe. Der genannte Nichtlinearitätsexponent, der meist als α bezeichnet wird, ist im Zusammenhang mit spannungsabhängigen Widerständen (Varistoren) bekannt. Bei Varistoren ist aus der Spannungs-Stromkennlinie bekannt, dass der Widerstand mit steigender Spannung abnimmt, was durch den Nichtlinearitätsexponenten α beschrieben wird, wie sich aus der definierenden Gleichung I = KU α

Figure imgb0001
ergibt, worin I der Strom ist, U die Spannung, K eine geometrieabhängige Konstante und α der Nichtlinearitätsexponent.The coating according to the invention thus allows the field distribution on the surface of the insulator to be homogenized. The coating is ohmic as much as possible, which means that it has as little dependency on the applied voltage (and thus on the applied electric field). As already explained, it is particularly preferred if the non-linear exponent describing the slope in the current-voltage characteristic of the coating is less than 6. This occurs, for example, for the already mentioned tin oxide, SnO 2 , but also for the silicon carbide, SiC, which is also mentioned, and consequently also for the corresponding fillers. The non-linearity exponent mentioned, which is usually referred to as α, is known in connection with voltage-dependent resistors (varistors). In the case of varistors it is known from the voltage-current characteristic curve that the resistance decreases with increasing voltage, which is described by the non-linearity exponent α, as can be seen from the defining equation I. = KU α
Figure imgb0001
gives, where I is the current, U is the voltage, K is a geometry-dependent constant and α is the non-linearity exponent.

Bekannte Beschichtungsmaterialkombinationen nutzen Materialien, deren Varistor-Eigenschaften deutlich stärker hervortreten, beispielsweise Füllstoffe mit Zinkoxid, ZnO. Diese Klasse von Materialien hat hervorgehobene Schaltcharakteristiken, zeigt also ein starkes nichtlineares Verhalten oberhalb eines bestimmten Schwellwerts des elektrischen Feldes. Im Rahmen der Anwendung der vorliegenden Erfindung würde dies zu einer drastischen Störung der Feldverteilung führen, sobald auch nur ein Anteil der Beschichtung diesen Schwellwert überschreitet, was bereits selbst zu einer Fehlfunktion der Schaltvorrichtung führen kann. Auch Beschichtungen, die Graphit als Teil des Füllstoffs verwenden, sind für die hier beschriebene Anwendung eher ungeeignet, da hier der Nachteil besteht, dass die Resistenz gegen Korrosion, insbesondere die Resistenz gegen Teilentladungserosion, deutlich schlechter ist als bei den durch die vorliegende Erfindung beschriebenen Materialien; ferner wäre die Leitfähigkeit einer solchen Beschichtung deutlich zu hoch, so dass die auftretende Joulesche Erwärmung innerhalb der leitfähigen Beschichtung zu hoch würde.Known combinations of coating materials use materials whose varistor properties are more pronounced, for example fillers with zinc oxide, ZnO. This class of materials has highlighted switching characteristics, so it shows a strong non-linear behavior above a certain threshold value of the electric field. Within the scope of the application of the present invention, this would lead to a drastic disturbance of the field distribution as soon as even a portion of the coating exceeds this threshold value, which itself can already lead to a malfunction of the switching device. Coatings that use graphite as part of the filler are also rather unsuitable for the application described here, since this is the disadvantage there is that the resistance to corrosion, in particular the resistance to partial discharge erosion, is significantly worse than in the materials described by the present invention; furthermore, the conductivity of such a coating would be significantly too high, so that the Joule heating occurring within the conductive coating would be too high.

Im Gegensatz zu diesen Beispielen dienen die weichen Charakteristiken der Materialzusammensetzung, wie sie die vorliegende Erfindung beansprucht, einer graduellen Reduzierung der Oberflächenladungen, die sich anderweitig ansammeln würden und/oder zu Elektronenlawinen nahe der Oberfläche führen würden, so dass mithin durch die erfindungsgemäße Beschichtung eine starke Verzerrung der elektrischen Feldverteilung vermieden wird. Elektronen, die durch Röntgenstrahlung, Ladungsakkumulation oder Elektronenlawinen frei werden, werden somit schnell von der Oberfläche des Isolators entfernt, so dass Feldverzerrungen weitgehend vermieden werden. Mithin wird die elektrische Feldstärke auf der Oberfläche der Schaltvorrichtung, mithin des Gehäuses, äußerst homogen, woraus wiederum eine Reduzierung der Größe, insbesondere der Länge, und sonstiger Geometrieanforderungen an die Schaltvorrichtung resultiert. Die Schaltvorrichtung lässt sich kostengünstig realisieren.In contrast to these examples, the soft characteristics of the material composition, as claimed by the present invention, serve to gradually reduce the surface charges that would otherwise accumulate and / or lead to electron avalanches near the surface, so that the coating according to the invention provides a strong one Distortion of the electrical field distribution is avoided. Electrons that are released by X-rays, charge accumulation or electron avalanches are thus quickly removed from the surface of the insulator, so that field distortions are largely avoided. As a result, the electrical field strength on the surface of the switching device, and consequently of the housing, becomes extremely homogeneous, which in turn results in a reduction in size, in particular the length, and other geometrical requirements for the switching device. The switching device can be implemented inexpensively.

