EP3114130A1 - Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon - Google Patents

Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon

Info

Publication number
EP3114130A1
EP3114130A1 EP15758472.3A EP15758472A EP3114130A1 EP 3114130 A1 EP3114130 A1 EP 3114130A1 EP 15758472 A EP15758472 A EP 15758472A EP 3114130 A1 EP3114130 A1 EP 3114130A1
Authority
EP
European Patent Office
Prior art keywords
group
borate
tetrakis
ring
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15758472.3A
Other languages
English (en)
French (fr)
Other versions
EP3114130A4 (de
Inventor
John R. Hagadorn
Patrick J. PALAFOX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Publication of EP3114130A1 publication Critical patent/EP3114130A1/de
Publication of EP3114130A4 publication Critical patent/EP3114130A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the invention relates to pyridyldiamido transition metal complexes and intermediates and processes for use in making such pyridyldiamido complexes.
  • the transition metal complexes may be used as catalysts for alkene polymerization processes.
  • Pyridyl amines have been used to prepare Group 4 complexes which are useful transition metal components in the polymerization of alkenes, see for example US 2002/0142912, US 6,900,321, and US 6, 103,657, where the ligands have been used in complexes in which the ligands are coordinated in a bidentate fashion to the transition metal atom.
  • WO 2005/095469 shows catalyst compounds that use tridentate ligands through two nitrogen atoms (one amido and one pyridyl) and one oxygen atom.
  • US 2004/0220050A1 and WO 2007/067965 disclose complexes in which the ligand is coordinated in a tridentate fashion through two nitrogen (one amido and one pyridyl) and one carbon (aryl anion) donors.
  • a key step in the activation of these complexes is the insertion of an alkene into the metal-aryl bond of the catalyst precursor (Froese, R. D. J. et al, J. Am. Chem. Soc. 2007, 129, 7831-7840) to form an active catalyst that has both a five-membered and a seven- membered chelate ring.
  • WO 2010/037059 discloses pyridine containing amines for use in pharmaceutical applications.
  • US 2012/0071616 Al discloses pyridyldiamide catalyst complexes incorporating an ligand having a neutral pyridine donor and two anionic amide donors that are substituted with a phenyl group and a 2,6-diisopropylphenyl group, but not hydrocarbyl groups having 1 to 20 carbon atoms and having an H/C ratio of 1.66 or higher where the carbon atom bonded to the nitrogen is not a tertiary carbon atom.
  • Additional references of interest include: Vaughan, A; Davis, D. S.; Hagadorn, J. R. in Comprehensive Polymer Science, Vol. 3, Chapter 20, "Industrial catalysts for alkene polymerization;” Gibson, V. C; Spitzmesser, S. K. Chem. Rev. 2003, 103, 283; Britovsek, G.
  • WO/0238628 A2 note ligands bind to the metal center with a NNC donor set); and Guerin,
  • NNN-donor set does not contain a 7-membered chelate ring or dihydroindenyl- and/or tetrahydronaphthalenyl- groups).
  • the performance may be varied with respect to the amount of polymer produced per amount of catalyst (generally referred to as the "activity") under the prevailing polymerization conditions; the molecular weight and molecular weight distribution achieved at a given temperature; and the placement of higher alpha-olefins in terms of the degree of stereoregular placement.
  • This invention relates to novel transition metal complexes having tridentate NNN or PNN ligands. This invention also relates to pyridyldiamido and related transition metal complexes represented by the formula (A), (B), (I), or (II):
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 1 1, or 12 metal
  • Q 1 is a group that links R 2 and Z by a three atom bridge with the central of the three atoms being a group 15 or 16 element that preferably forms a dative bond to M preferably represented by the formula: -G 1 -G 2 -G 3 - where G 2 is a group 15 or 16 atom, G 1 and G 3 are each a group 14, 15 or 16 atom, where G 1 , G 2 and G 3 , or G 1 and G 2 , or G 1 and G 3 , or G 2 and G 3 may form a singular or multi ring system, and if any of G 1 and/or G 3 is a group 14 atom then R 30 and R 3 1 are bound to such G atom(s), and if any of G 1 , G 2 and/or G 3 is a group 15 atom then R 30 is bound to such G atom(s), where each R 30 and R 31 is, independently, hydrogen or a to C ⁇ QO hydrocarbyl group;
  • Q 2 is NR 17 or PR 17 , where R 17 is selected from hydrocarbyl groups containing 1 to 20 carbon atoms having a H/C ratio of 1.66 or more where the carbon atom bonded to the N or P is not a tertiary carbon atom, and where R 17 may be unsubstituted or substituted;
  • R 1 is selected from the group consisting of hydrocarbyls, and substituted hydrocarbyls, or silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • R 14 and R 15 are independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, and wherein adjacent R 14 and R 14 groups may be joined to form an aromatic or saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings, p is 1 or 2, and q is 1 or 2;
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3 or 4;
  • n + w is no greater than 4.
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings; and
  • R 6 ; R 7 R 8 , R 9 , R 15 *, and R 16 * are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 *, and/or R 16 * & R 15 *, and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings.
  • This invention also relates to a process to make polyolefin, such as polypropylene, using the catalysts described herein, where the catalyst has an activity of 200 kg polymer/mmol catalyst/h or more.
  • This invention further relates to process to make the above complex, process to make intermediates for the above complex and methods to polymerize olefins using the above complex, where the complex has an activity of 200 kg polymer/mmol catalyst/h or more.
  • Figure 1 is a plot showing the catalyst activity in kg polymer/mmol catalyst/h for catalysts formed by activation of complexes A, B, C and D.
  • transition metal complexes The term complex is used to describe molecules in which an ancillary ligand is coordinated to a central transition metal atom.
  • the ligand is bulky and stably bonded to the transition metal so as to maintain its influence during use of the catalyst, such as polymerization.
  • the ligand may be coordinated to the transition metal by covalent bond and/or electron donation coordination or intermediate bonds.
  • the transition metal complexes are generally subjected to activation to perform their polymerization or oligomerization function using an activator which is believed to create a cation as a result of the removal of an anionic group, often referred to as a leaving group, from the transition metal.
  • room temperature is 23°C.
  • Me is methyl
  • Et is ethyl
  • Bu is butyl
  • t-Bu and 3 ⁇ 4u are tertiary butyl
  • Pr is propyl
  • iPr and ⁇ are isopropyl
  • Cy is cyclohexyl
  • THF also referred to as thf
  • Bn is benzyl
  • OAc is acetate
  • Ph is phenyl.
  • substituted generally means that a hydrogen of the substituted species has been replaced with a different atom or group of atoms.
  • methyl-cyclopentadiene is cyclopentadiene that has been substituted with a methyl group.
