EP3140548B1 - Impeller for regenerative pump - Google Patents
Impeller for regenerative pump Download PDFInfo
- Publication number
- EP3140548B1 EP3140548B1 EP15712837.2A EP15712837A EP3140548B1 EP 3140548 B1 EP3140548 B1 EP 3140548B1 EP 15712837 A EP15712837 A EP 15712837A EP 3140548 B1 EP3140548 B1 EP 3140548B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- impeller
- wall
- radius
- edge
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001172 regenerating effect Effects 0.000 title 1
- 230000001154 acute effect Effects 0.000 claims description 20
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000012530 fluid Substances 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D5/00—Pumps with circumferential or transverse flow
- F04D5/002—Regenerative pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D23/00—Other rotary non-positive-displacement pumps
- F04D23/008—Regenerative pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/188—Rotors specially for regenerative pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
Definitions
- the invention relates to an impeller according to the features of the preamble of claim 1.
- An impeller of the type in question is, for example, from DE 10 2005 008 388 A1 known.
- the U.S. 5,407,318 A discloses blades that end freely on the outside, the edge of which is clearly set back to a maximum radial dimension of the blade walls.
- the invention is concerned with the task of further developing an impeller of the type mentioned in an advantageous manner, in particular with regard to improved efficiency.
- Impellers of this type are widely used in side channel compressors and side channel vacuum pumps, which enable a wide range of industrial applications, for example in printing, packaging, electronics, environmental and medical technology, etc.
- These turbomachines have at least one annular working space with a substantially circular cross section, in which an impeller with blading, ie blades and blade chambers located between them, is rotatably accommodated in the circumferential direction of the impeller.
- the unfilled cross-section of the working space possibly bordering the blading on both sides of the impeller, forms a side channel in each case, which is interrupted on the circumference by the so-called interrupter.
- An inlet for a fluid to be compressed e.g.
- the fluid is located behind the interrupter in the direction of rotation or rotation of the impeller, while an outlet is located in front of the interrupter in the direction of rotation. Due to the rotation of the impeller, the fluid flows through the inlet into the side channel and is carried along by the blades of the impeller. In the flow spaces, the fluid is pushed outwards due to the centrifugal force and is compressed there. The inflowing fluid pushes the compressed fluid out of the blades into the side channel, where it is directed radially inward and reenters the impeller blading.
- the fluid flows from the side channel at the front of the impeller through a radially inner chamber inlet area into the flow space bordered by the vane chambers and, after flowing through the vane chamber, returns to the side channel through a radially outer chamber outlet area.
- This so-called circulation is repeated several times so that the fluid can be compressed in several stages up to the outlet.
- the largest misalignment preferably corresponds to 0.1 to 0.6 times, if necessary also more, the difference between the first and second radius dimension.
- the largest offset dimension can also correspond to approximately one third of the difference between the first and second radius dimensions.
- the radius of the terminal edge is taken from a circle center, which is based on a distance to the geometric axis of rotation of the impeller between the first and second radius dimension.
- the center of the circle lies within a blade chamber, and also in a blade chamber following in the circumferential direction of the blade wall having the terminal edge.
- the center of the circle can thus lie in the upstream vane chamber viewed in the direction of rotation of the impeller. More preferably, the center of the circle lies on or adjacent to a radius line of the geometric axis of rotation of the impeller, which radius line runs centrally between the first and the second radius dimension.
- the terminal edge of a blade wall preferably also extends radially outwards essentially in the direction of the impeller-impeller axis of rotation. Accordingly, a radially outer edge results, which extends essentially perpendicularly to the terminal edge of the blade wall.
- the marginal edge can, for example, run perpendicularly to the closing edge in a range of +/ ⁇ 5°.
- this radially outer edge determines the extent of the larger radius of the impeller, at least in the case of a design that is open radially on the outside, in which the blade chambers open radially on the outside. In this case, the blades end freely radially outwards.
- the blade wall merges radially on the outside into a peripheral end wall.
- the blade chamber that is formed is limited and preferred with respect to a cross section by the chamber floor and the inner and outer boundary wall or blade walls that follow one another in the direction of rotation open only in the area of an area given by the terminal edges of the blade walls.
- An outer edge of the radially outer end wall defines the second radius dimension.
- the imaginary connecting line between the entry point of the closing edge in the inner boundary wall and the radially outer end can run in relation to the top view in such a way that it is parallel to a radial emanating from the geometric impeller axis of rotation.
- the connecting line can enclose an acute angle of, for example, 0.05 to 15° with the radial. It is preferred that the connecting line extends in the direction of the geometric axis of rotation of the impeller at a distance from the geometric axis of rotation of the impeller.
- the vertical distance of the connecting line from the geometric axis of rotation of the impeller is given by the length of a perpendicular to the connecting line, which perpendicular intersects the geometric axis of rotation of the impeller.
- the vertical spacing may be in the range of -40% to 40% of the outer radius. In a restricted view, the distance can be in the range of -40% to +40% of the radius difference between the inner and outer radius.
- the radially outer end of the terminating wall can be either “leading” in relation to the entry point into the inner boundary wall or "lagging behind”. Viewed radially outwards from the inlet point mentioned, the radially outer end of the closing wall can be designed to lead in the direction of rotation and also to lag behind in the direction of rotation for a given direction of rotation.
- the radially outer end of the terminating edge can enclose an acute angle of up to 90° with the connecting line or with a radial line going through the radially outer end (starting from the axis of rotation).
- the acute angle refers to an inflow section of the terminal edge into the outer wall.
- the radially outer end of the terminating edge preferably runs tangentially into a circular line connecting the radially outer ends of all terminating edges, or, as more preferably, into the radially outer terminating wall, so that the acute angle described above is between a through the intersection of the terminating edge and a there given idealized, i.e. averaged line of the tangent to the end wall and the connecting line.
- the acute angle refers to the angle between the straight line that brings about the straight run and the connecting line.
- the terminating edge can be composed at least partially of straight sections.
- a straight section can be provided, but also a plurality of straight sections arranged one behind the other, for example two, three, four or even ten straight sections. These straight sections extend over the shortest distance between a respective straight section start and a straight section end. Such a straight section can then continue into a curved section.
- An area between two straight sections can be formed by a curved area.
- two or more adjacent straight sections are angled relative to each other (notwithstanding any curved section therebetween). Preference is given here obtuse angles greater than 90° up to 179°, such as 150 or 160°.
- the terminating edge can also run continuously curved between the inner and outer radius.
- An uninterrupted curvature between the inner and outer radius is preferred here, which curvature is composed of several, for example two, three, four or ten curved sections arranged one behind the other.
- One or more curved sections can be curved in a circle and follow a radius accordingly. In the case of several or all curved sections following a radius, these can have different radii, it also being possible for a plurality of curved sections to have the same radii in the case of a plurality of curved sections.
- the terminating edge essentially follows a radius line, so that over the extension length of the terminating edge a constant radius is set, possibly having a deviation of, for example, +/-5% of the relevant radius dimension.
- the radius of the terminating edge is preferably removed from a circle center which, based on a distance from the geometric impeller axis of rotation, lies between the first and the second radius dimension.
- the center of the circle preferably lies within a blade chamber, moreover preferably in a blade chamber following the blade wall having the terminal edge in the circumferential direction.
- the center of the circle can thus lie in the upstream vane chamber viewed in the direction of rotation of the impeller. More preferably, the center of the circle lies on or adjacent to a radius line of the geometric axis of rotation of the impeller, which radius line runs centrally between the first and the second radius dimension.
- the end sections of the terminating edge that face the first and second radius dimensions can be curved.
- the radius of these end sections of the terminating edge which preferably run tangentially into the radially inner boundary wall and optionally into the radially outer terminating wall and more preferably run in the shape of a segment of a circle, can be selected to be smaller or larger than a radius dimension, for example a terminating edge following a radius line.
- the radius of the outer end regions of the terminating edge preferably corresponds to 0.5 to 0.9 times the radius of the terminating edge between the end regions.
- the blade wall can increase in wall thickness in the direction of the geometric impeller axis of rotation or in the direction of a chamber base.
- the wall thickness of the blade wall near or at the transition to the chamber base can correspond to 2 to 4 times, more preferably 3 times, the wall thickness in the area of the terminal edge.
- the increase in wall thickness can be different in relation to the circumferential direction.
- the blade wall edges can have a parallel to the geometric impeller axis of rotation enclose different acute angles.
- the angle of a blade wall edge can be 1 to 10°, while the angle of the opposite blade wall edge to the straight line is 11 to 30°.
- the acute angle of the blade wall edge against the direction of rotation is preferably larger than the acute angle of the blade wall edge in the direction of rotation. There can be a ratio between these different angles of 1:3 to 1:10.
- the blade wall can be convex.