Wie dargelegt wurde, werden hierbei gezielt Materialzusammenstellungen eingesetzt, die nicht nur einfach verarbeitbar sind, sondern auch durch einfache Modifikationen auf bestimmte gewünschte Flächenwiderstandswerte einstellbar sind. Dabei ist es, wie schon gesagt, bevorzugt, wenn der Füllstoff Zinnoxid SnO2 oder Siliziumcarbid SiC ist oder umfasst. Sollen die Leitfähigkeitseigenschaften dieser Substanzen durch eine Dotierung angepasst werden, sieht eine bevorzugte Ausgestaltung der Erfindung vor, dass der Füllstoff mit Antimon dotiertes Zinnoxid und/oder mit Aluminium dotiertes Siliziumcarbid ist oder umfasst. Dabei kann beispielsweise eine Dotierung von 0 bis 15 mol% Antimon (Sb) in Zinnoxid (SnO2) vorgesehen sein.As has been explained, material combinations are used here that are not only easy to process, but can also be adjusted to certain desired surface resistance values by simple modifications. As already mentioned, it is preferred if the filler is or comprises SnO 2 or silicon carbide SiC. If the conductivity properties of these substances are to be adapted by doping, a preferred embodiment of the invention provides that the filler is or comprises tin oxide doped with antimony and / or silicon carbide doped with aluminum. For example a doping of 0 to 15 mol% of antimony (Sb) in tin oxide (SnO 2 ) can be provided.

Es sei an dieser Stelle noch angemerkt, dass sich diese bevorzugten Materialkombinationen besonders für Betriebsfeldstärken im Bereich des Isolators von 100 bis 1200 V/mm eignen.At this point it should also be noted that these preferred material combinations are particularly suitable for operating field strengths in the range of the isolator from 100 to 1200 V / mm.

Das Matrixmaterial kann aus der Gruppe umfassend Elastomere, Duroplasten, Thermoplasten und Glas gewählt werden. Entsprechend können die verschiedenen Beschichtungsverfahren zur Herstellung der Beschichtung gewählt werden. Das Matrixmaterial kann mithin organisch, beispielsweise als ein Polymer, oder anorganisch, beispielsweise als Glas, ausgebildet sein, in dem der Füllstoff eingebracht ist. Dabei ist es zweckmäßig, wenn die Füllstoffkonzentration 10 bis 90 Gew.-%, insbesondere 40 bis 60 Gew.-%, beträgt. Der bevorzugte Bereich von 40 bis 60 Gew.-% entspricht dabei bei Verwendung von Zinnoxid auf Glimmerplättchen ("platelets") einem Volumenanteil von etwa 20 bis 30 Vol.-%.The matrix material can be selected from the group comprising elastomers, thermosets, thermoplastics and glass. The various coating methods for producing the coating can be selected accordingly. The matrix material can therefore be organic, for example as a polymer, or inorganic, for example as glass, in which the filler is introduced. It is expedient if the filler concentration is 10 to 90% by weight, in particular 40 to 60% by weight. The preferred range from 40 to 60% by weight corresponds to a volume fraction of about 20 to 30% by volume when tin oxide is used on mica platelets.

Auch die Dicke der Beschichtung hat dabei einen Einfluss darauf, wie hoch die Flächenleitfähigkeit der Beschichtung ist; zudem tendieren dickere Beschichtungen bei bestimmten Materialkombinationen zu stabileren Flächenwiderstandseigenschaften. Im Rahmen der vorliegenden Erfindung haben sich Dicken der Beschichtung von 100 µm bis 500 µm als zweckmäßig erwiesen.The thickness of the coating also influences how high the surface conductivity of the coating is; In addition, thicker coatings tend to have more stable surface resistance properties with certain material combinations. In the context of the present invention, coating thicknesses of 100 μm to 500 μm have proven to be expedient.

Der Füllstoff kann aus Teilchen einer Korngröße von 100 nm bis 300 µm, bevorzugt 1 µm bis 50 µm, bestehen. Werden im Mikrometerbereich liegende anorganische Teilchen, beispielsweise Siliziumcarbid, verwendet, ist ein Trägermaterial nicht zwangsläufig erforderlich, wobei es jedoch auch zweckmäßig sein kann, insbesondere dann, wenn ein Zinnoxid SnO2 umfassender Füllstoff verwendet wird, wenn die Teilchen Plättchen aus einem Trägermaterial, insbesondere Glimmer, sind, die mit dem die Widerstandseigenschaften definierenden Widerstandsmaterial, insbesondere Zinnoxid SnO2 oder Siliziumcarbid SiC, beschichtet sind, bevorzugt mit einer Schichtdicke im Bereich von 10 bis 100 nm. Es können mithin Glimmerplättchen (Mica-Platelets) verwendet werden, die mit einer Schicht von halbleitendem Material, insbesondere Zinnoxid, überzogen sind. Eine Alternative zur Verwendung solcher Plättchen ist Quarzmehl. Insbesondere bei Verwendung der Plättchen spielt bei den Eigenschaften der Beschichtung auch das Seitenverhältnis eine Rolle. Beispielsweise kann bei Plättchen ein Seitenverhältnis kleiner oder gleich Fünf für Breite zu Höhe angesetzt werden. Wird ein Füllstoff mit einen betonten Seitenverhältnis, beispielsweise also Plättchen, verwendet, ist es, wie eingangs bereits dargelegt wurde, insbesondere günstig möglich, einen Bereich zu erreichen, in dem der Flächenwiderstand nicht länger deutlich von der Konzentration des Füllstoffs abhängt, was die Reproduzierbarkeit der Beschichtung erhöht.The filler can consist of particles with a grain size of 100 nm to 300 μm, preferably 1 μm to 50 μm. If inorganic particles in the micrometer range, for example silicon carbide, are used, a carrier material is not absolutely necessary, although it can also be expedient, in particular if a filler comprising tin oxide SnO 2 is used if the particles are platelets made of a carrier material, in particular mica , are those with the resistance material defining the resistance properties, in particular tin oxide SnO 2 or silicon carbide SiC, are coated, preferably with a layer thickness in the range from 10 to 100 nm. Accordingly, mica platelets (mica platelets) can be used which are coated with a layer of semiconducting material, in particular tin oxide. An alternative to using such platelets is quartz flour. Especially when using the platelets, the aspect ratio also plays a role in the properties of the coating. For example, in the case of platelets, an aspect ratio less than or equal to five can be set for width to height. If a filler with an emphasized aspect ratio, for example platelets, is used, it is, as already explained at the beginning, particularly advantageously possible to reach a range in which the surface resistance no longer depends significantly on the concentration of the filler, which reduces the reproducibility of the filler Coating increased.