  • picric acid can be described as phenol that has been substituted with three nitro groups, or, alternatively, as benzene that has been substituted with one hydroxy and three nitro groups.
  • hydrocarbyl radical is defined to be C C ⁇ o radicals, that may be linear, branched, or cyclic, and when cyclic, aromatic or non-aromatic.
  • a substituted hydrocarbyl radical is a hydrocarbyl radical in which at least one hydrogen atom of the hydrocarbyl radical has been substituted with at least one functional group such as NR * 2 , OR*, SeR*, TeR*, PR* 2 , AsR* 2 , SbR* 2 , SR*, BR* 2 , SiR* 3 , GeR* 3 , SnR*3, PbR*3, and the like, or where at least one heteroatom has been inserted within a hydrocarbyl ring.
  • at least one hydrogen atom of the hydrocarbyl radical has been substituted with at least one functional group such as NR * 2 , OR*, SeR*, TeR*, PR* 2 , AsR* 2 , SbR* 2 , SR*, BR* 2 , SiR* 3 , GeR* 3 , SnR*3, PbR*3, and the like, or where at least one heteroatom has been inserted within a hydrocarbyl ring.
  • catalyst system is defined to mean a complex/activator pair.
  • Catalyst system means the unactivated catalyst complex (precatalyst) together with an activator and, optionally, a co-activator.
  • it means the activated complex and the activator or other charge-balancing moiety.
  • the transition metal compound may be neutral as in a precatalyst, or a charged species with a counter ion as in an activated catalyst system.
  • catalyst precursor is also often referred to as catalyst precursor, precatalyst, catalyst, catalyst compound, transition metal compound, or transition metal complex. These words are used interchangeably.
  • Activator and cocatalyst are also used interchangeably.
  • a scavenger is a compound that is typically added to facilitate polymerization by scavenging impurities. Some scavengers may also act as activators and may be referred to as co-activators. A co-activator, that is not a scavenger, may also be used in conjunction with an activator in order to form an active catalyst. In some embodiments, a co-activator can be pre-mixed with the transition metal compound to form an alkylated transition metal compound.
  • Noncoordinating anion is defined to mean an anion either that does not coordinate to the catalyst metal cation or that does coordinate to the metal cation, but only weakly.
  • NCA is also defined to include multicomponent NCA-containing activators, such as ⁇ , ⁇ -dimethylanilinium tetrakis(pentafluorophenyl)borate, that contain an acidic cationic group and the non-coordinating anion.
  • NCA is also defined to include neutral Lewis acids, such as tris(pentafluorophenyl)boron, that can react with a catalyst to form an activated species by abstraction of an anionic group.
  • NCA coordinates weakly enough that a neutral Lewis base, such as an olefinically or acetylenically unsaturated monomer can displace it from the catalyst center.
  • a neutral Lewis base such as an olefinically or acetylenically unsaturated monomer can displace it from the catalyst center.
  • Any metal or metalloid that can form a compatible, weakly coordinating complex may be used or contained in the noncoordinating anion. Suitable metals include, but are not limited to, aluminum, gold, and platinum. Suitable metalloids include, but are not limited to, boron, aluminum, phosphorus, and silicon.
  • a stoichiometric activator can be either neutral or ionic. The terms ionic activator, and stoichiometric ionic activator can be used interchangeably.
  • neutral stoichiometric activator and Lewis acid activator can be used interchangeably.
  • non-coordinating anion includes neutral stoichiometric activators, ionic stoichiometric activators, ionic activators, and Lewis acid activators.
  • an “olefin,” alternatively referred to as “alkene,” is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • alkene is a linear, branched, or cyclic compound of carbon and hydrogen having at least one double bond.
  • a copolymer when a copolymer is said to have an "ethylene" content of 35 wt% to 55 wt%, it is understood that the mer unit in the copolymer is derived from ethylene in the polymerization reaction and said derived units are present at 35 wt% to 55 wt%, based upon the weight of the copolymer.
  • a "polymer” has two or more of the same or different mer units.
  • a “homopolymer” is a polymer having mer units that are the same.
  • a “copolymer” is a polymer having two or more mer units that are different from each other.
  • a “terpolymer” is a polymer having three mer units that are different from each other.
  • oligomer is typically a polymer having a low molecular weight (such an Mn of less than 25,000 g/mol, preferably less than 2,500 g/mol) or a low number of mer units (such as 75 mer units or less).
  • ethylene polymer or "ethylene copolymer” is a polymer or copolymer comprising at least 50 mol% ethylene derived units
  • a "propylene polymer” or “propylene copolymer” is a polymer or copolymer comprising at least 50 mol% propylene derived units, and so on.
  • ethylene shall be considered an a-olefin.
  • a higher a-olefin or higher alkyl is defined to be an a-olefin having 4 or more carbon atoms.
  • melting points are DSC second melt.
  • a "ring carbon atom” is a carbon atom that is part of a cyclic ring structure. By this definition, a benzyl group has six ring carbon atoms and para-methylstyrene also has six ring carbon atoms.
  • aryl or "aryl group” means a six carbon aromatic ring and the substituted variants thereof, including but not limited to, phenyl, 2-methyl-phenyl, xylyl, 4-bromo-xylyl.
  • heteroaryl means an aryl group where a ring carbon atom (or two or thee ring carbon atoms) has been replaced with a heteroatom, preferably N, O, or S.
  • ring atom means an atom that is part of a cyclic ring structure.
  • a benzyl group has six ring atoms and tetrahydrofuran has 5 ring atoms.
  • a heterocyclic ring is a ring having a heteroatom in the ring structure as opposed to a heteroatom substituted ring where a hydrogen on a ring atom is replaced with a heteroatom.
  • tetrahydrofuran is a heterocyclic ring and 4-N,N-dimethylamino-phenyl is a heteroatom substituted ring.
  • aromatic refers to benzene and derivatives of benzene, which are cyclic hydrocarbyl groups having six carbons in a ring with three alternating double bonds.
  • aromatic also refers to cyclopentadienes and pseudoaromatic heterocycles which are heterocyclic substituents that have similar properties and structures (nearly planar) to aromatic heterocyclic ligands, but are not by definition aromatic; likewise, the term aromatic also refers to substituted aromatics.
  • continuous means a system that operates without interruption or cessation.
  • a continuous process to produce a polymer would be one where the reactants are continually introduced into one or more reactors and polymer product is continually withdrawn.
  • a solution polymerization means a polymerization process in which the polymer is dissolved in a liquid polymerization medium, such as an inert solvent or monomer(s) or their blends.
  • a solution polymerization is typically homogeneous.
  • a homogeneous polymerization is one where the polymer product is dissolved in the polymerization medium.
  • Such systems are preferably not turbid as described in J. Vladimir Oliveira, C. Dariva and J. C. Pinto, Ind. Eng, Chem. Res. 29, 2000, 4627.