- the blade wall which is curved in plan, opens in the direction of rotation.
- the chamber floor can run circularly or elliptically in a cross-section in the connecting line or parallel thereto.
- a curvature with different radii can also be provided over the extension length.
- the chamber floor can extend radially inwards, for example following a circular or elliptical line, up to an upper edge of the inner end wall.
- the greatest depth of the chamber floor preferably corresponds to 0.25 to 0.75 times the radius difference between the inner and outer radius. In one embodiment, the depth corresponds to half the radius difference. In this case, the depth is measured starting from a (possibly greatest) height of the terminating edge in the direction of the axis of rotation.
- the radial speed is increased in addition to the peripheral speed during operation compared to the known solutions during pressure build-up.
- the pressure build-up is improved.
- the proposed solution offers the possibility of an impeller that is closed radially on the outside, with which a two-stage operation can be implemented with only one impeller.
- the ranges or value ranges or multiple ranges specified above and below also include all intermediate values with regard to the disclosure, in particular in steps of 1/10 of the respective dimension, ie possibly also dimensionless.
- the specification 0.1 to 0.5 times also includes the disclosure of 0.11 to 0.5 times, 0.1 to 0.49 times, 0.12 to 0.5 times , 0.12 to 0.9 fold, 0.12 to 0.48 fold, 0.1 to 0.48 fold etc.
- the revelation of 15 to 40% also the revelation of 15:1 to 40%, 15 to 39.9%, 15.1 to 39.9%, 15.2 to 40%, 15.2 to 39.9%, 15.2 to 39.8%, 15 to 39.8 % etc.
- the revelation from 60° to 89° also the revelation from 60.1° to 89°, 60° to 88.9°, 60.2° to 89°, 60.2° to 88.9°, 60.2° to 88.8°, 60° to 88.8° etc.
- This disclosure can on the one hand be used to delimit a specified range limit from
- an impeller 1 for a side channel machine such as a side channel compressor or a side channel vacuum pump.
- the impeller 1 has a central hub 2 with a through hole 3, which is used to fasten the impeller 1 to a drive shaft, not shown, of a side channel machine.
- the impeller 1 Distributed evenly in the circumferential direction, the impeller 1 has a reference to a figure 2 blade chambers 4 open towards the upper opening level E. Viewed in the circumferential direction, these are bordered laterally by blade walls 6 forming blades 5.
- the blades 5 as well as the blade chambers 4 are formed in a radially outer area of the impeller 1 .
- the blades 5 form the radially outer boundary of the impeller 1, possibly with the exception of an end wall, as explained below.
- FIG. 1 to 9 illustrated embodiments relate to an impeller 1 for forming a two-stage side channel machine.
- blades 5 for forming blade chambers 4 are formed on both sides of the center plane with respect to a center plane which runs parallel to the opening plane E and which perpendicularly intersects the geometric impeller axis of rotation x.
- the blade chambers 4 are delimited radially on the inside by an inner, circumferential delimiting wall 7. With reference to a cross section, this ends with the formation of a delimiting wall edge 8 in the opening plane E.
- An end wall 10 is formed circumferentially along the peripheral edge 9, preferably also forming it. This also extends, for example, according to figure 6 up to the opening plane E, forming an end wall edge 11 running in the opening plane E.
- the inner boundary wall 7 runs along a first, inner radius dimension r 1 .
- This radius dimension r 1 preferably relates to a radial inner edge of the boundary wall 7 and corresponds in the exemplary embodiments shown preferably two-thirds of a radius dimension r 2 of a radially outer edge of the end wall 10.
- the blade walls 6 extend between the radially inner boundary wall 7 and the radially outer end wall 10 and each run convexly viewed in the direction of rotation d (seen from a preceding blade wall to the following blade wall in the direction of rotation).
- Each blade wall 6 has an exposed upper end edge 12 extending in the plane E of the opening.
- This terminating edge 12 runs radially inwards into the inner boundary wall, in particular in the boundary wall edge 8, and ends radially on the outside in the peripheral edge 9, in particular in the terminating wall edge 11 of the terminating wall 10.
- An imaginary connecting line V can be drawn between the radially inner entry point of the blade wall 6 into the boundary wall 7 and the radially outer end of the blade wall 6, for example the end of the blade wall 6 running into the end wall 10 (cf figure 4 ).
- the connecting line V runs in the opening plane E or in a plane parallel thereto.
- each blade wall 6 runs perpendicularly to the connecting line V with a different offset dimension a.
- the largest offset dimension a is preferably obtained in the middle between the radially inner one Boundary wall 7 and the radially outer end wall 10 or the peripheral edge 9.
- the offset dimension a corresponds to approximately one third of the difference dimension c between the second radius dimension r 2 and the first radius dimension r 1 .
- the blade walls 6 according to the invention are formed in such a way that their terminal edges 12 essentially follow a radius line.
- the radius r 3 - based on the inner edge of the terminal edge facing the center of the radius - is plotted from a circle center P, which lies in an upstream blade chamber 4 in the direction of rotation d or in the blade wall 6 separating the upstream blade chamber 4 from the described blade chamber 4.
- the ends of the terminating edge 12 preferably run tangentially into the facing boundary wall 7 or terminating wall 10.
- the end sections of the terminating edge 12 can be provided with a radius that is different than the radius r 3 , in particular with a smaller one in comparison Radius whose center is in the vane chamber 4 delimited by the vane wall 6 described.
- the circle center P of the radius r 3 can lie on the radius line r 4 bisecting the blade chamber 4 in the radial direction between the boundary wall 7 and the end wall 10 .
- the center point P of the circle is in the radial direction to the geometric axis of rotation x of the impeller by a dimension z in relation to the radius line r 4 offset radially outwards.
- the dimension z corresponds to about one tenth to one fifth of the difference dimension c.
- the blade wall 6, in particular the terminal edge 12, can also be composed at least partially of straight sections 13, which are shown in plan according to FIG figure 5 each take different acute angles to a radial.
- the straight sections 13 are arranged overall in such a way that, viewed in the direction of rotation d of the impeller 1, the result is a convex course.
- a terminating edge 12 designed in this way can run tangentially into the boundary wall 7 and into the peripheral edge 9 or into the terminating wall 10 with a radius line.
- the radially outer end of the terminating edge 12 can preferably enclose an acute angle ⁇ of about 70° with the connecting line V (cf figure 4 ).
- the radially outer end of the terminating edge 12 is given by a curved edge line of the terminating edge 12 in the case of a planar configuration of the terminating edge 12 , as is preferred and also given for the exemplary embodiments.
- the connecting line V extends in the direction of the geometric axis of rotation of the impeller x at a distance b (see, for example, Figure 1) from the geometric axis of rotation of the impeller x, which vertical distance b corresponds to about one twentieth to one fifteenth of the outer radius r2.
- the chamber floor resulting between two vane walls 6 arranged one behind the other, viewed in the direction of rotation d, and the inner boundary wall 7 and, in one embodiment, also the radially outer end wall 10 14 runs in a cross section in which the impeller axis of rotation x is represented as a line, in the form of a segment of a circle (cf figure 6 ).
- the center of the circle describing the chamber floor 14 preferably lies within the opening plane E.
- the circular line describing the chamber floor 14 runs radially on the inside as far as the boundary edge 8.
- this circular line preferably also runs radially outwards up to the closing edge 11 extending in the opening plane E.
- the chamber floor 14 as shown in figure 9 also be in the form of a half rectangle with rounded corners 15.
- the chamber floor 14 is preferably designed to run parallel to the opening plane E. From the areas of the rounded corners 15 facing away from the chamber floor 14, wall sections extend into the opening plane E, which wall sections run parallel to the impeller axis of rotation x or enclose an acute angle thereto.
- FIG figure 7 With reference to a cross-section through a blade wall 6 as shown in FIG figure 7 It can be seen that the blade wall 6 increases in wall thickness w starting from the opening plane E and thus starting from the closing edge 12 in the direction of the chamber floor 14 .
- a wall thickness w is specified in the transition to the chamber floor 14 which corresponds to approximately 3 times the wall thickness w in the area of the closing edge 12 .
- the blade wall edges 16 enclose the same acute angles to the straight line, particularly in the area of the radius line r 4 .
- FIG. 8 An alternative embodiment is shown figure 8 .
- the blade wall edges 16 enclose different acute angles with the straight line.
- the blade wall edge 16 pointing counter to the direction of rotation d encloses an acute angle ⁇ 1 of, for example, 15 to 30°, in particular approximately 20°, to the straight line, while the other blade wall edge 16 in the direction of rotation d encloses an acute angle ⁇ 2 to the straight line of, for example, 2 to 5° includes.