Eine weitere Möglichkeit zur Anpassung des Flächenwiderstands, hier konkret zur Erhöhung der Leitfähigkeit, ist eine Oberflächenbehandlung der Teilchen, wobei beispielsweise vorgesehen sein kann, dass die Teilchen nach außen von einer elektrisch leitenden Schicht, insbesondere Titanoxid TiO2, überzogen sind. Gerade bei kleineren Korngrößen und/oder geringeren Konzentrationen kann eine derartige leitfähige Beschichtung, bevorzugt mit Titanoxid, zweckmäßig sein, um die gewünschten Leitfähigkeitseigenschaften und somit Flächenwiderstände herzustellen.A further possibility for adapting the surface resistance, here specifically for increasing the conductivity, is a surface treatment of the particles, it being possible, for example, for the particles to be coated on the outside with an electrically conductive layer, in particular titanium oxide TiO 2 . Particularly with smaller grain sizes and / or lower concentrations, such a conductive coating, preferably with titanium oxide, can be expedient in order to produce the desired conductivity properties and thus surface resistances.

Erfindungsgemäß führt die Nutzung von Hintergrundwissen zur lokalen Variation des Flächenwiderstands zu verbesserten Resultaten, so dass beispielsweise in Bereichen, in denen bekannt ist, dass, beispielsweise aufgrund anderer Bestandteile der Schaltvorrichtung, ohnehin hohe Felder auftreten, ein niedrigerer Flächenwiderstand gewählt werden kann, damit sich Ladungen schneller verteilen als in Bereichen kleinerer Betriebsfeldstärken. Nachdem Schaltvorrichtungen meist symmetrisch um die Erstreckungsrichtung der Leiterelemente (und mithin auch die Bewegungsrichtung des wenigstens einen bewegbaren Leiterelements) ausgestaltet sind, sieht die Erfindung vor, dass der Flächenwiderstand entlang der Erstreckungsrichtung der Leiterelemente variiert ist, insbesondere in Abhängigkeit einer Veränderung des elektrischen Feldes bei Betriebsbedingungen entlang der Erstreckungsrichtung der Leiterelemente. Eine derartige Variation des Widerstands entlang der Erstreckungsrichtung wird durch Verwendung unterschiedlicher Füllstoffe und/oder durch Variation der Konzentration eines einzigen Füllstoffs erreicht, meiden, wofür geeignete Herstellungstechniken im Stand der Technik bereits bekannt sind. Die Variation des Flächenwiderstandes entlang der Erstreckungsrichtung kann zusätzlich durch eine Variation der Dicke der Beschichtung erreicht werden. So kann beispielsweise über die Länge der Schaltvorrichtung ein bestimmter Verlauf des Flächenwiderstandes realisiert werden, sei es durch Veränderung der Dicke der Beschichtung, durch Nutzung unterschiedlicher Füllstoffe mit unterschiedlichen Leitfähigkeiten, deren jeweilige Konzentration sich entlang der Länge der Schaltvorrichtung ändert, oder sei es durch Variation der Konzentration des einzigen Füllstoffs über die Länge der Schaltvorrichtung.According to the invention, the use of background knowledge for local variation of the surface resistance leads to improved results, so that, for example, in Areas in which it is known that, for example due to other components of the switching device, high fields occur anyway, a lower surface resistance can be selected so that charges are distributed faster than in areas of smaller operating field strengths. After switching devices are usually designed symmetrically around the direction of extension of the conductor elements (and therefore also the direction of movement of the at least one movable conductor element), the invention provides that the surface resistance is varied along the direction of extension of the conductor elements, in particular depending on a change in the electrical field under operating conditions along the direction of extension of the conductor elements. Such a variation of the resistance along the direction of extension is achieved by using different fillers and / or by varying the concentration of a single filler, for which suitable manufacturing techniques are already known in the prior art. The variation of the surface resistance along the direction of extension can additionally be achieved by varying the thickness of the coating. For example, a certain course of the sheet resistance can be realized over the length of the switching device, be it by changing the thickness of the coating, by using different fillers with different conductivities, the respective concentration of which changes along the length of the switching device, or by varying the Concentration of the single filler over the length of the switching device.

So kann eine Anpassung im Hinblick auf Vorwissen über die Verteilung des elektrischen Feldes bei Betrieb der Schaltvorrichtung vorgenommen werden.An adjustment can thus be made with regard to prior knowledge about the distribution of the electric field when the switching device is in operation.

