EP3123203B1 - Identifizierung von toten pixeln bei der positronenemissionstomografie (pet) - Google Patents

Identifizierung von toten pixeln bei der positronenemissionstomografie (pet) Download PDF

Info

Publication number
EP3123203B1
EP3123203B1 EP15714955.0A EP15714955A EP3123203B1 EP 3123203 B1 EP3123203 B1 EP 3123203B1 EP 15714955 A EP15714955 A EP 15714955A EP 3123203 B1 EP3123203 B1 EP 3123203B1
Authority
EP
European Patent Office
Prior art keywords
pixel
pixels
functioning
pet
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15714955.0A
Other languages
English (en)
French (fr)
Other versions
EP3123203A1 (de
Inventor
Thomas Leroy Laurence
Sharon Xiaorong Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of EP3123203A1 publication Critical patent/EP3123203A1/de
Application granted granted Critical
Publication of EP3123203B1 publication Critical patent/EP3123203B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1647Processing of scintigraphic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Definitions

  • PET positron emission tomography
  • PET systems have typically employed photomultiplier tubes (PMTs), such as 1.5 inch PMTs, for light detection.
  • PMTs photomultiplier tubes
  • a typical PMT based PET system contains anywhere from about 12,000 to 33,000 individual scintillators, but uses only 200 to 800 PMTs.
  • a typical PMT based PET system is fairly intolerant of a non-functioning PMT. Because of the size of PMTs, a non-functioning PMT renders a large part of the detector inoperable. Further, Anger logic does not support calculating the location of scintillation events that occur in an inoperable part of the detector.
  • SiPMs silicon photomultipliers
  • SiPM based PET system there is a high probability that some of the SiPMs may not function properly.
  • PMT based PET system the SiPM channel count of a SiPM based PET system approaches the scintillator count. Since the impacted area of a non-functioning SiPM is fairly small, a SiPM based PET system can tolerate non-functioning SiPMs. This applies to a one-to-one coupling of scintillators to SiPMs, and a many-to-one coupling of scintillators to SiPMs where micro-Anger calculations are performed to determine event positions.
  • Non-functioning SiPMs result in non-functioning pixels.
  • a pixel is the smallest area to which a scintillation event can be localized.
  • a non-functionality pixel is a pixel missing valid data and which does not detect counts in proportion to an increase in scintillation events.
  • Non-functioning pixels include dead and low-count pixels.
  • a dead pixel is a pixel which does not detect any scintillation events, and a low-count pixel is a pixel which under counts scintillation events.
  • Non-functioning pixels may also arise due to problems in one or more of scintillator performance, optical coupling between SiPMs and scintillators, and processing electronics. Non-functioning pixels result in imaging artifacts during reconstruction and incorrect standardized uptake values (SUVs). Artifacts during reconstruction are more pronounced for higher statistic scans with a fairly uniform activity in the scanned target volume.
  • SUVs standardized uptake values
  • a sinogram generated using a PET scanner with three dead pixels is provided.
  • the sinogram describes spatial information and does not contain time-of-flight (TOF) information.
  • the PET scanner includes a one-to-one coupling between scintillators and SiPMs, and the smallest area to which a scintillation event can be localized (i.e., a pixel) is a SiPM-scintillator pair.
  • dead pixels cause dark lines of missing data, emphasized by the arrows.
  • the gap between the detectors generates the periodic mesh pattern.
  • US 2005/063 513 A1 discloses a method and system for an improved data acquisition system with an image detector array and an image processing system which finds a malfunctioning cell, interpolates a signal for the malfunctioning cell using neighboring channels of the cell, and corrects the interpolation with an error rate found in interpolating on neighboring rows with cells which are not malfunctioning.
  • US 8 395 127 B1 describes a radiation detector that includes an array of detector pixels each including an array of detector cells.
  • Each detector cell includes a photodiode biased in a breakdown region and digital circuitry coupled with the photodiode and configured to output a first digital value in a quiescent state and a second digital value responsive to photon detection by the photodiode.
  • Defective cells can be disabled using a laser that that cuts fuses in these cells.
  • US 2011/0 235 940 A1 describes a method of processing images produced by an imaging system, wherein transient defects are detected by comparing the value of a selected pixel with values of a plurality of the neighboring pixels.
  • a transient defect detected in an image can be corrected by interpolation using surrounding good pixels.
  • EP 0 984 393 A2 a radiation image processing apparatus is provided with a defect detecting device.
  • WO 03/001 243 A2 discloses a nuclear imaging apparatus including a radiation detector comprising an array of solid state detector elements responsive to incident gamma radiation by emitting a current spike. The radiation detector is rotated around the region of interest. A pixel correction processor detects defective detector elements in the array and a flood correction circuit corrects detected radiation events based on sensitivity differences between a plurality of groupings of detector elements in the array.
  • US 2002/0 065 611 A1 describes a method for operating a medical X-ray imaging system. Defective pixels in the system are detected and a correction process is automatically triggered.
  • the present application provides a new and improved system and method which overcome these problems and others.
  • the invention is defined by the independent claims.
  • the dependent claims define advantageous embodiments.
  • One advantage resides in reduced imaging artifacts.
  • Another advantage resides in increased image quality.
  • the invention may take form in various components and arrangements of components, and in various steps and arrangements of steps.
  • the drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
  • Positron emission tomography (PET) scanners employing silicon photomultipliers (SiPMs) for light detection have a high likelihood of non-functioning pixels.
  • a pixel is the smallest area to which a scintillation event can be localized.
  • a non-functionality pixel is a pixel missing valid data and which does not detect counts in proportion to an increase in scintillation events.
  • Non-functioning pixels include dead and low-count pixels.
  • a dead pixel is a pixel which does not detect any scintillation events, and a low-count pixel is a pixel which under counts scintillation events.
  • Non-functioning pixels may arise due to problems in one or more of scintillator performance, optical coupling between SiPMs and scintillators, SiPMs, and processing electronics.
  • the present application describes an approach for compensating for non-functioning pixels by filling in the invalid data with data from other pixels. This eliminates missing lines-of-response (LOR) and yields an image better representing the scanned target volume.
