EP3129543A1 - Carbon fibers having a modified surface, method for modifying a carbon fiber surface, and use of the carbon fiber - Google Patents

Carbon fibers having a modified surface, method for modifying a carbon fiber surface, and use of the carbon fiber

Info

Publication number
EP3129543A1
EP3129543A1 EP15726919.2A EP15726919A EP3129543A1 EP 3129543 A1 EP3129543 A1 EP 3129543A1 EP 15726919 A EP15726919 A EP 15726919A EP 3129543 A1 EP3129543 A1 EP 3129543A1
Authority
EP
European Patent Office
Prior art keywords
carbon fiber
coating
siloxane
plasma
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15726919.2A
Other languages
German (de)
French (fr)
Inventor
Heinrich Zeininger
Florian Eder
Marek Maleika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3129543A1 publication Critical patent/EP3129543A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon

Definitions

  • the invention relates to carbon fibers, in particular those used for carbon fiber composite plastics (CFKs).
  • CFRKs carbon fiber composite plastics
  • the surface of the carbon fibers in particular plays a decisive role, because the connection of the carbon fiber to the matrix and thus the stability of the fiber-reinforced material is decisively influenced by the molecular conditions of the carbon fiber surface.
  • Carbon fiber to the matrix resin is still too weak even after treatment with sizing.
  • the fiber-reinforced composite plastics thereby lose the required stiffness and strength.
  • the known thin size is often used in preforming processes, as well as in braiding and guiding on deflection rollers rubbed off the fiber. Not a good adhesion of the matrix material to the carbon fiber will then take place during incorporation into the matrix at these locations because the graphite ⁇ similar surface that is non-polar and no "anchor points" such as the hydroxide formed by anodic oxidation and / or oxidation marks there, the treated carbon fiber, meets the matrix material
  • Carbon fiber composite plastic overall, because the matrix resin adheres poorly in places of low polarity.
  • the invention is a devisflä ⁇ chenmod e carbon fiber having a siloxane Umman- telung.
  • the invention relates to a process for the surface modification of a carbon fiber, in which a carbon fiber with a siloxane-containing sheath is produced via a plasma coating.
  • siloxane-containing coating here is a thin, to 500 ⁇ maximum ⁇ thick coating of SiO x referred to, which is amorphous, ie glassy.
  • surface-modified carbon fiber refers to a carboxylic ⁇ fiber whose original graphite Similar upper ⁇ surface modified by a method, that is to implementation-with a coating material is activated.
  • the modification is carried out by anodic oxidation, whereas according to the invention, the modification is carried out by plasma.
  • the surface of a carbon fiber before the loading is preferably modified coating, advantageously fourth acti ⁇ plasma.
  • the carbon fibers are not, or not only anodized after their production, but in a plasma at ⁇ play as activated in an atmospheric plasma.
  • the plasma is wholly or partly generated with silane-containing precursors and thereby coated the carbon fiber with a glassy layer.
  • AD plasma atmospheric pressure or normal pressure plasma
  • Activation unlike an activated plasma coating, lasts only a few hours and does not increase the density of polar groups on the surface of the surface
  • Carbon fiber This can be demonstrated by measuring the wetting ability of Owens, Wendt, Rabel and Kälble.
  • the contact angle of 61 ° for the poorly wettable untreated carbon fiber surface decreases to less than 10 ° for the plasma activated carbon fiber surfaces.
  • the water droplet spreads comparatively quickly and wets the surface.
  • the activation of the carbon fiber surface and the coating are carried out in a single plasma treatment, in particular when the precursors for the plasma coating are activated with air.
  • the surface of the carbon fiber is charged, ionized and / or radicals are formed.
  • the ionized plasma gases combine with surface atoms.
  • the following molecular groups are formed:
  • the new surface molecules react with each other to form an amorphous siloxane layer.
  • the siloxane layer can be controlled by the speed of the nozzle or by changing the process parameters such as precursor quantity, plasma power, nozzle geometry, etc.
  • the layer thicknesses produced are in the nanometer range, are therefore thinner than lym, in particular they are below 500 nm, for example in the range of 10 to 300 nm, in particular 20 to 200 nm and preferably in the range of 50 to 150 nm.
  • the siloxane layer formed by plasma adheres very well to the carbon fiber surface.
  • An adjoining epoxy coating leads to a better adhesion of the epoxy coating on the siloxane layer than on the conventional anodically oxidized carbon fiber surface.
  • amorphous SiO x layer with similar siloxane precursors eg HMDSO, TEOS, VTMS.
  • ge ⁇ Switzerland is according to this method on the carbon fiber surface, an amorphous SiO x - layer, the harder, that is, for example, accelerated processing conditions in the carbon fiber-processing
  • oxygen is present on the surface in functional groups such as -C-OR and -COOR
  • the oxygen content at the surface increases to more than 30% through the plasma coating, preferably by using material mixtures containing more than 50%, by using highly TEOS-containing material mixtures. at.
  • the concentration of acid ⁇ material in the near-surface layer of approximately 5 nm is detected by XPS photoelectron spectroscopy.
  • the significantly increased concentration of polar groups leads to increased wetting and adhesion of the size, a thermoplastic matrix and / or a resin matrix.
  • the invention proposes for the first time a thin but hard plasma coating with amorphous, ie vitreous, siloxane on a carbon fiber. This gives the carbon fiber a surface that can be worked like a glass fiber surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

