EP3117017A1 - Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof - Google Patents

Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof

Info

Publication number
EP3117017A1
EP3117017A1 EP15709520.9A EP15709520A EP3117017A1 EP 3117017 A1 EP3117017 A1 EP 3117017A1 EP 15709520 A EP15709520 A EP 15709520A EP 3117017 A1 EP3117017 A1 EP 3117017A1
Authority
EP
European Patent Office
Prior art keywords
traces
alloy
temperature
phase
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15709520.9A
Other languages
German (de)
French (fr)
Other versions
EP3117017B1 (en
Inventor
Coraline CROZET
Alexandre Devaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Priority to PL15709520T priority Critical patent/PL3117017T3/en
Publication of EP3117017A1 publication Critical patent/EP3117017A1/en
Application granted granted Critical
Publication of EP3117017B1 publication Critical patent/EP3117017B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to alloys based on nickel (superalloys), and more precisely those intended for the manufacture of parts to be used at high temperatures. Typically, this is the case of the elements of terrestrial, aeronautical and other turbines.
  • NiCo20Cr20MoTi alloy (AFNOR standard) called "C263" is known whose composition is typically Ni, Cr (19-21%), Co (19-21%), Mo (5,6- 6.1%), Ti (1.9-2.4%), Al ( ⁇ 0.6%). The percentages are percentages by weight, as will be the case for all the compositions indicated thereafter.
  • the alloy known as INCO 617 Ni, Cr (20-24%), Co (10-15%), Mo (8-10%), Al (0.8-1.5%), Ti (0. -0.6%)
  • INCO 617 Ni, Cr (20-24%), Co (10-15%), Mo (8-10%), Al (0.8-1.5%), Ti (0. -0.6%)
  • the alloy known as RENE 41 Ni, Cr (18-20%), Co (10-12%), Mo (9-10.5%), Al (1.4-1.6%) , Ti (3-3.3%)
  • RENE 41 Ni, Cr (18-20%), Co (10-12%), Mo (9-10.5%), Al (1.4-1.6%) , Ti (3-3.3%)
  • WASPALOY Ni, Cr (18-21%), Co (12- 15%), Mo (3.5-5%), Al (1, 2-1, 6%), Ti (2.75-3.25%).
  • Ni base alloys for high temperature applications typically 700-900 ° C having both a good microstructural stability at the temperatures of use, good mechanical properties at these same temperatures , and simultaneously a good forgeability and good weldability allowing the manufacture of said parts in the desired configurations and their integration in the devices for which they are intended.
  • the subject of the invention is a nickel-based alloy with a structural hardening, characterized in that its composition is, in weight percentages:
  • ⁇ 'phase fraction is preferably between 5 and 20%.
  • the solvus temperature of its phase ⁇ ' is preferably less than or equal to
  • the subject of the invention is also a process for manufacturing a nickel-based alloy part, characterized in that an ingot having the previously defined composition is prepared and homogenized at a temperature of at least 1150 ° C. C for 24 to 72 h, is hot worked by forging or rolling in a supersolvus temperature range, is dissolved at a temperature of 1100 to 1200 ° C for 1 to 4 hours, is cooled to at least 1 ° C / min, for example in water, it is aged at a temperature of 750 to 850 ° C for 7 to 10 hours, and is cooled, for example in calm air, or in a chamber.
  • the invention also relates to a nickel-based alloy part, characterized in that it has been prepared according to the preceding method.
  • the invention is based on an optimization of the known C263 grade, which essentially passes through a judiciously chosen balance between the contents of Al and Ti. This balance will drive:
  • FIGS 1 to 8 which show micrographs of reference samples ( Figures 1 and 5 to 8) and according to the invention ( Figures 2 to 4);
  • FIG. 10 which shows the results of tests for measuring the conventional elastic limit Rp 0.2 of these samples as a function of the temperature
  • Figure 1 1 shows the results of tests to measure the elongation at break A% of these samples as a function of temperature
  • Figure 12 which shows the results of tests to measure the necking Z% of these samples as a function of temperature
  • Figure 13 shows the results of 750 ° C rupture creep tests of these samples, where the breaking stress is given as a function of the Larson-Miller parameter
  • FIG. 14 which shows the results of resilience tests of two samples (a reference sample and a sample according to the invention), carried out after the final heat treatment of the sample and after overaging at 750 ° C. for 3000 h. representative of what might be the metal in a use for which it is intended in a preferred manner;
  • a first condition for optimizing the equilibrium between Al and Ti is that the phase formation ⁇ is avoided at the temperatures of use of the alloy during its preferred uses, that is to say at temperatures of 700-900 ° C, typically of the order of 750 ° C.
  • the formation of the ⁇ phase is directly related to the Ti and Al contents present in the alloy and to their ratio. It is thus necessary to determine the ranges of contents in these elements which make it possible to avoid it with 700-900 ° C, considering the remainder of the composition of the alloy.
  • the forging is carried out in a temperature range where there is no ⁇ 'phase precipitation which would make the metal too hard and subject to the appearance of defects, such as cracks, during deformations. It is therefore carried out at a temperature above the temperature of solvus of this phase. This temperature is therefore advantageous not to be too high, for a forging is possible in industrial conditions. More precisely, the solvus temperature of the ⁇ 'phase must be as low as possible in order to avoid the precipitation of this phase during the inevitable cooling of the product during the forging.
  • the Cr content is between 18 and 22%, preferably 18 to 20%. Cr is important to ensure resistance to corrosion and oxidation, and to establish the resistance of the alloy to the effects of the environment at high temperatures. An excessively high content favors the obtaining of undesirable fragile phases, such as the ⁇ phase, and the limit of 22% by weight is set accordingly.
  • the content of Co is between 18 and 22%, preferably 19 to 21%.
  • a high Co content is necessary to improve the forgeability of the grade in decreasing the solvus temperature of the phase y 'nevertheless it must be limited, mainly, for reasons of cost.
  • the sum of the contents in Mo and W must be between 4 and 8%, preferably 5.5 to 7.5%. These two elements are substitutable for each other.
  • the lower limit of 4% guarantees structural hardening and good creep resistance, and the upper limit of 8% prevents the formation of harmful phases.
  • the Zr content is between traces (in other words, a lack of voluntary addition, the residual content of possible Zr resulting only from the melting of the raw materials and the elaboration, with the associated impurities) and 0.06%. .
  • the content of B is between traces and 0.03%, preferably 0.003 to
  • the content of C is between traces and 0.1%, preferably 0.04 to
  • the Fe content is limited to 1% maximum. Beyond, it may form phases harmful to the properties of the alloy.
  • Nb and Ta are both limited to 0.01% maximum. These elements are expensive and have a strong tendency to segregate without these segregations having advantages that could offset their disadvantages (contrary to what can happen for Zr, B and C).
  • S, P, Mn and Si must also be limited so as not to reduce the hot ductility.
  • An excess of Si would also cause a precipitation of Laves phases during solidification, and it will be difficult to put them back in solution during subsequent heat treatments. Resilience would be degraded.
  • the maximum levels allowed for these elements are therefore 0.008% for S, 0.015% for P, 0.3% for Mn, and 0.15% for Si.
  • the alloys of the invention are not particularly distinguished from the usual C263 to which they are called to substitute.
  • an ingot having the above composition is prepared by double or triple melting, thus involving at least one of the ESR and VAR processes, it is homogenized at a temperature of at least At 150 ° C. for 24 to 72 hours, it is hot-worked by forging or rolling in a supersolvus temperature range, dissolved at a temperature of 1100 to 1200 ° C. for 1 to 4 hours, rapidly cooling to at least 1 ° C / min, for example in water, aged at 750 to 850 ° C for 7 to 10 hours, and cooled, for example in still air, or in an enclosure.
  • variations can be made to this process, by not performing some of these steps or by adding others. They can be followed in particular by 0 machining or any other operation of final dimensioning of the piece.
  • Table 1 Compositions of the samples tested Samples A, B and C correspond to the invention, the other samples are reference alloys which do not comply with at least one of the conditions (1) to (4) previously defined because of their Al and Ti contents.
  • Sample B corresponds to the version of the invention considered optimal, where the contents of all the elements are in the preferred ranges.
  • the reference sample D corresponds to a conventional C263 type alloy which does not respect the relation (1).
  • Sample E and sample F do not respect relationship (3).
  • Sample G does not respect relationships (3) and (4).
  • Sample H does not respect relationship (2). This shows that the respect of all relations (1) to (4) is necessary to obtain the desired results.
  • the samples tested were made by VIM-VAR double melting (that is, as is conventional, by melting the raw materials in a vacuum induction furnace, followed by casting and solidification of an electrode, the latter being refined by vacuum reflow in an arc furnace), to obtain ingots of 200 kg.
  • This method is commonly used for the manufacture of ingots for forming forged or laminated parts of high purity inclusionary and low levels of residual elements, especially gaseous. It is however not necessarily used to develop the alloys of the invention, if they are intended for the production of parts that do not have very high requirements on these points. In these cases, less complex conventional methods of preparation can be used, provided that they make it possible to reach the necessary low levels on certain residual elements, in particular by a suitable choice of raw materials.
  • the THERMOCALC software does not provide any phase appearance ⁇ for these samples in their treatment conditions, except for sample D.
  • micrographs were made on portions of said samples which had undergone overaging at 750 ° C for 3000 h to simulate a use of the corresponding alloys at high temperature.
  • Field electron micrographs are shown in FIG. 1 (sample D), 2 (sample A), 3 (sample B), 4 (sample C), 5 (sample E), 6 (sample F), 7 (sample G) and 8 (sample H).
  • sample D representative of a conventional C263 alloy
  • FIG. 9 shows the results of mechanical tensile tests on these same samples for the measurement of Rm, carried out between ambient and 800 ° C.
  • FIG. 10 shows the measurement results of Rp 0.2
  • FIG. 11 shows the results of measurement of the elongation at break A%
  • FIG. 12 shows the results of tests of necking Z%, carried out in FIG. the same conditions.
  • alloys B and C according to the invention have tensile results (Rm and Rp 0 , 2) similar to those of the reference alloy D.
  • the tensile results of the alloy A according to FIG. The invention is slightly degraded with respect to those of alloy D but remains satisfactory.
  • the hot ductility of alloy A is the best of all, which can be a benefit for some uses. The invention therefore makes it possible to optimally optimize or preserve all of these mechanical properties with respect to the reference alloy C263.
  • Alloys E, F and G have very good results in traction, especially hot.
  • Figure 13 shows the results of breaking creep tests at 750 ° C: the breaking stress in MPa is given as a function of the Larson-Miller parameter (PLM) as is conventional to proceed.
  • PLM Larson-Miller parameter
  • the alloys A, B, C according to the invention, and the reference alloys F and G have longer rupture times than that of the reference alloy D. This shows that, from this point of view too, the invention provides an improvement in the performance of the alloy D which is closest thereto.
  • the alloy E has a short life because of its insufficient hot ductility, and the tests could not be prolonged beyond a PLM of 23.4. Alloy H is, again, very clearly unsatisfactory.
  • FIG. 14 shows the results of resilience tests carried out on several test pieces of the alloys A according to the invention and D of reference, on the one hand after heat treatment of dissolution and then aging as described above, on the other hand after over-aging of 3000 h at 750 ° C following the previous heat treatment, again to simulate the evolution of the alloy in use.
  • the results are clear: the resilience Kv is practically unaffected by the over-aging of the sample A, whereas it drops very substantially for the sample D. This confirms that the phase ⁇ formed during a high use
  • the temperature of the conventional C263 alloy has a strong embrittling effect, and the invention overcomes this problem.
  • a preferred application of the invention is the manufacture of terrestrial and aeronautical turbine elements, but it is, of course, not exclusive.