- the vane chambers 4 can also be designed to be open radially outwards.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
Description
Die Erfindung betrifft ein Laufrad nach den Merkmalen des Oberbegriffs des Anspruches 1.The invention relates to an impeller according to the features of the preamble of
Ein Laufrad der in Rede stehenden Art ist beispielsweise aus der
Weiter ist zum Stand der Technik auf die
Die
Ausgehend von dem genannten Stand der Technik gemäß der
Diese Aufgabe ist beim Gegenstand des Anspruches 1 gelöst, wobei darauf abgestellt ist, dass das größte Versatzmaß dem 0,1-Fachen oder mehr der Differenz des zweiten und des ersten Radiusmaßes entspricht und dass die Abschlusskante im Wesentlichen einer Radiuslinie folgt und dass ein Radius der Abschlusskante von einem Kreismittelpunkt abgetragen ist, der in einer in Umfangsrichtung folgenden Schaufelkammer liegt.This object is achieved with the subject matter of
Derartige Laufräder finden verbreitet Anwendung in Seitenkanalverdichtern und Seitenkanalvakuumpumpen, welche ein breites Spektrum industrieller Anwendungen, z.B. in der Druck-, Verpackungs-, Elektronik-, Umwelt-, Medizintechnik usw. ermöglichen. Diese Strömungsmaschinen besitzen zumindest einen ringförmigen Arbeitsraum mit einem im Wesentlichen kreisförmigen Querschnitt, in welchem ein Laufrad mit Beschaufelung, d.h. Schaufeln und zwischen diesen liegende Schaufelkammern, in Laufrad-Umfangsrichtung drehbar aufgenommen ist. Der nicht ausgefüllte, gegebenenfalls auf beiden Laufradseiten an die Beschaufelung angrenzende Querschnitt des Arbeitsraums bildet jeweils einen Seitenkanal, welcher am Umfang durch den sogenannten Unterbrecher unterbrochen wird. In Dreh- beziehungsweise Umlaufrichtung des Laufrades hinter dem Unterbrecher befindet sich ein Einlass für ein zu verdichtendes Fluid (beispielsweise Gas oder Flüssigkeit), während sich in Umlaufrichtung vor dem Unterbrecher liegend ein Auslass befindet. Durch die Rotation des Laufrades strömt das Fluid durch den Einlass in den Seitenkanal und wird von den Schaufeln des Laufrades mitgenommen. In deren Strömungsräumen wird das Fluid aufgrund der Zentrifugalkraft nach außen gedrückt und dort verdichtet. Das nachströmende Fluid drückt das verdichtete Fluid aus den Schaufeln heraus in den Seitenkanal, wo es nach radial innen geleitet wird und wieder in die Laufradbeschaufelung eintritt. Dabei gelangt das Fluid aus dem Seitenkanal laufradstirnseitig durch einen radial inneren Kammereinlassbereich in den von den Schaufelkammern berandeten Strömungsraum und nach Durchströmung der Schaufelkammer durch einen radial äußeren Kammerauslassbereich in den Seitenkanal zurück. Diese sogenannte Zirkulation wiederholt sich mehrmals, so dass das Fluid in mehreren Stufen bis zum Auslass verdichtet werden kann.Impellers of this type are widely used in side channel compressors and side channel vacuum pumps, which enable a wide range of industrial applications, for example in printing, packaging, electronics, environmental and medical technology, etc. These turbomachines have at least one annular working space with a substantially circular cross section, in which an impeller with blading, ie blades and blade chambers located between them, is rotatably accommodated in the circumferential direction of the impeller. The unfilled cross-section of the working space, possibly bordering the blading on both sides of the impeller, forms a side channel in each case, which is interrupted on the circumference by the so-called interrupter. An inlet for a fluid to be compressed (e.g. gas or liquid) is located behind the interrupter in the direction of rotation or rotation of the impeller, while an outlet is located in front of the interrupter in the direction of rotation. Due to the rotation of the impeller, the fluid flows through the inlet into the side channel and is carried along by the blades of the impeller. In the flow spaces, the fluid is pushed outwards due to the centrifugal force and is compressed there. The inflowing fluid pushes the compressed fluid out of the blades into the side channel, where it is directed radially inward and reenters the impeller blading. The fluid flows from the side channel at the front of the impeller through a radially inner chamber inlet area into the flow space bordered by the vane chambers and, after flowing through the vane chamber, returns to the side channel through a radially outer chamber outlet area. This so-called circulation is repeated several times so that the fluid can be compressed in several stages up to the outlet.
Das größte Versatzmaß entspricht bevorzugt dem 0,1- bis hin zu dem 0,6-Fachen, gegebenenfalls auch mehr, der Differenz des ersten und zweiten Radiusmaßes. So kann das größte Versatzmaß auch etwa einem Drittel der Differenz des ersten und zweiten Radiusmaßes entsprechen.The largest misalignment preferably corresponds to 0.1 to 0.6 times, if necessary also more, the difference between the first and second radius dimension. The largest offset dimension can also correspond to approximately one third of the difference between the first and second radius dimensions.
Der Radius der Abschlusskante ist von einem Kreismittelpunkt abgetragen, der bezogen auf einen Abstand zu der geometrischen Laufrad-Drehachse zwischen dem ersten und zweiten Radiusmaß liegt. Der Kreismittelpunkt liegt innerhalb einer Schaufelkammer, darüber hinaus in einer in Umfangsrichtung der die Abschlusskante aufweisenden Schaufelwand folgenden Schaufelkammer. So kann der Kreismittelpunkt in der in Drehrichtung des Laufrades betrachteten vorgeschalteten Schaufelkammer liegen. Weiter bevorzugt liegt der Kreismittelpunkt auf oder benachbart zu einer Radiuslinie der geometrischen Laufrad-Drehachse, welche Radiuslinie mittig zwischen dem ersten und dem zweiten Radiusmaß verläuft.The radius of the terminal edge is taken from a circle center, which is based on a distance to the geometric axis of rotation of the impeller between the first and second radius dimension. The center of the circle lies within a blade chamber, and also in a blade chamber following in the circumferential direction of the blade wall having the terminal edge. The center of the circle can thus lie in the upstream vane chamber viewed in the direction of rotation of the impeller. More preferably, the center of the circle lies on or adjacent to a radius line of the geometric axis of rotation of the impeller, which radius line runs centrally between the first and the second radius dimension.
Die Abschlusskante einer Schaufelwand erstreckt sich bevorzugt auch radial außen im Wesentlichen in Richtung der Laufrad-Laufrad-Drehachse. Es ergibt sich entsprechend eine radial äußere Randkante, welche sich im Wesentlichen senkrecht zur Abschlusskante der Schaufelwand erstreckt. Die Randkante kann beispielsweise in einem Bereich von +/- 5° senkrecht zur Abschlusskante verlaufen. Weiter bestimmt diese radial äußere Randkante das Maß des größeren Radius des Laufrades, jedenfalls bei einer radial außen offenen Ausgestaltung, bei welcher sich die Schaufelkammern nach radial außen öffnen. In diesem Fall enden die Schaufeln frei nach radial außen.The terminal edge of a blade wall preferably also extends radially outwards essentially in the direction of the impeller-impeller axis of rotation. Accordingly, a radially outer edge results, which extends essentially perpendicularly to the terminal edge of the blade wall. The marginal edge can, for example, run perpendicularly to the closing edge in a range of +/−5°. Furthermore, this radially outer edge determines the extent of the larger radius of the impeller, at least in the case of a design that is open radially on the outside, in which the blade chambers open radially on the outside. In this case, the blades end freely radially outwards.
Die Schaufelwand geht radial außen in eine umlaufende Abschlusswand über. Die gebildete Schaufelkammer ist in Bezug auf einen Querschnitt durch den Kammerboden und die innere und äußere Begrenzungswand beziehungsweise in Umlaufrichtung aufeinanderfolgende Schaufelwände begrenzt und bevorzugt nur im Bereich einer durch die Abschlusskanten der Schaufelwände gegebene Fläche offen ausgebildet. Eine Außenkante der radial äußeren Abschlusswand bestimmt das zweite Radiusmaß.The blade wall merges radially on the outside into a peripheral end wall. The blade chamber that is formed is limited and preferred with respect to a cross section by the chamber floor and the inner and outer boundary wall or blade walls that follow one another in the direction of rotation open only in the area of an area given by the terminal edges of the blade walls. An outer edge of the radially outer end wall defines the second radius dimension.