The invention relates to carbon fibers, in particular carbon fibers that can be used for carbon-fiber composite plastics. The invention proposes, for the first time, a thin but hard plasma coating with amorphous, i.e., vitreous, siloxane on a carbon fiber. The carbon fiber is thus provided with a surface that can be processed like a glass fiber surface.

Description

Beschreibung description
Carbonfasern mit modifizierter Oberfläche sowie Verfahren zur Modifizierung einer Carbonfaseroberfläche und Verwendung der Carbonfaser Modified surface carbon fibers and methods of modifying a carbon fiber surface and using the carbon fiber
Die Erfindung betrifft Carbonfasern, insbesondere solche, die für Carbonfaserverbundkunststoffe (CFKs) eingesetzt werden. Bei der Einarbeitung der Carbonfasern in Faserverbundkunststoffe spielt insbesondere die Oberfläche der Carbonfasern eine entscheidende Rolle, weil die Anbindung der Carbonfaser an die Matrix und damit die Stabilität des faserverstärkten Materials von den molekularen Gegebenheiten der Carbonfaser- Oberfläche entscheidend beeinflusst wird. The invention relates to carbon fibers, in particular those used for carbon fiber composite plastics (CFKs). When incorporating the carbon fibers into fiber composite plastics, the surface of the carbon fibers in particular plays a decisive role, because the connection of the carbon fiber to the matrix and thus the stability of the fiber-reinforced material is decisively influenced by the molecular conditions of the carbon fiber surface.
Bekannt ist, die Carbonfasern anodisch zu oxidieren und anschließend diese mit einer Schlichte auf Epoxidbasis zu be¬ schichten. Die Schlichte ist relativ dünn (<100nm) . Durch die anodische Oxidation wird die unpolare Graphitähnliche Ober¬ fläche zunächst aktiviert. Dabei werden beispielsweise Gra¬ phitoxide und Graphit-Hydroxide gebildet. Diese oberflächen¬ aktivierten Carbonfasern werden dann nasschemisch mit einer epoxidhaltigen Lacklösung beschichtet und können in Rovings von bis zu 60 000 Filamenten geführt werden. Is known to oxidize the carbon fibers and then anodically layer them with a sizing epoxy to be ¬. The sizing is relatively thin (<100nm). By the anodic oxidation nonpolar graphite Similar upper ¬ surface is first activated. Here, for example Gra ¬ phitoxide and graphite hydroxides are formed. These surfaces ¬ activated carbon fibers are then wet-chemically coated with an epoxy coating solution and can be performed in rovings of up to 60,000 filaments.
Trotz dieser Behandlung kommt es immer noch vor, dass bei Bruchtests, insbesondere zur Prüfung der Eignung von Carbonfaser verstärkten Werkstoffen für hochbelastete Bauteile, festgestellt wird, dass die Carbonfaser sich leicht aus der Matrix ziehen lässt. Dies zeigt, dass die Anbindung der Despite this treatment, it is still the case that in fracture tests, particularly to test the suitability of carbon fiber reinforced materials for heavily loaded components, it is found that the carbon fiber can be easily pulled out of the matrix. This shows that the connection of the
Carbonfaser an das Matrixharz auch nach der Behandlung mit Schlichte noch zu schwach ist. Die Faserverstärkten Verbundkunststoffe verlieren dadurch die erforderliche Steifigkeit und Festigkeit. Carbon fiber to the matrix resin is still too weak even after treatment with sizing. The fiber-reinforced composite plastics thereby lose the required stiffness and strength.
