EP3125366B1 - Adaptateur d'inclinaison pour antenne diplexée avec inclinaison semi-indépendante - Google Patents

Adaptateur d'inclinaison pour antenne diplexée avec inclinaison semi-indépendante Download PDF

Info

Publication number
EP3125366B1
EP3125366B1 EP16179570.3A EP16179570A EP3125366B1 EP 3125366 B1 EP3125366 B1 EP 3125366B1 EP 16179570 A EP16179570 A EP 16179570A EP 3125366 B1 EP3125366 B1 EP 3125366B1
Authority
EP
European Patent Office
Prior art keywords
phase shifter
phase
antenna
coarse
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16179570.3A
Other languages
German (de)
English (en)
Other versions
EP3125366A1 (fr
Inventor
Guomin Ding
Martin L. Zimmerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope Technologies LLC
Original Assignee
Commscope Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/812,339 external-priority patent/US10116425B2/en
Priority claimed from US14/958,463 external-priority patent/US10033086B2/en
Application filed by Commscope Technologies LLC filed Critical Commscope Technologies LLC
Publication of EP3125366A1 publication Critical patent/EP3125366A1/fr
Application granted granted Critical
Publication of EP3125366B1 publication Critical patent/EP3125366B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre

Definitions

  • Various aspects of the present disclosure relate to base station antennas, and, more particularly, to mechanical devices for controlling semi-independent tilt of diplexed antennas.
  • Mechanical tilt may be provided by angling the diplexed antenna physically downward, whereas electrical tilt may be provided by controlling phases of radiating signals of each radiating element so the main beam is moved downward. Mechanical and electrical tilt may be adjusted either individually, or in combination, utilizing remote control capabilities.
  • Network performance may be optimized if the tilt (e.g., electrical tilt) associated with each frequency band supported by an antenna is completely independently controlled.
  • this independence may require a large number of diplexers and other components, adding significant cost and complexity to the creation of a diplexed antenna.
  • Patent Document US 7 173 572 B1 is considered to be the closest prior art and relates to a dual band, dual pole, variable downtilt, 90 degree azimuth beamwidth antenna.
  • the antenna includes dipole elements forming both a PCS band and a cellular band antenna.
  • the PCS band antenna has two sections disposed each side of the cellular band antenna, the elements of each being positioned 90° with respect to the other.
  • a microstrip feed network formed upon a common PC board feeds the respective dipole elements, and has serpentine portions with a corresponding dielectric member slideable thereover to establish the phase of the associated dipole antennas and achieve a linear downtilt of the respective antenna array.
  • a slide rod adjustment assembly provides unitary movement of the dielectric members between two different slide rods. These dielectric members are secured with adhesive to the respective slide rods to achieve good dielectric control and no use of hardware.
  • the radiating dipole elements are capacitively coupled to each microstrip, and are also capacitively associated reflector element. One arm of the reflector element is offset at least 45 degrees with respect to the other arm to improve cross polarization.
  • a tilt adapter configured to facilitate a desired tilt of a first radio frequency (RF) band and a second RF band of an antenna.
  • the antenna supports two or more frequency bands, in which the vertical tilt of each of the supported frequency bands is separately controlled by a coarse level of phase shifting, but commonly controlled by a fine level of phase shifting.
  • the tilt adapter may comprise a first rod coupled to at least one first coarse phase shifter, a second rod coupled to at least one second coarse phase shifter; a cross linkage member operatively engaged to both the first and second rods; a first rack coupled to the cross linkage member; and a second rack coupled to the first rack, at least one first fine phase shifter, and at least one second fine phase shifter. Lateral movement of the first rod or the second rod causes lateral movement of the second rack.
  • FIG. 1 is a schematic diagram of an example of a diplexed antenna 100.
  • the diplexed antenna 100 includes first and second first level phase shifters 101, 103 coupled to inputs of respective diplexers 105, 107.
  • Each output of the respective diplexers 105, 107 may be coupled to sub-arrays of radiating elements 109, 111 resulting in a fixed tilt within the sub-arrays of the radiating elements 109, 111.
  • the diplexed antenna 100 exhibits simplicity and may be relatively inexpensive to implement. Unfortunately, the quality of radiation patterns produced by the diplexed antenna 100 may suffer due to some of the phase offsets being fixed.
  • each radiating element 201, 203, 205, 207 is coupled to a respective diplexer 209, 211, 213, 215, each of which is, in turn, coupled to outputs of each of phase shifters 217, 219.
