EP3121366B1 - Detection method for the moving direction of a concealing screen - Google Patents

Detection method for the moving direction of a concealing screen Download PDF

Info

Publication number
EP3121366B1
EP3121366B1 EP16180831.6A EP16180831A EP3121366B1 EP 3121366 B1 EP3121366 B1 EP 3121366B1 EP 16180831 A EP16180831 A EP 16180831A EP 3121366 B1 EP3121366 B1 EP 3121366B1
Authority
EP
European Patent Office
Prior art keywords
actuator
movement
nominal
configuration
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16180831.6A
Other languages
German (de)
French (fr)
Other versions
EP3121366A1 (en
Inventor
Serge Bruno
David Mugnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Somfy Activites SA
Original Assignee
Somfy Activites SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Somfy Activites SA filed Critical Somfy Activites SA
Publication of EP3121366A1 publication Critical patent/EP3121366A1/en
Application granted granted Critical
Publication of EP3121366B1 publication Critical patent/EP3121366B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/68Operating devices or mechanisms, e.g. with electric drive
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/56Operating, guiding or securing devices or arrangements for roll-type closures; Spring drums; Tape drums; Counterweighting arrangements therefor
    • E06B9/68Operating devices or mechanisms, e.g. with electric drive
    • E06B2009/6809Control

Definitions

  • the invention relates to a method for detecting the direction of movement of an occultation screen.
  • the motor torque can be determined by measuring the voltage available across a phase shift capacitor between the motor windings.
  • the voltage of the phase-shift capacitor varies very little, so that the determination of the direction of movement of the the screen by this voltage reading is not easy nor reliable.
  • such an approach of determining the direction by determining the torque can be applied exclusively for an actuator equipped with a synchronous motor, for example a BLDC motor. It is these drawbacks that the invention intends to remedy more particularly by proposing a new detection method for an occultation installation that can also be implemented for an actuator comprising a synchronous motor.
  • the electromechanical actuator comprises a synchronous electric motor and the predefined displacement parameter is a duty cycle of a supply voltage of the synchronous electric motor.
  • the occultation installation 1 comprises a shielding screen 2, an electromechanical actuator 4, communication means 6 and a control unit 8.
  • the installation 1 is thus a motorized device, such as a motorized shutter, suitable for when closing, obscuring or sunscreening an opening O.
  • the opening O is closed by the screen 2, at the option of a user.
  • the occultation screen 2 is, in a manner known per se, formed by a plurality of blades hinged together and comprising a lower blade and an upper blade.
  • the lower blade is intended to bear against the threshold of the opening O when in the down position.
  • the upper blade is attached to a winding shaft 5.
  • the shaft is mounted inside a box, not shown, of the occultation installation 1, with the possibility of rotation about an axis X1, which is horizontal and fixed and which constitutes a central axis for the screen 2 and for the occultation installation 1.
  • the shaft is rotated about the axis X1 by means of the actuator 4.
  • the lower blade of the occultation screen 2 is movable in translation, along an axis X2 belonging to the plane of the opening O and perpendicular to the axis X1, in a first direction of displacement D1 or in a second direction displacement D2.
  • the first and second movement direction D1 and D2 are opposite each other along the axis X1.
  • the first and second direction of movement D1 and D2 may be in a rising direction or in a direction of descent of the screen 2, in particular depending on whether the actuator is mounted on the right or on the left of the winding shaft or depending on whether the screen is at the front or rear of the winding shaft.
  • the actuator 4 is configured to be activated by a user.
  • the user transmits a control command to the actuator 4 of the installation 1 via a control signal S from the control unit 8.
  • the actuator 4 is configured to receive the control signal S via the communication means 6.
  • the communication means 6 are, for example, an antenna.
  • the antenna 6 of the installation 1 is configured to receive the control signal S via a contactless communication link, for example a radio link, and to transmit the control signal S to the actuator 4.
  • a contactless communication link for example a radio link
  • the user can actuate the actuator 4 of the installation 1 with a remote control unit, such as a remote control, which is not shown in the figures.
  • the actuator 4 is also configured to receive the control signal S via a wired link 10 connected to the wall control unit 8. In practice, the user can activate the actuator 4 directly via the wall control unit 8 which is positioned in the vicinity of the installation 1.
  • the installation 1 represented in FIG. figure 1 is configured to be user controlled wirelessly and / or wired.
  • the actuator 4 comprises two electrical conductors 12 and 14 supply from an electrical distribution network.
  • the electromechanical actuator 4 also comprises an electric motor 16 of the synchronous type.
  • the figure 2 shows a first embodiment of the actuator 4, wherein the electric motor 16 is an electronically commutated brushless electric motor, also called "BLDC" (acronym for the English term BrushLess Direct Current).
  • the electric motor 16 is powered by a DC voltage supplied by the power supply network. distribution.
  • the distribution network supplies an AC voltage of the order of 230 volts which is rectified and filtered in order to obtain a DC voltage of approximately 325 V for the supply of the synchronous electric motor 16.
  • a first electrical conductor 12 of the actuator 4 is able to transmit the DC voltage, while a second conductor 14 is able to connect the actuator 4 to ground.
  • the actuator 4 comprises the synchronous motor 16, a control module 48 and a control device 50.
  • the synchronous motor 16 comprises, in a manner known per se, a stator, windings and a rotor.
  • the stator of the synchronous motor 16 comprises a stack of laminations forming a magnetic circuit.
  • Synchronous motor stator windings 16 define three phases of the supply voltage. The three phases are 120 ° out of phase with each other.
  • the rotor of the synchronous motor 16 is, for example, a rotor with permanent magnets.
  • the synchronous motor 16 comprises three sensors 52A, 52B and 52C. These sensors 52A, 52B and 52C are, for example, binary output Hall effect sensors.
  • sensors are configured to react to the magnetic flux of the rotor magnets of the synchronous motor 16 and to provide a signal representative of the angular position of the rotor.
  • the sensors 52A, 52B and 52C are mounted on a printed circuit integral with the stator of the synchronous motor 16. Each sensor provides a signal representative of the position of the rotor. The analysis of the different signals makes it possible to determine the position and the speed of the rotor. Only one or two physical sensors can be used, the signal of the other sensors can be reconstituted from the signals of the physical sensor or sensors. Alternatively, this position and speed information can be determined without physical sensors.
  • the control module 48 is configured to supply sequentially the windings of the synchronous motor 16, so as to create a rotating magnetic field.
  • the control module 48 comprises a plurality of power switches 54A to 54F. In a manner known per se, the power switches are able to close sequentially, in order to supply one of the three windings of the synchronous motor 16. In particular, the power switches are controlled by external control signals.
  • the control device 50 is configured to control the control module 48.
  • the control device 50 comprises a logic unit 56 and a control signal generation module 58 for the control module 48.
  • the unit logic 56 receives, via wired links 60, the signals provided by the sensors 52A to 52C. Based on these measurements, the logic unit 56 controls the module 58, which generates the control signals for the power switches 54A through 54F.
  • wired links 62 connect the module 58 to the power switches 54A to 54F.
  • the control device 50 thus provides the function of a frequency modulator and supplies the synchronous motor 16 with supply voltages having cyclic ratios adapted to its operation.
  • the supply voltage which is supplied to the windings of the synchronous motor 16 is calculated as the product of a signal of the rectified DC voltage and a signal of a duty cycle defined by the control device 50.
  • the modulation, more precisely Pulse Width Modulation ( PWM ) realized using the control device 50 is of the order of 16 kHz.
  • the control device 50 also comprises a speed regulator 64.
  • the speed regulator 64 comprises at least one regulation loop concerning the speed. It may also include a second current control loop which operates in parallel with the speed control loop. These loops are controlled by speed and current correctors and allow to manage the voltage setpoint to be applied across the motor 16.
  • the advantage of the regulator 64 is to be able to regulate the speed of the motor 16, while possibly having a control of the couple.
  • the main regulation is speed control.
  • current regulation taking place at the same sampling period and in parallel with the speed regulation, makes it possible to ensure torque control at each instant.
  • These two control loops are relatively independent of each other. They are orchestrated by the logic unit 56 which will select the minimum voltage to be applied to the motor 16, that is to say either the supplied voltage of the speed corrector, or the voltage supplied by the current corrector.
  • control device 50 is able, by means of its speed controller 64, to switch the actuator 4 between a so-called nominal configuration C1 and a configuration C2, called learning.
  • learning configuration C2 corresponds to a modified performance configuration, in which the engine performance is voluntarily altered, in particular by modifying the speed of rotation of the engine.
  • a method for detecting the direction of movement of the occultation screen 2 controlled by the electromechanical actuator 4 is implemented during the installation of the installation 1.
  • the installation 1 is in nominal configuration C1, powered by one rated power P1 and is not in a particular position, such as approaching a stop.
  • the directions of movement D1 and D2 are not known. The detection method is described below.
  • the actuator 4 is switched to its learning configuration C2, where it is powered with a second power P2.
  • the method comprises a step a) of moving the occultation screen 2, using the actuator 4, in the first direction of movement D1 and measuring a first value V1 of a predefined parameter P of displacement .
  • the method then comprises a step b) of moving the occultation screen 2, using the actuator 4, in the second direction of displacement D2, which is opposite to the first direction of movement D1, and consisting of measuring a second value V2 of the predefined parameter P of displacement.
  • Step b) may comprise a production time of between 0.5 and 2 s. This time is necessary for the establishment of a regime of stable and for the measurement of the parameter P.
  • the method comprises a step c) of comparing the values V1 and V2 of the predefined parameter of displacement measured during steps a) and b).
  • the comparison of the values V1 and V2 is carried out by the logic unit 56 of the control device 50 of the actuator 4.
  • the detection method then comprises a step d) of determining the direction of first and second direction of movement D1 and D2, depending on the result of step c).
  • the predefined parameter P which is measured during step a) and step b), is the duty cycle of the supply voltage of the synchronous motor 16.
  • the Cyclic duty measurement is simple to perform. These duty cycle data are inherent in the power signal and therefore are easily recoverable by a microcontroller.
  • the first value V1 is a first value DC1 of the duty cycle, as visible in FIG. figure 3
  • the second value V2 is a second value DC2 of the duty cycle, as visible in FIG. figure 4 .
  • step d when the first DC1 value of the duty cycle is lower at the second value DC2 of the duty cycle, the first direction moves D1 is associated with the direction of descent and, consequently, the second direction of movement D2 is associated with the climb direction.
  • the duty cycle DC2 is greater than the duty cycle DC1.
  • the method comprises a step e) in which the actuator 4 is switched back to the nominal performance configuration C1, where it is powered with the nominal power supply P1, in order to be able to operate normally.
  • an increase in the speed of rotation of the synchronous electric motor 16 input increases the differentiation between the measurements of the predefined parameter P displacement.
  • the predefined parameter P which is measured during step a) and step b), is still the duty cycle of the supply voltage of the synchronous motor 16.
  • the logic unit 56 intervenes on the speed regulator 64 so that it provides a higher rotational speed.
  • the actuator 4 is switched to its learning configuration C2, where it is powered with a second power P3.
  • the control device 50 When the actuator 4 is switched to the nominal configuration C1, the control device 50 is configured to supply at the input of the synchronous electric motor 16 a supply signal corresponding to a first speed W1 of rotation. Because of this power supply signal, when the actuator 4 is switched to its nominal performance configuration C1, it is powered with the nominal power P1.
  • the control device When the actuator 4 is switched into the learning configuration C2, the control device is configured to supply at the input of the synchronous electric motor 16 a signal corresponding to a second rotation speed W2, greater than the first rotational speed.
  • a signal corresponding to a second rotation speed W2 greater than the first rotational speed.
  • the second rotational speed is chosen to be about twice the first rotation speed W1.
  • the nominal configurations C1 and learning C2 are visually, for a user, not very distinct.
  • the displacements of the screen 2 being at higher speed in the learning configuration, the two configurations are visually distinct.
  • the determination of the duty cycles during up and down motions for a given regulated speed provides sufficiently significant duty cycle data for the rise and fall to be compared and to determine the direction of travel. . These data can be used to discriminate the direction of rise and the direction of descent whatever the use configuration (normal or learning).
  • the learning configuration C2 can cause the screen 2 to move in the upward direction, and the force required to move the load is greater than can supply the motor.
  • the measurement of the predefined parameter P and the determination of the displacement direction by comparison remains possible despite the absence of movement of the screen 2 in one of the directions of movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