Die Schaltvorrichtung kann insbesondere als eine Vakuumschaltröhre ausgebildet sein. Ist nun ferner vorgesehen, dass die Vakuumschaltröhre im Kontaktierungsbereich der Leiterelemente ein das elektrische Feld am Isolator beeinflussendes, innerhalb der Schaltkammer angeordnetes und/oder zwischen zwei Gehäuseteilen des Gehäuses gehaltertes Schirmelement zum Abfangen freier Metallpartikel der Leiterelemente aufweist, tritt häufig durch das Schirmelement (welches auch als Dampfschirm bezeichnet werden kann) auch eine Feldverzerrung auf, die durch die Verwendung der Beschichtung im Rahmen der vorliegenden Erfindung deutlich homogenisiert bzw. kompensiert werden kann und deren Effekte, beispielsweise Ladungsansammlungen, vermieden werden können. Beispielsweise kann es bei solchen Schirmelementen zu einer Abschwächung der Betriebsfeldstärke im Bereich des Schirmelements selber, also hinter bzw. neben dem Schirmelement, kommen, während größere Betriebsfeldstärken an die Erstreckungslänge des Schirmelements anschließend am Isolator auftreten können. Dieses Wissen kann auch genutzt werden, um, wie gerade dargelegt wurde, den Flächenwiderstand ortsabhängig zu variieren.The switching device can in particular be designed as a vacuum interrupter. It is now further provided that the vacuum interrupter in the contacting area of the conductor elements has a shielding element which influences the electrical field on the insulator and is arranged within the switching chamber and / or held between two housing parts of the housing Intercepting free metal particles of the conductor elements, the shield element (which can also be referred to as a vapor shield) frequently also causes field distortion, which can be significantly homogenized or compensated for by the use of the coating in the context of the present invention, and its effects, for example charge accumulations , can be avoided. For example, with such shielding elements, the operating field strength may weaken in the area of the shielding element itself, that is to say behind or next to the shielding element, while larger operating field strengths may occur on the insulator after the length of the shielding element. This knowledge can also be used to vary the surface resistance depending on the location, as has just been explained.

Weitere Vorteile und Einzelheiten der vorliegenden Erfindung ergeben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung. Dabei zeigen:

Fig. 1
eine erfindungsgemäße Schaltvorrichtung gemäß einem ersten Ausführungsbeispiel,
Fig. 2
ein möglicher Verlauf des Flächenwiderstands entlang der Erstreckungsrichtung der Leiterelemente, und
Fig. 3
eine erfindungsgemäße Schaltvorrichtung gemäß einem zweiten Ausführungsbeispiel.
Further advantages and details of the present invention result from the exemplary embodiments described below and from the drawing. Show:
Fig. 1
a switching device according to the invention according to a first embodiment,
Fig. 2
a possible course of the sheet resistance along the direction of extension of the conductor elements, and
Fig. 3
a switching device according to the invention according to a second embodiment.

Fig. 1 zeigt in Form einer Prinzipskizze ein erstes Ausführungsbeispiel einer erfindungsgemäßen Schaltvorrichtung 1, hier eine Vakuumschaltröhre. Ein hier aus zwei röhrenförmigen Keramikteilen, also Isolatoren 2, zusammengesetztes Gehäuse 3 wird durch metallene Kappen 4 abgeschlossen und definiert eine Schaltkammer 5, in die zwei beispielsweise als Bolzen ausgebildete Leiterelemente 6 mit Kontakten 7 geführt sind. Das in Fig. 1 untere der Leiterelemente 6 ist gemäß dem Pfeil 8 und der angedeuteten Bewegungseinrichtung 9 beweglich ausgestaltet und kann in Erstreckungsrichtung 10 der Leiterelemente 6, welche auch die Symmetrieachse der Schaltvorrichtung 1 bildet, verschoben werden, um die Kontakte 7 in Kontakt zu bringen oder zu beabstanden, wobei vorliegend ein geöffneter Zustand der Schaltvorrichtung 1 gezeigt ist. Aufgrund der Beweglichkeit des unteren Leiterelements 6 ist dieses über einen Metallbalg 11 an die Metallkappe 4 angekoppelt; auf beiden Seiten sind also die Metallkappen 4 leitend mit den Leiterelementen 6 verbunden. Fig. 1 shows in the form of a schematic diagram a first embodiment of a switching device 1 according to the invention, here a vacuum interrupter. A housing 3 composed here of two tubular ceramic parts, that is to say insulators 2, is closed off by metal caps 4 and defines a switching chamber 5 into which two conductor elements 6 with contacts 7, for example designed as bolts, are guided. This in Fig. 1 the lower of the conductor elements 6 is designed to be movable according to the arrow 8 and the indicated movement device 9 and can be displaced in the direction of extension 10 of the conductor elements 6, which also forms the axis of symmetry of the switching device 1, in order to bring the contacts 7 into contact or at a distance, an open state of the switching device 1 being shown here. Due to the mobility of the lower conductor element 6, it is coupled to the metal cap 4 via a metal bellows 11; The metal caps 4 are thus conductively connected to the conductor elements 6 on both sides.

Innerhalb der Schaltkammer 5 herrscht Vakuum, vorliegend mit einem Druck als < 10-8 pa.A vacuum prevails within the switching chamber 5, in the present case with a pressure of <10 -8 pa.

