EP3115702A1 - Method for configuring energy-saving heating systems - Google Patents

Method for configuring energy-saving heating systems Download PDF

Info

Publication number
EP3115702A1
EP3115702A1 EP16001360.3A EP16001360A EP3115702A1 EP 3115702 A1 EP3115702 A1 EP 3115702A1 EP 16001360 A EP16001360 A EP 16001360A EP 3115702 A1 EP3115702 A1 EP 3115702A1
Authority
EP
European Patent Office
Prior art keywords
heating
return
boiler
radiator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16001360.3A
Other languages
German (de)
French (fr)
Other versions
EP3115702B1 (en
Inventor
Walter Sander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3115702A1 publication Critical patent/EP3115702A1/en
Application granted granted Critical
Publication of EP3115702B1 publication Critical patent/EP3115702B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0257Thermostatic valves

Definitions

  • the invention relates to a method for setting energy-saving heating systems according to the preamble of claim 1.
  • the invention is concerned with the problem of providing a method for energy-saving adjustment of heating systems, which both new to be designed systems as well as existing existing systems with less technical Efficiency can be increased and setting the system to energy-saving process parameters in a relatively short time is possible.
  • the concept according to the invention is directed to the fact that now all of the heating elements forming a heating circuit are set successively to a constant inflow of heating water in accordance with their respective heat capacity associated receiving volume.
  • the individual shut-offs in the return valve are used.
  • a total volume of circulating in the heating system heating water can be formed.
  • the system then becomes a comparatively simple volume flow measurement controlled in the return line of the pipeline network. Due to these specific settings only at the return, it is possible to achieve a higher heat capacity from the heating surfaces and thus lower the Radiofiltemperatur the entire system.
  • thermo-dynamic-hydraulic balancing The basic idea of this procedure is aimed at carrying out a thermo-dynamic-hydraulic balancing according to the invention.
  • Individual components for the thermo-dynamic-hydraulic balancing can be advantageously replaced by a heating pump in the return of the system.
  • This thermo-dynamic presetting is designed so that subsequently the heating loads can be controlled by appropriate process parameters building and user-specific.
  • thermostatic valves on the existing heating surfaces are largely unnecessary, since they are needed for a room temperature control only to a small extent.
  • thermo-dynamically-hydraulically balanced heating system with a weather-controlled System is equipped.
  • a specially adapted to this system and thus improved effective controller is designed so that the heating temperature, the heating times, the hot water treatment, the heating zones and the heating pump can be controlled with efficient software of a computer. It has been shown that the on and off intervals provided in conventional burners of about 8 times per hour can be reduced to once per hour with the system set according to the invention.
  • the heating circuit enclosing the entire pipeline network of flow and return can be operated after the thermo-dynamic-hydraulic balancing without heat management with an optimally loadable boiler.
  • the boiler is metered in a controlled manner to the total volume of the liquid flows moved in the radiators and the lines.
  • thermostatic valves in the radiator - as already mentioned - are not necessary in every case.
  • respective, provided in the radiator thermostatic valves should be set at least in the adjustment phase to substantially the same flow temperatures.
  • the uniform temperature distributions in the radiator area are achieved directly.
  • the individual settings of the shutters used in the subsequent adjustment according to the invention in the region of the respective radiators are directed to the fact that a minimization of the temperature gradient in each of the radiators is now achieved and proven in the thermo-dynamically-hydraulically balanced system.
  • a uniform distribution of the radiation temperature is controlled at each radiator by means of a temperature measuring device and if appropriate adjustments to the flow volume.
  • the heat distribution state can be checked on each radiator by means of a temperature measuring device.
  • the accuracy of the individual settings of the system can be additionally controlled in the vicinity of the return pump via a thermal load measurement. From a comparison of the measured values from volume flow measurement and thermal load cycle measurement with the detectable consumption of primary energy of the boiler, the overall efficiency of the heating system can be calculated with little effort and set to optimum consumption values.
  • thermo-dynamic-hydraulic preparation results in a significant improvement in the standard efficiency of a boiler including the heating system.
  • values of the standard system efficiency of 90% to 95% were achieved in the newly designed system.
  • Fig. 1 is a fragmentary heating system shown with a heating system 1, which may be installed, for example, in a home o. The like. Building. Such existing or to be planned heating system 1 is provided with a branched flow lines 2 having line network 3, with which the heating water respective radiators HK is supplied. From these radiators HK the cooled heating water can be returned via adjustable barriers AV to a boiler 4 (arrow R).
  • a heating system 1 which may be installed, for example, in a home o. The like. Building.
  • Such existing or to be planned heating system 1 is provided with a branched flow lines 2 having line network 3, with which the heating water respective radiators HK is supplied. From these radiators HK the cooled heating water can be returned via adjustable barriers AV to a boiler 4 (arrow R).
  • radiator HK be set according to their respective heat capacity associated receiving volume. For this it is sufficient that now only the respective individual barriers AV in the return 5 of the radiator HK be used.
  • the radiators HK are set successively to a constant inflow of heating water, the respective inlet valves TV are open to 100%.
  • the required total volume of the heating water can be controlled via a volume flow measurement VM in the return line 5 of the pipeline network 3 (at 7, FIG. Fig. 1 ). With this test, it is ensured that the systems to be adapted to the respective required heat outputs in the area of the boiler 4 have an optimum setting for delivery for all of the radiators HK.
  • the heating system of the system 1 enclosing the network 3 is directed to an optimally loadable boiler 4 without heat management.
  • the boiler 4 is measured in a controlled manner to the total volume of the number of radiators HK.
  • the system according to the invention is designed so that a thermo-dynamic-hydraulic balancing can be realized on the heating system 1 and thus the efficiency is demonstrably increased.
  • thermo-dynamic-hydraulic balancing method a long-term control of the system is prepared, the performance of at least one heating boiler o.
  • Heat Suppliers is adjusted to the volume of water from the existing volume of pipes and radiators volume and then depending on the pipe diameters an optimal flow rate can be adjusted.
  • the schematic diagram according to Fig. 1 shows that the heating network including the network 3 is operated without heat management with an optimally loadable boiler 4.
  • This boiler 4 is calibrated to the existing in the system total volume of the radiator HK and the corresponding lines in flow 2 and return 5.
  • the respective thermostatic valves TV are shown in a complete open position, so that at least in the inventive thermo-dynamic-hydraulic adjustment phase of the adjustment in all radiators HK, the substantially same flow temperature is effective.
  • an opening state at AV of 7% is shown in the area of the radiator HK1 (50 liters / h), the radiator HK2 (30 liters / h) has an open position of 4%, and the radiator HK3 (100 liters / h). h) is exemplified to 13%.
  • the system 1 is provided with a pump 6 which ensures a constant hydraulic pressure P, at least during the adjustment phase of the barriers AV.
  • this pump 6 is integrated into the system in the region of the return water receiving return 5.
  • Fig. 2 and Fig. 3 the effect of the individual adjustment of the barrier AV is exemplified in the area of a radiator HK4.
  • the temperature distribution in the heating phase is clear, starting from the upper supply line 2 over the entire radiator HK a substantially uniform temperature distribution is achieved and the return flow. 5 towards a minimization of the temperature gradient is sought.
  • the system is integrated in the area of the barrier AV by the previous thermo-dynamic-hydraulic balance adjustment in the flow that now with reduced flow in the pump 6 a long-lasting Cooling phase (here: flow rate 35 L / hour) is achieved.
  • thermo-dynamic optimization of the radiator HK can be tested by means of a temperature measuring device through their individual adaptation in the area of the barrier AV at each of the radiators HK.
  • Heat distribution states illustrated by way of example can be detected with a thermal imaging camera or the like. It follows that after a heating phase of the heating system 1, the temperature and / or heat distribution state is tuned to the respective heating capacity of the boiler 4 professionally to an efficient use of energy.
  • a further advantageous embodiment of the process control provides that the individual settings of the system in addition to the volume flow measurement already described (at 7, Fig. 1 , Ultrasonic measuring points) can be controlled in the vicinity of the return pump 6 via a thermal load measurement 8. This makes it possible that the efficiency of the heating installation 1 can be calculated in total from a comparison of the measured values from volumetric flow measurement 7 and thermal load measurement 8 with the consumption values of primary energy in the area of the gas meter 9.
  • thermo-dynamically hydraulically balanced system in the heating surfaces HK a very small temperature difference, for example in the range of 1 ° C to 5 ° C, preferably 2 ° C to 4 ° C ( Fig. 2 ), is realized.
  • the adjustment procedure is aimed at ensuring that the heating surface temperature in the heating phase ( Fig. 2 ) and the heating surface temperature in the cooling phase ( Fig. 3 ) are optimized in a temporal relationship.
  • the entire heating system 1 with a temperature difference - from heated heating surface to cooled heating surface - works so that, for example, only works with a difference of 15 ° C according to the respective outdoor temperatures. It then follows that in the heating phase, the total volume of the system 1 must be heated only once per hour. This efficient process control after optimal thermo-dynamic-hydraulic balancing is achieved in particular when about 80% of the heating surfaces to be heated are set to the target temperature of the respective room.
  • FIG. 5 is a comparison of the detectable in conventional heating systems switching phases ( Fig. 4 ) and according to the inventive thermo-dynamic-hydraulic balancing ( Fig. 5 ) to be detected switching times visible. From the switching curve 10 (for a flow temperature of 80 ° C) and the curve 11 (return temperature 60 ° C) it becomes clear that at an outside temperature from, for example, -20 ° C within one hour to six switching cycles are required to maintain the room temperature. This is also noticeable at higher ambient temperatures, whereby more than ten switching cycles may be required. In comparison, the illustration shows in Fig. 5 in that, after a thermo-dynamic-hydraulic adjustment of the system, starting from an approximately 30-minute heating phase, only one switching operation per hour is required (temperature profiles 10 'and 11').
  • Fig. 6 is a generally designated 1 'heating system shown, which is adapted with the system according to the invention to the existing installation of sixteen radiators HK.
  • An optimal implementation and control of the thermo-dynamic-hydraulic balancing is provided on the radiators HK by a sound measurement.
  • an additional sound measurement is carried out by using respective measuring points M16 for controlling the thermo-dynamic-hydraulic balancing.
  • an additional gate valve 13 (or 13 'in the flow 2) is provided before the pump 6' in the return line 4, so that the system can be completely separated from the boiler 4 in case of need.
  • the system additionally works together with at least one flow sensor 14, an outdoor sensor 15 and a room sensor 17.
  • To control these components in the range of the load-dependent controlled heating pump 6 'and the flow sensor 14 is the total designated 16, computer controlled heating controller provided.
  • This heating controller 16 preferably regulates the actual, hourly and / or object-related heat requirement. Again, there is no heat management (see Fig. 1 ) provided or required.
  • an exhaust gas measurement takes place in the region of the boiler 4 (at 18), for example, an exhaust gas temperature of 65 ° C is set.
  • Respective sensors M13 and M14 are provided for thermo-dynamic-hydraulic balancing for differential temperature measurement. After calibrating the system 1 'then the two sensors M13 and M14 can be removed.
  • the already in Fig. 1 apparent measuring point 7 'in the area of the sound measuring device VM is used in this system 1' in connection with the respective sound measurements at M16 on the radiators HK for flow measurement. It has been found that this device 1 '- despite the complexity and size with a variety of radiators HK - under normal temperature conditions - for example, even in winter - only ten to thirty times a day must perform a switching operation.
  • Fig. 7 is another application of the system according to the invention in the field of large-scale system (for example: school or office building) shown, wherein after performing the method according to the invention for thermo-dynamic-hydraulic balancing respective heat outputs of more than 100 KW to 8000 KW are controllable. Also in this system, only a single heat generator in the form of the boiler 4 can be used. It is conceivable that a cascade-like arrangement of several boilers is used (not shown).
  • a high-efficiency heating pump 6 ' is advantageously installed at the return line 5, wherein this pump 6' is additionally to be provided with a frequency converter 21.
  • pressure-controlled heating pumps are used, which are dependent on a - not inventively provided - pressure difference measurement at the flow.
  • the volumetric flow measurement according to the invention (at 20) is directed to that, with changing heating zones Z 'via the controller 16, an adaptation of the delivery volume of the pump 6' operating at the same pressure takes place.
  • the heating time in the area of the boiler 4 is adjusted according to the zone change Z '.
  • the known ultrasonic measuring device 7 " is provided in VM, which can be temporarily attached to the return line 5.
  • VM which can be temporarily attached to the return line 5.
  • the measuring points 22 and 23 corresponding to ⁇ T at 8, Fig. 1
  • a temperature differential measurement is carried out, and for the intended pressure measurement P, the measuring points 24 and 25 are used.
  • the heat generator power measurement already described takes place in the region of the measuring point 18 '.
  • the volume flow counter 20 cooperates via the controller 16 with the frequency converter 21 of the pump 6 ', so that corresponding increases or decreases in the power of the boiler 4 can be optimally realized.
  • the system according to the invention uses the known load profile measurement 8 for rapid detection of the system efficiency. This measurement can be carried out immediately after the conversion of a plant, so that it extends in conventional systems over a year or a heating season Measurement cycle is significantly shortened and an immediate assessment for the plant user is present. The measurement is particularly successful when the room temperatures are less than 20 ° C, preferably less than 16 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Bei einem Verfahren zur Einstellung von energiesparenden Heizungssystemen wird in vorhandenen Heizungsanlagen mit einem verzweigte Vorlaufleitungen aufweisenden Leitungsnetz das Heizwasser jeweiligen Heizkörpern zugeführt. Aus diesen kann das abgekühlte Heizwasser über einstellbare Absperrungen in einer Rücklaufleitung zu einem Heizkessel zurückgeführt werden. Erfindungsgemäß ist vorgesehen, dass sämtliche der einen Heizkreislauf bildenden Heizkörper entsprechend ihrem einer jeweiligen Wärmekapazität zugeordneten Aufnahmevolumen nur mittels jeweiliger individueller Absperrungen im Rücklauf nacheinander auf einen konstanten Zulauf von Heizwasser eingestellt werden. Diese an jeweils erforderliche Heizleistungen der Räume anpassbaren Einstellungen werden dann über eine ein Summenvolumen erfassende Volumenstrommessung im Rücklauf des Leitungsnetzes kontrolliert. Damit ist ein thermo-dynamisch-hydraulischer Abgleich an der Heizungsanlage realisierbar, derart, dass eine höhere Wärmekapazität aus den Heizflächen erzielt und dabei die erforderliche Betriebsheiztemperatur abgesenkt wird.In a method for setting energy-saving heating systems, the heating water is supplied to respective radiators in existing heating systems with a branched supply lines having line network. From these, the cooled heating water can be returned via adjustable barriers in a return line to a boiler. According to the invention, all of the heating elements forming a heating circuit are set successively to a constant inflow of heating water in accordance with their respective heat capacity associated receiving volume only by means of respective individual barriers in the return. These settings, which can be adapted to the required heating capacities of the rooms, are then controlled via a volumetric flow volume measurement in the return flow of the pipeline network. For a thermo-dynamic-hydraulic balancing of the heating system can be realized, such that a higher heat capacity achieved from the heating surfaces while the required Betriebsheiztemperatur is lowered.