L'invention concerne un procédé de détection du sens de déplacement d'un écran d'occultation.The invention relates to a method for detecting the direction of movement of an occultation screen.

Lors de la mise en place d'une installation d'occultation comportant un écran et un actionneur, il est nécessaire de détecter le sens de déplacement de l'écran, parmi un sens de montée et un sens de descente, afin que l'installation puisse successivement reconnaître automatiquement le sens de déplacement, par exemple lors d'une utilisation de l'installation par un utilisateur au moyen d'une télécommande ou d'un interrupteur mural.When setting up an occultation installation comprising a screen and an actuator, it is necessary to detect the direction of movement of the screen, from a direction of rise and a direction of descent, so that the installation can successively automatically recognize the direction of movement, for example when using the installation by a user by means of a remote control or a wall switch.

Pour ce faire, il est connu, par exemple de EP-A-2 593 626 , de mesurer un couple moteur de l'actionneur afin de déterminer le sens de déplacement de l'écran. En particulier, la mesure du couple moteur se fait par mesure du courant moteur dans le cas d'un moteur à courant continu, le courant moteur étant à l'image du couple. Cependant, sur un actionneur comprenant un moteur synchrone, la mesure du couple moteur peut également être perturbée par la présence d'un frein mécanique qui comporte un couple de trainée (ou effort de freinage permanent) non négligeable.To do this, it is known, for example EP-A-2 593 626 , to measure a motor torque of the actuator to determine the direction of movement of the screen. In particular, the motor torque is measured by measuring the motor current in the case of a DC motor, the motor current being in the image of torque. However, on an actuator comprising a synchronous motor, the measurement of the engine torque can also be disturbed by the presence of a mechanical brake which comprises a drag torque (or permanent braking force) not negligible.

Dans le cas d'un moteur asynchrone, le couple moteur peut être déterminé par la mesure de la tension disponible aux bornes d'un condensateur de déphasage entre les enroulements du moteur. Toutefois, pour certains volets roulants, notamment de faible poids ou pour lesquels le moteur est surdimensionné, entre un sens de montée et un sens de descente, la tension du condensateur de déphasage varie très peu, de sorte que la détermination du sens de déplacement de l'écran par cette lecture de tension n'est pas facile, ni fiable. De ce fait, une telle approche de détermination du sens par détermination du couple peut être appliquée exclusivement pour un actionneur équipé d'un moteur synchrone, par exemple un moteur BLDC. C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un nouveau procédé de détection pour une installation d'occultation qui peut être mis en place également pour un actionneur comprenant un moteur synchrone.In the case of an asynchronous motor, the motor torque can be determined by measuring the voltage available across a phase shift capacitor between the motor windings. However, for certain roller shutters, in particular of low weight or for which the motor is oversized, between a rising direction and a direction of descent, the voltage of the phase-shift capacitor varies very little, so that the determination of the direction of movement of the the screen by this voltage reading is not easy nor reliable. As a result, such an approach of determining the direction by determining the torque can be applied exclusively for an actuator equipped with a synchronous motor, for example a BLDC motor. It is these drawbacks that the invention intends to remedy more particularly by proposing a new detection method for an occultation installation that can also be implemented for an actuator comprising a synchronous motor.