  • the number of diplexers may double when employing dual polarization functionality.
  • Such diplexed antennas may increase in complexity and cost with greater lengths. For example, diplexed antennas having respective lengths of 1.4, 2.0, and 2.7 meters may require 10, 16, and 20 diplexers respectively, to produce high quality radiation patterns for each of the supported frequency bands.
  • diplexed antennas may be desirable for diplexed antennas to have an individually controllable tilt for each supported band. While completely individual controllable tilt may be desirable, there may be a significant correlation between (or among) the respective vertical tilt range of each supported band of the diplexed antenna, at least partly due to a frequency band tilt range's dependence on a mount height of the antenna supporting the frequency bands. More specifically, the higher above ground the antenna is mounted, the greater the tilt that may be required for acceptable operation.
  • aspects of the present disclosure may take advantage of the above discussed tilt correlation by being directed to a diplexed antenna for processing two or more frequency bands, where the vertical tilt of each of the supported frequency bands may be independently controlled by a coarse level of phase shifting, but commonly controlled by a fine level of phase shifting.
  • aspects of the present disclosure may achieve elevation patterns of a quality similar to that of the diplexed antenna 200 of FIG. 2 above, but at a low cost, light weight, and simplicity similar to that of the diplexed antenna 100 of FIG. 1 above.
  • a diplexed antenna 300 may include first and second coarse phase shifters 301, 303, first and second diplexers 305, 307, first and second fine phase shifters 309, 311, and radiating elements 313, 315.
  • each of the radiating elements may refer to single radiating elements or a sub-array of multiple radiating elements.
  • the first coarse phase shifter 301 may be set to a tilt value ⁇ , which may provide a first contribution on a first tilt associated with a first frequency band
  • the second coarse phase shifter 311 may be set to a tilt value ( ⁇ , which may provide a second contribution on a second tilt associated with a second frequency band.
  • the first coarse phase shifter 301 may be configured to receive an RF signal of the first frequency band (e.g., 790-862 MHz), and divide the RF signal into varied phase signals based on the set tilt value ⁇
  • one of the varied phase signals may have a first phase
  • another of the varied phase signals may have a second phase different from the first phase.
  • the second coarse phase shifter 311 may be configured to receive an RF signal of the second frequency band (e.g., 880-962 MHz), and divide the RF signal into varied phase signals in a similar fashion to that of the first coarse phase shifter 301.
  • the diplexers 305, 307 may be configured to diplex the varied phase signals output from the coarse phase shifters 301, 311.
  • the diplexer 305 may be configured to receive one or more varied phase signals output from the first coarse phase shifter 301, as well as one or more varied phase signals output from the second coarse phase shifter 303.
  • Outputs from each of the diplexers 305, 307 may direct communication signals according to the first and second frequency bands.
  • An output from each of the first and second diplexers 305, 307 may be coupled to inputs of first and second fine phase shifters 309, 311 respectively.
  • the first and second fine phase shifters 309, 311 may be configured to provide phase shifting among the radiating elements 313, 315.
  • the first and second fine phase shifters 309, 311 may allow for operation on all of the supported frequency bands of the diplexed antenna with equal effect. More specifically, the first and second fine phase shifters 309, 311 may be configured to provide a phase shift based on the average of the set tilt values ⁇ ° and ⁇ ° of the supported frequency bands, or ( ⁇ °+ ⁇ °)/2.
  • each of the coarse and fine phase shifters may include a power divider (such as, for example, a Wilkinson power divider, not shown) to effect a tapered amplitude distribution (e.g., a linear phase progression) across the radiating elements 313, 315.
  • a power divider such as, for example, a Wilkinson power divider, not shown
  • tapered amplitude distribution e.g., a linear phase progression
  • the first and second coarse phase shifters 401, 403 of a diplexed antenna 400 may take the form of wiper-arc phase shifters, such as described in U.S. Pat. No. 7,463,190 .
  • Wiper-arc phase shifters may be preferred for coarse phase shifting due at least in part to their ability to generate a large phase shift in a small amount of area.
  • the first and second fine phase shifters 409, 411 may take the form of sliding dielectric phase shifters or wiper arc phase shifters, as known in the art, to effect a tilt value of ( ⁇ °+ ⁇ °)/2, as discussed above.
  • each of the coarse and fine phase shifters may include a power divider (such as, for example, a Wilkinson power divider, not shown) to effect a tapered amplitude distribution across sub-arrays of radiating elements 413, 415.