Abstract

The invention relates to a precipitation hardening nickel alloy characterized in that the composition thereof is, in wt%: 18% ≤ Cr ≤ 22%, preferably 18% ≤ Cr ≤ 20%; 18% ≤ Co ≤ 22%, preferably 19% ≤ Co ≤ 21%; 4% ≤ Mo + W ≤ 8%, preferably 5.5% ≤ Mo + W ≤ 7.5%; traces ≤ Zr ≤ 0.06%; traces ≤ B ≤ 0.03%, preferably traces ≤ B ≤ 0.01%; traces ≤ C ≤ 0.1%, preferably traces ≤ C ≤ 0.06%; traces ≤ Fe ≤ 1%; traces ≤ Nb ≤ 0.01%; traces ≤ Ta ≤ 0.01%; traces ≤ S ≤ 0.008%; traces ≤ P ≤ 0.015%; traces ≤ Mn ≤ 0.3%; traces ≤ Si ≤ 0.15%; traces ≤ O ≤ 0.0025%; and traces ≤ N ≤ 0.0030%. The rest consists of nickel and impurities resulting from the production of said alloy. The Al content and Ti content moreover satisfy the following conditions: (1) Ti/Al ≤ 3; (2) Al + 1.2 Ti ≥ 2%; (3) (0.2 Al - 1.25)2- 0.5 Ti ≥ 0%; (4) Ti + 1.5 Al ≤ 4.5%. The invention also relates to a part made of said alloy and to the manufacturing method thereof.