  • a bulk polymerization means a polymerization process in which the monomers and/or comonomers being polymerized are used as a solvent or diluent using little or no inert solvent as a solvent or diluent. A small faction of inert solvent might be used as a carrier for catalyst and scavenger.
  • a bulk polymerization system contains less than 25 wt% of inert solvent or diluent, preferably less than 10 wt%, preferably less than 1 wt%, preferably 0 wt%.
  • multimodal when used to describe a polymer or polymer composition, means “multimodal molecular weight distribution,” which is understood to mean that the Gel Permeation Chromatography (GPC) trace, plotted as Absorbance versus Retention Time (seconds), has more than one peak or inflection points.
  • An “inflection point” is that point where the second derivative of the curve changes in sign (e.g., from negative to positive or vice versa).
  • a polyolefin composition that includes a first lower molecular weight polymer component (such as a polymer having an Mw of 100,000 g/mol) and a second higher molecular weight polymer component (such as a polymer having an Mw of 300,000 g/mol) is considered to be a "bimodal" polyolefin composition.
  • the Mw's of the polymer or polymer composition differ by at least 10%, relative to each other, preferably by at least 20%, preferably at least 50%, preferably by at least 100%, preferably by a least 200%.
  • the Mw's of the polymer or polymer composition differ by 10% to 10,000%, relative to each other, preferably by 20% to 1000%, preferably 50% to 500%, preferably by at least 100% to 400%, preferably 200% to 300%.
  • catalyst activity is a measure of how many kilograms of polymer (P) are produced using a polymerization catalyst comprising W mmol of transition metal (M), over a period of time of T hours; and may be expressed by the following formula: P/(T x W).
  • a pyridyldiamido transition metal complex (optionally for use in alkene polymerization) represented by the formula (A) or (B):
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 metal, preferably group 4;
  • Q 1 is a group that links R 2 and Z by a three atom bridge with the central of the three atoms being a group 15 or 16 element that preferably forms a dative bond to M, preferably represented by the formula: -G 1 -G 2 -G 3 - where G 2 is a group 15 or 16 atom (preferably N, S, P, or O, preferably N or P, preferably N), G 1 and G 3 are each a group 14, 15, or 16 atom, preferably C, Si, N, S, P, or O (preferably C), where G 1 , G 2 and G 3 , or G 1 and G 2 , or G 1 and G 3 , or G 2 and G 3 may form a singular or multi ring system, and if either of G 1 and/or G 3 is a group 14 atom (such as C or Si) then R 30 and R 31 are bound to such G atom(s), and if G 1 , G 2 , and/or G 3 is a group 15 atom (such as N or P
  • Q 2 is NR 17 or PR 17 , where R 17 is selected from hydrocarbyl groups containing 1 to 20 carbon atoms (preferably from 2 to 16, preferably from 4 to 14, preferably from 5 to 12, preferably from 6 to 10) having a H/C ratio of 1.66 or more (alternately 1.70 or more, alternately 1.80 or more, alternately 1.83 or more) where the carbon atom bonded to the N or P is not a tertiary carbon atom, and where R 17 may be unsubstituted or substituted with between one to five substituents that include F, CI, Br, I, CF 3 , ⁇ (3 ⁇ 4, alkoxy, dialkylamino, silyl, siloxy, aryloxy, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and
  • R 1 is selected from the group consisting of hydrocarbyls, and substituted hydrocarbyls, or silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • Z is -(R 1 4)pC-C(R 15 ) q -, where R 14 and R 15 are independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, and wherein adjacent R 14 and R 15 groups may be joined to form an aromatic or saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings, p is 1 or 2, q is 1 or 2; L is an anionic leaving group, where the L groups may be the same or different and any two L groups may be linked to form a dianionic leaving group;
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is no greater than 4.
  • the H/C ratio is the ratio of number of hydrogen atoms to number of carbon atoms.
  • a methyl group ( ⁇ 3 ) has an H/C ratio of 3
  • a cyclohexyl (C ⁇ H ⁇ ) group has an H/C ratio of 1.83
  • a phenyl group has an H/C ratio of 0.83
  • a tetradecylphenyl group (C20H33) has an H/C ratio of 1.65.
  • a pyridyldiamido transition metal complex optionally for use in alkene polymerization represented by the formula (I) or (II):
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 metal, preferably group 4;
  • each R 1 is independently selected from the group consisting of hydrocarbyls, and substituted hydrocarbyls, or silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings; R 17 is selected from hydrocarbyl groups containing 1 to 20 carbon atoms (preferably from 2 to 16, preferably from 4 to 14, preferably from 5 to 12, preferably from 6 to 10) having a H/C ratio of 1.66
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings;
  • R 6 ; R 7 R 8 , R 9 , R 15 *, and R 16 * are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 *, and/or R 16 * & R 15 *, and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings;
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3, or 4;
  • n + w is not greater than 4.
  • Q 1 is a substituted or unsubstituted pyridine group linked to Z and R 2 through the carbons in the 2 and 6 position (of the pyridine ring, with the nitrogen being the 1 position).
  • G 1 and G 3 are each independently selected from C, N, O, and S, preferably G 1 and G 3 with their respective R groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, and the like, preferably G 1 and G 3 with their respective R groups are formed into a ring structure, preferably pyridine.
  • R 17 is selected from hydrocarbyl groups containing 1 to 20 carbon atoms (preferably from 2 to 16, preferably from 4 to 14, preferably from 5 to 12, preferably from 6 to 10) having a H/C ratio of 1.66 or more (alternately 1.70 or more, alternately 1.80 or more, alternately 1.83 or more) where the carbon atom bonded to the N (or P in (3 ⁇ 4 of formula A or B) is a primary or secondary carbon atom, preferably secondary carbon atom.
  • R 17 is non-aromatic.
  • R 17 may be selected from cyclic (preferably non- aromatic) hydrocarbyls, cyclic (preferably non-aromatic) substituted hydrocarbyls, and cyclic (preferably non-aromatic) silyl groups.
  • R 17 is a saturated C5 to cyclic group or a substituted non aromatic C 5 to cyclic group, preferably a cyclic, saturated alkyl group having 3 to 20 carbons, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclododecyl, or an isomer thereof.
  • R 17 is selected from methyl, primary alkyls, branched primary alkyls, secondary alkyls, and cycloalkyls, such as methyl, ethyl, propyl, n- butyl, cyclohexyl, cyclooctyl, and cyclododecyl, provided that the carbon atom bonded to the N or P is a primary or secondary carbon atom, preferably secondary carbon atom.
  • R 17 is an n-alkyl group or a cyclic aliphatic hydrocarbon group.
  • Q 2 is NR 17 .
  • Q 3 is a three carbon linker (CH-CH-CH) that forms a pyridine ring.