Die gedankliche Verbindungslinie zwischen dem Einlaufpunkt der Abschlusskante in die innere Begrenzungswand und dem radial äußeren Ende kann mit Bezug auf die Draufsicht so verlaufen, dass sie parallel ist zu einer von der geometrischen Laufrad-Drehachse ausgehenden Radialen. Insbesondere dann, wenn ein durch den inneren Einlaufpunkt oder das radial äußere Ende der Begrenzungswand gehende Radiale mit Bezug auf die Draufsicht betrachtet wird, kann die Verbindungslinie mit der Radialen einen spitzen Winkel von beispielsweise 0,05 bis 15° einschließen. Bevorzugt ist, dass die Verbindungslinie in Verlängerung in Richtung auf die geometrische Laufrad-Drehachse mit Abstand zu der geometrischen Laufrad-Drehachse verläuft.The imaginary connecting line between the entry point of the closing edge in the inner boundary wall and the radially outer end can run in relation to the top view in such a way that it is parallel to a radial emanating from the geometric impeller axis of rotation. In particular, when a radial passing through the inner inlet point or the radially outer end of the boundary wall is viewed with reference to the top view, the connecting line can enclose an acute angle of, for example, 0.05 to 15° with the radial. It is preferred that the connecting line extends in the direction of the geometric axis of rotation of the impeller at a distance from the geometric axis of rotation of the impeller.
Das senkrechte Abstandsmaß der Verbindungslinie zu der geometrischen Laufrad-Drehachse ist durch die Länge einer Senkrechten auf die Verbindungslinie gegeben, welche Senkrechte die geometrische Laufrad-Drehachse schneidet. Das senkrechte Abstandsmaß kann im Bereich von -40% bis 40% des äußeren Radiusmaßes ausgebildet sein. In einer eingeschränkten Betrachtung kann das Abstandsmaß im Bereich von -40% bis +40% der Radiusdifferenz zwischen innerem und äußerem Radius ausgebildet sein.The vertical distance of the connecting line from the geometric axis of rotation of the impeller is given by the length of a perpendicular to the connecting line, which perpendicular intersects the geometric axis of rotation of the impeller. The vertical spacing may be in the range of -40% to 40% of the outer radius. In a restricted view, the distance can be in the range of -40% to +40% of the radius difference between the inner and outer radius.
Es kann sowohl ein "Voreilen" des radial äußeren Endes der Abschlusswand gegenüber dem Einlaufpunkt in die innere Begrenzungswand gegeben sein wie auch ein "Nacheilen". Gesehen von dem genannten Einlaufpunkt nach radial außen kann bei einer gegebenen Drehrichtung also das radial äußere Ende der Abschlusswand in Drehrichtung voreilend ausgebildet sein wie auch entgegen der Drehrichtung nacheilend.The radially outer end of the terminating wall can be either "leading" in relation to the entry point into the inner boundary wall or "lagging behind". Viewed radially outwards from the inlet point mentioned, the radially outer end of the closing wall can be designed to lead in the direction of rotation and also to lag behind in the direction of rotation for a given direction of rotation.
Das radial äußere Ende der Abschlusskante kann mit der Verbindungslinie oder einer durch das radial äußere Ende gehenden Radialen (ausgehend von der Drehachse) einen spitzen Winkel von bis zu 90° einschließen. Bevorzugt ist ein spitzer Winkel von 50 bis 75°, beispielsweise 70°. Der spitze Winkel bezieht sich auf einen Einlaufabschnitt der Abschlusskante in die Außenwand. Das radial äußere Ende der Abschlusskante läuft bevorzugt tangential in eine die radial äußeren Enden aller Abschlusskanten verbindenden Kreislinie ein, oder, wie weiter bevorzugt, in die radial äußere Abschlusswand, so dass der vorbeschriebene spitze Winkel sich zwischen einer durch den Schnittpunkt der Abschlusskante und eine dort gegebene idealisierte, d.h. gemittelte Linie der Abschlusswand gehenden Tangente und der Verbindungslinie einstellt.The radially outer end of the terminating edge can enclose an acute angle of up to 90° with the connecting line or with a radial line going through the radially outer end (starting from the axis of rotation). An acute angle of 50 to 75°, for example 70°, is preferred. The acute angle refers to an inflow section of the terminal edge into the outer wall. The radially outer end of the terminating edge preferably runs tangentially into a circular line connecting the radially outer ends of all terminating edges, or, as more preferably, into the radially outer terminating wall, so that the acute angle described above is between a through the intersection of the terminating edge and a there given idealized, i.e. averaged line of the tangent to the end wall and the connecting line.
Bei geradem Verlauf der Abschlusswand in dem Einlaufabschnitt bezieht sich der spitze Winkel auf den Winkel zwischen der den geraden Verlauf erbringenden Geraden und der Verbindungslinie.If the end wall runs straight in the inlet section, the acute angle refers to the angle between the straight line that brings about the straight run and the connecting line.
Mit Bezug auf den Grundriss kann sich die Abschlusskante zumindest teilweise aus Geradabschnitten zusammensetzen. Es kann ein Geradabschnitt vorgesehen sein, darüber hinaus aber auch eine Mehrzahl von hintereinander angeordneten Geradabschnitten, so beispielsweise zwei, drei, vier oder auch zehn Geradabschnitte. Diese Geradabschnitte erstrecken sich über die kürzeste Distanz zwischen einem jeweiligen Geradabschnittanfang und einem Geradabschnittende. Ein solcher Geradabschnitt kann sich im Anschluss in einen gekrümmten Abschnitt fortsetzen. Ein Bereich zwischen zwei Geradabschnitten kann durch einen gekrümmten Bereich gebildet sein.With reference to the floor plan, the terminating edge can be composed at least partially of straight sections. A straight section can be provided, but also a plurality of straight sections arranged one behind the other, for example two, three, four or even ten straight sections. These straight sections extend over the shortest distance between a respective straight section start and a straight section end. Such a straight section can then continue into a curved section. An area between two straight sections can be formed by a curved area.
Mit Bezug auf den Grundriss sind bei zwei oder mehr benachbarten Geradabschnitten diese winklig zueinander angeordnet (ungeachtet eines eventuell dazwischen befindlichen gekrümmten Abschnittes). Bevorzugt ist hierbei ein stumpfer Winkel von mehr als 90° bis hin zu 179°, so beispielsweise 150 oder 160°.Referring to the plan, two or more adjacent straight sections are angled relative to each other (notwithstanding any curved section therebetween). Preference is given here obtuse angles greater than 90° up to 179°, such as 150 or 160°.
Auch kann die Abschlusskante zwischen dem inneren und äußeren Radius stetig gekrümmt verlaufen. Bevorzugt ist hier eine unterbrechungsfreie Krümmung zwischen dem inneren und äußeren Radius, welche Krümmung sich aus mehreren, beispielsweise zwei, drei, vier oder zehn hintereinander angeordneten Krümmungsabschnitten zusammensetzt. Eine oder mehrere Krümmungsabschnitte können für sich kreisförmig gekrümmt verlaufen und entsprechend einem Radius folgen. Im Falle von mehreren oder allen einem Radius folgenden Krümmungsabschnitten können diese unterschiedliche Radien aufweisen, wobei bei einer Mehrzahl an Krümmungsabschnitten mehrere Krümmungsabschnitte auch gleiche Radien aufweisen können.The terminating edge can also run continuously curved between the inner and outer radius. An uninterrupted curvature between the inner and outer radius is preferred here, which curvature is composed of several, for example two, three, four or ten curved sections arranged one behind the other. One or more curved sections can be curved in a circle and follow a radius accordingly. In the case of several or all curved sections following a radius, these can have different radii, it also being possible for a plurality of curved sections to have the same radii in the case of a plurality of curved sections.
Bevorzugt folgt die Abschlusskante im Wesentlichen einer Radiuslinie, so dass über die Erstreckungslänge der Abschlusskante sich ein gleichbleibender, gegebenenfalls eine Abweichung von beispielsweise +/- 5% des diesbezüglichen Radiusmaß aufweisender Radius einstellt.Preferably, the terminating edge essentially follows a radius line, so that over the extension length of the terminating edge a constant radius is set, possibly having a deviation of, for example, +/-5% of the relevant radius dimension.
Bei einer Ausgestaltung der Abschlusskante entlang einer Radiuslinie ist der Radius der Abschlusskante bevorzugt von einem Kreismittelpunkt abgetragen, der bezogen auf einen Abstand zu der geometrischen Laufrad-Drehachse zwischen dem ersten und dem zweiten Radiusmaß liegt. Bevorzugt liegt der Kreismittelpunkt innerhalb einer Schaufelkammer, darüber hinaus bevorzugt in einer in Umfangsrichtung der die Abschlusskante aufweisenden Schaufelwand folgenden Schaufelkammer. So kann der Kreismittelpunkt in der in Drehrichtung des Laufrades betrachteten vorgeschalteten Schaufelkammer liegen. Weiter bevorzugt liegt der Kreismittelpunkt auf oder benachbart zu einer Radiuslinie der geometrischen Laufrad-Drehachse, welche Radiuslinie mittig zwischen dem ersten und dem zweiten Radiusmaß verläuft.In an embodiment of the terminating edge along a radius line, the radius of the terminating edge is preferably removed from a circle center which, based on a distance from the geometric impeller axis of rotation, lies between the first and the second radius dimension. The center of the circle preferably lies within a blade chamber, moreover preferably in a blade chamber following the blade wall having the terminal edge in the circumferential direction. The center of the circle can thus lie in the upstream vane chamber viewed in the direction of rotation of the impeller. More preferably, the center of the circle lies on or adjacent to a radius line of the geometric axis of rotation of the impeller, which radius line runs centrally between the first and the second radius dimension.