Um beispielsweise beim Öffnen der Schaltvorrichtung 1 entstehende Metalldämpfe nicht auf die innere Oberfläche des Isolators 2, hier Keramik, kommen zu lassen, ist vorliegend in der Schaltkammer 5 ein metallenes Schirmelement 12 (Dampfschirm) im Kontaktierungsbereich vorgesehen. Dieses Schirmelement 12 sorgt nun jedoch auch für eine Verzerrung des elektrischen Feldes, so dass in einem Bereich 13 hinter den Schirmelementen ein geringeres elektrisches Feld im Betrieb vorliegen würde als in den Bereichen 14, wo sich beispielsweise Ladungen ansammeln können und somit für weitere Feldverzerrungen sorgen können, die die Funktionsfähigkeit der Schaltvorrichtung 1 in Frage stellen könnten. Um dem entgegenzuwirken, ist die Außenseite des Isolators 2 (und mithin des Gehäuses 3 im Bereich des Isolators 2) mit einer resistiven Beschichtung 15 versehen, die die gesamte Außenoberfläche des Isolators 2 überdeckt und auf beiden Seiten der Schaltvorrichtung 1 leitend die Kappen 4 kontaktiert, beispielsweise durch eine Lötverbindung oder dergleichen. Mithin ist durch die resistive, aber leitfähige Beschichtung 15 eine leitende Verbindung zwischen den Leiterelementen 6 gegeben, so dass zwar ein geringer Fehlerstrom entsteht, der aber aufgrund des hohen Widerstandes der Beschichtung 15, vorliegend im Bereich von 1010 Ω, nicht wesentlich ist, jedoch zur Feldangleichung und zum Abtransport von Oberflächenladungen beiträgt. Auch zu hohe Felder sind für diese Eigenschaften unproblematisch, da der die Steigung in der Strom-Spannungskennlinie der Beschichtung 15 beschreibende Nichtlinearitätsexponent deutlich kleiner als 6 ist, vorliegend im Bereich von 4 bis 4,5 liegt. Selbst bei transienten Spannungsspitzen werden Durchschläge mithin vermieden.For example, in order to prevent metal vapors generated when the switching device 1 is opened from coming onto the inner surface of the insulator 2, here ceramic, a metal shielding element 12 (steam shield) is provided in the contacting area in the switching chamber 5. However, this shield element 12 now also provides for a distortion of the electric field, so that a lower electric field would be present in operation in an area 13 behind the screen elements than in areas 14, where, for example, charges can accumulate and thus can cause further field distortions that could question the functionality of the switching device 1. In order to counteract this, the outside of the insulator 2 (and therefore the housing 3 in the region of the insulator 2) is provided with a resistive coating 15 which covers the entire outer surface of the insulator 2 and makes conductive contact with the caps 4 on both sides of the switching device 1, for example by a solder connection or the like. The resistive but conductive coating 15 therefore provides a conductive connection between the conductor elements 6, so that a small fault current arises, but is not essential due to the high resistance of the coating 15, in the present case in the range of 10 10 Ω contributes to field alignment and the removal of surface charges. Too high fields are also unproblematic for these properties, because the nonlinearity exponent describing the slope in the current-voltage characteristic of the coating 15 is clearly smaller than 6, in the present case it is in the range from 4 to 4.5. Breakdowns are avoided even with transient voltage peaks.

Die Beschichtung 15 besteht aus einer Materialzusammensetzung, die zunächst ein Trägermaterial, vorliegend Glas, umfasst, in dem ein Füllstoff vorgesehen ist. Der Füllstoff ist zu 50 Gew.-% enthalten. Bei dem Füllstoff handelt es sich um Zinnoxid, SnO2, das als Widerstandsmaterial auf Glimmerplättchen aufgebracht ist, die ein Seitenverhältnis Breite zu Höhe von kleiner als 5 aufweisen und Größen im Bereich von 1 bis 50 µm besitzen. Die Dicke der Schicht aus Widerstandsmaterial auf dem Plättchen liegt zwischen 10 und 100 nm, wobei die insgesamte Dicke der Beschichtung 15 hier 250 µm beträgt.The coating 15 consists of a material composition which initially comprises a carrier material, in the present case glass, in which a filler is provided. The filler is 50% by weight. The filler is tin oxide, SnO 2 , which is applied as a resistance material to mica platelets which have an aspect ratio of width to height of less than 5 and have sizes in the range from 1 to 50 μm. The thickness of the layer of resistance material on the plate is between 10 and 100 nm, the total thickness of the coating 15 here being 250 μm.

Es sind Ausführungsbeispiele denkbar, in denen das Widerstandsmaterial noch dotiert ist, im hier beschriebenen Beispiel von Zinnoxid (SnO2) mit Antimon (Sb), wobei die Dotierung hier mit 0 bis 15 Mol.-% realisiert werden kann. Eine andere Ausgestaltung sieht vor, dass zusätzlich auch Titanoxid, TiO2, auf den Plättchen aufgebracht wird, wenn die Leitfähigkeit erhöht werden soll.Exemplary embodiments are conceivable in which the resistance material is still doped, in the example described here of tin oxide (SnO 2 ) with antimony (Sb), the doping here being able to be achieved with 0 to 15 mol%. Another embodiment provides that titanium oxide, TiO 2 , is additionally applied to the platelets if the conductivity is to be increased.