  • a power divider such as, for example, a Wilkinson power divider, not shown
  • FIGS. 5A-5C are examples of diplexed antennas 500.
  • the diplexed antenna 500 may comprise first and second coarse phase shifters 501, 503, first and second diplexers 505, 507, first and second fine phase shifters 509, 511, and radiating elements 502, 504, 506, 508.
  • the first coarse phase shifter 501 may be set to tilt value ⁇ , which may provide a first contribution on a first tilt associated with a first frequency band
  • the second coarse phase shifter 503 may be set to tilt value ( ⁇ , which may provide a second contribution on a second tilt associated with a second frequency band.
  • the first coarse phase shifter 501 may be configured to receive an RF signal of the first frequency band and divide the RF signal into varied phase signals based on the set tilt value ⁇ .
  • one of the variable phase signals may have a first phase
  • another of the variable phase signals may have a second phase different from the first phase.
  • the second coarse phase shifter 503 may be configured to receive an RF signal of the second frequency band, and may divide the RF signal into varied phase signals in a similar fashion to that of the first coarse phase shifter 501.
  • the diplexers 505, 507 may be configured to diplex the varied phase shifted signals output from the coarse phase shifters 501, 503.
  • the diplexer 505 may be configured to receive one or more varied phase signals output from the first coarse phase shifter 501, as well as one or more varied phase signals output from the second coarse phase shifter 503.
  • Outputs from each of the diplexers 505, 507 may direct communication signals responsive to the first and second frequency bands.
  • An output of each of the first and second diplexers 505, 507 may be coupled to inputs of first and second fine phase shifters 509, 511 respectively.
  • the first and second fine phase shifters 509, 511 may be configured to provide phase shifting among radiating elements 502, 504, 506, 508.
  • the first and second fine phase shifters 509, 511 may allow for operation on all of the supported frequency bands of the diplexed antenna with equal effect. More specifically, the first and second fine phase shifters 509, 511 may be configured to provide a phase shift based on a combination of the set tilt values ⁇ and ⁇ of the respective coarse phase shifters 501, 503.
  • each of the coarse phase shifters 501, 503 and fine phase shifters 509, 511 may include a power divider (such as, for example, a Wilkinson power divider, not shown) to effect a tapered amplitude distribution across the radiating elements 502, 504, 506, 508.
  • a power divider such as, for example, a Wilkinson power divider, not shown
  • a tilt value ⁇ may be related to a phase shift generated by each of the phase shifters.
  • each coarse phase shifter 501, 503 may shift every 2 radiating elements.
  • each fine phase shifter 509, 511 may shift every radiating element.
  • the distance between radiating elements, S may typically be between 250°-300°. However, S may be other values outside this range in keeping with the invention.
  • each of the coarse phase shifters 501, 503 may include outputs that may be fewer or greater than two element spacings apart in keeping with the disclosure.
  • each of the fine phase shifters 509, 511 may include outputs that are greater than one element spacing apart in keeping with the disclosure.
  • the first and second fine phase shifters 509, 511 may be configured to generate a phase shift based on a combination of the set tilt values of the supported bands of the diplexed antenna.
  • the phase shift generated by each of the first and second fine phase shifters 509, 511 may be 20°, which may result in a phase progression across the outputs of each of first and second fine phase shifter outputs 509, 511, of 10° and +10°.
  • Table 1 below provides a list of phase shifts applied to each radiating element 502, 504, 506, 508 as attributed to each phase shifter, and the total phase shift applied to each radiating element 502, 504, 506, 508, with such a configuration.
  • each of the first and second coarse phase shifters 501, 503 may generate a phase shift of 80°.
  • the output signals of the first and second coarse phase shifters 501, 503 may have a phase -40° and +40° respectively.
  • other phase shifts may be employed in keeping with the disclosure.
  • the first and second fine phase shifters 509, 511 may be configured to generate a phase shift based on the average of the set tilt values ⁇ and ⁇ , which would, in this case, be 8°.
  • the phase shift generated by each of the first and second fine phase shifters 509, 511 may be 40°, which may be realized with one of the output signals having a phase of -20° and the other of the output signals having a phase of +20°.
  • the phase shift generated by each of the first and second fine phase shifters 509, 511 would be 6 ⁇ 5 ⁇ 1, which may result in a phase shift of 30°, which may be realized with a linear phase progression across the outputs of the first and second fine phase shifters 509, 511 of -15° and +15°.