Description

Alliage à base nickel à durcissement structural, pièce en cet alliage et son procédé de fabrication  Structurally hardened nickel base alloy, part of this alloy and its method of manufacture
L'invention concerne les alliages à base nickel (superalliages), et plus précisément ceux destinés à la fabrication de pièces devant être utilisées à des températures élevées. Typiquement, c'est le cas des éléments de turbines terrestres, aéronautiques et autres. The invention relates to alloys based on nickel (superalloys), and more precisely those intended for the manufacture of parts to be used at high temperatures. Typically, this is the case of the elements of terrestrial, aeronautical and other turbines.
On connaît, pour ce type d'utilisations, un alliage NiCo20Cr20MoTi (norme AFNOR) dit « C263 » dont la composition est typiquement Ni, Cr (19-21 %), Co(19-21 %), Mo (5,6-6,1 %), Ti (1 ,9-2,4%), Al (<0,6%). Les pourcentages sont des pourcentages pondéraux, comme cela sera le cas pour toutes les compositions indiquées par la suite.  For this type of use, a NiCo20Cr20MoTi alloy (AFNOR standard) called "C263" is known whose composition is typically Ni, Cr (19-21%), Co (19-21%), Mo (5,6- 6.1%), Ti (1.9-2.4%), Al (<0.6%). The percentages are percentages by weight, as will be the case for all the compositions indicated thereafter.
C'est un alliage à durcissement structural, celui-ci étant assuré par la présence de phase γ' (Ni3Ti, Al), et qui présente de bonnes propriété de forgeabilité et de soudabilité. Sur ce dernier point, cela est dû à ce que, contrairement à ce que l'on rencontre souvent pour des alliages durcis par la phase γ', il n'est pas sujet au phénomène de fissuration due à la fragilisation par fissuration sous contrainte à chaud (en anglais « strain âge cracking ») dans les zones de soudage. Il présente également une bonne ductilité en traction à chaud et une résistance à chaud satisfaisante. De manière générale, son compromis soudabilité/forgeabilité est avantageux. It is a structurally hardened alloy, which is provided by the presence of γ 'phase (Ni 3 Ti, Al), and which has good forgeability and weldability properties. On this last point, this is due to the fact that, contrary to what is often encountered for alloys hardened by the γ 'phase, it is not subject to the phenomenon of cracking due to embrittlement cracking under stress. heat (in English "strain age cracking") in the welding zones. It also has good ductility in hot traction and satisfactory heat resistance. In general, its weldability / forgeability compromise is advantageous.
II présente cependant l'inconvénient d'avoir une instabilité microstructurale entre However, it has the disadvantage of having a microstructural instability between
700 et 900°C, gamme de températures dans laquelle de la phase η peut se former au détriment de la phase γ' (voir la référence : Zhao, Metallurgical and Materials Transactions A, 2001 , vol.32A, pp1271 -1282). La ductilité et la résilience s'en trouvent dégradées. Il n'est donc pas optimalement adapté à des utilisations où les pièces sont portées à de telles températures. 700 and 900 ° C, temperature range in which the phase η can be formed at the expense of the γ 'phase (see reference: Zhao, Metallurgical and Materials Transactions A, 2001, vol.32A, pp1271-1282). Ductility and resilience are degraded. It is therefore not optimally suitable for uses where the parts are brought to such temperatures.
D'autres alliages sont connus pour de telles utilisations et ne présentent pas cette instabilité structurale, mais ils ont d'autres inconvénients.  Other alloys are known for such uses and do not exhibit this structural instability, but they have other disadvantages.
L'alliage connu sous le nom de INCO 617 (Ni, Cr (20-24%), Co (10-15%), Mo (8- 10%), Al (0.8-1 .5%), Ti (0-0.6%)) présente un bon compromis soudabilité/forgeabilité, mais ses propriétés mécaniques à chaud (notamment à environ 750°C qui est une température d'utilisation fréquente pour les pièces auxquelles l'invention s'adresse de façon privilégiée) sont insuffisantes.  The alloy known as INCO 617 (Ni, Cr (20-24%), Co (10-15%), Mo (8-10%), Al (0.8-1.5%), Ti (0. -0.6%)) has a good compromise weldability / forgeability, but its hot mechanical properties (especially at about 750 ° C which is a frequent use temperature for the parts to which the invention is addressed in a privileged manner) are insufficient .
L'alliage connu sous le nom de RENE 41 (Ni, Cr (18-20%), Co (10-12%), Mo (9- 10,5%), Al (1 ,4-1 ,6%), Ti (3-3,3%)), à l'inverse, présente de bonnes propriétés mécaniques à chaud, mais son compromis soudabilité/forgeabilité n'est pas optimal. Il en est de même pour l'alliage connu sous le nom de WASPALOY (Ni, Cr (18-21 %), Co (12- 15%), Mo (3,5-5%), Al (1 ,2-1 ,6%), Ti (2,75-3,25%). Ces compromis soudabilité/forgeabilité insatisfaisants sont probablement dus à une proportion de phase γ' trop importante. The alloy known as RENE 41 (Ni, Cr (18-20%), Co (10-12%), Mo (9-10.5%), Al (1.4-1.6%) , Ti (3-3.3%)), on the other hand, has good mechanical properties when hot, but its weldability / forgeability compromise is not optimal. It is the same for the alloy known under the name of WASPALOY (Ni, Cr (18-21%), Co (12- 15%), Mo (3.5-5%), Al (1, 2-1, 6%), Ti (2.75-3.25%). These compromises weldability / forgeability unsatisfactory are probably due to a proportion of phase γ 'too important.
Il existe donc un besoin pour les industriels de disposer d'alliages base Ni pour utilisations à hautes températures (typiquement 700-900°C) présentant à la fois une bonne stabilité microstructurale aux températures d'utilisation, de bonnes propriétés mécaniques à ces mêmes températures, et simultanément une bonne forgeabilité et une bonne soudabilité permettant la fabrication desdites pièces dans les configurations souhaitées et leur intégration dans les dispositifs auxquels elles sont destinées.  There is therefore a need for manufacturers to have Ni base alloys for high temperature applications (typically 700-900 ° C) having both a good microstructural stability at the temperatures of use, good mechanical properties at these same temperatures , and simultaneously a good forgeability and good weldability allowing the manufacture of said parts in the desired configurations and their integration in the devices for which they are intended.
A cet effet, l'invention a pour objet un alliage à base nickel à durcissement structural, caractérisé en ce que sa composition est, en pourcentages pondéraux :  For this purpose, the subject of the invention is a nickel-based alloy with a structural hardening, characterized in that its composition is, in weight percentages:
- 18% < Cr < 22%, de préférence 18% < Cr < 20% ;  18% <Cr <22%, preferably 18% <Cr <20%;
- 18% < Co < 22%, de préférence 19% < Co < 21 % ;  18% <Co <22%, preferably 19% <Co <21%;
- 4% < Mo + W < 8%, de préférence 5,5% < Mo + W < 7,5% ;  - 4% <Mo + W <8%, preferably 5.5% <Mo + W <7.5%;
- traces < Zr < 0,06% ;  traces <Zr <0.06%;
- traces < B < 0,03%, de préférence traces < B < 0,01 % ;  traces <B <0.03%, preferably traces <B <0.01%;
- traces < C < 0,1 %, de préférence traces < C < 0,06% ;  traces <C <0.1%, preferably traces <C <0.06%;
- traces < Fe < 1 % ;  - traces <Fe <1%;
- traces < Nb < 0,01 % ;  - traces <Nb <0.01%;
- traces < Ta < 0,01 % ;  - traces <Ta <0.01%;
- traces < S < 0,008% ;  - traces <S <0.008%;
- traces < P < 0,015% ;  - traces <P <0.015%;
- traces < Mn < 0,3% ;  - traces <Mn <0.3%;
- traces < Si < 0,15% ;  - traces <If <0.15%;
- traces < O < 0,0025% ;  - traces <O <0.0025%;
- traces < N < 0,0030% ;  - traces <N <0.0030%;
le reste étant du nickel et des impuretés résultant de l'élaboration, les teneurs en Al et Ti satisfaisant, de plus les conditions :  the rest being nickel and impurities resulting from the elaboration, the contents of Al and Ti satisfying, moreover the conditions:
- (1 ) Ti/AI < 3 ;  - (1) Ti / Al <3;
- (2) Al + 1 ,2 Ti≥ 2% ;  - (2) Al + 1, 2 Ti≥ 2%;
- (3) (0,2 Al - 1 ,25)2 - 0,5 Ti≥ 0% ; - (3) (0.2 Al - 1, 25) 2 - 0.5 Ti≥ 0%;
- (4) Ti + 1 ,5 Al < 4,5%.  (4) Ti + 1.5 Al <4.5%.
Sa fraction de phase γ' est de préférence comprise entre 5 et 20%.  Its γ 'phase fraction is preferably between 5 and 20%.
La température de solvus de sa phase γ' est de préférence inférieure ou égale à The solvus temperature of its phase γ 'is preferably less than or equal to
980°C. L'invention a également pour objet un procédé de fabrication d'une pièce en alliage à base nickel, caractérisé en ce qu'on prépare un lingot ayant la composition précédemment définie, on l'homogénéise à une température d'au moins 1 150°C pendant 24 à 72 h, on le travaille à chaud par forgeage ou laminage dans une gamme de températures supersolvus, on le met en solution à une température de 1 100 à 1200°C pendant 1 à 4 h, on le refroidit à au moins 1 °C/min, par exemple dans l'eau, on le vieillit à une température de 750 à 850°C pendant 7 à 10 h, et on le refroidit, par exemple dans l'air calme, ou dans une enceinte. 980 ° C. The subject of the invention is also a process for manufacturing a nickel-based alloy part, characterized in that an ingot having the previously defined composition is prepared and homogenized at a temperature of at least 1150 ° C. C for 24 to 72 h, is hot worked by forging or rolling in a supersolvus temperature range, is dissolved at a temperature of 1100 to 1200 ° C for 1 to 4 hours, is cooled to at least 1 ° C / min, for example in water, it is aged at a temperature of 750 to 850 ° C for 7 to 10 hours, and is cooled, for example in calm air, or in a chamber.