Description

Die Erfindung betrifft ein Verfahren zur Einstellung von energiesparenden Heizungssystemen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for setting energy-saving heating systems according to the preamble of claim 1.

Im Stand der Technik werden zur Optimierung der Bedienung von Heizungsanlagen unterschiedliche Systeme vorgeschlagen, wobei seit langem Verfahren zum Steuern und Regeln auf eine Senkung des Energiebedarfs gerichtet sind. Gemäß einem Vorschlag in DE 42 11 914 C2 ist vorgesehen, die Regelung einer Heizungsanlage dadurch zu beeinflussen, dass dem System im Bereich einer Datenverarbeitungseinheit jeweils die pro Zeiteinheit vom Wärmeerzeuger abgegebene Wärmemenge in Abhängigkeit von der Außentemperatur vorgegeben wird. Damit soll auch mit Brennern mit nicht veränderbarer Leistung eine möglichst lange Laufzeit erreicht werden. Die erforderliche Wärmemenge wird dabei aus einer vorher ermittelten Kesselleistung und jeweiligen, als Zeiteinheit ermittelten Laufzeitintervallen abgeleitet.In the prior art, different systems are proposed for optimizing the operation of heating systems, with methods for controlling and regulating have long been directed to a reduction in energy requirements. According to a proposal in DE 42 11 914 C2 is intended to influence the regulation of a heating system in that the system in the field of a data processing unit in each case the amount of heat emitted by the heat generator per unit time is specified in dependence on the outside temperature. This should also be achieved with burners with unchangeable power as long as possible. The required amount of heat is derived from a previously determined boiler output and respective run time intervals determined as the time unit.

Unter Nutzung einer in Intervallen zu erfassenden Außentemperatur und jeweiligen Messwerten der Rücklauftemperatur kann ein energiesparendes System erreicht werden. Als nachteilig hat sich beim Einstellen der Anlage herausgestellt, dass ein Eingriff in die Kesselleistung durch einmalige Veränderung der Düsen der Brenner erforderlich ist, wobei eine an sich bekannte Heizpumpe für eine gleichmäßige Umwälzung des Wärmeübertragungsmediums durch alle Heizkörper verwendet wird, nachdem ein DIN-gemäßer hydraulischer Abgleich vorgenommen wurde.Using an outdoor temperature to be recorded at intervals and respective readings of the return temperature, an energy-saving system can be achieved. A disadvantage has been found in adjusting the system that an intervention in the boiler performance by a single change of the nozzles of the burner is required, a known per se heating pump for a uniform circulation of the heat transfer medium is used by all radiators, after a DIN-compliant hydraulic Adjustment was made.

In DE 196 45 135 A1 wird ein Verfahren zur Steuerung einer Heizungsanlage vorgeschlagen, bei dem die Steuerung nur mit einem aufwändigen Mischer in einer Bypassleitung zu realisieren ist. Die zur Aktivierung des Kreislaufs notwendige Heizkreispumpe ist in Form einer Umwälzpumpe in den Heizwasservorlauf integriert, so dass zwei Umwälzpumpen erforderlich sind.In DE 196 45 135 A1 a method for controlling a heating system is proposed, in which the control can be realized only with a complex mixer in a bypass line. The necessary for activating the circuit heating circuit pump is integrated in the form of a circulating pump in Heizwasservorlauf, so that two circulating pumps are required.

Aus DE 44 19 941 A1 ist ein Verfahren zum Steuern einer Raumheizungsanlage bekannt, bei dem die im Vorlauf befindliche Pumpe temperaturunabhängig auf 100 % der Leistung eingestellt werden kann. Erst in einem Temperaturbereich mit kleinerem Wärmebedarf wird die Umwälzpumpe temperaturabhängig gesteuert.Out DE 44 19 941 A1 a method for controlling a space heating system is known in which the flow in the pump can be adjusted independently of temperature to 100% of the power. Only in a temperature range with a smaller heat requirement, the circulating pump is temperature-dependent controlled.