Bei einer - in der genannten Draufsicht - gekrümmt verlaufenden Abschlusskante, wie auch bei einer Abschlusskante, die sich zumindest teilweise aus Geradabschnitten zusammensetzt, können die dem ersten und dem zweiten Radiusmaß zugewandten Endabschnitte der Abschlusskante gekrümmt verlaufen.In the case of a terminating edge that is curved—in the top view mentioned—as well as in the case of a terminating edge that is at least partially composed of straight sections, the end sections of the terminating edge that face the first and second radius dimensions can be curved.
Der Radius dieser bevorzugt tangential in die radial innere Begrenzungswand und gegebenenfalls in die radial äußere Abschlusswand einlaufenden und weiter bevorzugt kreisabschnittförmig verlaufenden Endabschnitte der Abschlusskante können kleiner oder auch größere gewählt sein als ein Radiusmaß beispielsweise einer Radiuslinie folgenden Abschlusskante. Bevorzugt entspricht der Radius der äußeren Endbereiche der Abschlusskante einem 0,5- bis 0,9-Fachen des Radius der Abschlusskante zwischen den Endbereichen.The radius of these end sections of the terminating edge, which preferably run tangentially into the radially inner boundary wall and optionally into the radially outer terminating wall and more preferably run in the shape of a segment of a circle, can be selected to be smaller or larger than a radius dimension, for example a terminating edge following a radius line. The radius of the outer end regions of the terminating edge preferably corresponds to 0.5 to 0.9 times the radius of the terminating edge between the end regions.
Die Schaufelwand kann sich ausgehend von der Abschlusskante in Richtung der geometrischen Laufrad-Drehachse beziehungsweise in Richtung auf einen Kammerboden hinsichtlich einer Wandstärke vergrößern. So kann die Wandstärke der Schaufelwand nahe dem oder am Übergang zu dem Kammerboden dem 2- bis 4-Fachen, weiter bevorzugt dem 3-Fachen der Wandstärke im Bereich der Abschlusskante entsprechen.Starting from the terminal edge, the blade wall can increase in wall thickness in the direction of the geometric impeller axis of rotation or in the direction of a chamber base. Thus, the wall thickness of the blade wall near or at the transition to the chamber base can correspond to 2 to 4 times, more preferably 3 times, the wall thickness in the area of the terminal edge.
Die Zunahme der Wandstärke kann - bezogen auf die Umfangsrichtung - unterschiedlich sein. So können bezogen auf einen Querschnitt durch die Schaufelwand, in Umfangsrichtung des Laufrades, radial zwischen dem inneren Einlaufpunkt und dem äußeren Ende der Schaufelwand, beispielsweise der Mitte zwischen dem ersten Radiusmaß und dem zweiten Radiusmaß, die Schaufelwandkanten mit einer parallel zu der geometrischen Laufrad-Drehachse verlaufenden Geraden unterschiedliche spitze Winkel einschließen. Bezogen auf die vorbeschriebene Gerade kann der Winkel einer Schaufelwandkante 1 bis 10° aufweisen, während der Winkel der gegenüberliegenden Schaufelwandkante zu der Geraden 11 bis 30° beträgt.The increase in wall thickness can be different in relation to the circumferential direction. In relation to a cross section through the blade wall, in the circumferential direction of the impeller, radially between the inner inlet point and the outer end of the blade wall, for example the middle between the first radius dimension and the second radius dimension, the blade wall edges can have a parallel to the geometric impeller axis of rotation enclose different acute angles. In relation to the straight line described above, the angle of a blade wall edge can be 1 to 10°, while the angle of the opposite blade wall edge to the straight line is 11 to 30°.
Der spitze Winkel der Schaufelwandkante entgegen der Drehrichtung ist hierbei bevorzugt größer als der spitze Winkel der Schaufelwandkante in der Drehrichtung. Es kann ein Verhältnis zwischen diesen unterschiedlichen Winkeln von 1:3 bis 1:10 gegeben sein.The acute angle of the blade wall edge against the direction of rotation is preferably larger than the acute angle of the blade wall edge in the direction of rotation. There can be a ratio between these different angles of 1:3 to 1:10.
Die Schaufelwand kann in Drehrichtung betrachtet konvex verlaufen. Entsprechend öffnet sich die im Grundriss gekrümmt verlaufende Schaufelwand in Drehrichtung.Viewed in the direction of rotation, the blade wall can be convex. Correspondingly, the blade wall, which is curved in plan, opens in the direction of rotation.
Der Kammerboden kann in einem Querschnitt in der Verbindungslinie oder parallel dazu kreis- oder ellipsenförmig verlaufen. Bevorzugt ist bei einem kreisförmigen Verlauf die Kreisform mit über die Erstreckungslänge des Kammerbodens im Querschnitt gleichbleibendem Radius. Auch kann über die Erstreckungslänge eine Krümmung mit unterschiedlichen Radien vorgesehen sein.The chamber floor can run circularly or elliptically in a cross-section in the connecting line or parallel thereto. In the case of a circular course, preference is given to a circular shape with a radius that remains constant in cross section over the length of the chamber floor. A curvature with different radii can also be provided over the extension length.
Jedenfalls radial innen kann der Kammerboden, beispielsweise einer Kreis- oder Ellipsenlinie folgend, bis in eine Oberkante der inneren Abschlusswand verlaufen.In any case, the chamber floor can extend radially inwards, for example following a circular or elliptical line, up to an upper edge of the inner end wall.
Es kann sich in einem Querschnitt in der Verbindungslinie oder parallel dazu eine halbkreisscheibenförmige Ausgestaltung der Schaufelkammer ergeben.In a cross-section in the connecting line or parallel thereto, a configuration of the vane chamber in the shape of a semicircular disc can result.
Die größte Tiefe des Kammerbodens entspricht bevorzugt dem 0,25- bis 0,75-Fachen der Radiusdifferenz zwischen innerem und äußerem Radius. In einer Ausführung entspricht die Tiefe der halben Radiusdifferenz. Die Tiefe ist hierbei ausgehend von einer (gegebenenfalls größten) Höhe der Abschlusskante in Richtung der Drehachse gemessen.The greatest depth of the chamber floor preferably corresponds to 0.25 to 0.75 times the radius difference between the inner and outer radius. In one embodiment, the depth corresponds to half the radius difference. In this case, the depth is measured starting from a (possibly greatest) height of the terminating edge in the direction of the axis of rotation.
Durch die bevorzugte Krümmung der insgesamt zumindest annähernd radial ausgerichteten Schaufeln ist im Betrieb gegenüber den bekannten Lösungen beim Druckaufbau neben der Umfangsgeschwindigkeit auch die Radialgeschwindigkeit erhöht. Der Druckaufbau ist verbessert. Zudem bietet die vorgeschlagene Lösung die Möglichkeit eines radial außen geschlossenen Laufrades, womit ein zweistufiger Betrieb mit nur einem Laufrad realisiert werden kann.Due to the preferred curvature of the blades, which are aligned at least approximately radially overall, the radial speed is increased in addition to the peripheral speed during operation compared to the known solutions during pressure build-up. The pressure build-up is improved. In addition, the proposed solution offers the possibility of an impeller that is closed radially on the outside, with which a two-stage operation can be implemented with only one impeller.