  • Q 3 is two atom linker containing one carbon and one group 15 or 16 element such that the linker forms a five- membered heterocycle, such as an imidazole or a substituted imidazole.
  • the R groups above and other R groups mentioned hereafter contain from 1 to 30, preferably 2 to 20 carbon atoms, especially from 6 to 20 carbon atoms.
  • M is Ti, Zr, or Hf
  • E is carbon, with Zr or Hf based complexes being especially preferred.
  • R 1 is selected from phenyl groups that are variously substituted with between zero to five substituents that include F, CI, Br, I, CF 3 , N0 2 , alkoxy, dialkylamino, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof.
  • substituents include F, CI, Br, I, CF 3 , N0 2 , alkoxy, dialkylamino, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof.
  • L may be selected from halide, alkyl, aryl, alkoxy, amido, hydrido, phenoxy, hydroxy, silyl, allyl, alkenyl, and alkynyl.
  • the selection of the leaving groups depends on the synthesis route adopted for arriving at the complex and may be changed by additional reactions to suit the later activation method in polymerization.
  • a preferred L is alkyl when using non-coordinating anions such as N,N- dimethylanilinium tetrakis(pentafluorophenyl)-borate or tris(pentafluorophenyl)borane.
  • two L groups may be linked to form a dianionic leaving group, for example oxalate.
  • each L' is independently selected from the group consisting of ethers, thio-ethers, amines, nitriles, imines, pyridines, and phosphines, preferably ethers.
  • Preferred R 2 groups and preferred R 10 groups include CH 2 , CMe2, SiMe2, SiEt 2 , SiPr 2 , SiBu 2 , SiPh 2 , Si(aryl) 2 , Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), and CH(2- isopropylphenyl).
  • R 2 and R 10 groups includes: (CH 2 & CH(Ph)), (CMe 2 and CH(Ph)), (CH 2 and CH(aryl)), (CH 2 and CH(alkyl)), where alkyl is a Q to C40 alkyl group (preferably Q to C 2 Q alkyl, preferably one or more of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and isomers thereof), aryl is a C 5 to C40 aryl group (preferably a to C 2 Q aryl group, preferably phenyl or substituted phenyl, preferably phenyl, 2-isopropylphenyl, or 2-tertbutylphenyl).
  • alkyl is a Q to C40 alkyl group (preferably Q to C 2 Q alkyl, preferably one or more of
  • R 2 is CH 2 or CMe 2 and R 10 is selected from the group consisting of CH(Ph), CH(aryl), and CH(alkyl), where alkyl is a C j to C40 alkyl group (preferably Q to C 2 Q alkyl, preferably one or more of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and isomers thereof), aryl is a C5 to C40 aryl group (preferably a to C 2 Q aryl group, preferably phenyl or substituted phenyl, preferably phenyl, 2-isopropylphenyl, or 2-tertbutylphenyl).
  • alkyl is a C j to C40 alkyl group (preferably Q to C 2 Q alkyl, preferably one or more of methyl, ethyl, prop
  • E is preferably carbon
  • R 2 is represented by the formula:
  • R 12 " is hydrogen, alkyl, aryl, or halogen
  • R 13 " is hydrogen, alkyl, aryl, or halogen, preferably R 12 " and R 13 " are the same.
  • R 6 ; R 7 R 8 , R 9 R 15 *, and R 16 * may be, independently, selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl.
  • R 1 , R 3 , R 4 , and R 5 may each contain from 1 to 30 carbon atoms, preferably R 1 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 15 , and R 16 each contain from 1 to than 30 carbon atoms.
  • E is carbon and R 1 is selected from phenyl groups that are substituted with 0, 1, 2, 3, 4, or 5 substituents selected from the group consisting of F, CI, Br, I, CF 3 , ⁇ (3 ⁇ 4, alkoxy, dialkylamino, hydrocarbyl, and substituted hydrocarbyls groups with from one to ten carbons.
  • the pyridyldiamido transition metal complex is represented by the Formula (A) or (B) above, and M is a Group 4 metal preferably Zr or Hf, preferably Hf.
  • the pyridyldiamido transition metal complex is represented by the Formula (I) or (II) above, and M is a Group 4 metal preferably Zr or Hf, preferably Hf.
  • the pyridyldiamido transition metal complex is represented by the Formula (A), (B), (I) or (II) above, and in the R 10 group R 12 and R 13 are H and R 1 is a 2,6-disubstitutedphenyl group containing between 12 to 20 (preferably 12 to 15) carbons, M is a Group 4 metal (preferably Zr or Hf, preferably Hf), E is carbon, in the R 2 group R 12 is H and R 13 is preferably a hydrocarbon group containing between 6 and 20 carbons, and R 17 is a group containing 1 to 20 carbons and having a H/C ratio that is 1.66 or higher.
  • the pyridyldiamido transition metal complex is represented by the Formula (A), (B), (I) or (II) above, and both R 12 and R 13 in the R 2 group are a Q to C ⁇ QO alkyl group (preferably a C ⁇ to C 4 Q alkyl group, preferably C ⁇ to C30 alkyl group, alternately a Q to alkyl group, alternately a to alkyl group, alternately methyl, ethyl, propyl, butyl, pentyl hexyl, octyl, nonyl, decyl, or an isomer thereof).
  • a Q to C ⁇ QO alkyl group preferably a C ⁇ to C 4 Q alkyl group, preferably C ⁇ to C30 alkyl group, alternately a Q to alkyl group, alternately a to alkyl group, alternately methyl, ethyl, propyl, butyl, pentyl hexyl, o
  • the pyridyldiamido transition metal complex is represented by the Formula (A), (B), (I) or (II) above, and in the R 2 group R 12 is H, R 13 is a group containing between 1 to 100 (preferably 6 to 40, preferably 6 to 30) carbons, M is a Group 4 metal (preferably Zr or Hf, preferably Hf), E is carbon, in the R 10 group R 12 is the same as R 13 and is preferably hydrogen or methyl; and R 17 is a group containing 1 to 20 carbons and having a H/C ratio that is 1.66 or higher.
  • the pyridyl diamine ligands described herein are generally prepared in multiple steps.
  • One step involves the preparation of an amine-containing "linker" group where the linker is typically a boronic acid ester of an aryl methyl amine or substituted amine.
  • This amine- containing linker may be prepared from an aryl-methyl boronic ester in two steps, the first of which involves the conversion of the methyl group to a halo-methyl group by free radical halogenation in unreactive solvents (e.g., CC1 4 , benzene).
  • the second step then involves reaction of this halo-methyl group containing species with an amine or protected amine or deprotonated protected amine to yield an amine-containing linker.
  • This amine-containing linker is then coupled with a suitable pyridine containing species, such as 6-bromo-2- pyridinecarboxaldehyde.