  • the total phase shifts of the radiating elements 502, 504, 506, 508 of the dual band implementations of the diplexed antenna listed in Tables 3 and 4 may be relatively close to the ideal (e.g., effectively completely independent tilt implementations, as reflected in Tables 1 and 2) phase shifts of the radiating elements 502, 504, 506, 508. Consequently, aspects of the present disclosure may be able to achieve elevation patterns of a quality similar to that of more complex diplexed antenna.
  • FIG. 6 is a perspective view of a portion of a backside of the diplexed antenna 500.
  • Each of the first and second coarse phase shifters 501, 503 may include two wiper arc phase shifters 501 a , 501 b , 503 a , 503 b , respectively.
  • the first phase shifter 501 may include one wiper arc phase shifter 501a configured to adjust a phase shift for +45° polarization, and another wiper arc phase shifter 501 b configured to adjust a phase shift for -45° polarization of the first frequency band.
  • the second coarse phase shifter 503 may include one wiper arc phase shifter 503 a configured to adjust a phase shift for +45° polarization and another wiper arc phase shifter 503 b configured to adjust a phase shift for -45° polarization of the second frequency band.
  • the first and second coarse phase shifters 501, 503 may be connected to respective first and second frequency band inputs 601, 603, and a tilt adapter 605 via respective connecting members 607, 609. More specifically, the connecting member 607 may be connected to the first frequency band input 601, the first phase shifter 501, and a first rod 611 of the tilt adapter 605. Similarly, the connecting member 609 may be connected to the second frequency band input 603, the second phase shifter 503, and a second rod 613 of the tilt adapter 605.
  • FIG. 7 is an enlarged perspective view of the tilt adapter 605 which may be configured to effect the desired tilt of the first and second frequency bands of operation of the diplexed antenna 500.
  • the tilt adapter 605 may include a chassis 615 defining a cavity within an interior thereof.
  • Two opposing side walls 616 of the chassis 615 may include a plurality of respective openings 617 with which portions of a first level rack 619, the first level rod 611, and the second level rod 613 may be slidably engaged.
  • a cross linkage member 621 may be pivotably connected to the first level rack 619, the first level rod 611, and the second level rod 613, at a position between the two opposing side walls 616.
  • the cross linkage member 621 may include slots 623, 625 positioned at opposing ends of the cross linkage member 621.
  • Respective pins 627, 629 may be affixed to, and may extend from, the first and second level rods 611, 613.
  • the respective slots 623, 625 may allow for movement of the respective pins 627, 629 within the respective slots 623, 625.
  • lateral movement of the first level rod 611 may cause movement of the pin 627 within the slot 623 as well as effect rotational movement of the cross linkage member 621 about the pin 629 affixed to the second level rod 613.
  • the rotational movement of the cross linkage member 621 may cause a center 639 of the cross linkage member 621 to move in the same lateral direction as the first level rod 611.
  • the lateral movement of the center 639 of the cross linkage member 621 may, in turn, cause the first level rack 619 to move a distance in the same lateral direction as the first level rod 611.
  • lateral movement may refer to linear movement along an axis Y-Y.
  • lateral movement of the second level rod 613 may cause movement of the pin 639 within the slot 625 as well as effect rotational movement of the cross linkage member 621 about the pin 627 affixed to the first level rod 611.
  • the rotational movement of the cross linkage member 621 may cause the center 639 of the cross linkage member 621 to move in the same lateral direction as the second level rod 613.
  • the lateral movement of the center 639 of the cross linkage member 621 may, in turn, cause the first level rack 619 to move in the same lateral direction as the second level rod 613.
  • the first level rack 619 may be configured to move at a predetermined fraction of the distance traveled by either of the first and second level rods 611, 613.
  • the predetermined fraction may be 1 ⁇ 2.
  • the first level rack 619 may be configured to move a lateral distance of 1 ⁇ 2 the distance moved by either of the first and second level rods 611, 613.
  • the first level rack 619 may be in toothed engagement with a first pinion gear 631 which may, in turn, be connected to a second pinion gear 633 via a shaft 635.
  • the second pinion gear 633 may be in toothed engagement with a second level rack 637.
  • the lateral movement of the second level rack 637 may be in accordance with a gear ratio of the first level rack 619 to the second level rack 637.