Dans cet esprit, l'invention concerne un procédé de détection du sens de déplacement d'un écran d'occultation piloté par un actionneur électromécanique, ce procédé comprenant des étapes consistant à :

  1. a) déplacer l'écran d'occultation à l'aide de l'actionneur dans un premier sens de déplacement et mesurer une première valeur d'un paramètre prédéfini de déplacement,
  2. b) déplacer l'écran d'occultation à l'aide de l'actionneur dans un deuxième sens de déplacement, opposé au premier sens de déplacement, et mesurer une deuxième valeur du paramètre prédéfini de déplacement,
  3. c) comparer les valeurs du paramètre prédéfini mesurées lors des étapes a) et b),
  4. d) déterminer la direction des premier et deuxième sens de déplacement en fonction du résultat de l'étape c).
In this spirit, the invention relates to a method for detecting the direction of movement of an occultation screen controlled by an electromechanical actuator, this method comprising the steps of:
  1. a) moving the occultation screen using the actuator in a first direction of movement and measuring a first value of a predefined displacement parameter,
  2. b) moving the occultation screen using the actuator in a second direction of movement, opposite the first direction of movement, and measuring a second value of the predefined displacement parameter,
  3. c) comparing the values of the preset parameter measured in steps a) and b),
  4. d) determining the direction of the first and second direction of movement according to the result of step c).

Conformément à l'invention, l'actionneur électromécanique comporte un moteur électrique synchrone et le paramètre prédéfini de déplacement est un rapport cyclique d'une tension d'alimentation du moteur électrique synchrone.According to the invention, the electromechanical actuator comprises a synchronous electric motor and the predefined displacement parameter is a duty cycle of a supply voltage of the synchronous electric motor.

Selon des aspects avantageux mais non obligatoires de l'invention, un tel procédé comprend une ou plusieurs des caractéristiques suivantes, prise(s) selon toute combinaison techniquement admissible :

  • Lors de l'étape d), lorsque la première valeur du paramètre prédéfini est inférieure à la deuxième valeur du paramètre prédéfini, le premier sens de déplacement est associé à une direction de descente, alors que, lorsque la première valeur du paramètre prédéfini est supérieure à la deuxième valeur du paramètre prédéfini, le premier sens de déplacement est associé à une direction de montée.
  • Lorsque l'actionneur est commuté dans une configuration nominale, le dispositif de contrôle est configuré pour fournir en entrée du moteur électrique synchrone un signal d'alimentation correspondant à une première vitesse de rotation, correspondant à une puissance d'alimentation nominale et, lorsque l'actionneur est commuté dans une configuration d'apprentissage, le dispositif de contrôle est configuré pour fournir en entrée du moteur électrique synchrone un signal correspondant à une deuxième vitesse de rotation, supérieure à la première vitesse de rotation et correspondant à une puissance électrique plus élevée que la puissance d'alimentation nominale.
  • La deuxième vitesse de rotation est environ le double de la première vitesse de rotation.
  • La commutation entre la configuration d'apprentissage et la configuration nominale de l'actionneur, est effectuée au moyen d'un dispositif de contrôle du moteur électrique synchrone.
  • La commutation entre la configuration d'apprentissage et la configuration nominale de l'actionneur, est effectuée au moyen d'un régulateur de vitesse.
  • Le procédé comprend :
    • une étape z) préalable aux étapes a) et b), dans laquelle l'actionneur est commuté dans une configuration d'apprentissage, où des performances de l'actionneur sont volontairement altérées par rapport à ses performances nominales, et
    • une étape e), postérieure à l'étape d), dans laquelle l'actionneur est commuté dans une configuration de performance nominale, où les performances de l'actionneur sont rétablies à ses performances nominales.
  • L'étape e) de commutation dans la configuration de performance nominale, où les performances de l'actionneur électromécanique sont rétablies à ses performances nominales, a lieu au démarrage d'un mouvement de montée commandé par un utilisateur.
According to advantageous but non-obligatory aspects of the invention, such a method comprises one or more of the following characteristics, taken in any technically permissible combination:
  • In step d), when the first value of the predefined parameter is less than the second value of the predefined parameter, the first direction of movement is associated with a direction of descent, whereas, when the first value of the predefined parameter is greater than at the second value of the predefined parameter, the first direction of movement is associated with a rising direction.
  • When the actuator is switched to a nominal configuration, the control device is configured to supply at the input of the synchronous electric motor a supply signal corresponding to a first rotational speed, corresponding to a nominal power supply and, when the the actuator is switched into a training configuration, the control device is configured to supply at the input of the synchronous electric motor a signal corresponding to a second rotational speed, greater than the first rotational speed and corresponding to a higher electrical power. than the nominal power supply.
  • The second rotational speed is about twice the first rotational speed.
  • The switching between the training configuration and the nominal configuration of the actuator is effected by means of a control device of the synchronous electric motor.
  • The switching between the training configuration and the nominal configuration of the actuator is effected by means of a speed controller.
  • The method comprises:
    • a step z) prior to steps a) and b), wherein the actuator is switched into a learning configuration, where the performance of the actuator is deliberately altered with respect to its nominal performance, and
    • a step e), subsequent to step d), wherein the actuator is switched to a nominal performance configuration, where the performance of the actuator is restored to its nominal performance.
  • The e) switching step in the nominal performance configuration, where the performance of the electromechanical actuator is restored to its nominal performance, occurs at the start of a user-controlled rise movement.

L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre, de plusieurs procédés de détection conformes à l'invention, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés, sur lesquels :

  • la figure 1 est une représentation schématique d'une installation d'occultation ;
  • la figure 2 est un schéma électrique d'un actionneur électromécanique de type synchrone, utilisable avec le procédé de l'invention ;
  • la figure 3 est un schéma représentatif d'un signal d'alimentation ayant un premier rapport cyclique pour l'actionneur électromécanique à la figure 2 ;
  • la figure 4 est un schéma représentatif d'un signal d'alimentation ayant un deuxième rapport cyclique pour l'actionneur électromécanique à la figure 2 ; et
  • la figure 5 est un organigramme d'un procédé de détection du sens de déplacement conforme à l'invention.
The invention will be better understood and other advantages thereof will appear more clearly in the light of the following description of several detection methods according to the invention, given solely by way of nonlimiting example and made with reference to the accompanying drawings, in which:
  • the figure 1 is a schematic representation of an occultation installation;
  • the figure 2 is a circuit diagram of an electromechanical actuator of the synchronous type, usable with the method of the invention;
  • the figure 3 is a representative diagram of a feed signal having a first duty cycle for the electromechanical actuator at the figure 2 ;
  • the figure 4 is a representative diagram of a supply signal having a second duty cycle for the electromechanical actuator at the figure 2 ; and
  • the figure 5 is a flowchart of a method for detecting the direction of movement according to the invention.

Sur la figure 1, une installation 1 d'occultation est représentée. L'installation d'occultation 1 comporte un écran 2 d'occultation, un actionneur 4 électromécanique, des moyens 6 de communication et une unité de contrôle 8. L'installation 1 est ainsi un dispositif motorisé, tel qu'un volet motorisé, apte à la fermeture, l'occultation ou la protection solaire d'une ouverture O. En pratique, l'ouverture O est obturée par l'écran 2, au choix d'un utilisateur.On the figure 1 an occultation installation 1 is shown. The occultation installation 1 comprises a shielding screen 2, an electromechanical actuator 4, communication means 6 and a control unit 8. The installation 1 is thus a motorized device, such as a motorized shutter, suitable for when closing, obscuring or sunscreening an opening O. In practice, the opening O is closed by the screen 2, at the option of a user.