L'invention a également pour objet une pièce en alliage à base nickel, caractérisée en ce qu'elle a été préparée selon le procédé précédent.  The invention also relates to a nickel-based alloy part, characterized in that it has been prepared according to the preceding method.
Il s'agit, par exemple, d'un élément de turbine terrestre ou aéronautique.  This is, for example, a turbine element land or aeronautics.
Comme on l'aura compris, l'invention repose sur une optimisation de la nuance C263 connue, qui passe essentiellement par un équilibre judicieusement choisi entre les teneurs en Al et Ti. Cet équilibre va piloter :  As will be understood, the invention is based on an optimization of the known C263 grade, which essentially passes through a judiciously chosen balance between the contents of Al and Ti. This balance will drive:
- La stabilité de la phase γ' à haute température (700-900°C, en particulier - The stability of the γ 'phase at high temperature (700-900 ° C., in particular
750°C), pour éviter qu'elle ne se transforme en phase aciculaire η (de composition Ni3Ti, donc dépourvue d'AI) ; 750 ° C), to prevent it from becoming acicular phase η (Ni 3 Ti composition, so devoid of AI);
La fraction de phase γ' formée à 700-900°C, en particulier à 750°C ;  The γ 'phase fraction formed at 700-900 ° C, in particular at 750 ° C;
La température de solvus de la phase γ'.  The solvus temperature of the γ 'phase.
Sur le restant de la composition de l'alliage, les changements par rapport au On the remainder of the composition of the alloy, the changes from
C263 connu sont faibles, et on a vérifié que les optimisations des teneurs en Al et Ti selon l'invention ne conduisent pas à une modification des propriétés avantageuses de l'alliage qui ne sont pas directement liées à la phase γ'. C263 known are weak, and it has been verified that the optimizations of the contents of Al and Ti according to the invention do not lead to a modification of the advantageous properties of the alloy that are not directly related to the γ 'phase.
L'invention sera mieux comprise à l'aide de la description qui suit, donnée en référence aux figures annexées suivantes :  The invention will be better understood with the aid of the description which follows, given with reference to the following appended figures:
Les figures 1 à 8 qui montrent des micrographies d'échantillons de référence (figures 1 et 5 à 8) et selon l'invention (figures 2 à 4) ;  Figures 1 to 8 which show micrographs of reference samples (Figures 1 and 5 to 8) and according to the invention (Figures 2 to 4);
La figure 9 qui montre les résultats d'essais de mesure de la résistance à la traction Rm de ces échantillons en fonction de la température ;  Figure 9 which shows the results of tests for measuring the tensile strength Rm of these samples as a function of temperature;
- La figure 10 qui montre les résultats d'essais de mesure de la limite élastique conventionnelle Rp0,2 de ces échantillons en fonction de la température ; La figure 1 1 qui montre les résultats d'essais de mesure de l'allongement à la rupture A% de ces échantillons en fonction de la température ; FIG. 10 which shows the results of tests for measuring the conventional elastic limit Rp 0.2 of these samples as a function of the temperature; Figure 1 1 shows the results of tests to measure the elongation at break A% of these samples as a function of temperature;
La figure 12 qui montre les résultats d'essais de mesure de la striction Z% de ces échantillons en fonction de la température ; La figure 13 qui montre les résultats d'essais de fluage rupture à 750°C de ces échantillons, où la contrainte à rupture est donnée en fonction du paramètre de Larson-Miller ; Figure 12 which shows the results of tests to measure the necking Z% of these samples as a function of temperature; Figure 13 shows the results of 750 ° C rupture creep tests of these samples, where the breaking stress is given as a function of the Larson-Miller parameter;
La figure 14 qui montre les résultats d'essais de résilience de deux échantillons (un échantillon de référence et un échantillon selon l'invention), réalisés après le traitement thermique final de l'échantillon et après un survieillissement à 750°C pendant 3000 h représentatif de ce que pourrait subir le métal lors d'une utilisation à laquelle il est destiné de manière privilégiée ;  FIG. 14 which shows the results of resilience tests of two samples (a reference sample and a sample according to the invention), carried out after the final heat treatment of the sample and after overaging at 750 ° C. for 3000 h. representative of what might be the metal in a use for which it is intended in a preferred manner;
- Les figures 15 à 18 qui montrent un échantillon selon l'invention et des échantillons de référence en cours de forgeage.  - Figures 15 to 18 which show a sample according to the invention and reference samples during forging.
Une première condition à l'optimisation de l'équilibre entre Al et Ti est que la formation de phase η soit évitée aux températures d'utilisation de l'alliage lors de ses usages privilégiés, c'est-à-dire à des températures de 700-900°C, typiquement de l'ordre de 750°C. La formation de la phase η est directement liée aux teneurs en Ti et Al présentes dans l'alliage et à leur rapport. Il faut donc déterminer les fourchettes de teneurs en ces éléments qui permettent de l'éviter à 700-900°C, compte tenu du restant de la composition de l'alliage. Des calculs thermodynamiques, réalisés à l'aide du logiciel THERMOCALC couramment utilisé par les métallurgistes et qui a aussi été utilisé en première approche pour le restant de l'optimisation, ont indiqué que pour le C263, si le rapport Ti/AI était inférieur ou égal à 3, la formation de phase η était évitée, et ce quel que soit le niveau d'AI dans l'alliage.  A first condition for optimizing the equilibrium between Al and Ti is that the phase formation η is avoided at the temperatures of use of the alloy during its preferred uses, that is to say at temperatures of 700-900 ° C, typically of the order of 750 ° C. The formation of the η phase is directly related to the Ti and Al contents present in the alloy and to their ratio. It is thus necessary to determine the ranges of contents in these elements which make it possible to avoid it with 700-900 ° C, considering the remainder of the composition of the alloy. Thermodynamic calculations, performed using the THERMOCALC software commonly used by metallurgists and which was also used as a first approach for the rest of the optimization, indicated that for C263, if the Ti / Al ratio was lower or equal to 3, phase formation η was avoided, regardless of the level of AI in the alloy.
Il faut donc respecter la condition :  It is therefore necessary to respect the condition:
(1 ) Ti/AI < 3  (1) Ti / Al <3
Une autre condition est que pour garantir les propriétés de résistance à la traction et au fluage à 700-900°C, le pourcentage atomique de phase γ' présente à ces températures dans l'alliage doit être d'au moins 5%. En dessous de cette valeur, on n'a pas un durcissement structural suffisant. On estime que cette condition est remplie lorsque les pourcentages pondéraux de Al et Ti respectent la relation :  Another condition is that to guarantee the tensile and creep properties at 700-900 ° C, the atomic percentage of γ 'phase present at these temperatures in the alloy should be at least 5%. Below this value, there is not sufficient structural hardening. It is considered that this condition is fulfilled when the weight percentages of Al and Ti respect the relation:
(2) Al + 1 ,2 Ti≥ 2%.  (2) Al + 1, 2 Ti≥ 2%.
Concernant les propriétés de forgeabilité (ou de déformabilité à chaud en général, par exemple par laminage) et soudabilité, on peut dire ce qui suit.  As regards the forgeability properties (or hot deformability in general, for example by rolling) and weldability, we can say the following.