Die vor- und nachstehend angegebenen Bereiche beziehungsweise Wertebereiche oder Mehrfachbereiche schließen hinsichtlich der Offenbarung auch sämtliche Zwischenwerte ein, insbesondere in 1/10- Schritten der jeweiligen Dimension, gegebenenfalls also auch dimensionslos. Beispielsweise beinhaltet die Angabe 0,1- bis 0,5-Fachen auch die Offenbarung von 0,11- bis 0,5-Fach, 0,1- bis 0,49-Fach, 0,12- bis 0,5-Fach, 0,12- bis 0,9-Fach, 0,12- bis 0,48-Fach, 0,1- bis 0,48-Fach etc., die Offenbarung von 15 bis 40% auch die Offenbarung von 15,1 bis 40%, 15 bis 39,9%, 15,1 bis 39,9%, 15,2 bis 40%, 15,2 bis 39,9%, 15,2 bis 39,8%, 15 bis 39,8% etc., die Offenbarung von 60° bis 89° auch die Offenbarung von 60,1° bis 89°, 60° bis 88,9°, 60,2° bis 89°, 60,2° bis 88,9°, 60,2° bis 88,8°, 60° bis 88,8° etc. Diese Offenbarung kann einerseits zur Eingrenzung einer genannten Bereichsgrenze von unten und/oder oben, alternativ oder ergänzend aber zur Offenbarung eines oder mehrerer singulärer Werte aus einem jeweilig angegebenen Bereich dienen.The ranges or value ranges or multiple ranges specified above and below also include all intermediate values with regard to the disclosure, in particular in steps of 1/10 of the respective dimension, ie possibly also dimensionless. For example, the specification 0.1 to 0.5 times also includes the disclosure of 0.11 to 0.5 times, 0.1 to 0.49 times, 0.12 to 0.5 times , 0.12 to 0.9 fold, 0.12 to 0.48 fold, 0.1 to 0.48 fold etc., the revelation of 15 to 40% also the revelation of 15:1 to 40%, 15 to 39.9%, 15.1 to 39.9%, 15.2 to 40%, 15.2 to 39.9%, 15.2 to 39.8%, 15 to 39.8 % etc., the revelation from 60° to 89° also the revelation from 60.1° to 89°, 60° to 88.9°, 60.2° to 89°, 60.2° to 88.9°, 60.2° to 88.8°, 60° to 88.8° etc. This disclosure can on the one hand be used to delimit a specified range limit from below and/or above, but alternatively or additionally to disclose one or more singular values from a respectively specified serve area.
Nachstehend ist die Erfindung anhand der beigefügten Zeichnung erläutert, die aber lediglich Ausführungsbeispiele darstellt. Ein Teil, das nur bezogen auf eines der Ausführungsbeispiele erläutert ist und bei einem weiteren Ausführungsbeispiel aufgrund der dort herausgestellten Besonderheit nicht (gerade) durch ein anderes Teil ersetzt ist, ist damit auch für dieses weitere Ausführungsbeispiel als jedenfalls mögliches vorhandenes Teil beschrieben. Auf der Zeichnung zeigt:
- Fig. 1
- ein Laufrad in Draufsicht;
- Fig. 2
- den Schnitt gemäß der Linie II-II in
;Figur 1 - Fig. 3
- die Unteransicht des Laufrades;
- Fig. 4
- die Herausvergrößerung des Bereiches IV in
, eine erste Ausführungsform einer Schaufelwand betreffend;Figur 1 - Fig. 5
- eine der
Figur 4 entsprechende Darstellung, eine alternative Ausführungsform der Schaufelwand betreffend; - Fig. 6
- den Schnitt gemäß der Linie VI-VI in
;Figur 3 - Fig. 7
- den Schnitt gemäß der Linie VII-VII in
;Figur 6 - Fig. 8
- eine
Schnittdarstellung gemäß Figur 7 , jedoch eine weitere Ausführungsform der Schaufelwand betreffend; - Fig. 9
- eine der
Figur 6 entsprechende Darstellung bezüglich einer weiteren Ausführungsform; - Fig. 10
- eine weitere, der
entsprechende Darstellung in einer weiteren Ausführungsform (keine Ausführungsform gemäß der Erfindung).Figur 6
- 1
- an impeller in plan view;
- 2
- the cut according to the line II-II in
figure 1 ; - 3
- the bottom view of the impeller;
- 4
- the enlargement of area IV in
figure 1 , relating to a first embodiment of a blade wall; - figure 5
- one of the
figure 4 Corresponding representation relating to an alternative embodiment of the blade wall; - 6
- the cut according to the line VI-VI in
figure 3 ; - 7
- the cut according to the line VII-VII in
figure 6 ; - 8
- a sectional view according to
figure 7 , but relating to a further embodiment of the blade wall; - 9
- one of the
figure 6 corresponding representation with respect to a further embodiment; - 10
- another, the
figure 6 corresponding representation in a further embodiment (not an embodiment according to the invention).
Dargestellt und beschrieben ist zunächst mit Bezug zu
Das Laufrad 1 weist eine im Zentrum liegende Nabe 2 mit einer Durchgangsbohrung 3 auf, welche zur Befestigung des Laufrades 1 an einer nicht dargestellten Antriebswelle einer Seitenkanalmaschine dient.The
In Umfangsrichtung gleichmäßig verteilt weist das Laufrad 1 zu einer mit Bezug zu
Die Schaufeln 5 wie auch die Schaufelkammern 4 sind in einem radial äußeren Bereich des Laufrades 1 ausgebildet. Bevorzugt und beim Ausführungsbeispiel bilden die Schaufeln 5, gegebenenfalls mit Ausnahme einer Abschlusswand, wie nachstehend erläutert, die radial äußere Begrenzung des Laufrades 1.The
Die insbesondere in den
Radial innen sind die Schaufelkammern 4 begrenzt durch eine innere, umlaufende Begrenzungswand 7. Diese endet mit Bezug auf einen Querschnitt unter Ausbildung einer Begrenzungswandkante 8 in der Öffnungsebene E.The
Entlang der Umfangsrandkante 9, bevorzugt diese auch bildend, ist umlaufend eine Abschlusswand 10 ausgeformt. Auch diese erstreckt sich beispielsweise gemäß
Die innere Begrenzungswand 7 verläuft entlang eines ersten, inneren Radiusmaßes r1. Dieses Radiusmaß r1 bezieht sich bevorzugt auf eine radiale Innenkante der Begrenzungswand 7 und entspricht in den dargestellten Ausführungsbeispielen bevorzugt zwei Drittel eines Radiusmaßes r2 einer radial äußeren Kante der Abschlusswand 10.The
Zwischen der radial inneren Begrenzungswand 7 und der radial äußeren Abschlusswand 10 erstrecken sich die Schaufelwände 6, welche in Drehrichtung d betrachtet (gesehen von einer vorhergehenden Schaufelwand auf die in der Drehrichtung folgende Schaufelwand) jeweils konvex verlaufen.The
Es können über den Umfang gleichmäßig verteilt beispielsweise dreißig bis fünfundvierzig Schaufeln 5 vorgesehen sein, so beispielsweise fünfunddreißig Schaufeln 5.Thirty to forty-five
Jede Schaufelwand 6 weist eine freiliegende obere und sich in der Öffnungsebene E erstreckende Abschlusskante 12 auf. Diese Abschlusskante 12 läuft radial innen in die innere Begrenzungswand, insbesondere in die Begrenzungswandkante 8 ein und endet radial außen in der Umfangsrandkante 9, insbesondere in der Abschlusswandkante 11 der Abschlusswand 10.Each
Zwischen dem radial inneren Einlaufpunkt der Schaufelwand 6 in die Begrenzungswand 7 und dem radial äußeren Ende der Schaufelwand 6, beispielsweise dem in die Abschlusswand 10 einlaufenden Ende der Schaufelwand 6, kann eine gedankliche Verbindungslinie V gezogen werden (vergleiche beispielsweise
Die Verbindungslinie V verläuft hierbei in der Öffnungsebene E oder in einer Parallelebene hierzu.In this case, the connecting line V runs in the opening plane E or in a plane parallel thereto.
Insbesondere die Abschlusskante 12 einer jeden Schaufelwand 6 verläuft senkrecht zu der Verbindungslinie V mit unterschiedlichem Versatzmaß a. Das größte Versatzmaß a ergibt sich bevorzugt mittig zwischen der radial inneren Begrenzungswand 7 und der radial äußeren Abschlusswand 10 beziehungsweise der Umfangsrandkante 9.In particular, the
Das Versatzmaß a entspricht in den dargestellten Ausführungsbeispielen etwa einem Drittel des Differenzmaßes c von zweitem Radiusmaß r2 und erstem Radiusmaß r1.In the illustrated exemplary embodiments, the offset dimension a corresponds to approximately one third of the difference dimension c between the second radius dimension r 2 and the first radius dimension r 1 .
Die Schaufelwände 6 gemäß der Erfindung sind so ausgebildet, dass deren Abschlusskanten 12 im Wesentlichen einer Radiuslinie folgen. Der Radius r3 - bezogen auf die dem Radiusmittelpunkt zugewandte innere Randkante der Abschlussrandkante - ist von einem Kreismittelpunkt P abgetragen, der in einer in Drehrichtung d vorgelagerten Schaufelkammer 4 oder in der die vorgeordnete Schaufelkammer 4 von der beschriebenen Schaufelkammer 4 trennenden Schaufelwand 6 liegt.The
Weiter mit Bezug insbesondere auf die in einem Grundriss gemäß
Der Kreismittelpunkt P des Radius r3 kann auf der die Schaufelkammer 4 in Radialrichtung zwischen Begrenzungswand 7 und Abschlusswand 10 halbierenden Radiuslinie r4 liegen.The circle center P of the radius r 3 can lie on the radius line r 4 bisecting the
In einer Ausführungsform ist der Kreismittelpunkt P in Radialrichtung zur geometrischen Laufrad-Drehachse x um ein Maß z gegenüber der Radiuslinie r4 nach radial außen versetzt. Das Maß z entspricht etwa einem Zehntel bis einem Fünftel des Differenzmaßes c.In one embodiment, the center point P of the circle is in the radial direction to the geometric axis of rotation x of the impeller by a dimension z in relation to the radius line r 4 offset radially outwards. The dimension z corresponds to about one tenth to one fifth of the difference dimension c.