  • LOR lines-of-response
  • a number of approaches are described hereafter for filling the invalid data of non-functioning pixels.
  • a first order approximation is employed. According to this approach, the event data of pixels neighboring a non-functioning pixel is duplicated and the duplicate data is augmented by replacing the locations of the neighboring pixels with the location of the non-functioning pixel.
  • sinogram space interpolation is employed. According to this approach, each position in the sinogram space associated with a non-functioning pixel is interpolated from neighboring positions.
  • a quality control (QC) PET scan can be performed each day prior to patient scanning.
  • QC quality control
  • Dead pixels can be identified as those pixels with no counts
  • low-count pixels can be identified as those with counts low relative to neighboring pixels (e.g., less than a percentage of neighbor counts).
  • a patient diagnostic PET scan and/or a background scan e.g., describing background scintillator activity
  • a 2D count map histogram is generated, and dead and low-count pixels are identified in the histogram.
  • the identified pixels can then be compared against those pixels identified from a daily QC dataset.
  • this has the advantage of confirming the validity of the standardized uptake values (SUVs) of the patient dataset.
  • a PET imaging system 10 includes a PET scanner 12.
  • the PET scanner 12 generates raw scan data and includes a stationary gantry 14 housing a plurality of gamma detectors 16 arranged around a bore 18 of the scanner 12.
  • the bore 18 defines an examination volume 20 for receiving a target volume of a subject to be imaged, such as a brain, torso, or the like.
  • the detectors 16 are typically arranged in one or more stationery rings which extend the length of the examination volume 20. However, rotatable heads are also contemplated.
  • the detectors 16 detect gamma photons from the examination volume 20 and generate the raw scan data.
  • each of the detectors 16 includes one or more scintillators 22 arranged in a grid.
  • the scintillators 22 scintillate and generate visible light pulses in response to energy depositions by gamma photons.
  • a gamma photon 24 deposits energy in a scintillator 26, thereby resulting in a visible light pulse 28.
  • the magnitude of a visible light pulse is proportional to the magnitude of the corresponding energy deposition.
  • scintillators 22 include sodium iodide doped with thallium (NaI(Tl)), cerium-doped lutetium yttrium orthosilicate (LYSO) and cerium doped lutetium oxyorthosilicate (LSO).
  • NaI(Tl) sodium iodide doped with thallium
  • LYSO cerium-doped lutetium yttrium orthosilicate
  • LSO cerium doped lutetium oxyorthosilicate
  • the detectors 16 each includes a sensor 30 detecting the visible light pulses in the scintillators 22.
  • the sensor 30 includes a plurality of light sensitive elements 32.
  • the light sensitive elements 32 are arranged in a grid of like size as the grid of scintillators 22 and optically coupled to corresponding scintillators 22.
  • the light sensitive elements 32 can be coupled to the scintillators 22 in a one-to-one arrangement, a one-to-many arrangement, a many-to-one arrangement, or any other arrangement.
  • the light sensitive elements 32 are silicon photomultipliers (SiPMs), but photomultiplier tubes (PMTs) are also contemplated.
  • the light sensitive elements 32 are SiPMs
  • the scintillators 22 there is typically a one-to-one correspondence between the scintillators 22 and the light sensitive elements 32, as illustrated, but other correspondences are contemplated.
  • Each of the SiPMs includes a photodiode array (e.g., Geiger-mode avalanche photodiode arrays), each photodiode corresponding to a cell of the photodiode array.
  • the SiPMs 32 are configured to operate in a Geiger mode to produce a series of unit pulses to operate in a digital mode.
  • the SiPMs can be configured to operate in an analog mode.
  • the light sensitive elements 32 are PMTs
  • a target volume of the subject is injected with a radiopharmaceutical or radionuclide.
  • the radiopharmaceutical or radionuclide causes gamma photons to be emitted from the target volume.
  • the target volume is then positioned in the examination volume 20 using a subject support 34 corresponding to the scanner 12.
  • the scanner 12 is controlled to perform a scan of the target volume and event data is acquired.
  • the acquired event data describes the time, location and energy of each scintillation event detected by the detectors 16 and is suitably stored in a PET data buffer 36.
  • the location of a scintillation event corresponds to a pixel of the scanner 12.
  • a pixel is the smallest area to which a scintillation event can be localized.
  • the light sensitive elements 32 are SiPMs and there is a one-to-one coupling between scintillators 22 and light sensitive elements 32.
  • the smallest area to which a scintillation event can be localized is typically a scintillator/SiPM pair, whereby a pixel typically corresponds to a scintillator/SiPM pair.
  • Anger logic is typically used to localize scintillation events to individual scintillators 22, whereby a pixel typically corresponds to a scintillator 22, but not a light sensitive element 32.
  • an event verification processor 38 filters the buffered event data.
  • the filtering includes comparing energy (cell counts in the digital mode) of each scintillation event to an energy window, which defines the acceptable energy range for scintillation events. Those scintillation events falling outside the energy window are filtered out.
  • the energy window is centered on the known energy of the gamma photons to be received from the examination volume 20 (e.g., 511 kiloelectron volt (keV)) and determined using the full width half max (FWHM) of an energy spectrum generated from a calibration phantom.
  • the event verification processor 38 further generates lines of response (LORs) from the filtered event data.
  • a LOR is defined by a pair of gamma photons striking the detectors 16 within a specified time difference of each other (i.e., a coincident event).
  • the specified time difference is small enough to ensure the gammas are from the same annihilation event.
  • a gamma photon can yield multiple scintillation events.
  • the scintillation events of the event data are combined based on gamma photon. For example, the energy of scintillation events belonging to a common gamma photon can be summed and the location with which the gamma photon struck the detectors 16 can be approximated.
  • the event verification processor 38 filters and determines LORs from the updated event data.
  • Data describing the coincident events, as or once determined by the event verification processor 38, is stored within a list mode memory 40 as a list, where each list item corresponds to a coincident event.
  • the data for each of the list items describes the corresponding LOR by the spatial data (e.g., by the X and Z locations) for the two pixels to which the pair of gamma photons of the LOR are localized. Further, the data for each of the list items can optionally describe the energy of the two gamma photons of the corresponding coincident event, and/or either the times stamps of the two gamma photons or the difference between the times stamps of the two gamma photons.