Allgemein ist festzustellen, dass in der konventionellen Heizungstechnik komplette Regelstrecken mit einer Vielzahl zusätzlicher Komponenten ausgerüstet sind. Neben den üblicherweise im Zusammenhang mit den Heizkreispumpen eingesetzten Mischern sind hydraulische Weichen in das System integriert. Außerdem werden Rücklaufanhebungen und Überstromventile gemeinsam mit Strangregulierventilen so eingesetzt, dass insgesamt aufwändige Heizungsregelungen erforderlich sind. Deren optimale Einstellung während des an sich bekannten hydraulischen Abgleichs gemäß DIN führen zu einem hohen Fehlerpotential und für den Praktiker kaum zu realisierenden Regelungsaufwendungen.In general, it should be noted that in conventional heating systems, complete control systems are equipped with a large number of additional components. In addition to the mixers commonly used in connection with the heating circuit pumps, hydraulic switches are integrated into the system. In addition, return lifts and overflow valves are used in conjunction with balancing valves so that overall elaborate heating controls are required. Their optimal setting during the known hydraulic balancing according to DIN lead to a high potential error and for the practitioner hardly realizable regulatory expenses.

Die Erfindung befasst sich mit dem Problem, ein Verfahren zur energiesparenden Einstellung von Heizungssystemen zu schaffen, womit sowohl an neu zu konzipierenden Anlagen als auch an bereits vorhandenen Altanlagen mit geringerem technischen Aufwand eine Effizienzsteigerung erreicht werden kann und das Einstellen des Systems auf energiesparende Verfahrensparameter in vergleichsweise kurzer Zeit möglich ist.The invention is concerned with the problem of providing a method for energy-saving adjustment of heating systems, which both new to be designed systems as well as existing existing systems with less technical Efficiency can be increased and setting the system to energy-saving process parameters in a relatively short time is possible.

Die Erfindung löst diese Aufgabe mit einem Verfahren mit den Merkmalen des Anspruchs 1. Hinsichtlich wesentlicher weiterer Ausgestaltungen wird auf die Ansprüche 2 bis 10 verwiesen.The invention solves this problem with a method having the features of claim 1. With regard to significant further embodiments, reference is made to the claims 2 to 10.

Beim Betrieb von Heizungsanlagen ist vorgesehen, dass an diesen ein sogenannter hydraulischer Abgleich vorgenommen wird, wobei die Vorschriften gemäß DIN 18380 einzuhalten sind. Ausgehend von diesen DIN-gemäßen, praktikable Nachteile aufweisenden und in vorhandenen Anlagen nur mit erhöhtem Aufwand realisierbaren Anpassungsforderungen sieht das erfindungsgemäße System eine wesentliche Vereinfachung vor.When operating heating systems, it is provided that a so-called hydraulic balancing is performed on them, whereby the regulations according to DIN 18380 must be observed. Starting from these DIN-compliant, practicable disadvantages exhibiting and realizable in existing systems only with increased effort adaptation requirements, the system according to the invention provides a significant simplification.

Das erfindungsgemäße Konzept ist darauf gerichtet, dass nunmehr sämtliche der einen Heizkreislauf bildenden Heizkörper entsprechend ihrem einer jeweiligen Wärmekapazität zugeordneten Aufnahmevolumen nacheinander auf einen konstanten Zulauf von Heizwasser eingestellt werden. Dabei wird in dem jeweils vorliegenden Gesamtsystem nur noch mittels jeweiliger individueller Absperrungen im Rücklaufventil gearbeitet. Ausgehend von diesem ersten Verfahrensschritt mit den an jeweils erforderliche Heizleistungen angepassten Einstellungen kann dann ein Summenvolumen des in der Heizungsanlage umlaufenden Heizwassers gebildet werden. Dabei wird dann das System über eine vergleichsweise einfache Volumenstrommessung im Rücklauf des Leitungsnetzes kontrolliert. Aufgrund dieser gezielten Einstellungen nur am Rücklauf ist es möglich, eine höhere Wärmekapazität aus den Heizflächen zu erzielen und somit die Betriebsheiztemperatur der gesamten Anlage abzusenken.The concept according to the invention is directed to the fact that now all of the heating elements forming a heating circuit are set successively to a constant inflow of heating water in accordance with their respective heat capacity associated receiving volume. In this case, in the respective present overall system, only the individual shut-offs in the return valve are used. Based on this first process step with the adjusted to each required heating power settings then a total volume of circulating in the heating system heating water can be formed. The system then becomes a comparatively simple volume flow measurement controlled in the return line of the pipeline network. Due to these specific settings only at the return, it is possible to achieve a higher heat capacity from the heating surfaces and thus lower the Betriebsheiztemperatur the entire system.

Der Grundgedanke dieser Verfahrensführung zielt darauf ab, dass erfindungsgemäß ein thermo-dynamisch-hydraulischer Abgleich durchgeführt wird. Das bereits vorliegende oder in einer Planungsphase aufzubauende hydraulische System und die jeweiligen optimalen Temperaturen im Kreislauf der Heizungsanlage werden mit einer Einstellung so optimiert, dass auf zusätzliche Mischer, Heizkreispumpen, hydraulische Weichen, Überströmventile und Rücklaufanhebungen am Heizkessel verzichtet werden kann. Einzelne Bauteile für den thermo-dynamisch-hydraulischen Abgleich können vorteilhaft durch eine Heizungspumpe im Rücklauf des Systems ersetzt werden. Diese thermo-dynamische Voreinstellung ist dabei so ausgelegt, dass nachfolgend die Heizlasten durch entsprechende Verfahrensparameter gebäude- und nutzerspezifisch gesteuert werden können.The basic idea of this procedure is aimed at carrying out a thermo-dynamic-hydraulic balancing according to the invention. The hydraulic system already in place or to be set up in a planning phase and the respective optimum temperatures in the heating system circuit are optimized with a setting so that additional mixers, heating circuit pumps, hydraulic switches, overflow valves and return heaters on the boiler can be dispensed with. Individual components for the thermo-dynamic-hydraulic balancing can be advantageously replaced by a heating pump in the return of the system. This thermo-dynamic presetting is designed so that subsequently the heating loads can be controlled by appropriate process parameters building and user-specific.

Bei der konventionellen Einstellung von Heizungsanlagen mit "einfachem" hydraulischem Abgleich gemäß DIN 18380 ist vorgesehen, die einzelnen Heizflächen der Räume am Vorlauf von voreinstellbaren Thermostatventilen entsprechend anzupassen. Bei dem erfindungsgemäßen Verfahren mit der thermo-dynamisch-hydraulischen Einstellung ist vorgesehen, dass nunmehr an jeweiligen absperrbaren Rücklaufverschraubungen o. dgl. Stellelementen am Rücklauf der Heizflächen ein Einstellen und Abgleichen erfolgt. Mit diesem überraschend effizienten Einstellungsprinzip - und den vergleichsweise wenigen Komponenten zur Steuerung des "abgerüsteten" Wärmekreislaufs - wird erreicht, dass die Heizflächen nunmehr - in Strömungsrichtung von oben nach unten - ein gleichmäßiges Wärmebild aufweisen. Es hat sich gezeigt, dass mit der erfindungsgemäßen Einstellung der Temperaturunterschied zwischen Vor- und Rücklauf am Heizkörper im Bereich von 1°C bis 4°C gehalten werden kann. Nach dieser dynamischen Anpassung der gesamten Heizungsanlage in sämtlichen Räumen kann die Heizbetriebstemperatur wesentlich verringert werden, und das System wird insgesamt in einem energiesparend optimierten Zustand betrieben.In the conventional setting of heating systems with "simple" hydraulic balancing according to DIN 18380 is intended to adjust the individual heating surfaces of the rooms at the flow of presettable thermostatic valves accordingly. In the method according to the invention with the thermo-dynamic-hydraulic adjustment is provided that now takes place at respective lockable return screw o. The like. Adjusting elements on the return of the heating surfaces adjusting and balancing. With this surprisingly efficient attitude principle - and the comparatively few components for controlling the "disarmed" Heat cycle - is achieved that the heating surfaces now - in the flow direction from top to bottom - have a uniform thermal image. It has been shown that with the setting according to the invention, the temperature difference between flow and return to the radiator in the range of 1 ° C to 4 ° C can be maintained. After this dynamic adjustment of the entire heating system in all rooms, the heating operating temperature can be substantially reduced, and the system is operated in total in an energy-saving optimized state.

Ausgehend von einer vorteilhaft geringeren Heizbetriebstemperatur ist nunmehr eine indirekte Berechnung der jeweils optimalen Raumtemperatur möglich, wobei bei bestehenden Anlagen die jeweils im Raum installierte Heizfläche zu beachten ist. Auch eine variable Regelung im Bereich der jeweiligen Heizflächen, beispielsweise am hier ggf. vorhandenen Thermostatventil, kann nach dem thermo-dynamischen Abgleich so realisiert werden, dass bei optimal durchströmten Heizkörpern die Energiebilanz positiv beeinflusst bleibt.Starting from an advantageously lower heating operating temperature, an indirect calculation of the respectively optimum room temperature is now possible, whereby in the case of existing systems the heating surface installed in each room must be taken into account. Also, a variable control in the area of the respective heating surfaces, for example on here possibly existing thermostatic valve, can be realized after the thermo-dynamic balance, that with optimally flowed radiators, the energy balance remains positively affected.

Es hat sich gezeigt, dass die Thermostatventile an den vorhandenen Heizflächen weitgehend entbehrlich sind, da diese für eine Raumtemperaturregelung nur noch zu einem geringen Teil benötigt werden. Bei der Planung neuer Heizungsanlagen kann ggf. auf diese Ventile verzichtet werden.It has been shown that the thermostatic valves on the existing heating surfaces are largely unnecessary, since they are needed for a room temperature control only to a small extent. When planning new heating systems, it may be necessary to dispense with these valves.