L'écran d'occultation 2 est, de façon connue en soi, formé par plusieurs lames articulées entre elles et qui comprennent une lame inférieure et une lame supérieure. La lame inférieure est destinée à venir en appui contre le seuil de l'ouverture O lorsqu'elle est en position basse. La lame supérieure est accrochée à un arbre d'enroulement 5.The occultation screen 2 is, in a manner known per se, formed by a plurality of blades hinged together and comprising a lower blade and an upper blade. The lower blade is intended to bear against the threshold of the opening O when in the down position. The upper blade is attached to a winding shaft 5.

L'arbre est monté à l'intérieur d'un caisson, non représenté, de l'installation d'occultation 1, avec possibilité de rotation autour d'un axe X1, qui est horizontal et fixe et qui constitue un axe central pour l'écran 2 et pour l'installation d'occultation 1. De façon connue en soi, l'arbre est entraîné en rotation autour de l'axe X1 au moyen de l'actionneur 4.The shaft is mounted inside a box, not shown, of the occultation installation 1, with the possibility of rotation about an axis X1, which is horizontal and fixed and which constitutes a central axis for the screen 2 and for the occultation installation 1. In a manner known per se, the shaft is rotated about the axis X1 by means of the actuator 4.

Ainsi, la lame inférieure de l'écran d'occultation 2 est mobile en translation, selon un axe X2 appartenant au plan de l'ouverture O et perpendiculaire à l'axe X1, dans un premier sens de déplacement D1 ou dans un deuxième sens de déplacement D2. Les premier et deuxième sens de déplacement D1 et D2 sont l'un opposé de l'autre selon l'axe X1. En pratique, les premier et deuxième sens de déplacement D1 et D2 peuvent être dans une direction de montée ou dans une direction de descente de l'écran 2, notamment selon si l'actionneur est monté sur la droite ou sur la gauche de l'arbre d'enroulement ou selon si l'écran se déroule à l'avant ou à l'arrière de l'arbre d'enroulement.Thus, the lower blade of the occultation screen 2 is movable in translation, along an axis X2 belonging to the plane of the opening O and perpendicular to the axis X1, in a first direction of displacement D1 or in a second direction displacement D2. The first and second movement direction D1 and D2 are opposite each other along the axis X1. In practice, the first and second direction of movement D1 and D2 may be in a rising direction or in a direction of descent of the screen 2, in particular depending on whether the actuator is mounted on the right or on the left of the winding shaft or depending on whether the screen is at the front or rear of the winding shaft.

L'actionneur 4 est configuré pour être activé par un utilisateur. En particulier, l'utilisateur transmet un ordre de commande à l'actionneur 4 de l'installation 1 via un signal de commande S issu de l'unité de contrôle 8. Ainsi, l'actionneur 4 est configuré pour recevoir le signal de commande S via les moyens de communication 6.The actuator 4 is configured to be activated by a user. In particular, the user transmits a control command to the actuator 4 of the installation 1 via a control signal S from the control unit 8. Thus, the actuator 4 is configured to receive the control signal S via the communication means 6.

Les moyens de communication 6 sont, par exemple, une antenne. L'antenne 6 de l'installation 1 est configurée pour recevoir le signal de commande S via une liaison de communication sans contact, par exemple radioélectrique, et pour transmettre le signal de commande S à l'actionneur 4. En pratique, l'utilisateur peut mettre en fonction l'actionneur 4 de l'installation 1 à l'aide d'une unité de contrôle à distance, telle qu'une télécommande, qui n'est pas représentée sur les figures.The communication means 6 are, for example, an antenna. The antenna 6 of the installation 1 is configured to receive the control signal S via a contactless communication link, for example a radio link, and to transmit the control signal S to the actuator 4. In practice, the user can actuate the actuator 4 of the installation 1 with a remote control unit, such as a remote control, which is not shown in the figures.

L'actionneur 4 est également configuré pour recevoir le signal de commande S via une liaison filaire 10 raccordée à l'unité de contrôle 8 murale. En pratique, l'utilisateur peut mettre en fonction l'actionneur 4 directement via l'unité de contrôle 8 murale qui est positionnée au voisinage de l'installation 1.The actuator 4 is also configured to receive the control signal S via a wired link 10 connected to the wall control unit 8. In practice, the user can activate the actuator 4 directly via the wall control unit 8 which is positioned in the vicinity of the installation 1.

En d'autres termes, l'installation 1 représentée à la figure 1 est configurée pour être commandée par l'utilisateur sans fil et/ou de façon filaire.In other words, the installation 1 represented in FIG. figure 1 is configured to be user controlled wirelessly and / or wired.

L'actionneur 4 comprend deux conducteurs électriques 12 et 14 d'alimentation à partir d'un réseau de distribution électrique. L'actionneur électromécanique 4 comprend également un moteur électrique 16 de type synchrone.The actuator 4 comprises two electrical conductors 12 and 14 supply from an electrical distribution network. The electromechanical actuator 4 also comprises an electric motor 16 of the synchronous type.

La figure 2 montre un premier mode de réalisation de l'actionneur 4, où le moteur électrique 16 est un moteur électrique sans balais à commutation électronique, appelé également « BLDC » (acronyme du terme anglo-saxon BrushLess Direct Current). Le moteur électrique 16 est alimenté par une tension continue fournie par le réseau de distribution. En particulier, le réseau de distribution fourni une tension alternative de l'ordre de 230 volts qui est redressée et filtrée afin d'obtenir une tension continue de environ 325 V pour l'alimentation du moteur électrique synchrone 16.The figure 2 shows a first embodiment of the actuator 4, wherein the electric motor 16 is an electronically commutated brushless electric motor, also called "BLDC" (acronym for the English term BrushLess Direct Current). The electric motor 16 is powered by a DC voltage supplied by the power supply network. distribution. In particular, the distribution network supplies an AC voltage of the order of 230 volts which is rectified and filtered in order to obtain a DC voltage of approximately 325 V for the supply of the synchronous electric motor 16.

Un premier conducteur électrique 12 de l'actionneur 4 est apte à transmettre la tension continue, alors qu'un deuxième conducteur 14 est apte à raccorder l'actionneur 4 à la masse.A first electrical conductor 12 of the actuator 4 is able to transmit the DC voltage, while a second conductor 14 is able to connect the actuator 4 to ground.

L'actionneur 4 comprend le moteur synchrone 16, un module 48 de pilotage et un dispositif 50 de contrôle.The actuator 4 comprises the synchronous motor 16, a control module 48 and a control device 50.