  • a pixel compensation processor 42 receives the list mode data, as it is being generated or once it's generated, and fills in missing event data for non-functioning pixels identified in a pixel memory 44 by using event data from other pixels.
  • a non-functionality pixel is a pixel missing valid data and which does not detect counts in proportion to an increase in scintillation events.
  • Non-functioning pixels include dead and low-count pixels.
  • a dead pixel is a pixel which does not detect any scintillation events, and a low-count pixel is a pixel which under counts scintillation events.
  • Non-functioning pixels may arise due to problems in one or more of scintillator performance, optical coupling between light sensitive elements 32 and scintillators 22, light sensitive elements 32, and processing electronics.
  • PET scanners acquire three-dimensional (3D) data
  • SPECT single-photon emission computed tomography
  • CT computed tomography
  • PET requires the missing pixel pair to be generated. Any approach can be employed to fill in data missing for non-functioning pixels, but two approaches use first order approximation and sinogram space interpolation, respectively.
  • the list mode data is directly used.
  • the list mode data contains a list item for each detected coincident event. Compensation for each non-functioning pixel is performed by, for each list item corresponding to a neighboring pixel, determining whether the list item meets selection criteria and, if so, both duplicating the list item and replacing the location of the neighboring pixel with the location of the non-functioning pixel in the duplicate list item.
  • a neighboring pixel is typically any pixel immediately adjacent to the non-functioning pixel, but different criteria can be employed to define what a neighboring pixel is.
  • a neighboring pixel can be any pixel sharing a detector ring with the non-functioning pixel, and/or being immediately adjacent to the non-functioning pixel or within a predetermined number of pixels (e.g., 2 pixels) of the non-functioning pixel.
  • a list item is processed only if selection criteria are met. No specific selection criteria need to be employed. In a simple case, all list items are selected. In more complicated cases, a list item is probabilistically selected. For example, each neighboring pixel is associated with a probability of an event being relevant to the non-functioning pixel. The probability can be based on the distance of the neighboring pixel to the non-functioning pixel and/or whether the neighboring pixel is on the same detector ring as the non-functioning pixel. For example, the probability can be lower the farther away the neighboring pixel is from the non-functioning pixel and/or lower when the neighboring pixel is on a different detector ring as the non-functioning pixel.
  • a list item corresponding to a neighboring pixel is encountered, a random number is determined. If the probability of the determined random number is less than or equal to the probability of the neighboring pixel, the list item is selected.
  • the list mode data is converted to sinograms, one for each slice.
  • This conversion can alternatively be performed by another component of the system 10, whereby the pixel compensation processor 42 receives sinogram data instead of list mode data.
  • the sinograms are generated from true, scatter and random coincident events (collectively referred to as prompt coincident events), but the sinograms can be generated from any combination of true, scatter and random coincident events.
  • the sinograms can be generated from true and random coincident events.
  • the sinogram space is sometimes referred to as the LOR space since each position signifies the pair of pixels that measured a coincident event. While sinograms typically only provide the spatial connectivity data for pixels, sinograms can be extended to include time-of-flight (ToF) data describing the ToF values for each coincident data. The ToF value for a coincident event is the difference in time measurements between the pair of pixels detecting the coincident event.
  • ToF time-of-flight
  • a typical scanner has a ToF precision of about 25 picoseconds (ps), whereby each of the ToF bins typically spans a 25 ps range. Further, a typical scanner has +/- 2.5 nanosecond (ns) range of ToF values, where a typical sinogram includes 201 frames.
  • values for each discreet location (i.e., positions) in the sinograms that are associated with non-functioning pixels are interpolated (i.e., estimated) from neighboring positions.
  • a position is specific to a frame.
  • a non-functioning pixel manifests as a diagonal line of missing data in a sinogram.
  • a neighboring position is typically any position immediately adjacent to the position being estimated, but different criteria can be employed to define what a neighboring position. Neighboring positions of a position being estimated can span across sinograms and/or, where ToF data is included, frames. Alternatively, neighboring positions of a position being estimated can be limited to the same sinogram or, where ToF data is included, the same frame.
  • the interpolation can include data modeling to fit the known data and to estimate missing pixel data.
  • the interpolation can be performed using any suitable interpolation technique.
  • the interpolation can be performed using the well-known nearest neighbor interpolation technique.
  • more complicated techniques such as the well-known bilinear interpolation technique or pattern matching techniques, can be employed.
  • the bilinear interpolation technique performs a weighting of neighbor values, and pattern matching techniques examines the shape of the sine waves within the sinograms. Asymmetrical weighting may be performed for edge pixels of detectors that generally have lower collection efficiency due to Compton (i.e., scatter) events not being collected as efficiently as center pixels of detectors.
  • the sinogram space interpolation approach is much more computationally intensive than the first order approximation approach. Whereas the first order approximation approach can be performed while the list mode data is being generated, the sinogram space interpolation approach can only be performed once the list mode data is generated.
  • the sinogram space interpolation approach uses the final values for neighboring pixels to estimate the value for non-functioning pixels.
  • a sinogram compensated for three dead pixels is provided.
  • the sinogram was generated from the same data used to generate the sinogram of FIGURE 1 .
  • the data for the dead pixels was approximated using the sinogram space interpolation approach.
  • the compensated sinogram provides cleaner data for reconstruction that eliminates artifacts in the reconstructed image.
  • the areas of missing data, demarcated by the arrows of FIGURE 1 have been filled with data.
  • a PET reconstruction processor 46 reconstructs the corrected list mode data and/or sinogram data from the pixel compensation processor 42 into a final, reconstructed image of the target volume.