Eine vorteilhafte Ausführung der Systemsteuerung sieht vor, dass die thermo-dynamisch-hydraulisch abgeglichene Heizungsanlage mit einem witterungsgesteuerten System ausgerüstet wird. Ein an dieses System speziell angepasster und damit verbessert wirksamer Regler ist so konzipiert, dass die Heiztemperatur, die Heizzeiten, die Warmwasseraufbereitung, die Heizzonen und die Heizpumpe mit effizienter Software eines Rechners gesteuert werden können. Es hat sich gezeigt, dass die bei üblichen Brennern vorgesehenen Ein- und Ausschalt-Intervalle von ca. 8 mal pro Stunde mit dem erfindungsgemäß eingestellten System auf 1 mal pro Stunde reduziert werden können.An advantageous embodiment of the system control provides that the thermo-dynamically-hydraulically balanced heating system with a weather-controlled System is equipped. A specially adapted to this system and thus improved effective controller is designed so that the heating temperature, the heating times, the hot water treatment, the heating zones and the heating pump can be controlled with efficient software of a computer. It has been shown that the on and off intervals provided in conventional burners of about 8 times per hour can be reduced to once per hour with the system set according to the invention.

Bei konventionellen Heizungssystemen wird die im Heizkessel erzeugte Nutzwärme zu einem großen Prozentsatz auf Vorhaltung erzeugt und dabei mit Hilfe von Thermostatventilen im Bereich der Heizkörper eine Regelung erreicht. Bei diesen Systemen wird entsprechend zu viel Wärme produziert, so dass mit der erfindungsgemäßen Regelung eines permanenten Systemumlaufs im Heizkreislauf - der thermo-dynamisch hydraulisch abgeglichen ist - eine erhebliche Energieeinsparung erreicht wird. Dazu ist in das System eine witterungsgesteuerte Heizungsregelung mit objekt- und kundenspezifischer Software integriert.In conventional heating systems, the useful heat generated in the boiler is generated to a large extent to provision and thereby achieved by means of thermostatic valves in the radiator area a scheme. In these systems, too much heat is produced accordingly, so that with the inventive control of a permanent system circulation in the heating circuit - which is hydraulically balanced thermo-dynamically - a significant energy saving is achieved. For this purpose, a weather-controlled heating control with object- and customer-specific software is integrated into the system.

Es hat sich gezeigt, dass der das gesamte Leitungsnetz von Vor- und Rücklauf einschließende Heizkreislauf nach dem thermo-dynamisch-hydraulischen Abgleich ohne Wärmevorhaltung mit einem optimal auslastbaren Heizkessel betrieben werden kann. Dazu ist der Heizkessel auf das Summenvolumen der in den Heizkörpern und den Leitungen bewegten Flüssigkeitsströme kontrolliert eingemessen.It has been shown that the heating circuit enclosing the entire pipeline network of flow and return can be operated after the thermo-dynamic-hydraulic balancing without heat management with an optimally loadable boiler. For this purpose, the boiler is metered in a controlled manner to the total volume of the liquid flows moved in the radiators and the lines.

Es ist prinzipiell davon auszugehen, dass zur vorbeschriebenen Verfahrensführung die Thermostatventile im Bereich der Heizkörper - wie bereits erwähnt - nicht in jedem Falle notwendig sind. Für eine energieoptimale Einstellung hat es sich gezeigt, dass jeweilige, im Bereich der Heizkörper vorgesehene Thermostatventile zumindest in der Einstellphase auf im Wesentlichen gleiche Vorlauftemperaturen eingestellt werden sollten. Damit werden auf direktem Wege die gleichmäßigen Temperaturverteilungen im Bereich der Heizkörper erreicht.It is in principle to be assumed that the above-described procedure, the thermostatic valves in the radiator - as already mentioned - are not necessary in every case. For an energy-optimized setting, it has been found that respective, provided in the radiator thermostatic valves should be set at least in the adjustment phase to substantially the same flow temperatures. Thus, the uniform temperature distributions in the radiator area are achieved directly.

Die individuellen Einstellungen der beim nachfolgenden erfindungsgemäßen Abgleich benutzten Absperrungen im Bereich der jeweiligen Heizkörper sind darauf gerichtet, dass nunmehr bei dem thermo-dynamisch-hydraulisch abgeglichenen System eine Minimierung des Temperaturgefälles in jedem der Heizkörper erreicht und nachgewiesen wird. In den Phasen jeweiliger Einstellungen der Systemkomponenten ist deshalb vorgesehen, dass an jedem Heizkörper mittels eines Temperatur-Messgerätes eine gleichmäßige Verteilung der Abstrahltemperatur kontrolliert wird und ggf. entsprechende Anpassungen des Durchflussvolumens erfolgen. Insbesondere ist vorgesehen, dass an jedem Heizkörper mittels eines Temperatur-Messgerätes der Wärmeverteilungszustand geprüft werden kann.The individual settings of the shutters used in the subsequent adjustment according to the invention in the region of the respective radiators are directed to the fact that a minimization of the temperature gradient in each of the radiators is now achieved and proven in the thermo-dynamically-hydraulically balanced system. In the phases of respective settings of the system components is therefore provided that a uniform distribution of the radiation temperature is controlled at each radiator by means of a temperature measuring device and if appropriate adjustments to the flow volume. In particular, it is provided that the heat distribution state can be checked on each radiator by means of a temperature measuring device.

Ausgehend von dieser Prüfsituation ist vorgesehen, dass der Temperatur- und/oder Wärmeverteilungszustand nach einer Aufheizphase der Heizungsanlage geprüft wird und danach eine Abstimmung auf die Heizleistung des Heizkessels so erfolgt, dass dieser in jedem, beispielsweise von der Außentemperatur abhängenden Betriebsfalle in einem optimalen Bereich arbeitet.Based on this test situation, it is provided that the temperature and / or heat distribution state after a heating phase of the heating system is checked and then a vote on the heating power of the boiler so that it works in each, for example, depending on the outside temperature operating trap in an optimal range ,

Ausgehend von der vorbeschriebenen Vorgehensweise bei der thermo-dynamisch-hydraulischen Ausführung des Abgleichs und einer dabei vorgesehenen Volumenstrommessung kann die Genauigkeit der individuellen Einstellungen des Systems zusätzlich im Nahbereich der Rücklauf-Pumpe über eine thermische Lastgangmessung kontrolliert werden. Aus einem Vergleich der Messwerte aus Volumenstrommessung und thermischer Lastgangmessung mit dem erfassbaren Verbrauch an Primärenergie des Heizkessels kann die Effizienz der Heizungsanlage insgesamt mit geringem Aufwand berechnet und auf optimale Verbrauchswerte eingestellt werden.Based on the above-described procedure in the thermo-dynamic-hydraulic design of the balance and thereby provided volume flow measurement, the accuracy of the individual settings of the system can be additionally controlled in the vicinity of the return pump via a thermal load measurement. From a comparison of the measured values from volume flow measurement and thermal load cycle measurement with the detectable consumption of primary energy of the boiler, the overall efficiency of the heating system can be calculated with little effort and set to optimum consumption values.

Bei Anlagen mit konventioneller Heizungstechnik werden bereits Auswertungen zur Ermittlung des Anlagenwirkungsgrades vorgenommen. Dazu sind jedoch die entsprechenden Messwerte über den Zeitbereich eines Jahres oder zumindest einer definierten Heizperiode zu erfassen. Es ist bekannt, dass diese Auswertungen aufwändig und ungenau sind. Bei der erfindungsgemäßen Einstellung der Anlage kann der Wirkungsgrad verbessert dadurch bestimmt werden, dass die Lastgangmessung genauere Werte liefert. Ähnlich einer TÜV-Prüfung im Bereich eines Wärmeerzeugers kann nunmehr sofort nach Umbau oder Neuinstallation einer Heizungsanlage der Anlagenwirkungsgrad bestimmt bzw. gemessen werden. Damit ist die Beobachtung einer gesamten Heizungsperiode nicht mehr erforderlich. Eine erfolgreiche Lastgang-Wirkungsgrad-Erfassung kann sofort nach dem Umbau des Heizungsnetzes dann durchgeführt werden, wenn jeweilige Raumtemperaturen von weniger als 20°C, insbesondere 16°C, als Ausgangswert bereitgestellt sind.In systems with conventional heating technology, evaluations are already carried out to determine the system efficiency. For this, however, the corresponding measured values are to be recorded over the time range of one year or at least one defined heating period. It is known that these evaluations are complex and inaccurate. In the setting of the system according to the invention, the efficiency can be improved by determining that the load profile measurement delivers more accurate values. Similar to a TÜV test in the area of a heat generator can now be determined or measured immediately after conversion or reinstallation of a heating system, the system efficiency. Thus, the observation of an entire heating period is no longer necessary. Successful load profile efficiency detection can be carried out immediately after the heating network has been converted if respective room temperatures of less than 20 ° C., in particular 16 ° C., are provided as the initial value.

Aus ersten Tests des erfindungsgemäßen Einstellsystems mit thermo-dynamisch-hydraulischer Vorbereitung ergibt sich eine wesentliche Verbesserung des Normnutzungsgrades einer den Heizkessel einschließenden Heizungsanlage. Dabei wurden in dem neu konzipierten System erstmals Werte des Anlagen-Normnutzungsgrades von 90 % bis 95 % erreicht.From initial tests of the adjustment system according to the invention with thermo-dynamic-hydraulic preparation results in a significant improvement in the standard efficiency of a boiler including the heating system. For the first time, values of the standard system efficiency of 90% to 95% were achieved in the newly designed system.