Auch kann sich die Schaufelwand 6, insbesondere die Abschlusskante 12 zumindest teilweise aus Geradabschnitten 13 zusammensetzen, die im Grundriss gemäß
Jeweils endseitig kann eine so gestaltete Abschlusskante 12 mit einer Radiuslinie tangential in die Begrenzungswand 7 und in die Umfangsrandkante 9 beziehungsweise in die Abschlusswand 10 einlaufen.At each end, a terminating
Das radial äußere Ende der Abschlusskante 12, gegebenenfalls eine durch den Schnittpunkt der Abschlusskante 12 und der Abschlusswand 10 gehende Tangente T, kann mit der Verbindungslinie V bevorzugt einen spitzen Winkel α von etwa 70° einschließen (vergleiche
Die Verbindungslinie V verläuft in Verlängerung in Richtung auf die geometrische Laufrad-Drehachse x mit einem Abstand b (vergleiche beispielsweise Figur 1) zu der geometrischen Laufrad-Drehachse x, welches senkrechte Abstandsmaß b etwa einem Zwanzigstel bis einem Fünfzehntel des äußeren Radius r2 entspricht.The connecting line V extends in the direction of the geometric axis of rotation of the impeller x at a distance b (see, for example, Figure 1) from the geometric axis of rotation of the impeller x, which vertical distance b corresponds to about one twentieth to one fifteenth of the outer radius r2.
Der sich zwischen zwei in Drehrichtung d gesehen hintereinander angeordneten Schaufelwänden 6 und der inneren Begrenzungswand 7 sowie in einer Ausführungsform auch der radial äußeren Abschlusswand 10 ergebende Kammerboden 14 verläuft in einem Querschnitt, in welchem Querschnitt sich die Laufrad-Drehachse x als Linie darstellt, kreisabschnittförmig (vergleiche
Insbesondere radial innen verläuft die den Kammerboden 14 beschreibende Kreislinie bis in die Begrenzungsrandkante 8.In particular, the circular line describing the
Bei einer Ausführungsform der Erfindung mit nach radial außen geschlossenen Schaufelkammern 4 gemäß den Darstellungen in den
Alternativ kann der Kammerboden 14 gemäß der Darstellung in
Die in Richtung der Laufrad-Drehachse x betrachtete größte Tiefe u einer Schaufelkammer 4 - abgetragen ausgehend von der Öffnungsebene E - kann dem 0,5-Fachen des Differenzmaßes c zwischen dem zweiten Radiusmaß r2 und dem ersten Radiusmaß r1 entsprechen.The greatest depth u of a
Mit Bezug auf einen Querschnitt durch eine Schaufelwand 6 gemäß der Darstellung in
So ist im Übergang zum Kammerboden 14 eine Wandstärke w angegeben, welche etwa dem 3-Fachen der Wandstärke w im Bereich der Abschlusskante 12 entspricht.A wall thickness w is specified in the transition to the
Mit Bezug auf eine, im Querschnitt die Abschlusskante 12 mittig durchsetzende, parallel zur Laufrad-Drehachse x verlaufende Gerade schließen die Schaufelwandkanten 16 insbesondere im Bereich der Radiuslinie r4 gleiche spitze Winkel zu der Geraden ein.With reference to a straight line running parallel to the impeller axis of rotation x and running parallel to the impeller axis of rotation x, the blade wall edges 16 enclose the same acute angles to the straight line, particularly in the area of the radius line r 4 .
Eine alternative Ausgestaltung zeigt
Hier schließen bezogen auf einen Querschnitt durch die Schaufelwand 6 zwischen dem inneren Einlaufpunkt und dem äußeren Ende, beispielsweise der Mittel zwischen dem ersten Radiusmaß r1 und dem zweiten Radiusmaß r2, die Schaufelwandkanten 16 mit der Geraden unterschiedliche spitze Winkel ein. So schließt die entgegen der Drehrichtung d weisende Schaufelwandkante 16 einen spitzen Winkel β1 von beispielsweise 15 bis 30, insbesondere etwa 20° zu der Geraden ein, während die in Drehrichtung d weitere Schaufelwandkante 16 einen spitzen Winkel β2 zu der Geraden von beispielsweise 2 bis 5° einschließt.In relation to a cross section through the
Gemäß der Darstellung in
Claims (15)
- Impeller (1) for a side channel machine, such as a side channel compressor or a side channel vacuum pump, having blades (5) which are distributed in the circumferential direction, each formed by a blade wall (6) forming, in a plan view of the impeller (1), open blade chambers (4), in which plan view a geometric impeller axis of rotation (x) is depicted in a punctiform manner, wherein a blade wall (6) begins in the plan view at a first radius dimension (r1) relative to the geometric impeller axis of rotation (x), which first radius dimension (r1) corresponds to half or more of a second radius dimension (r2), which second radius dimension (r2) defines a peripheral edge (9) of the impeller (1) and wherein the first radius dimension (r1) defines a radially inner boundary wall (7) of the blade chamber (4), wherein further a blade wall (6) has an exposed upper end edge (12) which correspondingly runs radially inwardly into the inner boundary wall (7) and in plan view ends radially outwardly in the peripheral edge (9), wherein an imaginary connecting line (V) can be drawn between a point of entry of the end edge (12) into the inner boundary wall (7) and a radially outer end of the end edge (12) and the end edge (12) extends perpendicularly to the connecting line (V) with a different offset dimension (a), a maximum offset dimension (a) being given, the blade wall (6) merging radially on the outside into a circumferential end wall (10) and an outer edge of the end wall (10) determining the second radius dimension (r2), characterised in that the largest offset dimension (a) corresponds to 0.1 times or more the difference between the second radius dimension (r2) and the first radius dimension (r1) and in that the end edge (12) substantially follows a radius line and in that a radius (r3) of the end edge (12) is removed from a circle center point (P) which lies in a blade chamber (4) following in the circumferential direction.
- Impeller according to claim 1, characterised in that the largest offset dimension (a) corresponds to 0.1 to 0.6 times the difference (c) of the second (r2) and the first radius dimension (r1).
- Impeller according to one of the preceding claims, characterised in that the end edge (12) extends radially outwards in the direction of the impeller axis of rotation (x).
- Impeller according to one of the preceding claims, characterised in that the connecting line (V) runs in extension in the direction of the geometric impeller rotation axis (x) with a distance dimension (b) perpendicular to the geometric impeller rotation axis (x).
- Impeller according to claim 4, characterised in that the perpendicular distance dimension (b) of the connecting line (V) to the geometric impeller axis of rotation (x) is formed in the range of -40% to +40% of the radius dimension (r2).
- Impeller according to one of the preceding claims, characterised in that the radially outer end of the end edge (12), optionally a tangent (T) passing through the point of intersection of the end edge (12) and the end wall (10), encloses an acute angle (α) of up to 90° with the connecting line (V).
- Impeller according to one of the preceding claims, characterised in that the end edge (12) is at least partially composed of straight sections (13).
- Impeller according to one of the claims 1 to 6, characterised in that the end edge (12) runs continuously curved between the first (r1) and the second radius dimension (r2).
- Impeller according to one of the preceding claims, characterised in that the blade wall (6), starting from the end edge (12), increases in the direction of the geometric impeller axis of rotation (x) with respect to a wall thickness (w).
- Impeller according to claim 9, characterised in that the increase in wall thickness (w) is different with respect to the circumferential direction.
- Impeller according to one of the claims 9 or 10, characterised in that, with respect to a cross-section through the blade wall (6) between the inner runin point and the outer end, for example in a centre between the first radius dimension (r1) and the second radius dimension (r2), blade wall edges (16) enclose different acute angles (β1, β2) with a straight line running parallel to the geometric impeller rotation axis (x).
- Impeller according to claim 11, characterised in that an acute angle (β1) of the blade wall edge (16) against the direction of rotation (d) is greater than an acute angle (β2) of the blade wall edge (16) in the direction of rotation.
- Impeller according to one of the preceding claims, characterised in that a blade wall (6) is convex in the direction of rotation (d).
- Impeller according to one of the preceding claims, characterised in that a chamber bottom (14) of a blade chamber (4) extends in a cross-section in the connecting line (V) or parallel thereto in a circular or elliptical shape, wherein in any case radially inwardly the circular or elliptical line extends into an upper edge of the inner end wall (10).