Die bekannte dünne Schlichte wird oftmals bei Preform- prozessen, wie auch beim Flechten und Führen auf Umlenkrollen von der Faser abgerieben. An diesen Stellen findet dann bei der Einarbeitung in die Matrix keine gute Anhaftung des Matrixmaterials an die Carbonfaser statt, weil dort die Graphit¬ ähnliche Oberfläche, die unpolar ist und keine „Ankerpunkte" wie die durch anodische Oxidation gebildeten Hydroxid- und/ oder Oxidpunkte der behandelten Carbonfaser, auf das Matrixmaterial trifft. Diese Stellen schwächen den gebildeten The known thin size is often used in preforming processes, as well as in braiding and guiding on deflection rollers rubbed off the fiber. Not a good adhesion of the matrix material to the carbon fiber will then take place during incorporation into the matrix at these locations because the graphite ¬ similar surface that is non-polar and no "anchor points" such as the hydroxide formed by anodic oxidation and / or oxidation marks there, the treated carbon fiber, meets the matrix material
Carbonfaser-Verbundkunststoff insgesamt, weil das Matrixharz an Stellen geringer Polarität nur schlecht haftet. Carbon fiber composite plastic overall, because the matrix resin adheres poorly in places of low polarity.
Daher ist es Aufgabe der vorliegenden Erfindung, oberflächenmodifizierte Carbonfasern zur Einarbeitung in Carbonfaserverstärkte Kunststoffe zur Verfügung zu stellen, sowie ein Verfahren zur Oberflächenmodifizierung von Carbonfasern zu schaffen. It is therefore an object of the present invention to provide surface-modified carbon fibers for incorporation in carbon fiber reinforced plastics, as well as to provide a method for surface modification of carbon fibers.
Diese Aufgabe wird durch den Gegenstand der vorliegenden Er¬ findung, wie er in der Beschreibung und den Ansprüchen offenbart wird, gelöst. This object is achieved by the subject matter of the present ¬ invention as disclosed in the description and the claims.
Dementsprechend ist Gegenstand der Erfindung eine oberflä¬ chenmodifizierte Carbonfaser, die eine siloxanhaltigen Umman- telung aufweist. Außerdem ist Gegenstand der Erfindung ein Verfahren zur Oberflächenmodifikation einer Carbonfaser, bei dem über eine Plasmabeschichtung eine Carbonfaser mit einer siloxanhaltigen Ummantelung hergestellt wird. Accordingly, the invention is a oberflä ¬ chenmodifizierte carbon fiber having a siloxane Umman- telung. In addition, the invention relates to a process for the surface modification of a carbon fiber, in which a carbon fiber with a siloxane-containing sheath is produced via a plasma coating.
Als siloxanhaltige Beschichtung wird hier eine dünne, bis ma¬ ximal 500 nm dicke Beschichtung aus SiOx bezeichnet, die amorph, also glasartig vorliegt. As a siloxane-containing coating here is a thin, to 500 ¬ maximum ¬ thick coating of SiO x referred to, which is amorphous, ie glassy.
Als „oberflächenmodifizierte Carbonfaser" wird eine Carbon¬ faser bezeichnet, deren ursprüngliche Graphitähnliche Ober¬ fläche durch ein Verfahren modifiziert, das heißt zur Umset- zung mit einem Beschichtungsmaterial aktiviert wird. Nach dem Stand der Technik wird die Modifizierung durch anodische Oxidation ausgeführt, wohingegen gemäß der Erfindung die Modifizierung durch Plasma durchgeführt wird. Bevorzugt wird die Oberfläche einer Carbonfaser vor der Be- schichtung modifiziert, vorteilhafterweise über Plasma akti¬ viert . As "surface-modified carbon fiber" refers to a carboxylic ¬ fiber whose original graphite Similar upper ¬ surface modified by a method, that is to implementation-with a coating material is activated. In the prior art, the modification is carried out by anodic oxidation, whereas according to the invention, the modification is carried out by plasma. The surface of a carbon fiber before the loading is preferably modified coating, advantageously fourth acti ¬ plasma.