Weitere Einzelheiten und vorteilhafte Ausgestaltungen ergeben sich aus der nachfolgenden Beschreibung und den Zeichnungen. Darin sind mehrere Ausführungsbeispiele des erfindungsgemäßen Verfahrens zum optimalen Einmessen von Heizungsanlagen gezeigt. In der Zeichnung zeigen:

Fig. 1
eine Prinzipdarstellung einer Heizungsanlage mit erfindungsgemäß vorgesehenen Mess- und Regelpunkten für einen thermo-dynamisch-hydraulischen Abgleich,
Fig. 2
eine Einzeldarstellung eines die Temperaturverteilung zeigenden Heizkörpers in der Heizphase,
Fig. 3
eine Einzeldarstellung ähnlich Fig. 2 in der Abkühlphase,
Fig. 4
eine Darstellung des Regelverhaltens einer konventionellen Anlage,
Fig. 5
eine Darstellung des Regelverhaltens der erfindungsgemäßen Einrichtung,
Fig. 6
eine Prinzipdarstellung ähnlich Fig. 1 mit einem erweiterten Bereich mit Heizkörpern, und
Fig. 7
eine erweiterte Heizungsanlage mit mehreren Heizkreisen, die mit dem erfindungsgemäßen System zum thermo-dynamisch-hydraulischen Abgleich verbunden sind.
Further details and advantageous embodiments will become apparent from the following description and the drawings. Therein are shown several embodiments of the method according to the invention for the optimal calibration of heating systems. In the drawing show:
Fig. 1
a schematic diagram of a heating system with inventively provided measuring and control points for a thermo-dynamic-hydraulic balancing,
Fig. 2
a detailed representation of a temperature distribution facing radiator in the heating phase,
Fig. 3
a single representation similar Fig. 2 in the cooling phase,
Fig. 4
a representation of the control behavior of a conventional system,
Fig. 5
a representation of the control behavior of the device according to the invention,
Fig. 6
a schematic representation similar Fig. 1 with an extended area with radiators, and
Fig. 7
an advanced heating system with multiple heating circuits, which are connected to the inventive system for thermo-dynamic-hydraulic balancing.

In Fig. 1 ist ein ausschnittsweise dargestelltes Heizungssystem mit einer Heizungsanlage 1 dargestellt, die beispielsweise in einem Eigenheim o. dgl. Gebäude installiert sein kann. Eine derartige vorhandene oder zu planende Heizungsanlage 1 ist mit einem verzweigte Vorlaufleitungen 2 aufweisenden Leitungsnetz 3 versehen, mit dem das Heizwasser jeweiligen Heizkörpern HK zugeführt wird. Aus diesen Heizkörpern HK kann das abgekühlte Heizwasser über einstellbare Absperrungen AV zu einem Heizkessel 4 zurückgeführt werden (Pfeil R).In Fig. 1 is a fragmentary heating system shown with a heating system 1, which may be installed, for example, in a home o. The like. Building. Such existing or to be planned heating system 1 is provided with a branched flow lines 2 having line network 3, with which the heating water respective radiators HK is supplied. From these radiators HK the cooled heating water can be returned via adjustable barriers AV to a boiler 4 (arrow R).

Bei dem erfindungsgemäßen Konzept zur Einstellung des Heizungssystems auf einen energiesparenden Funktionsmodus ist vorgesehen, dass sämtliche der einen Heizkreislauf bildenden Heizkörper HK entsprechend ihrem einer jeweiligen Wärmekapazität zugeordneten Aufnahmevolumen eingestellt werden. Dazu reicht es aus, dass nunmehr nur die jeweiligen individuellen Absperrungen AV im Rücklauf 5 der Heizkörper HK genutzt werden. In einem ersten Verfahrensschritt werden dabei die Heizkörper HK nacheinander auf einen konstanten Zulauf von Heizwasser eingestellt, wobei die jeweiligen Zulaufventile TV zu 100 % geöffnet sind.In the inventive concept for setting the heating system to an energy-saving mode of operation is provided that all of a heating circuit forming radiator HK be set according to their respective heat capacity associated receiving volume. For this it is sufficient that now only the respective individual barriers AV in the return 5 of the radiator HK be used. In a first method step, the radiators HK are set successively to a constant inflow of heating water, the respective inlet valves TV are open to 100%.

Ausgehend von dieser ersten Einstellphase kann das erforderliche Summenvolumen des Heizwassers über eine Volumenstrommessung VM im Rücklauf 5 des Leitungsnetzes 3 kontrolliert werden (bei 7, Fig. 1). Mit dieser Prüfung wird sichergestellt, dass die an jeweilige erforderliche Heizleistungen im Bereich des Heizkessels 4 anzupassenden Anlagen für sämtliche der Heizkörper HK eine optimale Einstellung zur Abgabe aufweisen.Starting from this first adjustment phase, the required total volume of the heating water can be controlled via a volume flow measurement VM in the return line 5 of the pipeline network 3 (at 7, FIG. Fig. 1 ). With this test, it is ensured that the systems to be adapted to the respective required heat outputs in the area of the boiler 4 have an optimum setting for delivery for all of the radiators HK.

Aus der Prinzipdarstellung gemäß Fig. 1 wird auch deutlich, dass der das Leitungsnetz 3 einschließende Heizkreislauf der Anlage 1 ohne Wärmevorhaltung auf einen optimal auslastbaren Heizkessel 4 gerichtet ist. Dazu wird der Heizkessel 4 auf das Summenvolumen der Anzahl der Heizkörper HK kontrolliert eingemessen. Dabei ist das erfindungsgemäße System so ausgelegt, dass ein thermo-dynamisch-hydraulischer Abgleich an der Heizungsanlage 1 realisiert werden kann und damit die Effizienz nachweislich gesteigert wird.From the schematic diagram according to Fig. 1 It is also clear that the heating system of the system 1 enclosing the network 3 is directed to an optimally loadable boiler 4 without heat management. For this purpose, the boiler 4 is measured in a controlled manner to the total volume of the number of radiators HK. In this case, the system according to the invention is designed so that a thermo-dynamic-hydraulic balancing can be realized on the heating system 1 and thus the efficiency is demonstrably increased.

Mit dem thermo-dynamisch-hydraulischen Abgleichsverfahren wird eine langzeitige Regelung des Systems vorbereitet, wobei die Leistung des zumindest einen Heizungskessels o. dgl. Wärmelieferanten auf das Wasservolumen des aus Rohrleitungen und Heizkörpern bestehenden Summenvolumens eingestellt wird und danach in Abhängigkeit von den Leitungsdurchmessern eine optimale Fließgeschwindigkeit eingeregelt werden kann.With the thermo-dynamic-hydraulic balancing method, a long-term control of the system is prepared, the performance of at least one heating boiler o. The like. Heat Suppliers is adjusted to the volume of water from the existing volume of pipes and radiators volume and then depending on the pipe diameters an optimal flow rate can be adjusted.

Die Prinzipdarstellung gemäß Fig. 1 zeigt, dass der das Leitungsnetz 3 einschließende Heizkreislauf ohne Wärmevorhaltung mit einem optimal auslastbaren Heizkessel 4 betrieben wird. Dieser Heizkessel 4 ist dabei auf das im System vorhandene Summenvolumen der Heizkörper HK und der entsprechenden Leitungen in Vorlauf 2 und Rücklauf 5 eingemessen. Im Bereich der dargestellten drei Heizkörper HK sind die jeweiligen Thermostatventile TV in einer vollständigen Öffnungsstellung gezeigt, so dass zumindest in der erfindungsgemäßen thermo-dynamisch-hydraulischen Einstellphase des Abgleichs in sämtlichen Heizkörpern HK die im Wesentlichen gleiche Vorlauftemperatur wirksam ist. Zur angepassten Rücklaufregelung ist im Bereich des Heizkörpers HK1 (50 Liter/h) beispielhaft ein Öffnungszustand bei AV von 7 % gezeigt, der Heizkörper HK2 (30 Liter/h) weist eine Offenstellung von 4 % auf, und der Heizkörper HK3 (100 Liter/h) ist beispielhaft auf 13 % gestellt.The schematic diagram according to Fig. 1 shows that the heating network including the network 3 is operated without heat management with an optimally loadable boiler 4. This boiler 4 is calibrated to the existing in the system total volume of the radiator HK and the corresponding lines in flow 2 and return 5. In the area of the illustrated three radiators HK the respective thermostatic valves TV are shown in a complete open position, so that at least in the inventive thermo-dynamic-hydraulic adjustment phase of the adjustment in all radiators HK, the substantially same flow temperature is effective. For the adapted return control, an opening state at AV of 7% is shown in the area of the radiator HK1 (50 liters / h), the radiator HK2 (30 liters / h) has an open position of 4%, and the radiator HK3 (100 liters / h). h) is exemplified to 13%.

Für diese optimale Durchführung einer thermo-dynamisch-hydraulischen Einmessung ist das System 1 mit einer einen konstanten hydraulischen Druck P - zumindest während der Einstellphase der Absperrungen AV - gewährleistenden Pumpe 6 versehen. In zweckmäßiger Ausführung ist diese Pumpe 6 im Bereich des das Rücklaufwasser aufnehmenden Rücklaufs 5 in das System integriert.For this optimal implementation of a thermodynamic-hydraulic calibration, the system 1 is provided with a pump 6 which ensures a constant hydraulic pressure P, at least during the adjustment phase of the barriers AV. In an expedient embodiment, this pump 6 is integrated into the system in the region of the return water receiving return 5.

In Fig. 2 und Fig. 3 ist die Wirkung der individuellen Einstellung der Absperrung AV beispielhaft im Bereich eines Heizkörpers HK4 dargestellt. Aus der Darstellung gemäß Fig. 2 wird die Temperaturverteilung in der Heizphase deutlich, wobei ausgehend von der oberen Zuführleitung 2 über den gesamten Heizkörper HK eine weitgehend gleichmäßige Temperaturverteilung erreicht wird und zum Rücklauf 5 hin eine Minimierung des Temperaturgefälles angestrebt wird. Ausgehend von dieser mit einer Förderleistung von beispielsweise 70 L/Stunde erfolgende Aufheizphase ist das System im Bereich der Absperrung AV durch die vorherige thermo-dynamisch-hydraulische Abgleicheinstellung so in den Volumenstrom integriert, dass nunmehr mit verminderter Förderleistung im Bereich der Pumpe 6 eine lang anhaltende Abkühlphase (hier: Förderleistung 35 L/Stunde) erreicht wird.In Fig. 2 and Fig. 3 the effect of the individual adjustment of the barrier AV is exemplified in the area of a radiator HK4. From the illustration according to Fig. 2 the temperature distribution in the heating phase is clear, starting from the upper supply line 2 over the entire radiator HK a substantially uniform temperature distribution is achieved and the return flow. 5 towards a minimization of the temperature gradient is sought. Based on this taking place with a flow rate of, for example, 70 L / hour heating phase, the system is integrated in the area of the barrier AV by the previous thermo-dynamic-hydraulic balance adjustment in the flow that now with reduced flow in the pump 6 a long-lasting Cooling phase (here: flow rate 35 L / hour) is achieved.