Le moteur synchrone 16 comprend, de façon connue en soi, un stator, des enroulements et un rotor. Le stator du moteur synchrone 16 comporte un empilement de tôles formant un circuit magnétique. Des enroulements du stator du moteur synchrone 16 définissent trois phases de la tension d'alimentation. Les trois phases sont en déphasage de 120° les unes par rapport aux autres. Le rotor du moteur synchrone 16 est, par exemple, un rotor à aimants permanents. Selon un exemple de réalisation, le moteur synchrone 16 comprend trois capteurs 52A, 52B et 52C. Ces capteurs 52A, 52B et 52C sont, par exemple, des capteurs à effet Hall à sortie binaire. Ces capteurs sont configurés pour réagir au flux magnétique des aimants du rotor du moteur synchrone 16 et pour fournir un signal représentatif de la position angulaire du rotor. Pour ce faire, les capteurs 52A, 52B et 52C sont montés sur un circuit imprimé solidaire du stator du moteur synchrone 16. Chaque capteur fournit un signal représentatif de la position du rotor. L'analyse des différents signaux permet de déterminer la position et la vitesse du rotor. Seuls un ou deux capteurs physiques peuvent être utilisés, le signal des autres capteurs pouvant être reconstitué à partir des signaux du ou des capteurs physiques. Alternativement, cette information de position et de vitesse peut être déterminée sans capteurs physiques.The synchronous motor 16 comprises, in a manner known per se, a stator, windings and a rotor. The stator of the synchronous motor 16 comprises a stack of laminations forming a magnetic circuit. Synchronous motor stator windings 16 define three phases of the supply voltage. The three phases are 120 ° out of phase with each other. The rotor of the synchronous motor 16 is, for example, a rotor with permanent magnets. According to an exemplary embodiment, the synchronous motor 16 comprises three sensors 52A, 52B and 52C. These sensors 52A, 52B and 52C are, for example, binary output Hall effect sensors. These sensors are configured to react to the magnetic flux of the rotor magnets of the synchronous motor 16 and to provide a signal representative of the angular position of the rotor. To do this, the sensors 52A, 52B and 52C are mounted on a printed circuit integral with the stator of the synchronous motor 16. Each sensor provides a signal representative of the position of the rotor. The analysis of the different signals makes it possible to determine the position and the speed of the rotor. Only one or two physical sensors can be used, the signal of the other sensors can be reconstituted from the signals of the physical sensor or sensors. Alternatively, this position and speed information can be determined without physical sensors.

Le module de pilotage 48 est configuré pour alimenter séquentiellement les enroulements du moteur synchrone 16, de manière à créer un champ magnétique tournant. Le module de pilotage 48 comporte une pluralité de commutateurs de puissance 54A à 54F. De façon connue en soi, les commutateurs de puissances sont aptes à se fermer séquentiellement, afin d'alimenter l'un des trois enroulements du moteur synchrone 16. En particulier, les commutateurs de puissance sont pilotés par des signaux de commande externes.The control module 48 is configured to supply sequentially the windings of the synchronous motor 16, so as to create a rotating magnetic field. The control module 48 comprises a plurality of power switches 54A to 54F. In a manner known per se, the power switches are able to close sequentially, in order to supply one of the three windings of the synchronous motor 16. In particular, the power switches are controlled by external control signals.

Le dispositif de contrôle 50 est configuré pour commander le module de pilotage 48. Le dispositif de contrôle 50 comporte une unité logique 56 et un module 58 de génération de signaux de commande pour le module de pilotage 48. En particulier, l'unité logique 56 reçoit, via des liaisons filaires 60, les signaux fournis par les capteurs 52A à 52C. Sur la base de ces mesures, l'unité logique 56 commande le module 58, qui génère les signaux de commande pour les commutateurs de puissance 54A à 54F. En particulier, des liaisons filaires 62 relient le module 58 aux commutateurs de puissance 54A à 54F.The control device 50 is configured to control the control module 48. The control device 50 comprises a logic unit 56 and a control signal generation module 58 for the control module 48. In particular, the unit logic 56 receives, via wired links 60, the signals provided by the sensors 52A to 52C. Based on these measurements, the logic unit 56 controls the module 58, which generates the control signals for the power switches 54A through 54F. In particular, wired links 62 connect the module 58 to the power switches 54A to 54F.

Le dispositif de contrôle 50 assure ainsi la fonction d'un modulateur de fréquence et fournit au moteur synchrone 16 des tensions d'alimentation ayant des rapports cycliques adaptés à son fonctionnement. En particulier, la tension d'alimentation qui est fournie aux enroulements du moteur synchrone 16 est calculée comme le produit d'un signal de la tension continue redressée et un signal d'un rapport cyclique défini par le dispositif de contrôle 50. La modulation, plus précisément la Modulation de Largeur d'Impulsions (MLI, de l'anglais : Pulse Width Modulation, soit PWM) réalisée à l'aide du dispositif de contrôle 50 est de l'ordre de 16 kHz.The control device 50 thus provides the function of a frequency modulator and supplies the synchronous motor 16 with supply voltages having cyclic ratios adapted to its operation. In particular, the supply voltage which is supplied to the windings of the synchronous motor 16 is calculated as the product of a signal of the rectified DC voltage and a signal of a duty cycle defined by the control device 50. The modulation, more precisely Pulse Width Modulation ( PWM ) realized using the control device 50 is of the order of 16 kHz.

Le dispositif de contrôle 50 comprend également un régulateur 64 de vitesse. En particulier, le régulateur de vitesse 64 comporte au moins une boucle de régulation concernant la vitesse. Il peut également comprendre une deuxième boucle de régulation concernant le courant et qui fonctionne en parallèle de la boucle de régulation en vitesse. Ces boucles sont asservies par des correcteurs de vitesse et de courant et permettent de gérer la consigne de tension à appliquer aux bornes du moteur 16. L'avantage du régulateur 64 est de pouvoir réguler la vitesse du moteur 16, tout en ayant éventuellement un contrôle du couple. La régulation principale est la régulation de vitesse. Cependant, une régulation de courant, s'effectuant à la même période d'échantillonnage et en parallèle de la régulation de vitesse, permet d'assurer un contrôle du couple à chaque instant. Ces deux boucles de régulation sont relativement indépendantes l'une de l'autre. Elles sont orchestrées par l'unité logique 56 qui va sélectionner la tension minimum à appliquer au moteur 16, c'est-à-dire soit la tension fournie du correcteur de vitesse, soit la tension fournie par le correcteur de courant.The control device 50 also comprises a speed regulator 64. In particular, the speed regulator 64 comprises at least one regulation loop concerning the speed. It may also include a second current control loop which operates in parallel with the speed control loop. These loops are controlled by speed and current correctors and allow to manage the voltage setpoint to be applied across the motor 16. The advantage of the regulator 64 is to be able to regulate the speed of the motor 16, while possibly having a control of the couple. The main regulation is speed control. However, current regulation, taking place at the same sampling period and in parallel with the speed regulation, makes it possible to ensure torque control at each instant. These two control loops are relatively independent of each other. They are orchestrated by the logic unit 56 which will select the minimum voltage to be applied to the motor 16, that is to say either the supplied voltage of the speed corrector, or the voltage supplied by the current corrector.

Ainsi, le dispositif de contrôle 50 est apte, à l'aide de son régulateur de vitesse 64, à commuter l'actionneur 4 entre une configuration C1, dite nominale, et une configuration C2, dite d'apprentissage. En particulier, la configuration d'apprentissage C2 correspond à une configuration de performances modifiées, dans laquelle les performances du moteur sont volontairement altérées, notamment par modification de la vitesse de rotation du moteur.Thus, the control device 50 is able, by means of its speed controller 64, to switch the actuator 4 between a so-called nominal configuration C1 and a configuration C2, called learning. In particular, the learning configuration C2 corresponds to a modified performance configuration, in which the engine performance is voluntarily altered, in particular by modifying the speed of rotation of the engine.

Un procédé de détection du sens de déplacement de l'écran d'occultation 2 piloté par l'actionneur électromécanique 4 est mis en oeuvre lors de la mise en place de l'installation 1. L'installation 1 est en configuration nominale C1, alimentée par une puissance nominale P1 et ne se trouve pas dans une position particulière, telle que l'approche d'une butée. Lors de la mise en place de l'installation 1, les sens de déplacement D1 et D2 ne sont pas connus. Le procédé de détection est décrit ci-dessous.A method for detecting the direction of movement of the occultation screen 2 controlled by the electromechanical actuator 4 is implemented during the installation of the installation 1. The installation 1 is in nominal configuration C1, powered by one rated power P1 and is not in a particular position, such as approaching a stop. When setting up the installation 1, the directions of movement D1 and D2 are not known. The detection method is described below.