So werden die Carbonfasern nach ihrer Herstellung nicht oder nicht nur anodisch oxidiert, sondern in einem Plasma, bei¬ spielsweise in einem Atmosphären-Plasma, aktiviert. Vorteilhafterweise wird das Plasma ganz oder teilweise mit silanhaltigen Precursoren erzeugt und dadurch die Carbonfaser mit einer glasartigen Schicht überzogen. Thus, the carbon fibers are not, or not only anodized after their production, but in a plasma at ¬ play as activated in an atmospheric plasma. Advantageously, the plasma is wholly or partly generated with silane-containing precursors and thereby coated the carbon fiber with a glassy layer.
Alternativ oder ergänzend dazu kann auch eine reine Aktivie- rung mit einem AD-Plasma (Atmosphärendruck oder Normaldruck- Plasma) unter Stickstoff N2/Luft erfolgen. Alternatively or additionally, a pure activation with an AD plasma (atmospheric pressure or normal pressure plasma) under nitrogen N 2 / air can take place.
Die Aktivierung bleibt im Gegensatz zu einer aktivierten Plasmabeschichtung nur wenige Stunden bestehen und erhöht nicht die Dichte an polaren Gruppen auf der Oberfläche derActivation, unlike an activated plasma coating, lasts only a few hours and does not increase the density of polar groups on the surface of the surface
Carbonfaser. Nachweisbar ist dies über die Messung der Benet- zungsfähigkeit nach Owens, Wendt, Rabel und Kälble. Demnach sinkt der Kontaktwinkel von 61° bei der schlecht benetzbaren, unbehandelten Carbonfaser-Oberfläche auf weniger al 10° bei den durch Plasmaaktivierung behandelten Carbonfaser-Oberflächen. Das heißt, dass auf der plasmaaktivierten Oberfläche der Carbonfaser der Wassertropfen vergleichsweise schnell spreizt und die Oberfläche benetzt. Nach einer vorteilhaften Ausführungsform der Erfindung werden die Aktivierung der Carbonfaseroberfläche und die Beschich- tung in einer einzigen Plasmabehandlung durchgeführt, insbesondere dann, wenn die Prekursoren für die Plasmabeschichtung mit Luft aktiviert werden. Carbon fiber. This can be demonstrated by measuring the wetting ability of Owens, Wendt, Rabel and Kälble. Thus, the contact angle of 61 ° for the poorly wettable untreated carbon fiber surface decreases to less than 10 ° for the plasma activated carbon fiber surfaces. This means that on the plasma-activated surface of the carbon fiber, the water droplet spreads comparatively quickly and wets the surface. According to an advantageous embodiment of the invention, the activation of the carbon fiber surface and the coating are carried out in a single plasma treatment, in particular when the precursors for the plasma coating are activated with air.
Während der Aktivierung im Plasma wird die Oberfläche der Carbonfaser aufgeladen, ionisiert und/oder es bilden sich Radikale. Die ionisierten Plasmagase verbinden sich mit Ober- flächenatomen . Dabei entstehen je nach Ionisationsgas folgende Molekülgruppen: During activation in the plasma, the surface of the carbon fiber is charged, ionized and / or radicals are formed. The ionized plasma gases combine with surface atoms. Depending on the ionization gas, the following molecular groups are formed:
-C-O, -C-O,
-COH, --COH,
-C-N, -C-N,
-C-NH, -C-NH
-C-00 -C-00
diese reagieren dann mit den ionisierten Fragmenten der these then react with the ionized fragments of the
Silan-Prekursoren zu -C-O-Si-R (R=0, OH, OSi, OSiOH,...) . Silane precursors to -C-O-Si-R (R = O, OH, OSi, OSiOH, ...).
In einer Folgereaktion reagieren die neuen Oberflächenmoleküle miteinander zu einer amorphen Siloxanschicht . Die Siloxan- schicht kann durch Geschwindigkeit der Düse oder Änderung der Prozessparameter wie Prekursormenge, Plasmaleistung, Düsenge- ometrie etc. gesteuert werden. In a subsequent reaction, the new surface molecules react with each other to form an amorphous siloxane layer. The siloxane layer can be controlled by the speed of the nozzle or by changing the process parameters such as precursor quantity, plasma power, nozzle geometry, etc.
Die erzeugten Schichtdicken liegen im Nanometerbereich, sind also dünner als lym, insbesondere liegen sie unter 500nm, beispielsweise im Bereich von 10 bis 300nm, insbesondere bei 20 bis 200 nm und bevorzugt im Bereich von 50 bis 150 nm. The layer thicknesses produced are in the nanometer range, are therefore thinner than lym, in particular they are below 500 nm, for example in the range of 10 to 300 nm, in particular 20 to 200 nm and preferably in the range of 50 to 150 nm.
Im Folgenden wird die Erfindung anhand von Beispielen, wie eine Modifikation der Carbonfaseroberfläche beispielsweise mit AD-Plasma durchgeführt werden kann, näher erläutert: In the following, the invention will be explained in more detail on the basis of examples of how a modification of the carbon fiber surface can be carried out, for example with AD plasma:
Beispiel 1 : Example 1 :
Plasmaaktivierung und/oder dünne Plasmabeschichtung der Plasma activation and / or thin plasma coating of
Carbonfaser-Oberfläche: Carbon fiber surface:
Durch die chemische Bindung von aktivierten Atomen auf der Carbonfaser-Oberfläche mit den ionisierten Silanfragmenten wird eine gute Haftung der Siloxanschicht erreicht. Beispiel 2 : The chemical bonding of activated atoms on the carbon fiber surface with the ionized silane fragments ensures good adhesion of the siloxane layer. Example 2:
Nasschemische Beschichtung der bereits durch Beispiel 1 mit amorphem Siloxan modifizierten Carbonfaseroberfläche mit Epo- xidhaltigen Lacken analog zur Glasfaserbeschichtung. Wet-chemical coating of the carbon fiber surface already modified by Example 1 with amorphous siloxane with epoxy-containing paints analogous to glass fiber coating.
Die durch Plasma, insbesondere durch AD-Plasma gebildete Siloxanschicht haftet sehr gut auf der Carbonfaseroberfläche. Eine daran anschließende Epoxidbeschichtung führt zu einer besseren Haftung der Epoxidbeschichtung auf der Siloxanschicht als wie bisher auf der herkömmlich anodisch oxidier- ten Carbonfaseroberfläche. The siloxane layer formed by plasma, in particular by AD plasma, adheres very well to the carbon fiber surface. An adjoining epoxy coating leads to a better adhesion of the epoxy coating on the siloxane layer than on the conventional anodically oxidized carbon fiber surface.
Beispiel 3: Example 3:
Erhöhung der Schichtdicke der Plasmabeschichtung durch Änderung der Prozessparameter oder über eine weitere Plasmabeschichtung auf der amorphen SiOx - Schicht mit ähnlichen siloxanisierten Prekursoren (z.B. HMDSO, TEOS, VTMS) . Increasing the layer thickness of the plasma coating by changing the process parameters or via a further plasma coating on the amorphous SiO x layer with similar siloxane precursors (eg HMDSO, TEOS, VTMS).
Auch ohne zusätzliche nasschemische Beschichtung, wie sie ge¬ mäß Beispiel 2 durchgeführt wird, befindet sich gemäß diesem Verfahren auf der Carbonfaseroberfläche eine amorphe SiOx - Schicht, die härteren, also beispielsweise beschleunigten Verarbeitungsbedingungen bei der Carbonfaser-VerarbeitungEven without additional wet-chemical coating, as it is performed ge ¬ Mäss Example 2 is according to this method on the carbon fiber surface, an amorphous SiO x - layer, the harder, that is, for example, accelerated processing conditions in the carbon fiber-processing
(Flechten, Aufrollen etc. ) standhält. Dies insbesondere des¬ halb, weil eine amorphe SiOx - Schicht härter als die organi¬ sche Epoxidharzschicht ist, die nach dem Stand der Technik auf der Carbonfaser aufgebracht wird und im Beispiel 1 we- sentlich zur Schichtdicke beiträgt und die äußerste Ummante- lung der Carbonfaser bildet. (Braiding, rolling, etc.) withstands. This particular ¬ half because an amorphous SiO x - layer is harder than the organic ¬ specific epoxy resin layer applied on the carbon fiber according to the prior art and Example 1 GR sentlich to the layer thickness contributes and the outermost sheathing development of Carbon fiber forms.
Während bei anodisch oxidierten Fasern Sauerstoff an der Oberfläche in funktionellen Gruppen, wie -C-OR und -COOR vorliegt, steigt der Sauerstoffgehalt an der Oberfläche durch die Plasmabeschichtung auf ca. 30% vorzugsweise durch den Einsatz von stark TEOS haltigen Materialmischungen auf über 50% an. Die funktionellen Gruppen sind -COR, -COOR, C=0 sowie -Si(-0)3 und Si(-0)4 - Gruppen. Die Konzentration an Sauer¬ stoff in der oberflächennahen Schicht von ca. 5 nm wird mit XPS Photoelektronen-Spektroskopie nachgewiesen. While in the case of anodically oxidized fibers, oxygen is present on the surface in functional groups such as -C-OR and -COOR, the oxygen content at the surface increases to more than 30% through the plasma coating, preferably by using material mixtures containing more than 50%, by using highly TEOS-containing material mixtures. at. The functional groups are -COR, -COOR, C = 0 as well -Si (-0) 3 and Si (-0) 4 - groups. The concentration of acid ¬ material in the near-surface layer of approximately 5 nm is detected by XPS photoelectron spectroscopy.
Die deutlich erhöhte Konzentration an polaren Gruppen führt zu einer erhöhten Benetzung und Haftung der Schlichte, einer thermoplastischen Matrix und/oder einer Harzmatrix. The significantly increased concentration of polar groups leads to increased wetting and adhesion of the size, a thermoplastic matrix and / or a resin matrix.
Durch die Erfindung wird erstmals eine dünne, aber harte Plasmabeschichtung mit amorphem, also glasartigem Siloxan auf einer Carbonfaser vorgeschlagen. Dadurch erhält die Carbonfaser eine Oberfläche, die wie eine Glasfaseroberfläche zu bearbeiten ist. The invention proposes for the first time a thin but hard plasma coating with amorphous, ie vitreous, siloxane on a carbon fiber. This gives the carbon fiber a surface that can be worked like a glass fiber surface.