Es hat sich gezeigt, dass diese thermo-dynamische Optimierung der Heizkörper HK durch deren individuelle Anpassung im Bereich der Absperrung AV an jedem der Heizkörper HK mittels eines Temperatur-Messgerätes geprüft werden kann. Die in Fig. 2 und Fig. 3 beispielhaft dargestellten Wärmeverteilungszustände können dabei mit einer Wärmebildkamera o. dgl. Gerät erfasst werden. Daraus ergibt sich, dass nach einer Aufheizphase der Heizungsanlage 1 der Temperatur- und/oder Wärmeverteilungszustand auf die jeweilige Heizleistung des Heizkessels 4 fachgemäß auf einen effizienten Energieeinsatz abgestimmt ist.It has been shown that this thermo-dynamic optimization of the radiator HK can be tested by means of a temperature measuring device through their individual adaptation in the area of the barrier AV at each of the radiators HK. In the Fig. 2 and Fig. 3 Heat distribution states illustrated by way of example can be detected with a thermal imaging camera or the like. It follows that after a heating phase of the heating system 1, the temperature and / or heat distribution state is tuned to the respective heating capacity of the boiler 4 professionally to an efficient use of energy.

Eine weitere vorteilhafte Ausgestaltung der Verfahrensführung sieht vor, dass die individuellen Einstellungen des Systems zusätzlich zur bereits beschriebenen Volumenstrommessung (bei 7, Fig. 1, Ultraschallmesspunkte) auch im Nahbereich der Rücklauf-Pumpe 6 über eine thermische Lastgangmessung 8 kontrolliert werden kann. Damit wird es möglich, dass aus einem Vergleich der Messwerte aus Volumenstrommessung 7 und thermischer Lastgangmessung 8 mit den Verbrauchswerten an Primärenergie im Bereich des Gaszählers 9 die Effizienz der Heizungsanlage 1 insgesamt berechnet werden kann.A further advantageous embodiment of the process control provides that the individual settings of the system in addition to the volume flow measurement already described (at 7, Fig. 1 , Ultrasonic measuring points) can be controlled in the vicinity of the return pump 6 via a thermal load measurement 8. This makes it possible that the efficiency of the heating installation 1 can be calculated in total from a comparison of the measured values from volumetric flow measurement 7 and thermal load measurement 8 with the consumption values of primary energy in the area of the gas meter 9.

Ausgehend von Fig. 2 und Fig. 3 wird deutlich, dass das erfindungsgemäße System - im Unterschied zur bekannten Verfahrensführung der Heiztechnik - nicht mehr von einem vergleichsweise großen Temperaturunterschied in den Heizflächen HK ausgeht. Vielmehr ist vorgesehen, dass bei dem thermo-dynamisch-hydraulisch abgeglichenen System in den Heizflächen HK ein sehr kleiner Temperaturunterschied, beispielsweise im Bereich von 1°C bis 5°C, vorzugsweise 2°C bis 4°C (Fig. 2), realisiert wird. Das Einstellverfahren ist darauf gerichtet, dass die Heizflächentemperatur in der Aufheizphase (Fig. 2) und die Heizflächentemperatur in der Abkühlphase (Fig. 3) in einem zeitlichen Verhältnis optimiert werden. Damit kann erreicht werden, dass die gesamte Heizungsanlage 1 mit einem Temperaturunterschied - von aufgeheizter Heizfläche zu abgekühlter Heizfläche - so arbeitet, dass entsprechend den jeweiligen Außentemperaturen beispielsweise nur mit einem Unterschied von 15°C gearbeitet wird. Daraus ergibt sich dann, dass in der Heizphase das Summenvolumen der Anlage 1 nur einmal pro Stunde aufgeheizt werden muss. Diese effiziente Verfahrensführung nach optimalem thermo-dynamisch-hydraulischen Abgleich wird insbesondere dann erreicht, wenn ca. 80 % der zu beheizenden Heizflächen auf Soll-Temperatur des jeweiligen Raumes eingestellt sind.Starting from Fig. 2 and Fig. 3 It is clear that the system according to the invention - in contrast to the known process control of heating technology - no longer assumes a comparatively large temperature difference in the heating surfaces HK. Rather, it is provided that in the thermo-dynamically hydraulically balanced system in the heating surfaces HK a very small temperature difference, for example in the range of 1 ° C to 5 ° C, preferably 2 ° C to 4 ° C ( Fig. 2 ), is realized. The adjustment procedure is aimed at ensuring that the heating surface temperature in the heating phase ( Fig. 2 ) and the heating surface temperature in the cooling phase ( Fig. 3 ) are optimized in a temporal relationship. This can be achieved that the entire heating system 1 with a temperature difference - from heated heating surface to cooled heating surface - works so that, for example, only works with a difference of 15 ° C according to the respective outdoor temperatures. It then follows that in the heating phase, the total volume of the system 1 must be heated only once per hour. This efficient process control after optimal thermo-dynamic-hydraulic balancing is achieved in particular when about 80% of the heating surfaces to be heated are set to the target temperature of the respective room.

In Fig. 4 und Fig. 5 ist eine Gegenüberstellung der bei konventionellen Heizungssystemen erfassbaren Schaltphasen (Fig. 4) und der nach dem erfindungsgemäßen thermo-dynamisch-hydraulischen Abgleich (Fig. 5) zu erfassenden Schaltzeiten ersichtlich. Aus der Schaltkurve 10 (für eine Vorlauftemperatur von 80°C) und der Kurve 11 (Rücklauftemperatur 60°C) wird deutlich, dass bei einer Außentemperatur von beispielsweise -20°C innerhalb einer Stunde bis zu sechs Schaltzyklen erforderlich sind, um die Raumtemperatur zu halten. Dies ist auch bei höheren Außentemperaturen festzustellen, wobei auch mehr als zehn Schaltzyklen erforderlich sein können. Dazu im Vergleich zeigt die Darstellung in Fig. 5, dass nach thermo-dynamisch-hydraulischer Einstellung der Anlage ausgehend von einer ca. 30 Minuten andauernden Aufheizphase nur noch ein Schaltvorgang pro Stunde erforderlich ist (Temperaturverläufe 10' und 11').In 4 and FIG. 5 is a comparison of the detectable in conventional heating systems switching phases ( Fig. 4 ) and according to the inventive thermo-dynamic-hydraulic balancing ( Fig. 5 ) to be detected switching times visible. From the switching curve 10 (for a flow temperature of 80 ° C) and the curve 11 (return temperature 60 ° C) it becomes clear that at an outside temperature from, for example, -20 ° C within one hour to six switching cycles are required to maintain the room temperature. This is also noticeable at higher ambient temperatures, whereby more than ten switching cycles may be required. In comparison, the illustration shows in Fig. 5 in that, after a thermo-dynamic-hydraulic adjustment of the system, starting from an approximately 30-minute heating phase, only one switching operation per hour is required (temperature profiles 10 'and 11').

In Fig. 6 ist eine insgesamt mit 1' bezeichnete Heizungsanlage dargestellt, die mit dem erfindungsgemäßen System an die vorhandene Installation von sechszehn Heizkörpern HK angepasst ist. Eine optimale Durchführung und Kontrolle des thermo-dynamisch-hydraulischen Abgleichs ist an den Heizkörpern HK durch eine Schallmessung vorgesehen. In Fig. 6 ist gezeigt, dass unter Nutzung jeweiliger Messpunkte M16 eine zusätzliche Schallmessung zur Kontrolle des thermo-dynamisch-hydraulischen Abgleichs durchgeführt wird. Dabei ist gezeigt, dass durch Anwendung einer hier als lastabhängig regelbares Aggregat ausgebildeten Heizpumpe 6' (mit einem Druckunterschied von P=150 bis 500 mbar) eine effiziente Regelung für die Komponenten im Bereich des Heizkessels 4 erreicht wird. Bei dieser Konstruktion ist vor der Pumpe 6' im Rücklauf 4 ein zusätzlicher Absperrschieber 13 (bzw. 13' im Vorlauf 2) vorgesehen, so dass das System im Bedarfsfall vollständig vom Heizkessel 4 getrennt werden kann. Das System arbeitet zusätzlich mit zumindest einem Vorlauffühler 14, einem Außenfühler 15 und einem Raumfühler 17 zusammen. Zur Steuerung dieser Komponenten im Bereich der lastabhängig geregelten Heizpumpe 6' und des Vorlauffühlers 14 ist der insgesamt mit 16 bezeichnete, computergesteuerte Heizungsregler vorgesehen. Dieser Heizungs-Regler 16 regelt vorzugsweise den tatsächlichen, stündlichen und/oder objektbezogenen Wärmebedarf. Auch hier ist keine Wärmevorhaltung (siehe Fig. 1) vorgesehen bzw. erforderlich.In Fig. 6 is a generally designated 1 'heating system shown, which is adapted with the system according to the invention to the existing installation of sixteen radiators HK. An optimal implementation and control of the thermo-dynamic-hydraulic balancing is provided on the radiators HK by a sound measurement. In Fig. 6 It is shown that an additional sound measurement is carried out by using respective measuring points M16 for controlling the thermo-dynamic-hydraulic balancing. It is shown that an efficient control of the components in the area of the boiler 4 is achieved by using a here as a load-dependent controllable unit formed heating pump 6 '(with a pressure difference of P = 150 to 500 mbar). In this construction, an additional gate valve 13 (or 13 'in the flow 2) is provided before the pump 6' in the return line 4, so that the system can be completely separated from the boiler 4 in case of need. The system additionally works together with at least one flow sensor 14, an outdoor sensor 15 and a room sensor 17. To control these components in the range of the load-dependent controlled heating pump 6 'and the flow sensor 14 is the total designated 16, computer controlled heating controller provided. This heating controller 16 preferably regulates the actual, hourly and / or object-related heat requirement. Again, there is no heat management (see Fig. 1 ) provided or required.