Erfindungsgemäß ist vorgesehen, Vorwissen einfließen zu lassen, um eine Variation des Flächenwiderstands in Abhängigkeit von der Position in Erstreckungsrichtung 10, also Längsrichtung der Schaltvorrichtung 1, zu realisieren, so dass beispielsweise in dem Bereich 13 hinter dem Schirmelement 12 ein höherer Flächenwiderstand vorliegen kann als in den Bereichen 14. Dies ist in Fig. 2 schematisch dargestellt, der den Flächenwiderstand R?? gegen die Position l in Erstreckungsrichtung 10 sowie die Bereiche 13 und 14 zeigt. Man erkennt, dass der Verlauf 16 des Flächenwiderstands im Bereich 13 eine Erhöhung zeigt.According to the invention, prior knowledge is incorporated in order to implement a variation of the surface resistance as a function of the position in the extension direction 10, that is to say the longitudinal direction of the switching device 1, so that, for example, a higher surface resistance can be present in the area 13 behind the shield element 12 than in FIG the areas 14. This is in Fig. 2 shown schematically, the surface resistance R ?? against the position 1 in the direction of extension 10 and the areas 13 and 14. It can be seen that the course 16 of the surface resistance in area 13 shows an increase.

Derartiges kann durch Verwendung zweier unterschiedlicher Füllstoffe mit unterschiedlicher Leitfähigkeit und Variation derer Konzentrationen entlang der Erstreckungsrichtung 10 oder auch durch Verwendung eines einzigen Füllstoffs und Variation dessen Konzentration in Erstreckungsrichtung 10 erreicht werden. Ferner kann die Variation des Flächenwiderstandes entlang der Erstreckungsrichtung 10 zusätzlich durch eine Variation der Dicke der Beschichtung 15 erreicht sein.This can be achieved by using two different fillers with different conductivity and varying their concentrations along the direction of extension 10 or by using a single filler and varying its concentration in the direction of extension 10. Furthermore, the variation of the surface resistance along the direction of extension 10 can additionally be achieved by varying the thickness of the coating 15.

Fig. 3 zeigt ein zweites, leicht modifiziertes Ausführungsbeispiel einer erfindungsgemäßen Schaltvorrichtung 1', wiederum einer Vakuumschaltröhre. Der Einfachheit halber sind funktional gleiche Komponenten mit den gleichen Bezugszeichen versehen. Fig. 3 shows a second, slightly modified embodiment of a switching device 1 'according to the invention, again a vacuum interrupter. For the sake of simplicity, functionally identical components are provided with the same reference symbols.

Ersichtlich besteht das Gehäuse 3 wiederum aus zwei Isolatoren 2, also röhrenförmigen Keramikteilen, die in diesem Fall jedoch beabstandet sind, da zwischen ihnen das einen entsprechend größeren Radius aufweisende Schirmelement 12 im Kontaktierungsbereich 13 gehaltert ist. Die Beschichtung 15 erstreckt sich jeweils entlang der Außenseite der Isolatoren 2 und ist nicht nur mit den Kappen 4 leitend verbunden, sondern entsprechend natürlich auch mit dem (metallenen) Schirmelement 12.As can be seen, the housing 3 again consists of two insulators 2, that is to say tubular ceramic parts, which in this case are spaced apart, however, since the shield element 12, which has a correspondingly larger radius, is held in the contacting area 13 between them. The coating 15 extends along the outside of the insulators 2 and is not only conductively connected to the caps 4, but of course also correspondingly to the (metal) shield element 12.

Es sei noch angemerkt, dass Siliziumcarbid (SiC) als Alternative für Zinnoxid ebenso verwendet werden kann, wobei dann, wenn dort auch eine Dotierung vorgesehen sein soll, Aluminium (Al) als Dotierungsmaterial bevorzugt wird.It should also be noted that silicon carbide (SiC) can also be used as an alternative for tin oxide, aluminum (Al) being preferred as the doping material if doping is also to be provided there.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in detail by the preferred exemplary embodiment, the invention is not restricted by the disclosed examples and other variations can be derived therefrom by a person skilled in the art without departing from the scope of protection of the invention.

Claims (12)

  1. Electric switching device (1, 1'), comprising at least two conductor elements (6) which can be placed at a distance from one another and contacted using a moving mechanism (9), and a housing (3) which defines a switching chamber (5), is made of an insulator (2) and at least partially surrounds the conductor elements (6), wherein at least one face of the housing (3) has a resistive coating (15) which is made of a matrix material filled with a filler, wherein the sheet resistance of the coating (15) is between 108 and 1012 ohm at operating field strength, and it is conductively connected to the conductor elements (6), wherein the sheet resistance is varied along the direction of extent (10) of the conductor elements (6), characterized in that the variation of the sheet resistance along the direction of extent (10) is achieved by using different fillers and/or by varying the concentration of the single filler.
  2. Switching device according to Claim 1, characterized in that the non-linear exponent describing the upward gradient in the current/voltage characteristic of the coating (15) is less than 6.
  3. Switching device according to Claim 1 or 2, characterized in that the filler is or comprises tin oxide SnO2 or silicon carbide SiC.
  4. Switching device according to Claim 3, characterized in that the filler is or comprises tin oxide doped with antimony and/or silicon carbide doped with aluminum.
  5. Switching device according to one of the preceding claims, characterized in that the matrix material is selected from the group comprising elastomers, thermosetting plastics, thermoplastics and glass, and/or in that the filler concentration is 10 to 90% by weight, in particular 40-60% by weight.
  6. Switching device according to one of the preceding claims, characterized in that the coating (15) has a thickness of 100 µm to 500 µm.
  7. Switching device according to one of the preceding claims, characterized in that the filler consists of particles of a grain size of 100 nm to 300 µm, in particular 1 µm to 50 µm.
  8. Switching device according to Claim 7, characterized in that the particles are platelets made of a base material, in particular mica, which are coated with the resistance material defining the resistance properties, in particular tin oxide SnO2 or silicon carbide SiC, preferably with a layer thickness within the range of 10 to 100 nm, and/or the particles are outwardly covered by an electrically conductive layer, in particular titanium oxide TiO2.
  9. Switching device according to one of the preceding claims, characterized in that the sheet resistance is varied along the direction of extent (10) as a function of a change in the electric field along the direction of extent (10) of the conductor elements (6) under operating conditions.
  10. Switching device according to one of the preceding claims, characterized in that the variation of the sheet resistance along the direction of extent (10) is additionally achieved by varying the thickness of the coating (15).
  11. Switching device according to one of the preceding claims, characterized in that said switching device is embodied as a vacuum interrupter.
  12. Switching device according to Claim 11 characterized in that, in the contact-making region of the conductor elements (6), the vacuum interrupter has a shielding element (12) which influences the electric field at the insulator, is arranged within the switching chamber (5) and/or is held between two housing parts of the housing (3) and is intended for catching free metal particles of the conductor elements (6).
EP15733457.4A 2014-07-17 2015-07-02 Electrical switching apparatus for medium and high voltage Active EP3146551B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014213944.9A DE102014213944A1 (en) 2014-07-17 2014-07-17 Electrical switching device for medium and / or high voltage applications
PCT/EP2015/065064 WO2016008729A1 (en) 2014-07-17 2015-07-02 Electric switching device for medium- and/or high-voltage uses