  • a suitable pyridine containing species such as 6-bromo-2- pyridinecarboxaldehyde.
  • This coupling step typically uses a metal catalyst (e.g., Pd(PPh 3 ) 4 ) in less than 5 mol% loading.
  • Pd(PPh 3 ) 4 e.g., Pd(PPh 3 ) 4
  • the new derivative which can be described as amine-linker-pyridine-aldehyde, is then reacted with a second amine to produce the imine derivative amine-linker-pyridine-imine in a condensation reaction. This can then be reduced to the pyridyl diamine ligand by reaction with a suitable aryl anion, alkyl anion, or hydride source.
  • This reaction is generally performed in etherial solvents at temperatures between -100°C and 50°C when aryllithium or alkyllithium reagents are employed. This reaction is generally performed in methanol at reflux when sodium cyanoborohydride is employed.
  • the pyridyldiamine product and intermediate amine-containing products can be purified either using column chromatography or by procedures involving the formation of acid salts, such as that described in example 2 in US 8,212,047 B2.
  • pyridyl diamide metal complexes from pyridyl diamines may be accomplished using typical protonolysis and methylation reactions.
  • the protonolysis reaction the pyridyl diamine is reacted with a suitable metal reactant to produce a pyridyldiamide metal complex.
  • a suitable metal reactant will feature a basic leaving group that will accept a proton from the pyridiyl diamine and then generally depart and be removed from the product.
  • Pyridyldiamide (PDA) metal complexes that contain metal-chloride groups, such as the PDA dichloride complex in Scheme 1 below, can be alkylated by reaction with an appropriate organometallic reagent. Suitable reagents include organolithium and organomagnesium, and Grignard reagents. The alkylations are generally performed in etherial or hydrocarbon solvents or solvent mixtures at temperatures typically ranging from -100°C to 50°C.
  • R, R 1 , R 2 , and R 3 are independently selected from the group consisting of H, hydrocarbyls (such as alkyls, aryls), substituted hydrocarbyls (such as heteroaryls), and silyl groups
  • R n indicates hydrogen, hydrocarbyls, or substituted hydrocarbyls, which may be joined to form polycyclic aromatic rings and n is 1, 2, 3, or 4
  • R 4 is selected from the group consisting of to C 2 Q non aromatic hydrocarbyl groups, preferably cyclic groups.
  • Another route to pyridyldiamide complexes is to deprotonate the pyridyldiamine with at least two equivalents of a base, such as butyllithium, to form a dilithium pyridyldiamide species.
  • This lithium salt then may be reacted with a metal halide, such as HfCl 4 or ZrCl 4 , to form a pyridyldiamide complex.
  • a metal halide such as HfCl 4 or ZrCl 4
  • a cyclohexyl at the R 17 position (as opposed to a phenyl group) has been found to increase catalyst activity dramatically for propylene polymerization. Additionally, the melting point of the polypropylene produced is much higher for the cyclohexyl substituted catalysts.
  • the inventors suggest that the use of a non-aromatic hydrocarbon group in the R 17 position is advantageous because these groups increase the donor ability of the amido nitrogen to which they are bound.
  • phenyl groups that are more electron donating than a phenyl group may also be desirable, such as methyl, ethyl, propyl, primary alkyls, branched primary alkyls, secondary alkyl, cycloalkyls, and tertiary alkyls.
  • Activity is described as kg of polymer produced per mmol of transition metal from the pyridyldiamide complex per hour.
  • substitution at the R 17 group with a cyclohexyl group has yielded catalysts capable of forming polypropylene with an activity of over 300 kg/mmol/hr, whereas the catalyst with R 17 being phenyl demonstrated an activity of 91 kg/mmol/hr.
  • This invention also relates to a process to make polyolefin, such as polypropylene, using the catalysts described herein, where the catalyst has an activity of 200 kg polymer/mmol catalyst/h or more, preferably an activity of 200 kg pol/mmol catalyst/h or more for propylene polymerizations performed at 70°C using conditions described in runs 1-3 in the examples.
  • This invention further relates to process to make the above complex, process to make intermediates for the above complex and methods to polymerize olefins using the above complex, where the complex has an activity of 200 kg polymer/mmol catalyst/h or more, preferably an activity of 200 kg pol/mmol catalyst/h or more for propylene polymerizations performed at 70°C using conditions described in runs 1-3 in the examples.
  • Activators
  • catalyst systems may be formed by combining them with activators in any manner known from the literature including by supporting them for use in slurry or gas phase polymerization.
  • the catalyst systems may also be added to or generated in solution polymerization or bulk polymerization (in the monomer).
  • the catalyst system typically comprise a complex as described above and an activator such as alumoxane or a non-coordinating anion. Activation may be performed using alumoxane solution including methyl alumoxane, referred to as MAO, as well as modified MAO, referred to herein as MMAO, containing some higher alkyl groups to improve the solubility.
  • MAO methyl alumoxane
  • MMAO modified MAO
  • the catalyst system employed in the present invention preferably uses an activator selected from alumoxanes, such as methyl alumoxane, modified methyl alumoxane, ethyl alumoxane, z ' so-butyl alumoxane, and the like.
  • alumoxanes such as methyl alumoxane, modified methyl alumoxane, ethyl alumoxane, z ' so-butyl alumoxane, and the like.
  • the complex-to-activator molar ratio is from about 1 :3000 to 10: 1 ; alternatively, 1 :2000 to 10: 1 ; alternatively 1 : 1000 to 10: 1 ; alternatively, 1 :500 to 1 : 1 ; alternatively 1 :300 to 1 : 1 ; alternatively 1 :200 to 1 : 1 ; alternatively 1 : 100 to 1 : 1; alternatively 1 :50 to 1 : 1 ; alternatively 1 : 10 to 1 : 1.
  • the activator is an alumoxane (modified or unmodified)
  • some embodiments select the maximum amount of activator at a 5000-fold molar excess over the catalyst precursor (per metal catalytic site).
  • the preferred minimum activator-to-complex ratio is 1 : 1 molar ratio.
  • NCA non-coordinating anions
  • NCA's non-coordinating anions
  • NCA may be added in the form of an ion pair using, for example, [DMAH] + [NCA] " in which the N,N- dimethylanilinium (DMAH) cation reacts with a basic leaving group on the transition metal complex to form a transition metal complex cation and [NCA] " .
  • the cation in the precursor may, alternatively, be trityl.
  • the transition metal complex may be reacted with a neutral NCA precursor, such as B(C6F 5 ) 3 , which abstracts an anionic group from the complex to form an activated species.
  • Useful activators include N,N-dimethylanilinium tetrakis (pentafluorophenyl)borate (i.e., [PhNMe2H]B(C6F 5 )4) and N,N-dimethylanilinium tetrakis (heptafluoronaphthyl)borate, where Ph is phenyl, and Me is methyl.