  • the first pinion gear 631 may rotate, which, in turn, may cause rotation of the shaft 635, which may drive rotation of the second pinion gear 633. Further, rotation of the second pinion gear 633 may cause lateral movement of the second level rack 637, positioned on the frontside of the diplexed antenna 500 (e.g., opposite the backside) and coupled to the fine phase shifters 509, 511.
  • the various components of the tilt adapter 605 may be constructed of aluminum, or any material suitable to withstand the normal operating conditions of the diplexed antenna 500 without deviating from the inventive concept, such as other metals or polymeric materials.
  • FIG. 8 is a perspective view of the frontside (e.g. opposite the backside) of the diplexed antenna 500 with a radome removed.
  • the diplexed antenna 500 may include radiating elements 502, 504, 506, 508 which may be first and/or second band radiating elements mounted to one of the feed boards 702.
  • Fine phase shifters 509, 511 may be integrated into one of the feed boards 702.
  • the second level rack 637 may be connected to an elongated bar 704, which may couple each of the fine phase shifters 509, 511 to a wiper connecting bar 706, opposing ends of which may be connected to respective wiper arms 708 (as shown in FIG.
  • lateral movement of the second level rack 637 may cause lateral movement of the elongated bar 704.
  • Such lateral movement of the elongated bar 704 may cause movement of one or more of the wiper connecting bars 706 resulting in movement of respective wiper arms 708 causing the fine level phase shift to effect the desired level of tilt.
  • the connecting member 607 may move laterally, causing the first coarse phase shifter 501 to provide a first contribution on a first tilt associated with the first frequency band.
  • the connecting member 609 may move laterally, causing the second coarse phase shifter 503 to provide a second contribution on a second tilt associated with a second frequency band.
  • Lateral movement of the connecting members 607, 609 may cause movement of the respective first and second level rods 611, 613. Movement of the first and/or second level rods 611, 613 may cause movement of the first level rack 619, which, via the first pinion gear 631, shaft 635, and second pinion gear 633, may cause lateral movement of the second level rack 637. Lateral movement of the second level rack 637 may cause the first and second fine phase shifters 509, 511 to provide a phase shift based on a combination of the set tilt values ⁇ and ⁇ of the respective coarse phase shifters 501, 503.
  • the different antenna types may include a different number of radiating elements, which may result in different radiating element spacings and phase shifter arc radii.
  • the coarse phase shifters and fine phase shifters may be affected differently by such variations.
  • antennas of longer lengths may include a greater number of radiating elements, which may increase the distance between some phase shifter outputs measured in element spacings, while antennas of shorter lengths may include fewer radiating elements, which may result in a reduction of the distance between some phase shifter outputs.
  • a phase shift value of a phase shifter may be proportional to the distance between each of the outputs of the phase shifter.
  • the coarse phase shifters' shift values may depend on the total number of radiating elements in the diplexed antenna, and, as such, the coarse phase shift values may be increased or decreased based on a length of the diplexed antenna.
  • the phase shift values output from the fine phase shifters may not be similarly affected.
  • diplexed antenna may employ additional feedboards including additional fine phase shifters to drive the same. As such, the distance between the outputs of each of the fine phase shifters may not change, or may not change in the same fashion as the outputs of the coarse phase shifters.
  • the gear ratio may be adjusted to produce the desired movement of the second level rack 637 relative to the first level rack 619.
  • the diameter of the first pinion gear 631 and/or the second pinion gear 633 may be increased or decreased to account for different antenna types, such as other antenna types and arrangements discussed in U.S. patent application Ser. No. 14/812,339 .
  • a diameter of the first pinion gear 631 may be increased, which, in turn, may increase the number of teeth along the circumference of the first pinion gear 631. This modification may result in an increased gear ratio.
  • a diameter of the first pinion gear 631 may be decreased, which, in turn, may decrease the number of teeth along the circumference of the first pinion gear 631. This modification may result in a decreased gear ratio.
  • input As used herein, "input”, “output”, and some other terms or phrases refer to the transmit signal path. However, because the structures described herein may be passive components, the networks and components also perform reciprocal operations in the receive signal path. Therefore, the use of "input”, “output”, and some other terms is for clarity only, and is not meant to imply that the diplexed antennas do not operate concurrently in both receive and transmit directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (13)