  • the reconstructed image is typically stored in a PET image memory 48.
  • any suitable reconstruction algorithm can be employed. For example, an iterative-based reconstruction algorithm can be employed.
  • a control system 50 such as a computer, provides a graphical user interface (GUI) to users of the system.
  • GUI graphical user interface
  • the GUI makes use of a display device 52 and a user input device 54 to allow the users to interact with the control system 50.
  • the control system 50 can be employed to control the scanner 12 to image a subject.
  • the user can coordinate a PET image of a target volume of the subject.
  • the control system 50 can be employed to view and, optionally, manipulate images stored in the image memory 48. For example, an image of the image memory can be displayed on the display device 52.
  • a pixel identification processor 56 identifies the non-functioning pixels of the pixel memory 44 and tracks the identified non-functioning pixels.
  • a PET scan is performed and event data is acquired.
  • the acquired event data describes the time, location and energy of each scintillation event detected by the detectors 16 and is suitably stored in the PET data buffer 36.
  • the PET scan can be performed with nothing in the examination volume 20, a phantom in the examination volume 20, or a target volume of a subject in the examination volume 20.
  • the event verification processor 38 filters the buffered event data, as described above.
  • the filtering includes comparing energy of each scintillation event to an energy window, which defines the acceptable energy range for scintillation events. Those scintillation events falling outside the energy window are filtered out. Only the remaining scintillation events (i.e., single scintillation events) can then be passed to the pixel identification processor 56.
  • the event verification processor 38 further generates lines of response (LORs) from the filtered event data.
  • a LOR is defined by a pair of gamma photons striking the detectors 16 within a specified time difference of each other (i.e., a coincident event). Only those scintillation events associated with a LOR (i.e., coincident scintillation events) are then passed to the pixel identification processor 56.
  • the pixel identification processor 56 receives the single or coincident scintillation events and generates a count map histogram.
  • the count map histogram uniquely maps each pixel of the detectors 16 to the summation of scintillation events corresponding to the pixel.
  • the count map histogram uniquely identifies the pixels by location, but other unique identifiers can be employed. Where location is employed to uniquely identify the pixels, the count map histogram is an n-dimensional count map histogram, where n is the number of spatial dimensions needed to uniquely identify the locations of the pixels. For example, supposing the detectors 16 are arranged around a cylindrical bore, as illustrated, a 2D count map histogram is suitably employed.
  • the 2D count map histogram uniquely identifies the pixels by two dimensions: a first dimension running parallel to the axis of the cylinder on a boundary surface of the bore 18; and a second dimension running perpendicular to the first dimension on the boundary surface in a circle.
  • Non-functioning pixels include dead and low-count pixels.
  • a dead pixel is a pixel which does not detect any scintillation events
  • a low-count pixel is a pixel which under counts scintillation events.
  • Dead pixels are identified as those pixels with zero counts.
  • Low-count pixels are those pixels less than a predetermined percentage, such as 30%, of the average pixel count of all pixels or of the average pixel count of neighboring pixels. In some instances, the predetermined percentage varies with the reconstruction algorithm employed.
  • the unique identifiers of the identified non-functioning pixels can be stored in the pixel memory 44 for use during pixel compensation. Further, the identified non-functioning pixels can be compared against previously identified non-functioning pixels (i.e., non-functioning pixels identified from a previous PET scan) of the pixel memory 44. The pixel memory 44 can then be updated to include the unique identifiers of any newly identified non-functioning pixels. Even more, non-functioning pixels can be tracked over time. In some instances, a newly identified non-functioning pixel is only used for pixel compensation after it has been identified as non-functioning in a predetermined number of scans.
  • a 2D count map histogram for single scintillation events illustrates the location of non-functioning pixels.
  • the histogram was obtained by a PET scan of a phantom, the phantom being a well centered point source. All pixels would ideally have approximately the same number of counts, but this is practically unlikely. As illustrated, the majority pixel counts are in the range of 800 to 1000. However, there are some pixels with counts below 200, shown in black. Of these pixels, dead pixels can be identified as those with zero counts, and low low-count pixels can be identified as those with counts below a certain percentage of the average count of all the pixels or neighboring pixels.
  • the data for low-count pixels essentially amounts to noises and needs to be discarded to prevent the noise from being injected in the reconstruction.
  • the pixel identification processor 56 is employed in a daily QC process.
  • the daily QC process is performed each day prior to performing any diagnostic PET scans. It includes positioning a phantom in the center of the examination volume 20 and acquiring event data.
  • the phantom can be, for example, a point source, an axial volume source, or a cylinder volume source.
  • the cylinder volume source can, for example, include a diameter and length of 20 centimeters (cm).
  • the acquired event data is filtered by the event verification processor 38 and passed to the pixel identification processor 56. When the phantom is a point source, only single scintillation events are passed to the pixel identification processor 56.
  • the phantom is an axial volume source or a cylinder volume source
  • single scintillation events or coincident scintillation events can be passed to the pixel identification processor 56.
  • the pixel identification processor 56 is then employed to update and track the identified non-functional pixels in the pixel memory 44.
  • the pixel identification processor 56 is employed in a patient QC process.
  • the patient QC process is performed in response to a diagnostic scan of a subject. That is to say, after the target volume of the subject is placed within the examination volume 20 and event data is acquired, the patient QC process is performed. According to the patient QC process, the acquired event data is filtered by the event verification processor 38 and single or coincident scintillation events are passed to the pixel identification processor 56.
  • the pixel identification processor 56 is then employed to update and track the identified non-functional pixels in the pixel memory 44. Typically, this includes comparing the identified non-functioning pixels against those identified by the latest daily QC process. By identifying those pixels that are non-functioning, the SUV values of those pixels that are functioning can be confirmed.