Publications (2)

Publication Number Publication Date
EP3146551A1 EP3146551A1 (en) 2017-03-29
EP3146551B1 true EP3146551B1 (en) 2020-06-24

Family

ID=53499012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15733457.4A Active EP3146551B1 (en) 2014-07-17 2015-07-02 Electrical switching apparatus for medium and high voltage

Country Status (6)

Country Link
US (1) US10102989B2 (en)
EP (1) EP3146551B1 (en)
CN (1) CN106537545B (en)
DE (1) DE102014213944A1 (en)
ES (1) ES2819508T3 (en)
WO (1) WO2016008729A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4016576A1 (en) 2020-12-15 2022-06-22 Siemens Aktiengesellschaft Electrical switching device for medium and / or high voltage applications
DE102021201781A1 (en) 2021-02-25 2022-08-25 Siemens Aktiengesellschaft Electrical switching device for medium and/or high voltage applications
WO2024017674A1 (en) * 2022-07-21 2024-01-25 Siemens Energy Global GmbH & Co. KG Vacuum switching tube for switching voltages, and method for collecting particles in the vacuum switching tube

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213944A1 (en) 2014-07-17 2016-01-21 Siemens Aktiengesellschaft Electrical switching device for medium and / or high voltage applications
DE102015213738A1 (en) * 2015-07-21 2017-01-26 Siemens Aktiengesellschaft Energy-technical component, in particular vacuum interrupter
DE102016217625A1 (en) * 2016-03-30 2017-10-05 Siemens Aktiengesellschaft High voltage component and device with a high voltage component
KR102545133B1 (en) 2016-04-05 2023-06-19 엘에스일렉트릭(주) Vacuum interubter for a circuit breaker
AT518664B1 (en) 2016-04-22 2017-12-15 Trench Austria Gmbh HVDC air choke coil and method of manufacture
DE102017221783A1 (en) * 2017-12-04 2019-06-06 Siemens Aktiengesellschaft Arrangement and method for switching high voltages with a switching device and exactly one resistance stack
KR102523707B1 (en) * 2018-05-16 2023-04-19 엘에스일렉트릭(주) Pole part assembly for the circuit breaker
CN110070968B (en) * 2019-03-20 2021-11-23 天津大学 Preparation method of direct current flashover resistant nonlinear conductive coating insulator
DE102019211345A1 (en) 2019-07-30 2021-02-04 Siemens Energy Global GmbH & Co. KG Interrupter unit with a vacuum tube and an insulating housing
CN116134573A (en) * 2020-08-05 2023-05-16 三菱电机株式会社 Vacuum valve
US11688578B2 (en) * 2020-11-11 2023-06-27 Moxtek, Inc. Interruption-ring in an X-ray tube
DE102021207963A1 (en) * 2021-07-23 2023-01-26 Siemens Energy Global GmbH & Co. KG Vacuum interrupter for switching voltages
US11862419B2 (en) * 2021-11-15 2024-01-02 Eaton Intelligent Power Limited Toroidal encapsulation for high voltage vacuum interrupters