Dans les conditions standard de forgeage à haute température, le forgeage est réalisé dans un domaine de température où il n'y a pas de précipitation de phase γ' qui rendrait le métal trop dur et sujet à l'apparition de défauts, tels que de criques, lors des déformations. Il est donc réalisé à une température supérieure à la température de solvus de cette phase. Cette température a donc intérêt à ne pas être trop élevée, pour qu'un forgeage soit possible dans des conditions industrielles. Plus précisément, la température de solvus de la phase γ' doit être la plus basse possible afin d'éviter la précipitation de cette phase lors du refroidissement inévitable du produit au cours du forgeage. Under the standard forging conditions at high temperature, the forging is carried out in a temperature range where there is no γ 'phase precipitation which would make the metal too hard and subject to the appearance of defects, such as cracks, during deformations. It is therefore carried out at a temperature above the temperature of solvus of this phase. This temperature is therefore advantageous not to be too high, for a forging is possible in industrial conditions. More precisely, the solvus temperature of the γ 'phase must be as low as possible in order to avoid the precipitation of this phase during the inevitable cooling of the product during the forging.
Il faut aussi prendre en compte la fraction de phase γ' pouvant précipiter à haute température. En effet, plus la fraction de phase durcissante précipitée à haute température est élevée, plus l'alliage est susceptible de durcir au cours de variations de températures pouvant se produire lors du forgeage, ce qui peut compliquer l'exécution de l'opération. Cette précipitation non souhaitée de phase γ' à ce moment précis de la préparation du produit a également de l'influence sur la soudabilité, à cause de la possibilité d'une fissuration due à la fragilisation sous contrainte à chaud. En effet, plus la fraction de phase γ' précipitée dans la zone soudée est importante, plus les contraintes générées par la précipitation de la phase γ' dans cette même zone lors du refroidissement sont élevées et y favorisent une fissuration postérieurement au soudage.  It is also necessary to take into account the fraction of phase γ 'that can precipitate at high temperature. Indeed, the higher the hardening phase fraction precipitated at high temperature, the more the alloy is likely to harden during temperature variations that may occur during the forging, which can complicate the execution of the operation. This undesired γ 'phase precipitation at this point in product preparation also has an influence on the weldability because of the possibility of cracking due to embrittlement under heat stress. Indeed, the greater the γ 'phase fraction precipitated in the welded zone, the greater the stresses generated by the precipitation of the γ' phase in the same zone during cooling are high and promote cracking after welding.
Pour que les bonnes conditions requises de formabilité à chaud et de soudabilité soient simultanément satisfaites, il est donc nécessaire de conserver une température de solvus de la phase γ' de 980°C au maximum, et de limiter la fraction de phase γ' présente à 700-900°C à 20% (en % atomiques), en particulier à 750°C.  In order for the good conditions of hot formability and weldability to be simultaneously satisfied, it is therefore necessary to maintain a solvus temperature of the γ 'phase of at most 980 ° C, and to limit the fraction of the phase γ' present at 700-900 ° C at 20% (in atomic%), in particular at 750 ° C.
Ces conditions sont respectées si les teneurs pondérales en Ti et Al respectent les deux conditions :  These conditions are respected if the weight contents of Ti and Al comply with both conditions:
- (3) (0,2 Al - 1 ,25)2 - 0,5 Ti≥ 0% ; - (3) (0.2 Al - 1, 25) 2 - 0.5 Ti≥ 0%;
- (4) Ti + 1 ,5 Al < 4,5%  - (4) Ti + 1, 5 Al <4.5%
Concernant les autres éléments devant ou pouvant être présents, soit comme éléments d'alliage obligatoires ou optionnels, soit au titre d'impuretés à limiter, on peut dire ce qui suit. Les gammes préférées sont celles où on est le plus assuré d'obtenir les avantages cités de chaque élément sans en avoir les inconvénients.  Regarding the other elements that must or may be present, either as mandatory or optional alloying elements, or as impurities to be limited, we can say the following. The preferred ranges are those where one is most assured of obtaining the cited advantages of each element without having the disadvantages.
La teneur en Cr est comprise entre 18 et 22%, de préférence 18 à 20%. Cr est important pour garantir la résistance à la corrosion et à l'oxydation, et pour établir la résistance de l'alliage aux effets de l'environnement à haute température. Une teneur trop élevée favorise l'obtention de phases fragiles indésirables, telles que la phase σ, et la limite de 22% en poids est fixée en conséquence.  The Cr content is between 18 and 22%, preferably 18 to 20%. Cr is important to ensure resistance to corrosion and oxidation, and to establish the resistance of the alloy to the effects of the environment at high temperatures. An excessively high content favors the obtaining of undesirable fragile phases, such as the σ phase, and the limit of 22% by weight is set accordingly.
La teneur en Co est comprise entre 18 et 22%, de préférence 19 à 21 %. Une teneur en Co élevée est nécessaire afin d'améliorer la forgeabilité de la nuance en diminuant la température de solvus de la phase y' néanmoins il faut la limiter, principalement, pour des raisons de coût. The content of Co is between 18 and 22%, preferably 19 to 21%. A high Co content is necessary to improve the forgeability of the grade in decreasing the solvus temperature of the phase y 'nevertheless it must be limited, mainly, for reasons of cost.
La somme des teneurs en Mo et W doit être comprise entre 4 et 8%, de préférence 5,5 à 7,5%. Ces deux éléments sont substituables l'un à l'autre. La limite inférieure de 4% garantit le durcissement structural et la bonne tenue au fluage, et la limite supérieure de 8% évite la formation de phases néfastes.  The sum of the contents in Mo and W must be between 4 and 8%, preferably 5.5 to 7.5%. These two elements are substitutable for each other. The lower limit of 4% guarantees structural hardening and good creep resistance, and the upper limit of 8% prevents the formation of harmful phases.
La teneur en Zr est comprise entre des traces (autrement dit une absence d'ajout volontaire, la teneur résiduelle en Zr éventuelle ne résultant que de la fusion des matières premières et de l'élaboration, avec les impuretés associées) et 0,06%.  The Zr content is between traces (in other words, a lack of voluntary addition, the residual content of possible Zr resulting only from the melting of the raw materials and the elaboration, with the associated impurities) and 0.06%. .
La teneur en B est comprise entre des traces et 0,03%, de préférence 0,003 à The content of B is between traces and 0.03%, preferably 0.003 to
0,01 %. 0.01%.
La teneur en C est comprise entre des traces et 0,1 %, de préférence 0,04 à The content of C is between traces and 0.1%, preferably 0.04 to
0,06%. 0.06%.
Ces trois derniers éléments forment des ségrégations aux joints de grains qui contribuent à la résistance et à la ductilité à chaud en piégeant les éléments nocifs éventuellement présents, comme S. Ils favorisent la résistance au fluage dans des conditions de basses contraintes et de hautes températures. Toutefois, s'ils sont présents en excès, ils diminuent la température de fusion des zones ségrégées et altèrent fortement la forgeabilité. Leur présence éventuelle doit donc être bien contrôlée.  These last three elements form segregations at grain boundaries that contribute to heat resistance and ductility by trapping any harmful elements present, such as S. They promote creep resistance under low stress and high temperature conditions. However, if they are present in excess, they decrease the melting temperature of the segregated zones and strongly alter the forgeability. Their eventual presence must therefore be well controlled.
II doit être entendu que les teneurs préférentielles des éléments qu'on vient de citer sont indépendantes les unes des autres. Autrement dit, un alliage qui aurait une teneur préférentielle sur un ou plusieurs d'entre eux seulement, mais pas sur les autres, doit néanmoins être considéré comme une variante avantageuse de l'invention.  It should be understood that the preferred contents of the elements just mentioned are independent of each other. In other words, an alloy which has a preferential content on one or more of them only, but not on the others, must nevertheless be considered as an advantageous variant of the invention.
Concernant les éléments dont les teneurs ont intérêt à être minimisées autant que possible, on peut dire ce qui suit.  Concerning the elements whose contents have interest to be minimized as much as possible, one can say the following.
La teneur en Fe est limitée à 1 % au maximum. Au-delà, il risque de former des phases néfastes aux propriétés de l'alliage.  The Fe content is limited to 1% maximum. Beyond, it may form phases harmful to the properties of the alloy.
Les teneurs en Nb et Ta sont toutes deux limitées à 0,01 % au maximum. Ces éléments sont coûteux et ont fortement tendance à ségréger sans que ces ségrégations présentent des avantages qui pourraient compenser leurs inconvénients (contrairement à ce qui peut se passer pour Zr, B et C).  The contents of Nb and Ta are both limited to 0.01% maximum. These elements are expensive and have a strong tendency to segregate without these segregations having advantages that could offset their disadvantages (contrary to what can happen for Zr, B and C).