  • preferred activators useful herein include those described in US 7,247,687 at column 169, line 50 to column 174, line 43, particularly column 172, line 24 to column 173, line 53.
  • the complex-to-activator molar ratio is typically from 1:10 to 1:1; 1:10 to 10:1; 1:10 to 2:1; 1:10 to 3:1; 1:10 to 5:1; 1:2 to 1.2:1; 1:2 to 10:1; 1:2 to 2:1; 1:2 to 3:1; 1:2 to 5:1; 1:3 to 1.2:1; 1:3 to 10:1; 1:3 to 2:1; 1:3 to 3:1; 1:3 to 5:1; 1:5 to 1:1; 1:5 to 10:1; 1:5 to 2:1; 1:5 to 3:1; 1:5 to 5:1; 1:1 to 1:1.2.
  • a co-activator may also be used in the catalyst system herein.
  • the complex-to-co-activator molar ratio is from 1:100 to 100:1; 1:75 to 75:1; 1:50 to 50:1; 1:25 to 25:1; 1:15 to 15:1; 1:10 to 10:1; 1:5 to 5:1, 1:2 to 2:1; 1:100 to 1:1; 1:75 to 1:1; 1:50 to 1:1; 1:25 to 1:1; 1:15 to 1:1; 1:10 to 1:1; 1:5 to 1:1; 1:2 to 1:1; 1:10 to 2:1.
  • non-coordinating anion means an anion which either does not coordinate to a cation or which is only weakly coordinated to a cation thereby remaining sufficiently labile to be displaced by a neutral Lewis base.
  • “Compatible” non-coordinating anions are those which are not degraded to neutrality when the initially formed complex decomposes. Further, the anion will not transfer an anionic substituent or fragment to the cation so as to cause it to form a neutral transition metal compound and a neutral by-product from the anion.
  • Non-coordinating anions useful in accordance with this invention are those that are compatible, stabilize the transition metal cation in the sense of balancing its ionic charge at +1, and yet retain sufficient lability to permit displacement during polymerization.
  • an ionizing or stoichiometric activator such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, a tris perfluorophenyl boron metalloid precursor or a tris perfluoronaphthyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983), boric acid (U.S. Patent No. 5,942,459), or combination thereof.
  • neutral or ionic activators alone or in combination with alumoxane or modified alumoxane activators.
  • neutral stoichiometric activators include tri-substituted boron, tellurium, aluminum, gallium, and indium, or mixtures thereof.
  • the three substituent groups are each independently selected from alkyls, alkenyls, halogens, substituted alkyls, aryls, arylhalides, alkoxy, and halides.
  • the three groups are independently selected from halogen, mono or multicyclic (including halosubstituted) aryls, alkyls, and alkenyl compounds, and mixtures thereof, preferred are alkenyl groups having 1 to 20 carbon atoms, alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms and aryl groups having 3 to 20 carbon atoms (including substituted aryls). More preferably, the three groups are alkyls having 1 to 4 carbon groups, phenyl, naphthyl, or mixtures thereof. Even more preferably, the three groups are halogenated, preferably fluorinated, aryl groups.
  • a preferred neutral stoichiometric activator is tris perfluorophenyl boron or tris perfluoronaphthyl boron.
  • Ionic stoichiometric activator compounds may contain an active proton, or some other cation associated with, but not coordinated to, or only loosely coordinated to, the remaining ion of the ionizing compound.
  • Such compounds and the like are described in European publications EP 0 570 982 A; EP 0 520 732 A; EP 0 495 375 A; EP 0 500 944 Bl; EP 0 277 003 A; EP 0 277 004 A; U.S. Patent Nos. 5, 153, 157; 5, 198,401 ; 5,066,741; 5,206, 197; 5,241,025; 5,384,299; 5,502, 124; and U.S. Patent Application Serial No. 08/285,380, filed August 3, 1994; all of which are herein fully incorporated by reference.
  • Preferred compounds useful as an activator in the process of this invention comprise a cation, which is preferably a Bronsted acid capable of donating a proton, and a compatible non-coordinating anion which anion is relatively large (bulky), capable of stabilizing the active catalyst species (the Group 4 cation) which is formed when the two compounds are combined and said anion will be sufficiently labile to be displaced by olefinic, diolefinic and acetylenically unsaturated substrates or other neutral Lewis bases, such as ethers, amines, and the like.
  • a cation which is preferably a Bronsted acid capable of donating a proton
  • a compatible non-coordinating anion which anion is relatively large (bulky)
  • the active catalyst species the Group 4 cation
  • EP 0 277 003 Al Two classes of useful compatible non-coordinating anions have been disclosed in EP 0 277 003 Al, and EP 0 277 004 Al : 1) anionic coordination complexes comprising a plurality of lipophilic radicals covalently coordinated to and shielding a central charge- bearing metal or metalloid core; and 2) anions comprising a plurality of boron atoms such as carboranes, metallacarboranes, and boranes.
  • the stoichiometric activators include a cation and an anion component, and are preferably represented by the following formula (II):
  • Z is (L-H) or a reducible Lewis Acid
  • L is an neutral Lewis base
  • H is hydrogen
  • (L- H) + is a Bronsted acid
  • a d" is a non-coordinating anion having the charge d-
  • d is an integer from 1 to 3.
  • the cation component may include Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species.
  • Bronsted acids such as protonated Lewis bases capable of protonating a moiety, such as an alkyl or aryl, from the bulky ligand metallocene containing transition metal catalyst precursor, resulting in a cationic transition metal species.
  • the activating cation (L-H) ⁇ "1" is a Bronsted acid, capable of donating a proton to the transition metal catalytic precursor resulting in a transition metal cation, including ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof, preferably ammoniums of methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, trimethylamine, triethylamine, N,N-dimethylaniline, methyldiphenylamine, pyridine, p-bromo N,N- dimethylaniline, p-nitro-N,N-dimethylaniline, phosphoniums from triethylphosphine, triphenylphosphine, and diphenylphosphine, oxoniums from ethers, such as dimethyl ether diethyl ether, tetrahydrofuran, and diox
  • Z is a reducible Lewis acid it is preferably represented by the formula: (Ar 3 C + ), where Ar is aryl or aryl substituted with a heteroatom, a Q to C 4 Q hydrocarbyl, or a substituted Q to C 4 Q hydrocarbyl, preferably the reducible Lewis acid is represented by the formula: (PI13C "1" ), where Ph is phenyl or phenyl substituted with a heteroatom, a Q to C 4 Q hydrocarbyl, or a substituted Q to C 4 Q hydrocarbyl.
  • the reducible Lewis acid is triphenyl carbenium.