Claims

Patentansprüche claims
1. Carbonfaser mit modifizierter Oberfläche, die eine 1. Carbon fiber with modified surface, the one
siloxanhaltige Beschichtung in einer Schichtdicke kleiner lym aufweist. Siloxane-containing coating in a layer thickness smaller lym has.
2. Carbonfaser nach Anspruch 1, die zusätzlich weitere Be- schichtungen aufweist. 2. Carbon fiber according to claim 1, which additionally comprises further coatings.
3. Carbonfaser nach Anspruch 2, die zwei Lagen Beschichtung hat, wobei die siloxanhaltige Beschichtung zwischen der 3. Carbon fiber according to claim 2, which has two layers of coating, wherein the siloxane-containing coating between the
Carbonfaser und einer nasschemisch applizierten Beschichtung liegt . Carbon fiber and a wet-chemically applied coating is.
4. Carbonfaser nach Anspruch 3, wobei auf der siloxanhaltigen Beschichtung eine Beschichtung aus einem Epoxidharz liegt. 4. Carbon fiber according to claim 3, wherein on the siloxane-containing coating is a coating of an epoxy resin.
5. Carbonfaser nach einem der vorstehenden Ansprüche, wobei auf der ersten und dünnen siloxanhaltigen Beschichtung zumin- dest eine weitere siloxanhaltige Beschichtung vorgesehen ist. 5. Carbon fiber according to one of the preceding claims, wherein at least one further siloxane-containing coating is provided on the first and thin siloxane-containing coating.
6. Verfahren zur Oberflächenmodifikation einer Carbonfaser, bei dem über eine Plasmabeschichtung eine Carbonfaser mit einer siloxanhaltigen Beschichtung hergestellt wird. 6. A method for the surface modification of a carbon fiber, wherein a plasma coating is used to produce a carbon fiber with a siloxane-containing coating.
7. Verfahren nach Anspruch 6, das unter Atmosphärenplasma durchgeführt wird. 7. The method of claim 6, which is carried out under atmospheric plasma.
8. Verfahren nach Anspruch 6 oder 7, wobei in einem Plasma- behandlungsschritt die Modifizierung der Carbonfaser-Oberfläche und die Beschichtung mit der amorphen siloxanhaltigen Beschichtung erfolgt. 8. The method of claim 6 or 7, wherein in a plasma treatment step, the modification of the carbon fiber surface and the coating is carried out with the amorphous siloxane-containing coating.
9. Verwendung einer Carbonfaser nach einem der Ansprüche 1 bis 5 zur Herstellung eines Faserverbundkunststoffes. 9. Use of a carbon fiber according to one of claims 1 to 5 for the production of a fiber composite plastic.
EP15726919.2A 2014-06-25 2015-05-27 Carbon fibers having a modified surface, method for modifying a carbon fiber surface, and use of the carbon fiber Withdrawn EP3129543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014212241.4A DE102014212241A1 (en) 2014-06-25 2014-06-25 Modified surface carbon fibers and methods of modifying a carbon fiber surface and using the carbon fiber
PCT/EP2015/061743 WO2015197299A1 (en) 2014-06-25 2015-05-27 Carbon fibers having a modified surface, method for modifying a carbon fiber surface, and use of the carbon fiber

Publications (1)

Publication Number Publication Date
EP3129543A1 true EP3129543A1 (en) 2017-02-15

Family

ID=53284230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15726919.2A Withdrawn EP3129543A1 (en) 2014-06-25 2015-05-27 Carbon fibers having a modified surface, method for modifying a carbon fiber surface, and use of the carbon fiber

Country Status (5)

Country Link
US (1) US20170130393A1 (en)
EP (1) EP3129543A1 (en)
JP (1) JP2017524835A (en)
DE (1) DE102014212241A1 (en)
WO (1) WO2015197299A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107936273A (en) * 2017-11-29 2018-04-20 西华大学 A kind of high-performance light composite material of carbon fiber enhancement resin base and preparation method thereof
DE102018113587B8 (en) 2018-06-07 2024-02-29 Reinhard Koch Fiber profiles for use as reinforcement in concrete buildings for high fire protection requirements and processes for their production
CN113338027A (en) * 2021-05-12 2021-09-03 北京化工大学 Surface treatment method of carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599624A (en) * 1995-07-03 1997-02-04 General Electric Company Amorphous silicon oxycarbide coated silicon carbide or carbon fibers