  • the pixel identification processor 56 is employed in a background QC process.
  • the background QC process is performed when the PET scanner 12 is idle. It can, for example, be performed periodically, such as every 2 hours of idle time.
  • event data is acquired without anything in the scanner 12 to measure background radiation of the scintillators 22, such as LYSO crystal background radiation.
  • the acquired event data is then filtered by the event verification processor 38.
  • Single or coincident scintillation events are passed to the pixel identification processor 56.
  • the pixel identification processor 56 updates and tracks the identified non-functional pixels in the pixel memory 44 using the scintillation events. Typically, this includes comparing the identified non-functioning pixels against those identified by the latest daily QC process.
  • one or more of the data buffer 36, the event verification processor 38, the list mode memory 40, the pixel compensation processor 42, the reconstruction processor 46, the image memory 48, the pixel memory 44, and the pixel identification processor 56 are integrated with the control system 50.
  • the reconstruction processor 46, the pixel compensation processor 42, and the event verification processor 38 can share a common processor of the control system 50.
  • the reconstruction processor 46, the pixel compensation processor 42, and the event verification processor 38 are typically implemented as software modules. The software modules are stored on a memory of the control system 50 and executed by a processor of the control system 50.
  • the data for such pixels can be discarded on the scanner 12 in, for example, a field programmable gate array (FPGA).
  • FPGA field programmable gate array
  • a method 100 for compensating for non-functioning pixels in PET imaging is provided.
  • the method 100 is suitably performed by one or more processors 42, 44.
  • the method 100 is typically embodied by processor executable instructions stored on a memory and executed by the processors 42, 44.
  • PET data describing a target volume of a subject and generated by a PET scanner 12 is received 102.
  • the PET data is missing or invalid for one or more pixels of the scanner 12.
  • These so called non-functioning pixels such as dead pixels and low-count pixels, may arise due to problems in one or more of scintillator performance, optical coupling between light sensitive elements and scintillators, light sensitive elements, and processing electronics. Examples of the light sensitive elements include SiPMs and PMTs.
  • PET data is estimated 104 for the non-functioning pixels.
  • PET data is three dimensional (3D). Hence, the process of estimating PET data is more involved than in SPECT.
  • the received PET data is list mode data, each list item corresponding to a coincident event.
  • one approach to estimating the PET data for a non-functioning pixel includes duplicating list items associated with neighboring pixels. The locations of the neighboring pixels in the duplicate PET data are then replaced with the location of the non-functioning pixel. While all the list items associated with neighboring pixels can be employed, the list items can also be intelligently selected. For example, list items associated with neighboring pixels can be probabilistically selected.
  • the received PET data is sinogram data, optionally including ToF data.
  • one approach to estimating the PET data for a non-functioning pixel includes interpolating a value for each discreet location in the sinogram domain that is associated with the non-functioning pixel from the values of neighboring locations. For example, nearest neighbor interpolation can be performed.
  • the combination of the received data and the estimated data is reconstructed 106 into an image representing the target volume.
  • any suitable reconstruction algorithm can be employed. For example, an iterative-based reconstruction algorithm can be employed.
  • a method 150 for identifying non-functioning pixels in PET imaging is provided.
  • the method 150 is suitably performed by one or more processors 56.
  • the method 150 is typically embodied by processor executable instructions stored on a memory and executed by the processors 56.
  • PET data describing scintillation events localized to the pixels of the detectors 16 is received 152.
  • the PET data is typically received from the event verification processor 38 and describes one of single scintillation events and coincident scintillation events.
  • the PET data is received each day before performing diagnostic scans of a subject and describes gamma photons emitted from a phantom, such as a point source.
  • the PET data is received from a diagnostic scan of a subject and describes gamma photons emitted from a target volume of the subject.
  • the PET data is received from a background scan and describes background radiation of the scintillators 22.
  • a count map histogram is generated 154 from the received PET data.
  • the count map histogram maps each of the pixels to the summation of scintillation events localized to the pixel. Within the count map histogram, the pixels are typically uniquely identified by location, but other identifiers are contemplated.
  • one or more non-functioning pixels are identified 156 from the count map histogram. In one instance, the non-functioning pixels include a dead pixel and the identifying includes identifying a pixel in the count map histogram with a zero count as the dead pixel.
  • the non-functioning pixels include a low-count pixel and the identifying includes identifying a pixel in the count map histogram with a count less than a predetermined percentage of the other pixels, such as 30%, as the low-count pixel.
  • the identified non-functioning pixels are compared 158 to previously identified non-functioning pixels. This advantageously allows non-functioning pixels to be tracked and trends to emerge.
  • the identified non-functioning pixels are typically identified from PET data generated from a diagnostic scan or a background scan, whereas the previously identified non-functioning pixels are typically identified from PET data generated each day before performing diagnostic scans.
  • a memory includes any device or system storing data, such as a random access memory (RAM) or a read-only memory (ROM).
  • a processor includes any device or system processing input device to produce output data, such as a microprocessor, a microcontroller, a graphic processing unit (GPU), an application-specific integrated circuit (ASIC), a FPGA, and the like;
  • a controller includes any device or system controlling another device or system, and typically includes at least one processor;
  • a user input device includes any device, such as a mouse or keyboard, allowing a user of the user input device to provide input to another device or system;
  • a display device includes any device for displaying data, such as a liquid crystal display (LCD) or a light emitting diode (LED) display.
  • LCD liquid crystal display
  • LED light emitting diode