  • the anion component A d" include those having the formula [M k+ Q n ] d_ wherein k is 1,
  • each Q is a fluorinated hydrocarbyl group having 1 to 20 carbon atoms, more preferably each Q is a fluorinated aryl group, and most preferably each Q is a pentafluoryl aryl group.
  • suitable A d_ components also include diboron compounds as disclosed in U.S. Patent No. 5,447,895, which is fully incorporated herein by reference.
  • this invention relates to a method to polymerize olefins comprising contacting olefins (preferably ethylene and or propylene) with the catalyst compound and a boron containing NCA activator represented by the formula (14):
  • Z is (L-H) or a reducible Lewis acid
  • L is an neutral Lewis base (as further described above)
  • H is hydrogen
  • (L-H) is a Bronsted acid (as further described above)
  • a d_ is a boron containing non-coordinating anion having the charge d " (as further described above); d is 1, 2, or 3.
  • the reducible Lewis acid is represented by the formula: (A ⁇ C -1- ), where Ar is aryl or aryl substituted with a heteroatom, a C j to C 4 Q hydrocarbyl, or a substituted to C 4 Q hydrocarbyl, preferably the reducible Lewis acid is represented by the formula: (Ph 3 C + ), where Ph is phenyl or phenyl substituted with a heteroatom, a Q to C 4 Q hydrocarbyl, or a substituted to C 4 Q hydrocarbyl.
  • Z d + is represented by the formula: (L-H) d + , wherein L is an neutral Lewis base; H is hydrogen; (L-H) is a Bronsted acid; and d is 1, 2, or 3, preferably (L-H) ⁇ is a Bronsted acid selected from ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof.
  • the anion component A d" is represented by the formula [M* k * + Q* n *] d * " wherein k* is
  • This invention also relates to a method to polymerize olefins comprising contacting olefins (such as ethylene and or propylene) with the catalyst compound and an NCA activator represented by the formula (I): R n M**(ArNHal) 4 _ n (I) where R is a monoanionic ligand; M** is a Group 13 metal or metalloid; ArNHal is a halogenated, nitrogen-containing aromatic ring, polycyclic aromatic ring, or aromatic ring assembly in which two or more rings (or fused ring systems) are joined directly to one another or together; and n is 0, 1, 2, or 3.
  • the NCA comprising an anion of Formula I also comprises a suitable cation that is essentially non-interfering with the ionic catalyst complexes formed with the transition metal compounds, preferably the cation is as described above.
  • R is selected from the group consisting of substituted or unsubstituted C ⁇ to C30 hydrocarbyl aliphatic or aromatic groups, where substituted means that at least one hydrogen on a carbon atom is replaced with a hydrocarbyl, halide, halocarbyl, hydrocarbyl or halocarbyl substituted organometalloid, dialkylamido, alkoxy, aryloxy, alkysulfido, arylsulfido, alkylphosphido, arylphosphide, or other anionic substituent; fluoride; bulky alkoxides, where bulky means C4 to C20 hydrocarbyl groups; -SRI, and where each R.1, R.2, or is independently a substituted or unsubstituted hydrocarbyl as defined above; or a Ci to C30 hydrocarbyl substituted organometalloid.
  • the NCA also comprises cation comprising a reducible Lewis acid represented by the formula: (Ar 3 C + ), where Ar is aryl or aryl substituted with a heteroatom, a Ci to C40 hydrocarbyl, or a substituted Ci to C40 hydrocarbyl, preferably the reducible Lewis acid represented by the formula: (Ph 3 C + ), where Ph is phenyl or phenyl substituted with a heteroatom, a C j to C40 hydrocarbyl, or a substituted to C40 hydrocarbyl.
  • a reducible Lewis acid represented by the formula: (Ar 3 C + ) where Ar is aryl or aryl substituted with a heteroatom, a Ci to C40 hydrocarbyl, or a substituted Ci to C40 hydrocarbyl
  • the reducible Lewis acid represented by the formula: (Ph 3 C + ) where Ph is phenyl or phenyl substituted with a heteroatom, a C j to C40 hydrocarbyl,
  • the NCA also comprises a cation represented by the formula, (L- H)d wherein L is an neutral Lewis base; H is hydrogen; (L-H) is a Bronsted acid; and d is 1,
  • (L-H) d + is a Bronsted acid selected from ammoniums, oxoniums, phosphoniums, silyliums, and mixtures thereof.
  • Another activator useful herein comprises a salt of a cationic oxidizing agent and a noncoordinating, compatible anion represented by the formula (16):
  • OX e+ is a cationic oxidizing agent having a charge of e+; e is 1, 2, or 3; d is 1, 2 or 3; and A d" is a non-coordinating anion having the charge of d- (as further described above).
  • Examples of cationic oxidizing agents include: ferrocenium, hydrocarbyl-substituted ferrocenium, Ag + , or Pb +2 .
  • Preferred embodiments of A d" include tetrakis(pentafluorophenyl)borate.
  • the catalyst compounds can be used with Bulky activators.
  • a "Bulky activator” as used herein refers to anionic activators represented by the formula:
  • each Ri is, independently, a halide, preferably a fluoride
  • each R 2 is, independently, a halide, a to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R2 is a fluoride or a perfluorinated phenyl group);
  • each R 3 is a halide, to C20 substituted aromatic hydrocarbyl group or a siloxy group of the formula -0-Si-R a , where R a is a Q to C20 hydrocarbyl or hydrocarbylsilyl group (preferably R3 is a fluoride or a perfluorinated aromatic hydrocarbyl group); wherein R2 and R3 can form one or more saturated or unsaturated, substituted or unsubstituted rings (preferably R2 and R3 form a perfluorinated phenyl ring);
  • L is an neutral Lewis base
  • (L-H) + is a Bronsted acid
  • d is 1, 2, or 3;
  • the anion has a molecular weight of greater than 1020 g/mol
  • Molecular volume is used herein as an approximation of spatial steric bulk of an activator molecule in solution. Comparison of substituents with differing molecular volumes allows the substituent with the smaller molecular volume to be considered “less bulky” in comparison to the substituent with the larger molecular volume. Conversely, a substituent with a larger molecular volume may be considered “more bulky” than a substituent with a smaller molecular volume.
  • Molecular volume may be calculated as reported in "A Simple "Back of the Envelope” Method for Estimating the Densities and Molecular Volumes of Liquids and Solids," Journal of Chemical Education, Vol. 71, No. 11, November 1994, pp. 962-964.
  • V s is the sum of the relative volumes of the constituent atoms, and is calculated from the molecular formula of the substituent using the following table of relative volumes. For fused rings, the V s is decreased by 7.5% per fused ring.