  1. Antenne, comprenant :
    un premier déphaseur grossier (301, 501) configuré pour recevoir un signal radiofréquence (RF) d'une première bande de fréquences ;
    un deuxième déphaseur grossier (303, 503) configuré pour recevoir un signal RF d'une deuxième bande de fréquences ;
    des premier et deuxième diplexeurs (305, 307) configurés chacun pour combiner un signal à phase variée délivré par le premier déphaseur grossier (301, 501) avec un signal à phase variée délivré par le deuxième déphaseur grossier (303, 503) ;
    un premier déphaseur fin (309, 509) comprenant une entrée couplée à une sortie du premier diplexeur ;
    un deuxième déphaseur fin (311, 509) comprenant une entrée couplée à une sortie du deuxième diplexeur ;
    une pluralité d'éléments rayonnants (313, 315, 502, 506) comprenant au moins un premier élément rayonnant couplé à une sortie respective du premier déphaseur fin (309, 509) et au moins un deuxième élément rayonnant couplé à une sortie respective du deuxième déphaseur fin (311, 509) ; et
    un adaptateur d'inclinaison (605) qui est couplé aux premier et deuxième déphaseurs grossiers (301, 501, 303, 503) ainsi qu'aux premier et
    deuxième déphaseurs fins (309, 509, 311, 509) et qui est configuré pour régler le premier déphaseur fin (309, 509) sur la base de réglages effectués sur les premier et deuxième déphaseurs grossiers (301, 501, 303, 503) et configuré en outre pour régler le deuxième déphaseur fin (311, 509) sur la base de réglages effectués sur les premier et deuxième déphaseurs grossiers (301, 501, 303, 503),
    dans laquelle les premier et deuxième déphaseurs grossiers (301, 501, 303, 503) sont réglables indépendamment.
  2. Antenne selon la revendication 1, dans laquelle l'adaptateur d'inclinaison (605) comprend un élément de liaison transversale (621) qui se déplace en réponse à un mouvement d'un premier élément (611) et en réponse à un mouvement d'un deuxième élément (613).
  3. Antenne selon la revendication 2, dans laquelle un premier élément réglable (708) du premier déphaseur fin (309, 509) et un deuxième élément réglable (708) du deuxième déphaseur fin (311, 509) sont couplés fonctionnellement à l'élément de liaison transversale (621) de sorte que le mouvement de l'élément de liaison transversale (621) est configuré pour déplacer les premier et deuxième éléments réglables (708).
  4. Antenne selon la revendication 3, dans laquelle l'élément de liaison transversale (621) est couplé aux premier et deuxième éléments réglables (708) par l'intermédiaire d'une première crémaillère (619) qui est reliée à l'élément de liaison transversale (621) et qui est configurée pour se déplacer en réponse à un mouvement de l'élément de liaison transversale (621), d'une première roue dentée (631) qui vient en prise avec la première crémaillère (619), d'une deuxième roue dentée (633) qui se déplace en réponse à un mouvement de la première roue dentée (631) et d'une deuxième crémaillère (637) qui vient en prise avec la deuxième roue dentée (633).
  5. Antenne selon la revendication 4, dans laquelle un rapport de démultiplication entre les première et deuxième roues dentées est sélectionné pour produire une quantité souhaitée de mouvement de la deuxième crémaillère (631) par rapport à la première crémaillère (637).
  6. Antenne selon l'une quelconque des revendications 2 à 5, dans laquelle l'élément de liaison transversale (621) est configuré pour tourner en réponse à un mouvement du premier élément (611) et est configuré pour tourner en réponse à un mouvement du deuxième élément (613).
  7. Antenne selon la revendication 6, dans laquelle un mouvement de rotation de l'élément de liaison transversale (621) est configuré pour provoquer un mouvement latéral d'un premier élément mobile (619) qui est relié à l'élément de liaison transversale (621).