Les teneurs en S, P, Mn et Si doivent aussi être limitées pour ne pas diminuer la ductilité à chaud. Un excès de Si entraînerait aussi une précipitation de phases de Laves lors de la solidification, et il sera difficile de les remettre en solution lors des traitements thermiques ultérieurs. La résilience s'en trouverait dégradée. Les teneurs maximales admises pour ces éléments sont donc de 0,008% pour S, de 0,015% pour P, de 0,3% pour Mn, et de 0,15% pour Si. The contents of S, P, Mn and Si must also be limited so as not to reduce the hot ductility. An excess of Si would also cause a precipitation of Laves phases during solidification, and it will be difficult to put them back in solution during subsequent heat treatments. Resilience would be degraded. The maximum levels allowed for these elements are therefore 0.008% for S, 0.015% for P, 0.3% for Mn, and 0.15% for Si.
Pour garantir de bonnes propriétés mécaniques de l'alliage, il faut limiter la teneur en O à 25 ppm au maximum et la teneur en N à 30 ppm au maximum. A cet effet, 5 une élaboration sous vide et faisant intervenir également un procédé tel que la refusion sous laitier électroconducteur (ESR) ou la refusion à l'arc sous vide (VAR) est particulièrement recommandée. Mais de ces points de vue, les alliages de l'invention ne se distinguent pas particulièrement des C263 habituels auxquels ils sont appelés à se substituer. To guarantee good mechanical properties of the alloy, it is necessary to limit the content of O to 25 ppm at the maximum and the content of N to 30 ppm at most. For this purpose, vacuum processing and also involving a method such as electroslag remelting (ESR) or vacuum arc remelting (VAR) is particularly recommended. But from these points of view, the alloys of the invention are not particularly distinguished from the usual C263 to which they are called to substitute.
0 Concernant le procédé de préparation des pièces, typiquement on prépare un lingot ayant la composition précédente par double ou triple fusion, donc en faisant intervenir l'un au moins des procédés ESR et VAR, on l'homogénéise à une température d'au moins 1 150°C pendant 24 à 72 h, on le travaille à chaud par forgeage ou laminage dans une gamme de températures supersolvus, on le met en solution à une température 5 de 1 100 à 1200°C pendant 1 à 4 h, on le refroidit rapidement à au moins 1 °C/min, par exemple dans l'eau, on le vieillit à une température de 750 à 850°C pendant 7 à 10 h, et on le refroidit, par exemple dans l'air calme, ou dans une enceinte. Selon les applications visées, on pourra apporter des variantes à ce procédé, en n'exécutant pas certaines de ces étapes ou en en ajoutant d'autres. Elles pourront être suivies notamment par un 0 usinage ou toute autre opération de mise aux dimensions définitives de la pièce.  Concerning the process for preparing the parts, typically an ingot having the above composition is prepared by double or triple melting, thus involving at least one of the ESR and VAR processes, it is homogenized at a temperature of at least At 150 ° C. for 24 to 72 hours, it is hot-worked by forging or rolling in a supersolvus temperature range, dissolved at a temperature of 1100 to 1200 ° C. for 1 to 4 hours, rapidly cooling to at least 1 ° C / min, for example in water, aged at 750 to 850 ° C for 7 to 10 hours, and cooled, for example in still air, or in an enclosure. Depending on the intended applications, variations can be made to this process, by not performing some of these steps or by adding others. They can be followed in particular by 0 machining or any other operation of final dimensioning of the piece.
Une élaboration de la pièce faisant appel à un procédé de métallurgie des poudres et aboutissant à un produit présentant les propriétés de composition requises serait aussi envisageable.  An elaboration of the part using a powder metallurgy process and resulting in a product having the required compositional properties would also be conceivable.
Des essais ont été effectués sur des échantillons dont les compositions sont 5 citées dans le tableau 1 .  Tests were performed on samples whose compositions are listed in Table 1.
Tableau 1 : Compositions des échantillons testés Les échantillons A, B et C correspondent à l'invention, les autres échantillons sont des alliages de référence qui ne respectent pas au moins une des conditions (1 ) à (4) précédemment définies à cause des leurs teneurs en Al et Ti. L'échantillon B correspond à la version de l'invention considérée comme optimale, où les teneurs de tous les éléments sont dans les fourchettes préférées. L'échantillon de référence D correspond à un alliage de type C263 classique qui ne respecte pas la relation (1 ). L'échantillon E et l'échantillon F ne respectent pas la relation (3). L'échantillon G ne respecte pas les relations (3) et (4). L'échantillon H ne respecte pas la relation (2). Cela montre bien que le respect de toutes les relations (1 ) à (4) est nécessaire pour obtenir les résultats souhaités. Table 1: Compositions of the samples tested Samples A, B and C correspond to the invention, the other samples are reference alloys which do not comply with at least one of the conditions (1) to (4) previously defined because of their Al and Ti contents. Sample B corresponds to the version of the invention considered optimal, where the contents of all the elements are in the preferred ranges. The reference sample D corresponds to a conventional C263 type alloy which does not respect the relation (1). Sample E and sample F do not respect relationship (3). Sample G does not respect relationships (3) and (4). Sample H does not respect relationship (2). This shows that the respect of all relations (1) to (4) is necessary to obtain the desired results.
Les échantillons testés ont été élaborés par double fusion VIM-VAR (c'est-à-dire, comme cela est classique, par une fusion des matières premières dans un four à induction sous vide, suivie de la coulée et de la solidification d'une électrode, celle-ci étant affinée par refusion sous vide dans un four à arc), pour obtenir des lingots de 200 kg. Cette méthode est couramment utilisée pour la fabrication de lingots destinés à former des pièces forgées ou laminées de haute pureté inclusionnaire et à basses teneurs en éléments résiduels, notamment gazeux. Elle n'est cependant pas obligatoirement employée pour élaborer les alliages de l'invention, si ceux-ci sont destinés à la réalisation de pièces n'ayant pas d'exigences très élevées sur ces points. Dans ces cas, des méthodes d'élaboration classiques moins complexes sont utilisables, pour peu qu'elles permettent d'atteindre les bas niveaux indispensables sur certains éléments résiduels, notamment par un choix adapté des matières premières.  The samples tested were made by VIM-VAR double melting (that is, as is conventional, by melting the raw materials in a vacuum induction furnace, followed by casting and solidification of an electrode, the latter being refined by vacuum reflow in an arc furnace), to obtain ingots of 200 kg. This method is commonly used for the manufacture of ingots for forming forged or laminated parts of high purity inclusionary and low levels of residual elements, especially gaseous. It is however not necessarily used to develop the alloys of the invention, if they are intended for the production of parts that do not have very high requirements on these points. In these cases, less complex conventional methods of preparation can be used, provided that they make it possible to reach the necessary low levels on certain residual elements, in particular by a suitable choice of raw materials.
Ces lingots ont été homogénéisés à une température supérieure à 1 150°C pendant 48 h, puis forgés en barres de diamètre 80 mm entre 1200 et 1050°C.  These ingots were homogenized at a temperature greater than 1150 ° C for 48 h, then forged into rods with a diameter of 80 mm between 1200 and 1050 ° C.
Les exemples ont ensuite subi les traitements thermiques suivants :  The examples then underwent the following heat treatments:
- Mise en solution à 1 140°C +/- 10°C pendant 2 h, suivie d'une trempe à l'eau ;  - Dissolving at 1140 ° C +/- 10 ° C for 2 h, followed by quenching with water;
Vieillissement à 800°C+/-10°C pendant 8 h suivi d'un refroidissement à l'air. Ce traitement thermique est typique de l'alliage C263 pour ses applications habituelles telles que les éléments de turbines.  Aging at 800 ° C +/- 10 ° C for 8 h followed by cooling in air. This heat treatment is typical of the C263 alloy for its usual applications such as turbine elements.
Le logiciel THERMOCALC ne prévoit pas d'apparition de phase η pour ces échantillons dans leurs conditions de traitement, sauf pour l'échantillon D.  The THERMOCALC software does not provide any phase appearance η for these samples in their treatment conditions, except for sample D.