Au début de ce procédé, et au cours d'une étape initiale z), l'actionneur 4 est commuté dans sa configuration d'apprentissage C2, où il est alimenté avec une deuxième puissance P2.At the beginning of this process, and during an initial step z), the actuator 4 is switched to its learning configuration C2, where it is powered with a second power P2.

Le procédé comprend une étape a) consistant à déplacer l'écran d'occultation 2, à l'aide de l'actionneur 4, dans le premier sens de déplacement D1 et à mesurer une première valeur V1 d'un paramètre P prédéfini de déplacement.The method comprises a step a) of moving the occultation screen 2, using the actuator 4, in the first direction of movement D1 and measuring a first value V1 of a predefined parameter P of displacement .

Le procédé comporte ensuite une étape b) consistant à déplacer l'écran d'occultation 2, à l'aide de l'actionneur 4, dans le deuxième sens de déplacement D2, qui est opposé au premier sens de déplacement D1, et consistant à mesurer une deuxième valeur V2 du paramètre P prédéfini de déplacement. L'étape b) peut comporter un temps de réalisation compris entre 0,5 et 2 s. Ce temps est nécessaire pour l'établissement d'un régime de stable et pour la mesure du paramètre P.The method then comprises a step b) of moving the occultation screen 2, using the actuator 4, in the second direction of displacement D2, which is opposite to the first direction of movement D1, and consisting of measuring a second value V2 of the predefined parameter P of displacement. Step b) may comprise a production time of between 0.5 and 2 s. This time is necessary for the establishment of a regime of stable and for the measurement of the parameter P.

Ensuite, le procédé comporte une étape c) consistant à comparer les valeurs V1 et V2 du paramètre P prédéfini de déplacement mesuré lors des étapes a) et b). La comparaison des valeurs V1 et V2 est réalisée par l'unité logique 56 du dispositif de contrôle 50 de l'actionneur 4.Then, the method comprises a step c) of comparing the values V1 and V2 of the predefined parameter of displacement measured during steps a) and b). The comparison of the values V1 and V2 is carried out by the logic unit 56 of the control device 50 of the actuator 4.

Le procédé de détection comporte ensuite une étape d) consistant à déterminer la direction de premier et deuxième sens de déplacement D1 et D2, en fonction du résultat de l'étape c).The detection method then comprises a step d) of determining the direction of first and second direction of movement D1 and D2, depending on the result of step c).

Dans la configuration d'apprentissage C2, le paramètre prédéfini P, qui est mesuré lors de l'étape a) et de l'étape b), est le rapport cyclique de la tension d'alimentation du moteur synchrone 16. En effet, la mesure du rapport cyclique est simple à réaliser. Ces données de rapport cyclique sont inhérentes au signal d'alimentation et donc sont aisément récupérables par un microcontrôleur. En particulier, la première valeur V1 est une première valeur DC1 du rapport cyclique, comme visible à la figure 3, alors que la deuxième valeur V2 est une deuxième valeur DC2 du rapport cyclique, comme visible à la figure 4. Lors de l'étape de comparaison c), la différence entre les rapports cycliques dans les deux sens de déplacement parfaitement identifiable au moyen du dispositif de contrôle 50. Lors de l'étape d), lorsque la première valeur DC1 du rapport cyclique est inférieure à la deuxième valeur DC2 du rapport cyclique, le premier sens se déplacement D1 est associé à la direction de descente et, par conséquent, le deuxième sens de déplacement D2 est associé à la direction de montée. L'inverse est effectué lorsque le rapport cyclique DC2 est supérieur au rapport cyclique DC1.In learning configuration C2, the predefined parameter P, which is measured during step a) and step b), is the duty cycle of the supply voltage of the synchronous motor 16. In fact, the Cyclic duty measurement is simple to perform. These duty cycle data are inherent in the power signal and therefore are easily recoverable by a microcontroller. In particular, the first value V1 is a first value DC1 of the duty cycle, as visible in FIG. figure 3 , while the second value V2 is a second value DC2 of the duty cycle, as visible in FIG. figure 4 . During the comparison step c), the difference between the cyclic ratios in the two directions of displacement perfectly identifiable by means of the control device 50. In step d), when the first DC1 value of the duty cycle is lower at the second value DC2 of the duty cycle, the first direction moves D1 is associated with the direction of descent and, consequently, the second direction of movement D2 is associated with the climb direction. The opposite is done when the duty cycle DC2 is greater than the duty cycle DC1.

Enfin, le procédé comporte une étape e) dans laquelle l'actionneur 4 est commuté à nouveau dans la configuration de performance nominale C1, où il est alimenté avec la puissance d'alimentation nominale P1, afin de pouvoir fonctionner normalement.Finally, the method comprises a step e) in which the actuator 4 is switched back to the nominal performance configuration C1, where it is powered with the nominal power supply P1, in order to be able to operate normally.

Selon un deuxième mode de réalisation, une augmentation de la vitesse de rotation du moteur électrique synchrone 16 en entrée, gérée au moyen du régulateur de vitesse 64, permet d'augmenter la différenciation entre les mesures du paramètre prédéfini P de déplacement. Dans ce deuxième mode de réalisation, le paramètre prédéfini P, qui est mesuré lors de l'étape a) et de l'étape b), est encore le rapport cyclique de la tension d'alimentation du moteur synchrone 16.According to a second embodiment, an increase in the speed of rotation of the synchronous electric motor 16 input, managed by means of the speed controller 64, increases the differentiation between the measurements of the predefined parameter P displacement. In this second embodiment, the predefined parameter P, which is measured during step a) and step b), is still the duty cycle of the supply voltage of the synchronous motor 16.

Au début de ce procédé, et au cours d'une étape initiale z), l'unité logique 56 intervient sur le régulateur de vitesse 64 pour que celui-ci fournisse une vitesse de rotation plus élevée. En d'autres termes, l'actionneur 4 est commuté dans sa configuration d'apprentissage C2, où il est alimenté avec une deuxième puissance P3.At the beginning of this process, and during an initial step z), the logic unit 56 intervenes on the speed regulator 64 so that it provides a higher rotational speed. In other words, the actuator 4 is switched to its learning configuration C2, where it is powered with a second power P3.

Lorsque l'actionneur 4 est commuté dans la configuration nominale C1, le dispositif de contrôle 50 est configuré pour fournir en entrée du moteur électrique synchrone 16 un signal d'alimentation correspondant à une première vitesse W1 de rotation. Du fait de ce signal d'alimentation, lorsque l'actionneur 4 est commuté dans sa configuration de performance nominale C1, il est alimenté avec la puissance nominale P1.When the actuator 4 is switched to the nominal configuration C1, the control device 50 is configured to supply at the input of the synchronous electric motor 16 a supply signal corresponding to a first speed W1 of rotation. Because of this power supply signal, when the actuator 4 is switched to its nominal performance configuration C1, it is powered with the nominal power P1.