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine (AREA)

Claims (15)

  1. System (10) zum Identifizieren und Kompensieren für nichtfunktionale Pixel in Positronenemissionstomografie- (PET) -Bildgebung, das System (10) umfassend:
    einen Pixelidentifizierungsprozessor (56) konfiguriert zum:
    Empfangen von Daten, die Szintillationsereignisse beschreiben, die auf eine Vielzahl von Pixeln (22, 32) eines PET-Abtasters (12) eingegrenzt sind;
    Erzeugen eines Anzahlabbildungshistogramms aus den empfangenen Daten, wobei das Anzahlabbildungshistogramm jedes der Pixel (22, 32) auf eine Anzahl von Szintillationsereignissen abbildet, die auf das Pixel (22, 32) eingegrenzt sind;
    Identifizieren eines oder mehrerer nichtfunktionaler Pixel anhand des Anzahlabbildungshistogramms;
    dadurch gekennzeichnet, dass der Pixelidentifizierungsprozessor weiter konfiguriert ist zum:
    Speichern eindeutiger Kennungen der identifizierte nichtfunktionalen Pixel in einem Pixelspeicher (44) zur Verwendung während Pixelkompensation; und
    Vergleichen der identifizierten nichtfunktionalen Pixel mit zuvor identifizierten nichtfunktionalen Pixeln des Pixelspeichers (44), und wobei ein neu identifiziertes nichtfunktionales Pixel in einer Pixelkompensation nur kompensiert wird, nachdem es in einer vorbestimmten vielfachen Zahl von Abtastungen als nichtfunktional identifiziert wurde.
  2. System (10) nach Anspruch 1, wobei jedes Pixel einen Siliziumfotovervielfacher (SiPM) (32) und einen Szintillator (22) enthält und wobei die Szintillationsereignisse auf Strahlung, die von einer Quelle im Untersuchungsvolumen (20) des PET-Abtasters (12) empfangen wird, oder Hintergrundstrahlung in den Szintillatoren (22) reagieren.
  3. System (10) nach einem der Ansprüche 1 und 2, wobei die Pixel (22, 32) konfiguriert sind, Strahlung während einer diagnostischen PET-Abtastung eines Subjekts zu empfangen, um die Daten anhand von Gammaphotonen zu erzeugen, die von einem Zielvolumen des Subjekts emittiert werden.
  4. System (10) nach einem der Ansprüche 1-3, weiter enthaltend:
    einen Pixelkompensationsprozessor (42) konfiguriert zum:
    Empfangen von PET-Daten, die Strahlung beschreiben, die von einem Subjekt emittiert wird, wobei den PET-Daten gültige PET-Daten von den nichtfunktionalen Pixeln fehlen; und
    Schätzen von PET-Daten für die nichtfunktionalen Pixel anhand er empfangenen PET-Daten.
  5. System (10) nach Anspruch 4, wobei der Pixelkompensationsprozessor (42) konfiguriert ist, die fehlenden PET-Daten für eines der identifizierten nichtfunktionalen Pixel zu schätzen, durch:
    Duplizieren von PET-Daten eines funktionalen benachbarten Pixels; und
    Ersetzen der fehlenden PET-Daten mit den duplizierten PET-Daten.
  6. System (10) nach einem der Ansprüche 4 und 5, wobei der Pixelkompensationsprozessor (42) konfiguriert ist, die fehlenden PET-Daten für eines der identifizierten nichtfunktionalen Pixel zu schätzen, durch:
    Interpolieren von PET-Daten anhand benachbarter Pixel in einer Sinogrammdomäne.
  7. System (10) nach einem der Ansprüche 1-6, wobei die nichtfunktionalen Pixel mindestens eines von einem toten Pixel und einem Niederanzahlpixel enthalten, wobei ein Pixel im Anzahlabbildungshistogramm, das eine Nullanzahl aufweist, ein totes Pixel ist, und wobei ein Pixel im Anzahlabbildungshistogramm mit einer Anzahl von weniger als einem vorbestimmten Prozentsatz der anderen Pixel ein Niederwertpixel ist.