De fait, des micrographies ont été réalisées sur des portions desdits échantillons ayant subi un survieillissement à 750°C pendant 3000 h pour simuler une utilisation des alliages correspondants à haute température. Des micrographies réalisées au microscope électronique à effet de champ sont montrées sur les figures 1 (échantillon D), 2 (échantillon A), 3 (échantillon B), 4 (échantillon C), 5 (échantillon E), 6 (échantillon F), 7 (échantillon G) et 8 (échantillon H). In fact, micrographs were made on portions of said samples which had undergone overaging at 750 ° C for 3000 h to simulate a use of the corresponding alloys at high temperature. Field electron micrographs are shown in FIG. 1 (sample D), 2 (sample A), 3 (sample B), 4 (sample C), 5 (sample E), 6 (sample F), 7 (sample G) and 8 (sample H).
Il se confirme que seul l'échantillon D, représentatif d'un alliage C263 classique, comporte une quantité significative de phase η aciculaire (en aiguilles). Les autres échantillons, notamment ceux de l'invention A, B et C, ne présentent pas cette phase dont l'invention visait notamment à éviter l'apparition lors d'une utilisation à 700-900°C, typiquement 750°C environ.  It is confirmed that only the sample D, representative of a conventional C263 alloy, contains a significant amount of η acicular phase (in needles). The other samples, in particular those of the invention A, B and C, do not have this phase whose invention aimed in particular to prevent the appearance during use at 700-900 ° C, typically 750 ° C.
La figure 9 montre les résultats d'essais mécaniques de traction sur ces mêmes échantillons pour la mesure de Rm, réalisés entre l'ambiante et 800°C. La figure 10 montre les résultats de mesure de Rp0,2, la figure 1 1 montre les résultats de mesure de l'allongement à la rupture A%, et la figure 12 montre les résultats d'essais de striction Z%, réalisés dans les mêmes conditions. FIG. 9 shows the results of mechanical tensile tests on these same samples for the measurement of Rm, carried out between ambient and 800 ° C. FIG. 10 shows the measurement results of Rp 0.2 , FIG. 11 shows the results of measurement of the elongation at break A%, and FIG. 12 shows the results of tests of necking Z%, carried out in FIG. the same conditions.
Il s'avère que les alliages B et C selon l'invention présentent des résultats en traction (Rm et Rp0,2) similaires à ceux de l'alliage de référence D. Les résultats en traction de l'alliage A selon l'invention sont légèrement dégradés par rapport à ceux de l'alliage D, mais restent satisfaisants. Et la ductilité à chaud de l'alliage A est la meilleure de toutes, ce qui peut être un avantage pour certaines utilisations. L'invention permet donc bien une optimisation ou une conservation satisfaisante de toutes ces propriétés mécaniques à chaud par rapport à l'alliage C263 de référence. It turns out that the alloys B and C according to the invention have tensile results (Rm and Rp 0 , 2) similar to those of the reference alloy D. The tensile results of the alloy A according to FIG. The invention is slightly degraded with respect to those of alloy D but remains satisfactory. And the hot ductility of alloy A is the best of all, which can be a benefit for some uses. The invention therefore makes it possible to optimally optimize or preserve all of these mechanical properties with respect to the reference alloy C263.
Les alliages E, F et G ont de très bons résultats en traction, notamment à chaud. Alloys E, F and G have very good results in traction, especially hot.
Mais leur perte de ductilité à chaud est très importante, ce que l'on peut imputer à un mauvais équilibrage des teneurs en Al et Ti. But their loss of hot ductility is very important, which can be attributed to a poor balancing of the contents of Al and Ti.
L'alliage H est insatisfaisant à tous points de vue à hautes températures.  Alloy H is unsatisfactory in all respects at high temperatures.
La figure 13 montre les résultats d'essais de fluage rupture à 750°C : la contrainte de rupture en MPa est donnée en fonction du paramètre de Larson-Miller (PLM) comme il est classique de procéder.  Figure 13 shows the results of breaking creep tests at 750 ° C: the breaking stress in MPa is given as a function of the Larson-Miller parameter (PLM) as is conventional to proceed.
Les alliages A, B, C selon l'invention, et les alliages de référence F et G présentent des durées de vie à rupture plus élevées que celle de l'alliage de référence D. Cela montre que, de ce point de vue aussi, l'invention apporte une amélioration des performances de l'alliage D qui en est le plus proche. L'alliage E présente une faible durée de vie du fait de sa ductilité à chaud insuffisante, et les essais n'ont pu être prolongés au-delà d'un PLM de 23,4. L'alliage H est, là encore, très nettement insatisfaisant.  The alloys A, B, C according to the invention, and the reference alloys F and G have longer rupture times than that of the reference alloy D. This shows that, from this point of view too, the invention provides an improvement in the performance of the alloy D which is closest thereto. The alloy E has a short life because of its insufficient hot ductility, and the tests could not be prolonged beyond a PLM of 23.4. Alloy H is, again, very clearly unsatisfactory.
La figure 14 montre les résultats d'essais de résilience menés sur plusieurs éprouvettes des alliages A selon l'invention et D de référence, d'une part après traitement thermique de mise en solution puis vieillissement comme décrits plus haut, d'autre part après un survieillissement de 3000 h à 750°C à la suite du traitement thermique précédent, là encore pour simuler l'évolution de l'alliage en cours d'utilisation. Les résultats sont clairs : la résilience Kv n'est pratiquement pas affectée par le survieillissement de l'échantillon A, alors qu'elle chute très sensiblement pour l'échantillon D. cela confirme que la phase η formée lors d'une utilisation à haute température de l'alliage C263 classique a un fort effet fragilisant, et que l'invention permet de remédier à ce problème. FIG. 14 shows the results of resilience tests carried out on several test pieces of the alloys A according to the invention and D of reference, on the one hand after heat treatment of dissolution and then aging as described above, on the other hand after over-aging of 3000 h at 750 ° C following the previous heat treatment, again to simulate the evolution of the alloy in use. The results are clear: the resilience Kv is practically unaffected by the over-aging of the sample A, whereas it drops very substantially for the sample D. This confirms that the phase η formed during a high use The temperature of the conventional C263 alloy has a strong embrittling effect, and the invention overcomes this problem.
Des essais de forgeage ont également été effectués, dans des conditions identiques (homogénéisation à plus de 1 150°C pendant 48h puis forgeage à 1200°C- 1050°C jusqu'au diamètre 80mm), et les figures 15 à 18 présentent les résultats obtenus.  Forging tests were also carried out under identical conditions (homogenization at more than 1150 ° C. for 48 h and then forging at 1200 ° C.-1050 ° C. up to 80 mm diameter), and FIGS. 15 to 18 show the results. obtained.
Les alliages A, B et C selon l'invention, de même que l'alliage H de référence, ont été forgés sans problèmes comme l'aurait été l'alliage D : aucune crique n'est apparue durant le forgeage. La figure 15 montre l'alliage A en cours de forgeage à environ 1 100°C et aucune crique n'est effectivement visible. La figure 16 montre l'alliage E en cours de forgeage à la même température, et de légères criques sont visibles. La figure 17 montre l'alliage F en cours de forgeage à la même température, et les criques sont beaucoup plus profondes que dans les cas précédents. La figure 18 montre l'alliage G en cours de forgeage à la même température, et là encore des criques profondes sont visibles. La bonne forgeabilité des alliages selon l'invention est donc confirmée, et est attribuée à une proportion de phase γ' moins élevée que pour les échantillons de référence E, F et G.  The alloys A, B and C according to the invention, as well as the alloy H of reference, were forged without problems as would have been the alloy D: no crack appeared during the forging. Figure 15 shows alloy A being forged at about 1100 ° C and no crack is actually visible. Figure 16 shows the alloy E being forged at the same temperature, and slight cracks are visible. Figure 17 shows the alloy F being forged at the same temperature, and the cracks are much deeper than in the previous cases. Figure 18 shows the G alloy being forged at the same temperature, and again deep cracks are visible. The good forgeability of the alloys according to the invention is thus confirmed, and is attributed to a lower proportion of γ 'phase than for the reference samples E, F and G.
Une application privilégiée de l'invention est la fabrication d'éléments de turbines terrestres et aéronautiques, mais elle n'est, bien entendu, pas exclusive.  A preferred application of the invention is the manufacture of terrestrial and aeronautical turbine elements, but it is, of course, not exclusive.