- An impeller according to any one of the preceding claims, characterised in that a greatest depth (u) of a chamber bottom (14) corresponds to 0.25 to 0.75 times the radius difference (c).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014106440.2A DE102014106440A1 (en) | 2014-05-08 | 2014-05-08 | Impeller, in particular for a side channel machine |
PCT/EP2015/055775 WO2015169496A1 (en) | 2014-05-08 | 2015-03-19 | Impeller, in particular for a side channel machine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3140548A1 EP3140548A1 (en) | 2017-03-15 |
EP3140548B1 true EP3140548B1 (en) | 2023-05-03 |
Family
ID=52774195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15712837.2A Active EP3140548B1 (en) | 2014-05-08 | 2015-03-19 | Impeller for regenerative pump |
Country Status (8)
Country | Link |
---|---|
US (1) | US10378543B2 (en) |
EP (1) | EP3140548B1 (en) |
JP (1) | JP2017515042A (en) |
KR (1) | KR20170005841A (en) |
CN (1) | CN106460851B (en) |
DE (1) | DE102014106440A1 (en) |
TW (1) | TWI648471B (en) |
WO (1) | WO2015169496A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3199818A1 (en) * | 2016-01-29 | 2017-08-02 | ESAM S.p.A. | Side-channel blower/aspirator with an improved impeller |
PL3199816T3 (en) * | 2016-01-29 | 2021-11-29 | Cattani S.P.A. | Side-channel blower/aspirator with an improved impeller |
DE102017215731A1 (en) | 2017-09-07 | 2019-03-07 | Robert Bosch Gmbh | Side channel compressor for a fuel cell system for conveying and / or compressing a gaseous medium |
CN110319054B (en) * | 2019-05-30 | 2020-09-18 | 宁波方太厨具有限公司 | Impeller for forward centrifugal fan |
CN110319053A (en) * | 2019-08-12 | 2019-10-11 | 烟台阳光泵业有限公司 | Unshrouded impeller and the low-flow high-lift centrifugal pump of single stage type for using unshrouded impeller |
EP3594498B1 (en) | 2019-11-06 | 2022-01-05 | Pfeiffer Vacuum Gmbh | System with a recirculation device |
TWI832724B (en) * | 2023-03-15 | 2024-02-11 | 英業達股份有限公司 | Centrifugal fan impeller |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3307019B2 (en) * | 1992-12-08 | 2002-07-24 | 株式会社デンソー | Regenerative pump |
DE69419544T2 (en) * | 1993-02-23 | 1999-11-25 | Hitachi, Ltd. | Eddy current blower and paddle wheel |
DE19752884A1 (en) * | 1997-11-28 | 1999-06-10 | Bosch Gmbh Robert | Fuel delivery unit |
JP3800128B2 (en) * | 2001-07-31 | 2006-07-26 | 株式会社デンソー | Impeller and turbine fuel pump |
JP3949448B2 (en) * | 2001-12-26 | 2007-07-25 | 愛三工業株式会社 | Fuel pump |
JP3964200B2 (en) * | 2001-12-26 | 2007-08-22 | 愛三工業株式会社 | Fuel pump |
CN1189666C (en) * | 2002-06-06 | 2005-02-16 | 孙敏超 | Efficient propeller with blades curled backward for centrifugal propeller machinery |
JP3959012B2 (en) * | 2002-09-10 | 2007-08-15 | 愛三工業株式会社 | Friction regenerative fuel pump |
DE10342256A1 (en) * | 2003-09-11 | 2005-04-28 | Siemens Ag | Fuel pump |
JP4692009B2 (en) * | 2004-04-07 | 2011-06-01 | 株式会社デンソー | Fuel pump impeller and fuel pump using the same |
US7008174B2 (en) * | 2004-05-10 | 2006-03-07 | Automotive Components Holdings, Inc. | Fuel pump having single sided impeller |
DE102005008388A1 (en) | 2005-02-24 | 2006-08-31 | Gebr. Becker Gmbh & Co Kg | Impeller wheel for side channel machine, e.g. compressors and vacuum pumps, has at least one guide rib between adjacent blades extending inwards into cross-sectional region(s) of radial outer edging of flow chamber |
JP4671844B2 (en) * | 2005-05-27 | 2011-04-20 | 株式会社日立産機システム | Blower |
EP2020509B1 (en) * | 2007-08-03 | 2014-10-15 | Hitachi, Ltd. | Centrifugal compressor, impeller and operating method of the same |
DE102007053016A1 (en) * | 2007-11-05 | 2009-05-07 | Gardner Denver Deutschland Gmbh | Side Channel Blowers |
DE102007053017A1 (en) * | 2007-11-05 | 2009-05-07 | Gardner Denver Deutschland Gmbh | Side Channel Blowers |
DE102010046870B4 (en) * | 2010-09-29 | 2016-09-22 | Pierburg Gmbh | Side channel blower, in particular secondary air blower for an internal combustion engine |
JP5613006B2 (en) * | 2010-10-18 | 2014-10-22 | 株式会社日立製作所 | Multistage centrifugal compressor and its return channel |
TW201337107A (en) * | 2011-10-26 | 2013-09-16 | Nsb Gas Proc Ag | Liquid ring compressor |
US9599126B1 (en) * | 2012-09-26 | 2017-03-21 | Airtech Vacuum Inc. | Noise abating impeller |
-
2014
- 2014-05-08 DE DE102014106440.2A patent/DE102014106440A1/en active Pending
-
2015
- 2015-03-19 WO PCT/EP2015/055775 patent/WO2015169496A1/en active Application Filing
- 2015-03-19 EP EP15712837.2A patent/EP3140548B1/en active Active
- 2015-03-19 CN CN201580023880.7A patent/CN106460851B/en active Active
- 2015-03-19 KR KR1020167034476A patent/KR20170005841A/en unknown
- 2015-03-19 US US15/305,739 patent/US10378543B2/en active Active
- 2015-03-19 JP JP2016566650A patent/JP2017515042A/en active Pending
- 2015-04-01 TW TW104110676A patent/TWI648471B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201600730A (en) | 2016-01-01 |
EP3140548A1 (en) | 2017-03-15 |
US20170051753A1 (en) | 2017-02-23 |
WO2015169496A1 (en) | 2015-11-12 |
US10378543B2 (en) | 2019-08-13 |
JP2017515042A (en) | 2017-06-08 |
KR20170005841A (en) | 2017-01-16 |
CN106460851A (en) | 2017-02-22 |
TWI648471B (en) | 2019-01-21 |
CN106460851B (en) | 2020-03-17 |
DE102014106440A1 (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3140548B1 (en) | Impeller for regenerative pump | |
DE69113616T2 (en) | SIDE CHANNEL PUMP. | |
DE10327574B4 (en) | Impeller for a fuel pump | |
DE102005015821B4 (en) | Impeller and fuel pump using this | |
DE1817430A1 (en) | Regenerative compressor | |
EP2746534B1 (en) | Stator and/or rotor stage of a turbomachine and corresponding gas turbine | |
DE102004043036A1 (en) | Fluid flow machine with fluid removal | |
WO2016110373A1 (en) | Side-channel blower for an internal combustion engine | |
EP2253851B1 (en) | Vacuum pump | |
DE102009021620A1 (en) | vacuum pump | |
EP3571416B1 (en) | Shrouded centrifugal fan impeller with a periodically and asymmetrically shaped shroud | |
DE102014212920A1 (en) | showel | |
EP2762674A2 (en) | Vane for a vane cell device and vane cell device | |
DE102010005517B4 (en) | dispersing pump | |
EP3358135A1 (en) | Contouring of a blade row platform | |
DE102005008388A1 (en) | Impeller wheel for side channel machine, e.g. compressors and vacuum pumps, has at least one guide rib between adjacent blades extending inwards into cross-sectional region(s) of radial outer edging of flow chamber | |
EP2606235B1 (en) | Vane pump | |
EP2587065B1 (en) | Liquid ring compressor | |
DE102016110224B4 (en) | Centrifugal pump and impeller for a centrifugal pump | |
DE19912314C2 (en) | feed pump | |
DE4239071A1 (en) | Submersible pump unit | |
EP2584141B1 (en) | Adjustable vane pump | |
WO2001094789A1 (en) | Pump | |
DE202007012565U1 (en) | Hybrid pump for conveying a liquid pumping medium | |
WO2014170428A1 (en) | Impeller for a centrifugal pump and centrifugal pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161201 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190404 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1564815 Country of ref document: AT Kind code of ref document: T Effective date: 20230515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015016339 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230904 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230803 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230903 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230804 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015016339 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240206 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240318 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240321 Year of fee payment: 10 Ref country code: FR Payment date: 20240314 Year of fee payment: 10 |