  8. Computerimplementiertes Verfahren (150) zum Identifizieren und Kompensieren nichtfunktionaler Pixel in Positronenemissionstomografie- (PET) - Bildgebung, das Verfahren (150) umfassend:
    Empfangen (152) von Daten, die Szintillationsereignisse beschreiben, die auf eine Vielzahl von Pixeln (22, 32) eines PET-Abtasters (12) eingegrenzt sind;
    Erzeugen (154) eines Anzahlabbildungshistogramms von den empfangenen Daten, wobei das Anzahlabbildungshistogramm jedes der Pixel (22, 32) auf eine Anzahl von Szintillationsereignissen abbildet, die auf das Pixel (22, 32) eingegrenzt sind;
    Identifizieren (156) eines oder mehrerer nichtfunktionaler Pixel anhand des Anzahlabbildungshistogramms; und
    das Verfahren gekennzeichnet durch:
    Speichern eindeutiger Kennungen der identifizierten nichtfunktionalen Pixel in einem Pixelspeicher (44) zur Verwendung während Pixelkompensation; und
    Vergleichen der identifizierten nichtfunktionalen Pixel mit zuvor identifizierten nichtfunktionalen Pixeln des Pixelspeichers (44) und wobei ein neu identifiziertes nichtfunktionales Pixel in einer Pixelkompensation nur kompensiert wird, nachdem es in einer vorbestimmten vielfachen Zahl von Abtastungen als nichtfunktional identifiziert wurde.
  9. Verfahren (150) nach Anspruch 8, wobei jedes Pixel einen Siliziumfotovervielfacher (SiPM) (32) und einen Szintillator (22) enthält und wobei die Szintillationsereignisse auf Strahlung, die von einer Quelle im Untersuchungsvolumen (20) des PET-Abtasters (12) empfangen wird, oder Hintergrundstrahlung in den Szintillatoren (22) reagieren.
  10. Verfahren (150) nach einem der Ansprüche 8 und 9, weiter enthaltend:
    Empfangen (152) der PET-Daten jeden Tag, bevor diagnostische Abtastungen eines Patienten durchgeführt werden, wobei die PET-Daten Gammaphotonen beschreiben, die von einem Phantom emittiert werden.
  11. Verfahren (150) nach einem der Ansprüche 8-10, weiter enthaltend:
    Empfangen (152) der PET-Daten von einer diagnostischen Abtastung eines Subjekts, wobei die PET-Daten Gammaphotonen beschreiben, die von einem Zielvolumen des Subjekts emittiert werden.
  12. Verfahren (150) nach einem der Ansprüche 8-11, weiter enthaltend:
    Empfangen (152) der PET-Daten von einer Hintergrundabtastung, wobei die PET-Daten Hintergrundstrahlung von Szintillatoren beschreiben.
  13. Verfahren (150) nach einem der Ansprüche 8-12, weiter enthaltend:
    Empfangen von PET-Daten, die ein Zielvolumen eines Subjekts beschreiben, wobei den PET-Daten gültige Daten für die identifizierten nichtfunktionalen Pixel fehlen; und
    Schätzen von PET-Daten für die identifizierten nichtfunktionalen Pixel anhand der empfangenen PET-Daten.
  14. Verfahren (150) nach einem der Ansprüche 8-13, wobei das Identifizieren (156) mindestens eines enthält von:
    Identifizieren eines Pixels im Anzahlabbildungshistogramm mit einer Nullanzahl als ein totes Pixel der nichtfunktionalen Pixel; und
    Identifizieren eines Pixels im Anzahlabbildungshistogramm mit einer Anzahl weniger als einem vorbestimmten Prozentsatz der anderen Pixel als ein Niederanzahlpixel der nichtfunktionalen Pixel.
  15. Datenverarbeitungssystem, umfassend mindestens einen Prozessor (42, 56), der angepasst ist, das Verfahren (150) nach einem der Ansprüche 8-14 durchzuführen.
EP15714955.0A 2014-03-28 2015-03-19 Identifizierung von toten pixeln bei der positronenemissionstomografie (pet) Active EP3123203B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461971780P 2014-03-28 2014-03-28
PCT/IB2015/052019 WO2015145310A1 (en) 2014-03-28 2015-03-19 Dead pixel identification in positron emission tomography (pet)