Claims

REVENDICATIONS
1 . - Alliage à base nickel à durcissement structural, caractérisé en ce que sa composition est, en pourcentages pondéraux : 1. Nickel-based alloy with structural hardening, characterized in that its composition is, in percentages by weight:
- 18% < Cr < 22%, de préférence 18% < Cr < 20% ;  18% <Cr <22%, preferably 18% <Cr <20%;
- 18% < Co < 22%, de préférence 19% < Co < 21 % ;  18% <Co <22%, preferably 19% <Co <21%;
- 4% < Mo + W < 8%, de préférence 5,5% < Mo + W < 7,5% ;  - 4% <Mo + W <8%, preferably 5.5% <Mo + W <7.5%;
- traces < Zr < 0,06% ;  traces <Zr <0.06%;
- traces < B < 0,03%, de préférence traces < B < 0,01 % ;  traces <B <0.03%, preferably traces <B <0.01%;
- traces < C < 0,1 %, de préférence traces < C < 0,06% ;  traces <C <0.1%, preferably traces <C <0.06%;
- traces < Fe < 1 % ;  - traces <Fe <1%;
- traces < Nb < 0,01 % ;  - traces <Nb <0.01%;
- traces < Ta < 0,01 % ;  - traces <Ta <0.01%;
- traces < S < 0,008% ;  - traces <S <0.008%;
- traces < P < 0,015% ;  - traces <P <0.015%;
- traces < Mn < 0,3% ;  - traces <Mn <0.3%;
- traces < Si < 0,15% ;  - traces <If <0.15%;
- traces < O < 0,0025% ;  - traces <O <0.0025%;
- traces < N < 0,0030% ;  - traces <N <0.0030%;
le reste étant du nickel et des impuretés résultant de l'élaboration, les teneurs en Al et Ti satisfaisant, de plus les conditions : the rest being nickel and impurities resulting from the elaboration, the contents of Al and Ti satisfying, moreover the conditions:
- (1 ) Ti/AI < 3 ;  - (1) Ti / Al <3;
- (2) Al + 1 ,2 Ti≥ 2% ;  - (2) Al + 1, 2 Ti≥ 2%;
- (3) (0,2 Al - 1 ,25)2 - 0,5 Ti≥ 0% ; - (3) (0.2 Al - 1, 25) 2 - 0.5 Ti≥ 0%;
- (4) Ti + 1 ,5 Al < 4,5%.  (4) Ti + 1.5 Al <4.5%.
2. - Alliage selon la revendication 1 , caractérisé en ce que sa fraction de phase γ' est comprise entre 5 et 20%.  2. - Alloy according to claim 1, characterized in that its phase fraction γ 'is between 5 and 20%.
3. - Alliage selon l'une des revendications 1 ou 2, caractérisé en ce que la température de solvus de sa phase γ' est inférieure ou égale à 980°C.  3. - alloy according to one of claims 1 or 2, characterized in that the solvus temperature of its phase γ 'is less than or equal to 980 ° C.
4. - Procédé de fabrication d'une pièce en alliage à base nickel, caractérisé en ce qu'on prépare un lingot ayant la composition selon la revendication 1 , on l'homogénéise à une température d'au moins 1 150°C pendant 24 à 72 h, on le travaille à chaud par forgeage ou laminage dans une gamme de températures supersolvus, on le met en solution à une température de 1 100 à 1200°C pendant 1 à 4 h, on le refroidit à au moins 1 °C/min, par exemple dans l'eau, on le vieillit à une température de 750 à 850°C pendant 7 à 10 h, et on le refroidit, par exemple dans l'air calme ou dans une enceinte. 4. - A method of manufacturing a nickel-based alloy part, characterized in that an ingot having the composition according to claim 1 is prepared and homogenized at a temperature of at least 1150 ° C. for 24 hours. at 72 hours, it is hot-worked by forging or rolling in a supersolvus temperature range, dissolved at a temperature of 1100 to 1200 ° C for 1 to 4 hours, cooled to at least 1 ° C For example, in water, it is aged at 750 to 850 ° C for 7 to 10 hours, and is cooled, for example in calm air or in an enclosure.
5. - Pièce en alliage à base nickel, caractérisée en ce qu'elle a été préparée selon le procédé de la revendication 4. 5. - Nickel base alloy part, characterized in that it was prepared according to the method of claim 4.
6. - Pièce selon la revendication 5, caractérisée en ce qu'il s'agit d'un élément de turbine terrestre ou aéronautique.  6. - Part according to claim 5, characterized in that it is a turbine element land or aeronautics.
EP15709520.9A 2014-03-14 2015-03-13 Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof Active EP3117017B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15709520T PL3117017T3 (en) 2014-03-14 2015-03-13 Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452157A FR3018525B1 (en) 2014-03-14 2014-03-14 NICKEL ALLOY HAVING A STRUCTURAL CURING, PIECE THEREOF AND METHOD FOR MANUFACTURING THE SAME.
PCT/EP2015/055346 WO2015136094A1 (en) 2014-03-14 2015-03-13 Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
EP3117017A1 true EP3117017A1 (en) 2017-01-18
EP3117017B1 EP3117017B1 (en) 2019-05-08

Family

ID=51014443

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15709520.9A Active EP3117017B1 (en) 2014-03-14 2015-03-13 Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof

Country Status (10)

Country Link
US (1) US20170002449A1 (en)
EP (1) EP3117017B1 (en)
JP (1) JP2017514998A (en)
CN (1) CN106133161A (en)
BR (1) BR112016021062A2 (en)
CA (1) CA2942604A1 (en)
FR (1) FR3018525B1 (en)
PL (1) PL3117017T3 (en)
RU (1) RU2016136763A (en)
WO (1) WO2015136094A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685908C1 (en) * 2018-09-20 2019-04-23 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Nickel-based heat-resistant cast alloy and article made therefrom
CN109967674B (en) * 2019-03-22 2020-12-08 上海电气上重铸锻有限公司 Manufacturing method of high-temperature alloy forging for nuclear power steam generator
WO2020195049A1 (en) * 2019-03-26 2020-10-01 日立金属株式会社 Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
CN110616354B (en) * 2019-11-12 2022-03-04 湖南人文科技学院 Nickel-based high-temperature alloy powder for laser near-net shaping and preparation method and application thereof
KR20220115419A (en) * 2021-02-10 2022-08-17 창원대학교 산학협력단 METHOD OF HOMOGENIZATION HEAT TREATMENT OF LARGE-SCALE Ni-BASE SUPERALLOY INGOT FOR EXCELLENT FORGED PRODUCTS
CN117340173B (en) * 2023-12-06 2024-03-08 成都先进金属材料产业技术研究院股份有限公司 Method for inhibiting cracking in nickel-copper alloy forging process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235529A (en) * 1985-04-10 1986-10-20 Hitachi Zosen Corp Material for roll used in continuous casting equipment
JP3132602B2 (en) * 1991-09-28 2001-02-05 大同特殊鋼株式会社 Manufacturing method of friction welding valve
DK2511389T3 (en) * 2009-12-10 2015-02-23 Nippon Steel & Sumitomo Metal Corp Austenitic heat resistant alloy
JP5899806B2 (en) * 2011-10-31 2016-04-06 新日鐵住金株式会社 Austenitic heat-resistant alloy with excellent liquefaction resistance in HAZ
CA2874304C (en) * 2012-06-07 2017-08-01 Nippon Steel & Sumitomo Metal Corporation Ni-based alloy

Also Published As

Publication number Publication date
JP2017514998A (en) 2017-06-08
RU2016136763A (en) 2018-03-16
RU2016136763A3 (en) 2018-10-24
CA2942604A1 (en) 2015-09-17
BR112016021062A2 (en) 2017-08-15
EP3117017B1 (en) 2019-05-08
WO2015136094A1 (en) 2015-09-17
CN106133161A (en) 2016-11-16
FR3018525B1 (en) 2017-05-26
PL3117017T3 (en) 2019-11-29
FR3018525A1 (en) 2015-09-18
US20170002449A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
EP3117017B1 (en) Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof
JP6057363B1 (en) Method for producing Ni-base superalloy
EP2467505B1 (en) Nickel-based superalloy and articles made from said alloy
FR2941962A1 (en) PROCESS FOR MANUFACTURING A NICKEL-BASED SUPERALLIANCE WORKPIECE, AND A PRODUCT OBTAINED THEREBY
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
JP4261562B2 (en) Ni-Fe based forged superalloy excellent in high temperature strength and high temperature ductility, its manufacturing method, and steam turbine rotor
JP5663530B2 (en) Rhenium-free single crystal superalloy for turbine blade and vane applications
EP0237378B1 (en) Superalloy having a nickel base matrix, manufactured by powder-metallurgical processing, and gas turbine discs made from this alloy
WO2016152982A1 (en) PRODUCTION METHOD FOR Ni-BASED SUPER HEAT-RESISTANT ALLOY
JP4417977B2 (en) Gas turbine blade and method for manufacturing the same
JPWO2006059805A1 (en) Heat resistant superalloy
EP1840232A1 (en) Nickel-based alloy
FR2780982A1 (en) MONOCRYSTALLINE SUPERALLIAGE BASED ON HIGH SOLVUS NICKEL
FR2935396A1 (en) PROCESS FOR THE PREPARATION OF A NICKEL - BASED SUPERALLIATION WORKPIECE AND PIECE THUS OBTAINED
JP6293682B2 (en) High strength Ni-base superalloy
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
WO2021116607A1 (en) Nickel-based superalloy
EP2421996A1 (en) Aa 6xxx aluminium alloy for precision turning
FR2928661A1 (en) NI-BASED ALLOY FOR STEAM TURBINE ROTOR AND STEAM TURBINE ROTOR
EP0187573B1 (en) Nickel base alloy
WO2024048525A1 (en) Method for producing ni-based alloy
JPH0776402B2 (en) Super heat resistant alloy
FR2739870A1 (en) REFRACTORY, TOUGH AND WELDABLE ALLOY
FR2929293A1 (en) NI-BASED ALLOY FOR STEAM TURBINE ROTOR AND STEAM TURBINE ROTOR COMPRISING SAME

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 7/00 20060101ALI20180831BHEP

Ipc: C22C 30/02 20060101ALI20180831BHEP

Ipc: C22C 30/00 20060101ALI20180831BHEP

Ipc: C22F 1/10 20060101ALI20180831BHEP

Ipc: C22C 19/05 20060101AFI20180831BHEP

INTG Intention to grant announced

Effective date: 20181004

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015029773

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015029773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200313

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1130226

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230306

Year of fee payment: 9

Ref country code: AT

Payment date: 20230322

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230314

Year of fee payment: 9

Ref country code: PL

Payment date: 20230303

Year of fee payment: 9

Ref country code: GB

Payment date: 20230322

Year of fee payment: 9

Ref country code: DE

Payment date: 20230321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 9