  8. Antenne selon l'une quelconque des revendications 1 à 7, dans laquelle un déphasage appliqué par le premier déphaseur grossier (301, 501) dépasse un déphasage appliqué par le premier déphaseur fin (309, 509) et dans laquelle un déphasage appliqué par le deuxième déphaseur grossier (303, 503) dépasse un déphasage appliqué par le deuxième déphaseur fin (311, 509).
  9. Antenne selon l'une quelconque des revendications 1 à 8, dans laquelle le premier déphaseur grossier (301, 501) applique des premiers déphasages à ses signaux de sortie et le deuxième déphaseur grossier (303, 503) applique des deuxièmes déphasages à ses signaux de sortie, les premiers déphasages étant différents des deuxièmes déphasages, et dans laquelle le premier déphaseur fin (309, 509) applique des troisièmes déphasages à ses signaux de sortie et le deuxième déphaseur fin (303, 503) applique des quatrièmes déphasages à ses signaux de sortie, les troisièmes déphasages étant les mêmes que les quatrièmes déphasages.
  10. Antenne selon l'une quelconque des revendications 2 à 9, dans laquelle le premier élément comprend une première barre (611) ayant une première broche (627) et le deuxième élément (613) comprend une deuxième barre (613) ayant une deuxième broche (629), et dans laquelle l'élément de liaison transversale (621) inclut une première fente (623) qui reçoit la première broche (627) et une deuxième fente (625) qui reçoit la deuxième broche.
  11. Antenne selon la revendication 1, dans laquelle l'adaptateur d'inclinaison (605) comprend :
    un premier élément (611) couplé au premier déphaseur grossier (301, 501) ;
    un deuxième élément (613) couplé au deuxième déphaseur grossier (303, 503) ;
    un élément de liaison transversale (621) en prise fonctionnelle avec les premier et deuxième éléments (611, 613) ;
    un premier élément mobile (619) couplé à l'élément de liaison transversale (621) et configuré pour se déplacer en réponse à un mouvement de l'élément de liaison transversale (621) ;
    un deuxième élément mobile (637) couplé au premier déphaseur fin (309, 509), un mouvement latéral du premier élément (611) ou du deuxième élément (613) étant configuré pour provoquer un mouvement du deuxième élément mobile (637).
  12. Antenne selon la revendication 11, dans laquelle le premier élément mobile (619) parcourt une distance qui est une fraction prédéterminée d'une distance parcourue par les premier ou deuxième éléments (611, 613).
  13. Antenne selon la revendication 1, dans laquelle l'adaptateur d'inclinaison comprend :
    une première barre (611) couplée au premier déphaseur grossier (301, 501) ;
    une deuxième barre (613) couplée au deuxième déphaseur grossier (303, 503) ;
    un élément de liaison transversale (621) en prise fonctionnelle avec les première et deuxième barres (611, 613) ;
    une première crémaillère (619) couplée à l'élément de liaison transversale (621) ;
    une deuxième crémaillère (637) couplée à la première crémaillère (619), au premier déphaseur fin (309, 509) et au deuxième déphaseur fin (311, 509), un mouvement latéral de la première barre ou de la deuxième barre (611, 613) provoquant un mouvement latéral de la deuxième crémaillère (637).
EP16179570.3A 2015-07-29 2016-07-14 Adaptateur d'inclinaison pour antenne diplexée avec inclinaison semi-indépendante Active EP3125366B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/812,339 US10116425B2 (en) 2014-11-10 2015-07-29 Diplexed antenna with semi-independent tilt
US14/958,463 US10033086B2 (en) 2014-11-10 2015-12-03 Tilt adapter for diplexed antenna with semi-independent tilt