Lorsque l'actionneur 4 est commuté dans la configuration d'apprentissage C2, le dispositif de contrôle est configuré pour fournir en entrée du moteur électrique synchrone 16 un signal correspondant à une deuxième vitesse W2 de rotation, supérieure à la première vitesse de rotation. Ainsi, du fait de ce signal d'alimentation, lorsque l'actionneur 4 est commuté dans sa configuration d'apprentissage C2, il est alimenté avec la puissance P2 qui est plus élevée que la puissance d'alimentation nominale P1. Le fait de modifier la vitesse de déplacement, pour la surélever au risque de dégrader les performances acoustiques et thermiques du moteur pendant les étapes de configuration, peut permettre de rendre la différence de mesure plus significative et ainsi d'identifier le sens de déplacement, notamment dans les cas où la mesure à vitesse nominale ne le permet pas de manière sûre.When the actuator 4 is switched into the learning configuration C2, the control device is configured to supply at the input of the synchronous electric motor 16 a signal corresponding to a second rotation speed W2, greater than the first rotational speed. Thus, because of this supply signal, when the actuator 4 is switched to its learning configuration C2, it is powered with the power P2 which is higher than the nominal power supply P1. The fact of modifying the speed of displacement, to raise it to the risk of degrading the acoustic and thermal performances of the engine during the configuration steps, can make the difference of measurement more significant and thus to identify the direction of movement, in particular in cases where measurement at rated speed is not safe.

En pratique, la deuxième vitesse de rotation est choisie environ le double de la première vitesse de rotation W1.In practice, the second rotational speed is chosen to be about twice the first rotation speed W1.

Dans le premier mode de réalisation, les configurations nominale C1 et d'apprentissage C2 sont visuellement, pour un utilisateur, peu distincts. Dans le second mode de réalisation, les déplacements de l'écran 2 se faisant à vitesse plus élevée dans la configuration d'apprentissage, les deux configurations sont visuellement distinctes. Dans les deux modes de réalisation, la détermination des rapports cycliques lors de mouvements de montée et de descente, pour une vitesse régulée donnée, fournit des données de rapport cyclique suffisamment significatives pour la montée et la descente pour être comparées et déterminer le sens de déplacement. Ces données sont exploitables pour discriminer le sens de montée et le sens de descente quelle que soit la configuration d'utilisation (normale ou d'apprentissage).In the first embodiment, the nominal configurations C1 and learning C2 are visually, for a user, not very distinct. In the second embodiment, the displacements of the screen 2 being at higher speed in the learning configuration, the two configurations are visually distinct. In both embodiments, the determination of the duty cycles during up and down motions for a given regulated speed provides sufficiently significant duty cycle data for the rise and fall to be compared and to determine the direction of travel. . These data can be used to discriminate the direction of rise and the direction of descent whatever the use configuration (normal or learning).

Par exemple, les données de rapport cyclique comportent les résultats suivants :

  • pour une vitesse régulée à 3000tr/mn : à la descente, pour un couple en sortie de 10mNm, le rapport cyclique est égal à 0.278, alors que, à la montée, pour un couple en sortie de 20mNm, le rapport cyclique est égal à 0.3 soit un écart de 0.022 ;
  • pour une vitesse régulée à 1500tr/mn (vitesse nominale) : à la descente, pour un couple en sortie de 10mNm, le rapport cyclique est égal à 0.146, alors que, à la montée, pour un couple en sortie de 20mNm, le rapport cyclique est égal à 0.165 soit un écart = 0.019 ;
  • pour une vitesse régulée à 1000tr/mn (sous-vitesse) : à la descente, pour un couple en sortie de 10mNm, le rapport cyclique est égal à 0.098, alors que, à la montée, pour un couple en sortie de 20mNm, le rapport cyclique est égal à 0.116 soit un écart = 0.018.
For example, the duty cycle data has the following results:
  • for a speed regulated at 3000rpm: at the descent, for an output torque of 10mNm, the duty cycle is equal to 0.278, whereas, at the climb, for an output torque of 20mNm, the duty cycle is equal to 0.3 is a difference of 0.022;
  • for a speed regulated at 1500 rpm (nominal speed): at the descent, for an output torque of 10 mNm, the duty cycle is equal to 0.146, whereas, at the climb, for a torque output of 20 mNm, the ratio cyclic is equal to 0.165 ie a difference = 0.019;
  • for a speed regulated at 1000rpm (under-speed): at the descent, for an output torque of 10mNm, the duty cycle is equal to 0.098, whereas, at the climb, for a torque output of 20mNm, the cyclic ratio is equal to 0.116, ie a difference = 0.018.

Selon un troisième mode de réalisation, le paramètre prédéfini P de déplacement est un rapport entre un écart des rapports cycliques mesurés dans chaque sens de déplacement et la valeur du rapport cyclique dans chaque sens de déplacement.
Pour les valeurs données ci-dessus, les données à comparer, dans ce troisième mode de réalisation sont, par exemple, comme suit :

  • pour une vitesse régulée à 3000tr/mn : à la descente, pour un couple en sortie de 10mNm, le rapport calculé est de l'ordre de 7,9%, alors que, à la montée, pour un couple en sortie de 20mNm, le rapport calculé est de l'ordre de 7,3%, soit un écart de 0.6;
  • pour une vitesse régulée à 1500tr/mn (vitesse nominale) : à la descente, pour un couple en sortie de 10mNm, le rapport calculé est de l'ordre de 13%, alors que, à la montée, pour un couple en sortie de 20mNm, le rapport calculé est de l'ordre de 11,5%, soit un écart de 1,13;
  • pour une vitesse régulée à 1000tr/mn (sous-vitesse) : à la descente, pour un couple en sortie de 10mNm, le rapport calculé est de l'ordre de 18,4%, alors que, à la montée, pour un couple en sortie de 20mNm, le rapport calculé est de l'ordre de 15,5%, soit un écart de 2.9.
According to a third embodiment, the predefined displacement parameter P is a ratio between a deviation of the cyclic ratios measured in each direction of displacement and the value of the duty cycle in each direction of displacement.
For the values given above, the data to be compared in this third embodiment are, for example, as follows:
  • for a regulated speed at 3000rpm: at the descent, for a torque output of 10mNm, the calculated ratio is of the order of 7.9%, whereas, at the climb, for a torque output of 20mNm, the calculated ratio is of the order of 7.3%, ie a difference of 0.6;
  • for a speed regulated at 1500 rpm (nominal speed): at the descent, for a torque output of 10 mNm, the calculated ratio is of the order of 13%, whereas, at the climb, for a torque output of 20mNm, the calculated ratio is of the order of 11.5%, a difference of 1.13;
  • for a speed regulated at 1000rpm (under-speed): at the descent, for a torque output of 10mNm, the calculated ratio is of the order of 18.4%, whereas, on the ascent, for a couple at the output of 20mNm, the calculated ratio is of the order of 15.5%, a difference of 2.9.

On constate ainsi que pour ce troisième mode de réalisation, l'écart est plus significatif à basse vitesse. Cependant, la précision des microcontrôleurs utilisés pour les calculs est importante pour ne pas pénaliser ces résultats.It is thus noted that for this third embodiment, the difference is more significant at low speed. However, the precision of the microcontrollers used for the calculations is important not to penalize these results.

Les modes de réalisation envisagés ci-dessus peuvent être combinés entre eux pour générer des nouveaux modes de réalisation de l'invention. Dans les modes de réalisation présentés, la configuration d'apprentissage C2 peut faire en sorte que les mouvements de l'écran 2 dans le sens de la montée n'ont pas lieu, l'effort nécessaire pour déplacer la charge étant supérieur à ce que peut fournir le moteur. Toutefois, la mesure du paramètre prédéfini P et la détermination du sens de déplacement par comparaison reste possible malgré l'absence de mouvement de l'écran 2 dans un des sens de déplacements.The embodiments envisaged above may be combined with one another to generate new embodiments of the invention. In the embodiments presented, the learning configuration C2 can cause the screen 2 to move in the upward direction, and the force required to move the load is greater than can supply the motor. However, the measurement of the predefined parameter P and the determination of the displacement direction by comparison remains possible despite the absence of movement of the screen 2 in one of the directions of movement.