Publications (2)

Publication Number Publication Date
EP3123203A1 EP3123203A1 (de) 2017-02-01
EP3123203B1 true EP3123203B1 (de) 2019-10-09

Family

ID=52815060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15714955.0A Active EP3123203B1 (de) 2014-03-28 2015-03-19 Identifizierung von toten pixeln bei der positronenemissionstomografie (pet)

Country Status (5)

Country Link
US (1) US9841515B2 (de)
EP (1) EP3123203B1 (de)
JP (1) JP6338689B2 (de)
CN (1) CN106164704B (de)
WO (1) WO2015145310A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106821402B (zh) * 2016-12-14 2020-02-07 赛诺联合医疗科技(北京)有限公司 构建pet图像的方法和装置
CN111051926B (zh) * 2017-07-31 2024-01-30 株式会社岛津制作所 放射线检测器以及核医学诊断装置
US10670745B1 (en) 2017-09-19 2020-06-02 The Government of the United States as Represented by the Secretary of the United States Statistical photo-calibration of photo-detectors for radiometry without calibrated light sources comprising an arithmetic unit to determine a gain and a bias from mean values and variance values
JP7041252B6 (ja) * 2017-09-22 2022-05-31 コーニンクレッカ フィリップス エヌ ヴェ デジタルポジトロン放出断層撮影における検出器ピクセルの性能変動への対処
WO2020010593A1 (en) 2018-07-12 2020-01-16 Shenzhen Xpectvision Technology Co., Ltd. Methods of making a radiation detector
CN111080734B (zh) * 2019-11-25 2023-10-20 中国科学院深圳先进技术研究院 一种处理正电子发射断层扫描pet数据的方法及终端
US11742175B2 (en) * 2021-06-30 2023-08-29 Fei Company Defective pixel management in charged particle microscopy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065611A1 (en) * 2000-11-24 2002-05-30 Stefan Boehm Method for operating an image system of an imaging medical examination device and medical examination device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9711124D0 (en) 1997-05-29 1997-07-23 Leo Pharm Prod Ltd Novel cyanoguanidines
US6529618B1 (en) * 1998-09-04 2003-03-04 Konica Corporation Radiation image processing apparatus
US6694172B1 (en) * 2001-06-23 2004-02-17 Koninklijke Philips Electronics, N.V. Fault-tolerant detector for gamma ray imaging
US7142636B2 (en) * 2003-09-23 2006-11-28 General Electric Company System and method for defective detector cell and DAS channel correction
JP2007510150A (ja) 2003-10-27 2007-04-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ピクセル状固体検出器のための較正方法および装置
US8395127B1 (en) 2005-04-22 2013-03-12 Koninklijke Philips Electronics N.V. Digital silicon photomultiplier for TOF PET
RU2411542C2 (ru) * 2005-04-22 2011-02-10 Конинклейке Филипс Электроникс Н.В. Цифровой кремниевый фотоумножитель для врп-пэт
CN1940992A (zh) * 2005-06-17 2007-04-04 Cti分子成像公司 Pet/ct成像中基于图像的伪影降低
JP4874843B2 (ja) * 2007-03-22 2012-02-15 富士フイルム株式会社 放射線画像撮影方法および放射線画像撮影装置
CN101396271B (zh) * 2007-09-29 2010-09-01 上海西门子医疗器械有限公司 一种识别ct图像中感兴趣区域边界的方法
JP5701743B2 (ja) * 2008-03-19 2015-04-15 コーニンクレッカ フィリップス エヌ ヴェ 放射線検出器、画像システム、光子を検出するための方法及びその方法を実行するコンピュータプログラム
JP5247268B2 (ja) * 2008-07-08 2013-07-24 三洋電機株式会社 投射型映像表示装置
US8193505B2 (en) * 2008-09-29 2012-06-05 Siemens Medical Solutions Usa, Inc. System and method for scatter normalization of PET images
US7872221B2 (en) 2009-01-30 2011-01-18 General Electric Company Apparatus and methods for calibrating pixelated detectors
KR101306512B1 (ko) * 2010-03-09 2013-09-09 가부시키가이샤 시마즈세이사쿠쇼 이차원 어레이 x선 검출기의 검사 방법
US8660335B2 (en) 2010-03-24 2014-02-25 Varian Medical Systems, Inc. Transient pixel defect detection and correction
US9006630B2 (en) 2012-01-13 2015-04-14 Altasens, Inc. Quality of optically black reference pixels in CMOS iSoCs
JP2017512997A (ja) 2014-03-28 2017-05-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 陽電子放射断層撮影(pet)における欠落画素の補償

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065611A1 (en) * 2000-11-24 2002-05-30 Stefan Boehm Method for operating an image system of an imaging medical examination device and medical examination device

Also Published As

Publication number Publication date
US9841515B2 (en) 2017-12-12
CN106164704A (zh) 2016-11-23
WO2015145310A1 (en) 2015-10-01
JP6338689B2 (ja) 2018-06-06
JP2017508979A (ja) 2017-03-30
EP3123203A1 (de) 2017-02-01
US20170115409A1 (en) 2017-04-27
CN106164704B (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
EP3123203B1 (de) Identifizierung von toten pixeln bei der positronenemissionstomografie (pet)
Van Dam et al. A practical method for depth of interaction determination in monolithic scintillator PET detectors
US10527741B2 (en) Setup of SIPM based PET detector using LSO background radiation
EP2047297B1 (de) Verfahren und system für verbesserte tof-pet-rekonstruktion
EP2867701B1 (de) Digitales positronen emissions tomographie energie kalibrierungsverfahren
US10438379B2 (en) In-reconstruction filtering for positron emission tomography (PET) list mode iterative reconstruction
EP3047307B1 (de) Streuungsrückweisungsverfahren über energiekalibrierung
US9474501B2 (en) Hybrid method based on simulation and experimental data to normalize pet data
EP3058392B1 (de) Histogrammglättung in positronenemissionstomografie (pet)-energiehistogrammen
CN107110980B (zh) 低成本的数字式pet设计
US10101475B2 (en) Dead pixel compensation in positron emission tomography (PET)
WO2015193756A2 (en) Magnetic resonance (mr)-based attenuation correction and monitor alignment calibration

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190510

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAURENCE, THOMAS LEROY

Inventor name: WANG, SHARON XIAORONG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015039432

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1189469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191009

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS N.V.

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1189469

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200110

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015039432

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

26N No opposition filed

Effective date: 20200710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200319

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220628

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602015039432

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240319

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20240409