Publications (2)

Publication Number Publication Date
EP3125366A1 EP3125366A1 (fr) 2017-02-01
EP3125366B1 true EP3125366B1 (fr) 2020-02-19

Family

ID=56413534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16179570.3A Active EP3125366B1 (fr) 2015-07-29 2016-07-14 Adaptateur d'inclinaison pour antenne diplexée avec inclinaison semi-indépendante

Country Status (3)

Country Link
EP (1) EP3125366B1 (fr)
CN (2) CN112713402A (fr)
ES (1) ES2781705T3 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074704A1 (fr) * 2017-10-12 2019-04-18 Commscope Technologies Llc Systèmes d'actionnement thermoélectrique d'antennes de station de base pour prendre en charge un basculement électrique à distance (ret) et leurs procédés de fonctionnement
CN110504511B (zh) * 2018-05-16 2022-04-05 康普技术有限责任公司 用于移相器组件的联动机构
CN110661081B (zh) * 2018-06-29 2023-10-31 康普技术有限责任公司 包括接帚移相器的基站天线
CN110829029A (zh) 2018-08-10 2020-02-21 康普技术有限责任公司 移相器组件
CN110165412A (zh) * 2019-05-27 2019-08-23 武汉虹信通信技术有限责任公司 电调天线传动切换装置及基站天线
CN111180893A (zh) * 2020-01-06 2020-05-19 武汉虹信通信技术有限责任公司 传动装置及电调天线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ235010A (en) * 1990-08-22 1993-12-23 Deltec New Zealand Dipole panel antenna with electrically tiltable beam.
EP1239536B1 (fr) * 1994-11-04 2005-01-12 Andrew Corporation Station de base pour système cellulaire de télécommunication, procédé pour inclinaison du faisceau vers le bas et arrangement de commande d'antenne
JP2000223926A (ja) * 1999-01-29 2000-08-11 Nec Corp フェーズドアレーアンテナ装置
US6364910B1 (en) * 2001-07-11 2002-04-02 Biomet, Inc. Method and apparatus for use of a glenoid component
GB0200585D0 (en) * 2002-01-11 2002-02-27 Csa Ltd Antenna with adjustable beam direction
US7173572B2 (en) * 2002-02-28 2007-02-06 Andrew Corporation Dual band, dual pole, 90 degree azimuth BW, variable downtilt antenna
US7298233B2 (en) 2004-10-13 2007-11-20 Andrew Corporation Panel antenna with variable phase shifter
US8217848B2 (en) * 2009-02-11 2012-07-10 Amphenol Corporation Remote electrical tilt antenna with motor and clutch assembly
US9590317B2 (en) * 2009-08-31 2017-03-07 Commscope Technologies Llc Modular type cellular antenna assembly
EP2629362B1 (fr) * 2012-02-20 2016-04-27 CommScope Technologies LLC Réseaux d'antennes partagées avec inclinaison indépendante multiple
CN103916021B (zh) * 2013-01-06 2016-08-03 国家电网公司 三相电压移相器及三相电压移相的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2781705T3 (es) 2020-09-04
CN112713402A (zh) 2021-04-27
CN106410409B (zh) 2021-02-02
CN106410409A (zh) 2017-02-15
EP3125366A1 (fr) 2017-02-01

Similar Documents

Publication Publication Date Title
US11355830B2 (en) Tilt adapter for diplexed antenna with semi-independent tilt
EP3125366B1 (fr) Adaptateur d'inclinaison pour antenne diplexée avec inclinaison semi-indépendante
EP1221182B1 (fr) Element parasite d'antenne a dephasage mecaniquement reglable
US6963314B2 (en) Dynamically variable beamwidth and variable azimuth scanning antenna
EP2165388B1 (fr) Antenne commandée par largeur de faisceau à azimut décalable à triple étage pour un réseau sans fil
US20210159589A1 (en) Base station antennas with compact remote electronic tilt actuators for controlling multiple phase shifters
US10079431B2 (en) Antenna array having mechanically-adjustable radiator elements
US20090135076A1 (en) Linear antenna array with azimuth beam augmentation by axial rotation
US20160134412A1 (en) Diplexed antenna with semi-independent tilt
EP2135325A1 (fr) Antenne à ouverture de faisceau d'azimut variable, polarisé verticalement à deux étages pour réseau sans fil
US8330668B2 (en) Dual stagger off settable azimuth beam width controlled antenna for wireless network
US11742575B2 (en) Remote electronic tilt base station antennas having adjustable RET linkages
GB2426635A (en) Phase shifting arrangement
CN112366454A (zh) 一种有源阵列天线及移动通信基站
CN114586238A (zh) 减轻多波束形成网络中的波束偏斜
US20230170605A1 (en) Base station antenna with mutual downtilt in multiple frequency bands
KR20020058387A (ko) 틸팅각 조정이 가능한 기지국용 배열 안테나
US20230361465A1 (en) Transmission device for base station antenna and base station antenna
WO2024000360A1 (fr) Antennes de station de base présentant des éléments d'accord métalliques qui se déplacent en réponse à des changements dans un réglage d'inclinaison électronique à distance
WO2023235081A1 (fr) Ensembles ret fournissant un déphasage synchronisé de déphaseurs pour antennes de station de base

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170801

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180102

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 3/32 20060101AFI20190724BHEP

Ipc: H01Q 5/50 20150101ALI20190724BHEP

Ipc: H01Q 21/26 20060101ALI20190724BHEP

Ipc: H01Q 1/24 20060101ALI20190724BHEP

Ipc: H01P 1/18 20060101ALI20190724BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190917

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZIMMERMAN, MARTIN L.

Inventor name: DING, GUOMIN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016029937

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1236002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2781705

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200712

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1236002

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016029937

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220727

Year of fee payment: 7

Ref country code: ES

Payment date: 20220801

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230714

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016029937

Country of ref document: DE

Owner name: OUTDOOR WIRELESS NETWORKS LLC (A COMPANY ORGAN, US

Free format text: FORMER OWNER: COMMSCOPE TECHNOLOGIES LLC, HICKORY, NC, US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240729

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 9