Claims (8)

  1. Method of detecting the direction of movement of a privacy screen (2) controlled by an electromechanical actuator (4), the method comprising steps consisting of:
    a) moving the privacy screen in a first direction of movement (D1) by means of the actuator and measuring a first value (V1) of a predefined parameter (P) of movement,
    b) moving the privacy screen by means of the actuator in a second direction of movement (D2), opposite to the first direction of movement, and measuring a second value (V2) of the predefined parameter of movement,
    c) comparing the values of the predefined parameter that were measured in steps a) and b),
    d) determining the direction of the first and second directions of movement based on the result of step c),
    the method being characterised in that the electromechanical actuator (4) includes a synchronous electric motor (16) and in that the predefined parameter (P) of movement is a duty cycle (DC1, DC2) of a supply voltage of the synchronous electric motor.
  2. Method according to claim 1, characterised in that, during the step d), when the first value (DC1) of the predefined parameter (P) is less than the second value (DC2) of the predefined parameter, the first direction of movement (D1) is associated with a direction of descent, while when the first value (DC1) of the predefined parameter (P) is greater than the second of value (DC2) of the predefined parameter, the first direction of movement (D1) is associated with a direction of ascent.
  3. Method according to either one of claims 1 and 2, characterised in that, when the actuator (4) is switched into a nominal configuration (C1), a control device (50) is configured to furnish at the input of the synchronous electric motor (16) a supply signal corresponding to a first speed (W1) of rotation, corresponding to a nominal power supply (P1) and in that, when the actuator is switched into a learning configuration (C2), the control device is configured to furnish at the input of the synchronous electric motor a signal corresponding to a second speed (W2) of rotation, higher than the first speed of rotation and corresponding to a higher electric power (P2) than the nominal supply power.
  4. Method according to claim 3, characterised in that the second speed of rotation (W2) is about double the first speed of rotation (W1).
  5. Method according to either one of claims 3 or 4, characterised in that the switching between the learning configuration (C2) and the nominal configuration (C1) of the actuator (4), is performed by a control device (50) of the synchronous electric motor (16).
  6. Method according to claim 5, characterised in that the switching between the learning configuration (C2) and the nominal configuration (C1) of the actuator (4) is performed by a speed regulator (64).
  7. Method according to any one of the preceding claims, characterised in that it comprises:
    - a step z) prior to steps a) and b), wherein the actuator (4) is switched into a learning configuration (C2), where performances of the actuator are purposefully altered with respect to the nominal performances thereof, and
    - a step e), subsequent to the step d), wherein the actuator is switched into a nominal performance configuration (C1), where the performances of the actuator are reset to the nominal performances thereof.
  8. Method according to claim 7, characterised in that the step e) of switching into the nominal performance configuration (C1), where the performances of the electromechanical actuator (4) are reset to the nominal performances thereof, takes place at the start of a movement of ascent ordered by a user.
EP16180831.6A 2015-07-24 2016-07-22 Detection method for the moving direction of a concealing screen Active EP3121366B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1557092A FR3039192B1 (en) 2015-07-24 2015-07-24 METHOD FOR DETECTING THE DIRECTION OF DISPLACEMENT OF AN OCCULT SCREEN

Publications (2)

Publication Number Publication Date
EP3121366A1 EP3121366A1 (en) 2017-01-25
EP3121366B1 true EP3121366B1 (en) 2018-05-09

Family

ID=54366336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16180831.6A Active EP3121366B1 (en) 2015-07-24 2016-07-22 Detection method for the moving direction of a concealing screen

Country Status (2)

Country Link
EP (1) EP3121366B1 (en)
FR (1) FR3039192B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104190B1 (en) * 2019-12-09 2021-12-24 Somfy Activites Sa Method for controlling an actuator, electromechanical actuator and associated closing, screening or solar protection installation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754117B1 (en) * 1996-09-30 1998-11-27 Somfy CONTROL DEVICE FOR AN ASYNCHRONOUS BLIND MOTOR OR ROLLER SHUTTER
FR2962758B1 (en) * 2010-07-13 2012-08-17 Somfy Sas METHOD FOR OPERATING A DEVICE COMPRISING AN ELECTROMECHANICAL ACTUATOR PILOTTING A MOBILE ELEMENT FOR CLOSING OR OCCULATING AN OPENING IN A BUILDING

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3121366A1 (en) 2017-01-25
FR3039192B1 (en) 2017-08-25
FR3039192A1 (en) 2017-01-27

Similar Documents

Publication Publication Date Title
EP2572446B1 (en) Method of automatic regulation of an electrical machine's resolver
CH618296A5 (en)
EP2572447A1 (en) Equipment and method for measuring the offset angle of a resolver in a synchronous electric machine
FR2644949A1 (en) METHOD AND ELECTRONIC CIRCUIT FOR CONTROLLING A BRUSHLESS CONTINUOUS CURRENT MOTOR
EP2684289A2 (en) Control method implemented in a power converter and intended for identifying parameters linked to the magnetic saturation of an electric motor
EP3465902A1 (en) Brushless starter generator
WO2007083062A1 (en) Device for controlling a polyphase rotating machine
EP3121366B1 (en) Detection method for the moving direction of a concealing screen
EP3121365B1 (en) Detection method for the moving direction of a concealing screen
EP3322084B1 (en) Method for monitoring the starting of a three-phase synchronous electric motor with no commutator
EP3167543B1 (en) Method for generating control signals for managing the operation of a synchronous motor, control device and actuator
EP2605400B1 (en) Method for controlling an inverter for supplying electricity to a motor, and related control module
WO2007083049A2 (en) Method for controlling a polyphase rotating electrical machine
FR2660126A1 (en) METHOD FOR CONTROLLING AN AUTOPILOT SYNCHRONOUS MOTOR AND DEVICE FOR ITS IMPLEMENTATION
EP4073339A1 (en) Method for controlling an actuator, electromechanical actuator and associated closure, solar shade or protection installation
WO2021130258A1 (en) Electromechanical actuator for driving a closure or sun protection screen, closure or sun protection system comprising such an actuator and method for dimensioning a compensation spring for a range of blinds each incorporating such an actuator
EP3394978B1 (en) Pseudo-sinusoidal control method for controlling a synchronous electric motor
FR2785470A1 (en) CONTROL METHOD FOR ROTATING ELECTRIC MACHINE, SERVICE SYSTEM FOR CARRYING OUT SAID METHOD, AND ROTATING MACHINE EQUIPPED WITH SUCH A SYSTEM
WO2024042241A1 (en) Control system for a multiphase brushless motor without a position sensor
FR2697114A1 (en) Control system maintaining supply to electric motor in event of power perturbations - includes oscillator controlled by pulse width modulation, providing compensating supply if interruption is detected
FR3024304A1 (en) METHOD AND UNIT FOR MONITORING AND / OR PROTECTING A ACTUATOR OF A MOBILE EQUIPMENT OF A BUILDING
EP1217722B1 (en) Method and device for controlling a three phase stepping motor
WO1983001156A1 (en) Electric driving device and machine
FR3128339A1 (en) DEVICE AND METHOD FOR OPTIMIZING THE ELECTRICAL CONSUMPTION OF A DIRECT CURRENT BRUSHLESS MOTOR
FR2861923A1 (en) Direct current motor rotation speed controlling method, involves supplying electrical circuit of motor with continuous voltage and successively short-circuiting when measured voltage of motor is lower than preset voltage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170627

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E06B 9/68 20060101AFI20171121BHEP

INTG Intention to grant announced

Effective date: 20171208

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOMFY ACTIVITES SA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 997724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016002921

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 997724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016002921

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

26N No opposition filed

Effective date: 20190212

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230712

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240521

Year of fee payment: 9