Bei diesem System erfolgt im Bereich des Heizkessels 4 eine Abgasmessung (bei 18), wobei beispielsweise eine Abgastemperatur von 65°C eingestellt wird. Jeweilige Messfühler M13 und M14 sind bei dem thermo-dynamisch-hydraulischen Abgleich zur Temperatur-Differenzmessung vorgesehen. Nach dem Einmessen der Anlage 1' können dann die beiden Fühler M13 und M14 entfernt werden. Der bereits in Fig. 1 ersichtliche Messpunkt 7' im Bereich des Schallmessgerätes VM wird bei dieser Anlage 1' in Zusammenhang mit den jeweiligen Schallmessungen bei M16 an den Heizkörpern HK zur Durchflussmessung genutzt. Es hat sich gezeigt, dass diese Einrichtung 1' - trotz der Komplexität und Größe mit einer Vielzahl von Heizkörpern HK - unter normalen Temperaturbedingungen - beispielsweise auch im Winterbetrieb - nur zehn bis dreißig Mal pro Tag eine Schaltoperation ausführen muss.In this system, an exhaust gas measurement takes place in the region of the boiler 4 (at 18), for example, an exhaust gas temperature of 65 ° C is set. Respective sensors M13 and M14 are provided for thermo-dynamic-hydraulic balancing for differential temperature measurement. After calibrating the system 1 'then the two sensors M13 and M14 can be removed. The already in Fig. 1 apparent measuring point 7 'in the area of the sound measuring device VM is used in this system 1' in connection with the respective sound measurements at M16 on the radiators HK for flow measurement. It has been found that this device 1 '- despite the complexity and size with a variety of radiators HK - under normal temperature conditions - for example, even in winter - only ten to thirty times a day must perform a switching operation.

In Fig. 7 ist eine weitere Anwendung des erfindungsgemäßen Systems im Bereich einer Großanlage (beispielsweise: Schul- oder Bürogebäude) dargestellt, wobei nach Durchführung des erfindungsgemäßen Verfahrens zum thermo-dynamisch-hydraulischen Abgleich jeweilige Wärmeleistungen von mehr als 100 KW bis 8000 KW steuerbar sind. Auch bei diesem System kann nur ein einziger Wärmeerzeuger in Form des Heizkessels 4 eingesetzt werden. Denkbar ist dabei, dass auch eine kaskadenartige Anordnung mehrerer Heizkessel verwendet wird (nicht dargestellt).In Fig. 7 is another application of the system according to the invention in the field of large-scale system (for example: school or office building) shown, wherein after performing the method according to the invention for thermo-dynamic-hydraulic balancing respective heat outputs of more than 100 KW to 8000 KW are controllable. Also in this system, only a single heat generator in the form of the boiler 4 can be used. It is conceivable that a cascade-like arrangement of several boilers is used (not shown).

Hier wird vorteilhaft am Rücklauf 5 eine Hocheffizienz-Heizungspumpe 6' installiert, wobei diese Pumpe 6' zusätzlich mit einem Frequenzumrichter 21 zu versehen ist. Im Stand der Technik werden druckgeregelte Heizpumpen eingesetzt, die auf eine - erfindungsgemäß nicht vorgesehene - Druckdifferenzmessung am Vorlauf angewiesen sind. Die erfindungsgemäße Volumenstrommessung (bei 20) ist darauf gerichtet, dass bei sich verändernden Heizzonen Z' über den Regler 16 eine Anpassung des Fördervolumens der mit gleichem Druck arbeitenden Pumpe 6' erfolgt. Hinzu kommt, dass über den Regler 16 die Heizzeit im Bereich des Heizkessels 4 entsprechend der Zonenveränderung Z' angepasst wird.Here, a high-efficiency heating pump 6 'is advantageously installed at the return line 5, wherein this pump 6' is additionally to be provided with a frequency converter 21. In the prior art pressure-controlled heating pumps are used, which are dependent on a - not inventively provided - pressure difference measurement at the flow. The volumetric flow measurement according to the invention (at 20) is directed to that, with changing heating zones Z 'via the controller 16, an adaptation of the delivery volume of the pump 6' operating at the same pressure takes place. In addition, via the controller 16, the heating time in the area of the boiler 4 is adjusted according to the zone change Z '.

Für die hier vorgesehene thermo-dynamisch-hydraulische Abgleichseinstellung ist bei VM das bekannte Ultraschallmessgerät 7" vorgesehen, das zeitweise an der Rücklaufleitung 5 ansetzbar ist. Im Bereich der Messpunkte 22 und 23 (entsprechend ΔT bei 8, Fig. 1) erfolgt eine Temperatur-Differenzmessung, und zur vorgesehenen Druckmessung P werden die Messpunkte 24 und 25 genutzt. Die bereits beschriebene Wärmeerzeuger-Leistungsmessung erfolgt im Bereich des Messpunktes 18'. Der Volumenstromzähler 20 wirkt über den Regler 16 mit dem Frequenzumrichter 21 der Pumpe 6' zusammen, so dass entsprechende Leistungssteigerungen oder -absenkungen des Heizkessels 4 optimal realisierbar sind.For the thermo-dynamic-hydraulic balancing provided here, the known ultrasonic measuring device 7 "is provided in VM, which can be temporarily attached to the return line 5. In the area of the measuring points 22 and 23 (corresponding to ΔT at 8, Fig. 1 ), a temperature differential measurement is carried out, and for the intended pressure measurement P, the measuring points 24 and 25 are used. The heat generator power measurement already described takes place in the region of the measuring point 18 '. The volume flow counter 20 cooperates via the controller 16 with the frequency converter 21 of the pump 6 ', so that corresponding increases or decreases in the power of the boiler 4 can be optimally realized.

Das erfindungsgemäße System nutzt die an sich bekannte Lastgangmessung 8 für eine schnelle Erfassung des Anlagenwirkungsgrades. Diese Messung kann sofort nach dem Umbau einer Anlage durchgeführt werden, so dass der sich bei konventionellen Anlagen über einen Jahresverlauf oder eine Heizperiode erstreckende Messzyklus wesentlich verkürzt ist und eine sofortige Bewertung für den Anlagennutzer vorliegt. Die Messung ist insbesondere dann erfolgreich, wenn die Raumtemperaturen weniger als 20°C, vorzugsweise weniger als 16°C, betragen.The system according to the invention uses the known load profile measurement 8 for rapid detection of the system efficiency. This measurement can be carried out immediately after the conversion of a plant, so that it extends in conventional systems over a year or a heating season Measurement cycle is significantly shortened and an immediate assessment for the plant user is present. The measurement is particularly successful when the room temperatures are less than 20 ° C, preferably less than 16 ° C.

Claims (10)