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286045A (en) * 2000-03-30 2001-10-12 Toshiba Corp Electric apparatus
US20110253429A1 (en) * 2008-08-18 2011-10-20 Semblant Global Limited Apparatus with a Multi-Layer Coating and Method of Forming the Same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590184A (en) * 1968-12-09 1971-06-29 Allis Chalmers Mfg Co High-voltage outdoor vaccum switch with conductive coating serving as electrostatic shield means and end cap-mounting means
US4002867A (en) * 1972-11-01 1977-01-11 Westinghouse Electric Corporation Vacuum-type circuit interrupters with condensing shield at a fixed potential relative to the contacts
DE3840825A1 (en) * 1988-12-03 1990-06-07 Calor Emag Elektrizitaets Ag Contact arrangement for vacuum switches
US5808258A (en) * 1995-12-26 1998-09-15 Amerace Corporation Encapsulated high voltage vacuum switches
US6130394A (en) * 1996-08-26 2000-10-10 Elektrotechnische Weke Fritz Driescher & Sohne GmbH Hermetically sealed vacuum load interrupter switch with flashover features
DE19839285C1 (en) 1998-08-28 2000-04-27 Siemens Ag Glow protection tape
DE19958646C2 (en) * 1999-12-06 2001-12-06 Abb T & D Tech Ltd Hybrid circuit breakers
DE10029763B4 (en) * 2000-06-16 2009-01-15 Siemens Ag Vacuum interrupter
FR2821479B1 (en) 2001-02-28 2003-04-11 Alstom INSULATING MATERIAL FOR OVER-MOLDING ON MEDIUM AND HIGH VOLTAGE APPARATUSES, AND MEDIUM AND HIGH VOLTAGE ELECTRICAL APPARATUS USING SUCH MATERIAL
WO2002097839A1 (en) * 2001-05-30 2002-12-05 Abb Patent Gmbh Control for at least one vacuum breaker gap
JP4291013B2 (en) 2003-03-04 2009-07-08 株式会社日本Aeパワーシステムズ Vacuum valve
US20040242034A1 (en) * 2003-05-30 2004-12-02 Hubbell Incorporated Electrical assembly and dielectric material
JP4403782B2 (en) * 2003-11-17 2010-01-27 株式会社日立製作所 Vacuum switchgear
DE102010052889A1 (en) * 2010-12-01 2012-06-06 Merck Patent Gmbh Semiconductive dielectric coatings and articles
FR2971884B1 (en) 2011-02-17 2014-01-17 Alstom Grid Sas ELECTRIC CURRENT CUT-OFF CHAMBER FOR A HIGH OR MEDIUM VOLTAGE CIRCUIT BREAKER AND CIRCUIT BREAKER COMPRISING SUCH A CHAMBER
DE102014213944A1 (en) 2014-07-17 2016-01-21 Siemens Aktiengesellschaft Electrical switching device for medium and / or high voltage applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286045A (en) * 2000-03-30 2001-10-12 Toshiba Corp Electric apparatus
US20110253429A1 (en) * 2008-08-18 2011-10-20 Semblant Global Limited Apparatus with a Multi-Layer Coating and Method of Forming the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4016576A1 (en) 2020-12-15 2022-06-22 Siemens Aktiengesellschaft Electrical switching device for medium and / or high voltage applications
WO2022129073A1 (en) 2020-12-15 2022-06-23 Siemens Aktiengesellschaft Electric switching device for medium- and/or high-voltage uses
DE102021201781A1 (en) 2021-02-25 2022-08-25 Siemens Aktiengesellschaft Electrical switching device for medium and/or high voltage applications
WO2022179834A1 (en) 2021-02-25 2022-09-01 Siemens Aktiengesellschaft Electric switching device for medium- and/or high-voltage applications
WO2024017674A1 (en) * 2022-07-21 2024-01-25 Siemens Energy Global GmbH & Co. KG Vacuum switching tube for switching voltages, and method for collecting particles in the vacuum switching tube

Also Published As

Publication number Publication date
CN106537545A (en) 2017-03-22
WO2016008729A1 (en) 2016-01-21
US20170213675A1 (en) 2017-07-27
EP3146551A1 (en) 2017-03-29
ES2819508T3 (en) 2021-04-16
CN106537545B (en) 2019-08-16
DE102014213944A1 (en) 2016-01-21
US10102989B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
EP3146551B1 (en) Electrical switching apparatus for medium and high voltage
EP1254497B1 (en) Cable sealing end
EP2702597B1 (en) Surge arrestor
EP2243145B1 (en) Field-controlled composite insulator
DE102017214805A1 (en) Current limit with a vacuum switch
DE2832060A1 (en) PROTECTIVE DEVICE FOR TELEPHONE LINES IN PARTICULAR AGAINST OVERVOLTAGE
DE3343918A1 (en) VACUUM SWITCH FOR THE LOW VOLTAGE AREA, IN PARTICULAR LOW VOLTAGE PROTECTION
DE2037921A1 (en) Lightning protection device
DE2834088A1 (en) GAS DISCHARGE PIPES, IN PARTICULAR SURGE PROTECTORS
DE19856939A1 (en) Circuit arrangement for protecting electrical installations against overvoltage events
DE102008031473B3 (en) Vacuum interrupter
DE1261219B (en) Vacuum switch
WO2017012740A1 (en) Energy-related component, in particular vacuum interrupter
DE2361204A1 (en) High-tension transmission line insulators - of conventional type interspersea with some doped with zinc oxide as flashover gaps
EP3688774B1 (en) Insulation system, insulation substance and insulation material for producing the insulation system
DE2217874A1 (en) Surge arrester
DE2319855A1 (en) EVACUATED ELECTRIC BREAKER
DE4125097C2 (en) Contact arrangement for a vacuum circuit breaker
WO2022129073A1 (en) Electric switching device for medium- and/or high-voltage uses
DE102021201781A1 (en) Electrical switching device for medium and/or high voltage applications
DE2263909A1 (en) CABLE END PIECE
DE602005005694T2 (en) HIGH OR MEDIUM VOLTAGE DEVICE WITH PARTICULAR DIELECTRIC SYSTEM
WO2019120832A1 (en) Vacuum interrupter
DE102011006013B3 (en) Vacuum interrupter and switch pole
WO2017167501A1 (en) High-voltage component and device comprising a high-voltage component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190918

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012867

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284729

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012867

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2819508

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210416

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS ENERGY GLOBAL GMBH AND CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200924

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20210521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

26N No opposition filed

Effective date: 20210325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012867

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200924

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1284729

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 9

Ref country code: ES

Payment date: 20230816

Year of fee payment: 9

Ref country code: CH

Payment date: 20230801

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 9

Ref country code: DE

Payment date: 20230726

Year of fee payment: 9