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1320908A (en) * 1969-08-26 1973-06-20 English Electric Co Ltd Coated carbon fibres
JPS59106572A (en) * 1982-12-06 1984-06-20 信越化学工業株式会社 Surface treatment of carbon fiber
DE3706218A1 (en) * 1987-02-26 1988-09-08 Werner Prof Dr Weisweiler DEVICE AND METHOD FOR CONTINUOUSLY COATING THE INDIVIDUAL FIBERS OF A FIBER BUNDLE WITH SURFACE PROTECTING AND ADHESIVE CARBIDE OR PLASMAPOLYMER FILMS
US4961971A (en) * 1988-12-19 1990-10-09 United Technologies Corporation Method of making oxidatively stable water soluble amorphous hydrated metal oxide sized fibers
JPH06173118A (en) * 1992-12-02 1994-06-21 Osaka Gas Co Ltd Production of carbon fiber coated with silicon oxide
US5358747A (en) * 1992-12-28 1994-10-25 Aluminum Company Of America Siloxane coating process for carbon or graphite substrates
AU6119696A (en) * 1995-06-22 1997-01-22 Grant Rheal Cool Surface modification of polymers and carbon-based materials
JPH1171146A (en) * 1997-06-16 1999-03-16 Dai Ichi Kogyo Seiyaku Co Ltd Foaming agent for concrete
FR2801908B1 (en) * 1999-12-06 2002-03-01 Snecma PROCESS FOR OBTAINING CARBON FIBER TISSUE BY CONTINUOUS CARBONIZATION OF A CELLULOSIC FIBER TISSUE
JP4261956B2 (en) * 2003-03-31 2009-05-13 ニチアス株式会社 Conductive resin, composition for conductive resin, and production method thereof
US8227051B1 (en) * 2004-06-24 2012-07-24 UT-Battle, LLC Apparatus and method for carbon fiber surface treatment
JP5166689B2 (en) * 2005-10-17 2013-03-21 昭和電工株式会社 Method for producing silica-coated carbon fiber
JP2007254906A (en) * 2006-03-22 2007-10-04 Shinshu Univ Silica-coated carbon fiber and method for producing the same
US8951632B2 (en) * 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
GB2467366A (en) * 2009-02-03 2010-08-04 Rolls Royce Plc Fibre-reinforced Composite Materials with Glass Coated Carbon Fibres
US20100227134A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
DE102012214784B4 (en) * 2012-08-20 2015-07-23 Schunk Kohlenstofftechnik Gmbh Carbon fiber filament chemical vapor deposition apparatus and method for producing the carbon fiber filaments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599624A (en) * 1995-07-03 1997-02-04 General Electric Company Amorphous silicon oxycarbide coated silicon carbide or carbon fibers

Also Published As

Publication number Publication date
JP2017524835A (en) 2017-08-31
US20170130393A1 (en) 2017-05-11
DE102014212241A1 (en) 2015-12-31
WO2015197299A1 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
DE102013219331B3 (en) Plasma polymer solid, in particular plasma polymer layer, and their use
EP3129543A1 (en) Carbon fibers having a modified surface, method for modifying a carbon fiber surface, and use of the carbon fiber
WO2014068041A1 (en) Polymer-based layer structure with an oleophobic/hydrophobic surface, and electric machine comprising such a layer structure
EP2279280A2 (en) Method for coating a fiber composite component for an aircraft or spacecraft and fiber composite component produced by said method
EP1674255A1 (en) Composite fabric made of fluoropolymers
DE102007010071A1 (en) Layer composite for transmission of lacquer on substrate, producing fiber-reinforced plastics, has lacquer coating and interlayer, where lacquer coating has soft or partly hardened or hardened lacquer
DE19543133C2 (en) Process for producing highly hydrophobic polymer layers by means of plasma polymerization
DE102013226215A1 (en) Process for the hydrophobization and / or oleophobization of a material and hydrophobized and / or oleophobed component
EP0412242A1 (en) Optical fiber
EP3680100B1 (en) Composite material with adhesive layer based on si, c and o
EP3200931B1 (en) Composite consisting of a substrate, a plasma polymer layer, a mixed layer and a cover layer
EP2742513B1 (en) Coating having high corona resistance and production method therefor
DE102005041330B4 (en) Silicone elastomers and their surface modification by means of plasma processes for the purpose of coating
EP2707152B1 (en) Substrate-functional layer assembly
EP3259396B1 (en) Process to increase the adhesion between a reinforcing element and an elastomerix matrix
EP2738289B1 (en) Method for plasma treatment of a colloidal solution
EP1223188B1 (en) Process for preparing powder coated plastic profiles
EP1920850B1 (en) Method for protecting patinated surfaces of copper products and patinated copper product
DE102020204778A1 (en) Method for producing an insulation coating for an electrical conductor, which comprises graphene and / or carbon nanotubes
EP3259122B1 (en) Method for producing a tire
DE4206747A1 (en) PLASTIC HOLLOW BODY WITH REDUCED PERMANENTNESS
WO2016142316A1 (en) Carbon fibre fibre-sizing containing nanoparticles
DE102017205015A1 (en) Rolling bearing with an electrically insulating layer
DE102015215483A1 (en) Plasma coating process for carbon fibers, apparatus therefor and plasma coated carbon fibers
EP2754504B1 (en) Hydrophobic component of a motor vehicle for track maintenance vehicles and track maintenance vehicles with a hydrophobic motor vehicle component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190226