Verfahren zur Einstellung von energiesparenden Heizungssystemen, wobei in vorhandenen Heizungsanlagen (1) mit einem verzweigte Vorlaufleitungen (2) aufweisenden Leitungsnetz (3) das Heizwasser jeweiligen Heizkörpern (HK) zugeführt und aus diesen über einstellbare Absperrungen (AV) das abgekühlte Heizwasser in einer Rücklaufleitung (5) zu einem Heizkessel (4) zurückgeführt wird, dadurch gekennzeichnet, dass sämtliche der einen Heizkreislauf bildenden Heizkörper (HK) entsprechend ihrem einer jeweiligen Wärmekapazität zugeordneten Aufnahmevolumen nur mittels jeweiliger individueller Absperrungen (AV) im Rücklauf (5) nacheinander auf einen konstanten Zulauf von Heizwasser eingestellt werden, danach diese an jeweils erforderliche Heizleistungen der Räume anpassbaren Einstellungen zumindest über eine ein Summenvolumen erfassende Volumenstrommessung (VM) im Rücklauf (5) des Leitungsnetzes (3) kontrolliert werden und damit ein thermo-dynamisch-hydraulischer Abgleich an der Heizungsanlage (1) realisiert wird, derart, dass eine höhere Wärmekapazität aus den Heizflächen erzielt und dabei die erforderliche Betriebsheiztemperatur abgesenkt wird.Method for setting energy-saving heating systems, wherein in existing heating systems (1) with a branched flow lines (2) having line network (3) the heating water respective radiators (HK) supplied and from these via adjustable barriers (AV) the cooled heating water in a return line ( 5) is returned to a boiler (4), characterized in that all of a heating circuit forming radiator (HK) according to their respective heat capacity associated receiving volume only by means of respective individual barriers (AV) in the return (5) successively to a constant inflow of Heating water to be set, then these at each required heating capacities of the rooms adjustable settings at least over a total volume volumetric flow measurement (VM) in the return (5) of the network (3) are controlled and thus a thermo-dynamic-hydraulic balancing the Heizu ngsanlage (1) is realized, such that a higher heat capacity is achieved from the heating surfaces while the required Betriebsheiztemperatur is lowered. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der das Leitungsnetz einschließende Heizkreislauf ohne Wärmevorhaltung mit einem optimal auslastbaren Heizkessel (4) betrieben wird, derart, dass der Heizkessel (4) auf das Summenvolumen kontrolliert eingemessen wird.A method according to claim 1, characterized in that the heating network enclosing the conduit network is operated without heat management with an optimally loadable boiler (4), such that the boiler (4) is measured in a controlled manner to the total volume. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jeweilige im Bereich der Heizkörper (HK) vorgesehene Thermostatventile (TV) zumindest in der Einstellphase auf im Wesentlichen gleiche Vorlauftemperaturen eingestellt werden.Method according to Claim 1 or 2, characterized in that respective thermostatic valves (TV) provided in the region of the radiators (HK) are adjusted to substantially the same flow temperatures at least in the setting phase. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das System mit einer einen konstanten hydraulischen Druck (P) während der Einstellphase der Absperrungen (AV) gewährleistenden und das Heizwasser im Rücklauf (5) aufnehmenden Pumpe (6, 6') betrieben wird.Method according to one of claims 1 to 3, characterized in that the system with a constant hydraulic pressure (P) during the adjustment phase of the barriers (AV) ensuring and the heating water in the return (5) receiving pump (6, 6 ') operated becomes. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die individuelle Einstellung der Absperrung (AV) im Bereich der jeweiligen Heizkörper (HK) auf eine Minimierung des Temperaturgefälles in jedem der Heizkörper (HK) gerichtet wird und dieses an jedem Heizkörper (HK) mittels eines Temperatur-Messgerätes kontrolliert wird.Method according to one of claims 1 to 4, characterized in that the individual adjustment of the barrier (AV) in the region of the respective radiator (HK) is directed to a minimization of the temperature gradient in each of the radiator (HK) and this at each radiator (HK ) is controlled by means of a temperature measuring device. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass an jedem Heizkörper (HK) mittels eines Temperatur-Messgerätes der Wärmeverteilungszustand geprüft wird.A method according to claim 5, characterized in that at each radiator (HK) by means of a temperature measuring device, the heat distribution state is checked. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Temperatur- und/oder Wärmeverteilungszustand nach einer Aufheizphase der Heizungsanlage (1) auf die Heizleistung des Heizkessels (4) abgestimmt wird.A method according to claim 5 or 6, characterized in that the temperature and / or heat distribution state after a heating phase of the heating system (1) is adjusted to the heating capacity of the boiler (4). Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die individuellen Einstellungen des Systems zusätzlich zur Volumenstrommessung (VM) im Nahbereich der Rücklauf-Pumpe (6, 6') über eine thermische Lastgangmessung (8) kontrolliert werden.Method according to one of claims 1 to 7, characterized in that the individual settings of the system in addition to the volume flow measurement (VM) in the vicinity of the return pump (6, 6 ') via a thermal load measurement (8) are controlled. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass aus einem Vergleich der Messwerte aus Volumenstrommessung (VM) und thermischer Lastgangmessung (8) mit dem Verbrauch an Primärenergie (9) des Heizkessels (4) die Effizienz der Heizungsanlage (1) berechnet wird.Method according to one of claims 1 to 8, characterized in that from a comparison of the measured values from volume flow measurement (VM) and thermal load measurement (8) with the consumption of primary energy (9) of the boiler (4), the efficiency of the heating system (1) calculated becomes. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Anlagenwirkungsgrad unmittelbar nach der Einstellung sämtlicher Komponenten mittels der Lastgangmessung (8) bestimmbar und dabei die Raumtemperatur auf weniger als 20°C, vorzugsweise weniger als 16°C, abgesenkt ist.A method according to claim 9, characterized in that the system efficiency immediately after the adjustment of all components by means of the load profile measurement (8) determinable and while the room temperature is lowered to less than 20 ° C, preferably less than 16 ° C.
EP16001360.3A 2015-07-06 2016-06-16 Method for configuring energy-saving heating systems Active EP3115702B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015008758.4A DE102015008758A1 (en) 2015-07-06 2015-07-06 Method for setting energy-saving heating systems

Publications (2)

Publication Number Publication Date
EP3115702A1 true EP3115702A1 (en) 2017-01-11
EP3115702B1 EP3115702B1 (en) 2020-04-22

Family

ID=56134068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001360.3A Active EP3115702B1 (en) 2015-07-06 2016-06-16 Method for configuring energy-saving heating systems

Country Status (2)

Country Link
EP (1) EP3115702B1 (en)
DE (1) DE102015008758A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023223A (en) * 2019-12-30 2020-04-17 南京国之鑫科技有限公司 Heating heat supply network intelligent hydraulic balance system based on cloud and return water temperature
CN114623490A (en) * 2022-04-21 2022-06-14 河南理工大学 Portable static hydraulic balance intelligent adjusting device and implementation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111911996A (en) * 2020-06-19 2020-11-10 国电南瑞科技股份有限公司 Heat supply system control method and device based on mobile terminal thermal comfort feedback

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419941A1 (en) 1994-06-08 1995-12-14 Stiebel Eltron Gmbh & Co Kg Control of gas-fired space heating system
DE4211914C2 (en) 1992-04-09 1996-04-18 Walter Sander Heizungstechnik Method for controlling a heating system with a data processing unit
DE19645135A1 (en) 1995-10-30 1997-05-07 Vaillant Joh Gmbh & Co Method of controlling heating assembly
FR2795491A1 (en) * 1999-06-24 2000-12-29 Gefen Lycee Maximilien Perret Method of achieving equilibrium in a heating or air-conditioning installation which circulates water to radiators at different rates
DE102010052677A1 (en) * 2010-11-25 2012-05-31 Volker Stahl Method for hydraulic calibration of hot water heating system, involves adjusting hot water flow needed for heating chamber of radiators by chamber temperature controller, which controls room temperature by changing flow rate
DE202013000593U1 (en) * 2013-01-22 2014-04-23 Gebr. Kemper Gmbh + Co. Kg Metallwerke Control valve for radiators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211914C2 (en) 1992-04-09 1996-04-18 Walter Sander Heizungstechnik Method for controlling a heating system with a data processing unit
DE4419941A1 (en) 1994-06-08 1995-12-14 Stiebel Eltron Gmbh & Co Kg Control of gas-fired space heating system
DE19645135A1 (en) 1995-10-30 1997-05-07 Vaillant Joh Gmbh & Co Method of controlling heating assembly
FR2795491A1 (en) * 1999-06-24 2000-12-29 Gefen Lycee Maximilien Perret Method of achieving equilibrium in a heating or air-conditioning installation which circulates water to radiators at different rates
DE102010052677A1 (en) * 2010-11-25 2012-05-31 Volker Stahl Method for hydraulic calibration of hot water heating system, involves adjusting hot water flow needed for heating chamber of radiators by chamber temperature controller, which controls room temperature by changing flow rate
DE202013000593U1 (en) * 2013-01-22 2014-04-23 Gebr. Kemper Gmbh + Co. Kg Metallwerke Control valve for radiators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023223A (en) * 2019-12-30 2020-04-17 南京国之鑫科技有限公司 Heating heat supply network intelligent hydraulic balance system based on cloud and return water temperature
CN111023223B (en) * 2019-12-30 2021-09-07 南京国之鑫科技有限公司 Heating heat supply network intelligent hydraulic balance system based on cloud and return water temperature
CN114623490A (en) * 2022-04-21 2022-06-14 河南理工大学 Portable static hydraulic balance intelligent adjusting device and implementation method thereof
CN114623490B (en) * 2022-04-21 2023-09-22 河南理工大学 Portable static hydraulic balance intelligent adjusting device and implementation method thereof

Also Published As

Publication number Publication date
DE102015008758A1 (en) 2017-01-12
EP3115702B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
DE102009004319A1 (en) Method for performing hydraulic balance of heat exchanger of circulatory composite system in building, involves detecting return temperature at heat exchanger and controlling volumetric flow rate by heat exchanger as function of temperature
EP3593055B1 (en) Method for operating a heating installation
EP2965161B1 (en) Method and system for the temperature control of components
EP3147574B1 (en) Locking valve for a heating system and heating system
EP3115702A1 (en) Method for configuring energy-saving heating systems
EP1074795B1 (en) Method for hydraulic calibrating a heating installation
EP1158250B1 (en) Apparatus for detecting the heat output of a radiator and regulating the room temperature
DE102012109483A1 (en) System for controlling power supply system, used in ship, has control device to determine manipulated variable as energy inefficient manipulated variable, if control objective is not achieved with manipulated variable
EP1235131B1 (en) Room temperature control
DE202009003093U1 (en) Heating system and device for distributing a heating medium
DE3620929A1 (en) Method and device for controlling at least one heating installation
EP3513128B1 (en) Method for heating or cooling rooms in a building
DE102005036882A1 (en) Hot water preparation system, has controller connected with temperature sensor in hot water circuit and with control valve, and designed, such that valve is controlled within shortest time depending on values at temperature sensor
DE10259279B3 (en) System for supplying hot and cold water comprises a secondary flow pipe opening into an injector as a driving flow pipe and a mixing pipe opening into the injector as a suction flow pipe, a regulating valve, and a control valve
EP1207355A2 (en) Central heat- and/or cooling installation for at least one building
EP3217101A1 (en) Method for hydraulic decoupling of multiple fluid circuits connected in parallel
DE102012101850A1 (en) Method for controlling heating system of building, involves providing flow rate of heat carrier in generator circuit as input variable by which control variable of power of generator is affected, where generator controls heating power
EP1953460B1 (en) Solar control
DE102010052677A1 (en) Method for hydraulic calibration of hot water heating system, involves adjusting hot water flow needed for heating chamber of radiators by chamber temperature controller, which controls room temperature by changing flow rate
WO2020228921A1 (en) Method for operating a temperature-controlled circulation system and temperature-controlled circulation system
EP2908058B1 (en) Device for extracting heat from a heat carrying medium
DE102014008319B4 (en) Room temperature control for a surface heating
DE102010010088A1 (en) Method for reducing flow and return temperature and maximizing temperature difference between flow and return paths in heating circuits in heating system for residential building, involves guiding flow line to heating circuit in position
DE202008018291U1 (en) Rules of underfloor heating / cooling
WO2024083998A1 (en) Central heating system and method for operating and/or controlling and/or regulating a central heating system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170426

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190611

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009608

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260624

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009608

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1260624

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230426

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240614

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240624

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240620

Year of fee payment: 9