  • Exemplary bulky activators useful in catalyst systems herein include: trimethylammonium tetrakis(perfluoronaphthyl)borate, triethylammonium tetrakis(perfluoronaphthyl)borate, tripropylammonium tetrakis(perfluoronaphthyl)borate, tri(n-butyl)ammonium tetrakis(perfluoronaphthyl)borate, tri(t-butyl)ammonium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -diethylanilinium tetrakis(perfluoronaphthyl)borate, N,N-dimethyl-(2,4,6- trimethylanilinium) tetrakis(perflu
  • Preferred activators include N,N-dimethylanilinium tetrakis(perfluoronaphthyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(perfluorobiphenyl)borate, ⁇ , ⁇ -dimethylanilinium tetrakis(3 ,5 -bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3 ,5-bis(trifluoromethyl)phenyl)borate, triphenylcarbenium tetrakis(perfluorophenyl)borate, [Ph 3 C + ][B(C 6 F 5 ) 4 -], [Me 3 NH + ][B(C 6 F 5
  • the activator comprises a triaryl carbonium (such as triphenylcarbenium tetraphenylborate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis-(2,3 ,4,6-tetrafluorophenyl)borate, triphenylcarbenium tetrakis(perfluoronaphthyl)borate, triphenylcarbenium tetrakis(perfluorobiphenyl)borate, triphenylcarbenium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate).
  • a triaryl carbonium such as triphenylcarbenium tetraphenylborate, triphenylcarbenium tetrakis(pentafluorophenyl)borate, triphenylcarbenium tetrakis-(2,3 ,4,6
  • the activator comprises one or more of trialkylammonium tetrakis(pentafluorophenyl)borate, N,N-dialkylanilinium tetrakis(pentafluorophenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium) tetrakis(pentafluorophenyl)borate, trialkylammonium tetrakis-(2,3,4,6-tetrafluorophenyl) borate, ⁇ , ⁇ -dialkylanilinium tetrakis- (2,3,4,6-tetrafluorophenyl)borate, trialkylammonium tetrakis(perfluoronaphthyl)borate, N,N- dialkylanilinium tetrakis(perfluoronaphthyl)borate, trialkylammonium tetrakis(perfluorobiphenyl)
  • the complexes described herein may be supported (with or without an activator) by any method effective to support other coordination catalyst systems, effective meaning that the catalyst so prepared can be used for oligomerizing or polymerizing olefin in a heterogeneous process.
  • the catalyst precursor, activator, co-activator if needed, suitable solvent, and support may be added in any order or simultaneously.
  • the complex and activator may be combined in solvent to form a solution. Then the support is added, and the mixture is stirred for 1 minute to 10 hours.
  • the total solution volume may be greater than the pore volume of the support, but some embodiments limit the total solution volume below that needed to form a gel or slurry (about 90% to 400%, preferably about 100- 200% of the pore volume).
  • the residual solvent is removed under vacuum, typically at ambient temperature and over 10-16 hours. But greater or lesser times and temperatures are possible.
  • the complex may also be supported absent the activator; in that case, the activator (and co-activator if needed) is added to a polymerization process's liquid phase. Additionally, two or more different complexes may be placed on the same support. Likewise, two or more activators or an activator and co-activator may be placed on the same support.
  • Suitable solid particle supports are typically comprised of polymeric or refractory oxide materials, each being preferably porous.
  • any support material that has an average particle size greater than 10 ⁇ is suitable for use in this invention.
  • a porous support material such as for example, talc, inorganic oxides, inorganic chlorides, for example magnesium chloride and resinous support materials such as polystyrene polyolefin or polymeric compounds or any other organic support material and the like.
  • Some embodiments select inorganic oxide materials as the support material including Group-2, -3, -4, -5, -13, or -14 metal or metalloid oxides.
  • Some embodiments select the catalyst support materials to include silica, alumina, silica-alumina, and their mixtures.
  • inorganic oxides may serve either alone or in combination with the silica, alumina, or silica- alumina. These are magnesia, titania, zirconia, and the like.
  • Lewis acidic materials such as montmorillonite and similar clays may also serve as a support. In this case, the support can optionally double as the activator component, however, an additional activator may also be used.
  • the support material may be pretreated by any number of methods.
  • inorganic oxides may be calcined, chemically treated with dehydroxylating agents such as aluminum alkyls and the like, or both.
  • polymeric carriers will also be suitable in accordance with the invention, see for example the descriptions in WO 95/15815 and US 5,427,991.
  • the methods disclosed may be used with the catalyst complexes, activators or catalyst systems of this invention to adsorb or absorb them on the polymeric supports, particularly if made up of porous particles, or may be chemically bound through functional groups bound to or in the polymer chains.
  • Useful supports typically have a surface area of from 10-700 m 2 /g, a pore volume of 0.1-4.0 cc/g and an average particle size of 10-500 ⁇ . Some embodiments select a surface area of 50-500 m 2 /g, a pore volume of 0.5-3.5 cc/g, or an average particle size of 20-200 ⁇ . Other embodiments select a surface area of 100-400 m 2 /g, a pore volume of 0.8-3.0 cc/g, and an average particle size of 30-100 ⁇ . Useful supports typically have a pore size of 10-1000 Angstroms, alternatively 50-500 Angstroms, or 75-350 Angstroms.
  • the catalyst complexes described herein are generally deposited on the support at a loading level of 10-100 micromoles of complex per gram of solid support; alternately 20-80 micromoles of complex per gram of solid support; or 40-60 micromoles of complex per gram of support. But greater or lesser values may be used provided that the total amount of solid complex does not exceed the support's pore volume.
  • Inventive catalyst complexes are useful in polymerizing unsaturated monomers conventionally known to undergo metallocene-catalyzed polymerization such as solution, slurry, gas-phase, and high-pressure polymerization.
  • unsaturated monomers conventionally known to undergo metallocene-catalyzed polymerization
  • one or more of the complexes described herein, one or more activators, and one or more monomers are contacted to produce polymer.
  • the complexes may be supported and as such will be particularly useful in the known, fixed-bed, moving-bed, fluid-bed, slurry, solution, or bulk operating modes conducted in single, series, or parallel reactors.
  • One or more reactors in series or in parallel may be used in the present invention.
  • the complexes, activator and when required, co-activator may be delivered as a solution or slurry, either separately to the reactor, activated in-line just prior to the reactor, or preactivated and pumped as an activated solution or slurry to the reactor.
  • Polymerizations are carried out in either single reactor operation, in which monomer, comonomers, catalyst/activator/co-activator, optional scavenger, and optional modifiers are added continuously to a single reactor or in series reactor operation, in which the above components are added to each of two or more reactors connected in series.
  • the catalyst components can be added to the first reactor in the series.
  • the catalyst component may also be added to both reactors, with one component being added to first reaction and another component to other reactors.
  • the complex is activated in the reactor in the presence of olefin.
  • the polymerization process is a continuous process.
  • Polymerization processes used herein typically comprise contacting one or more alkene monomers with the complexes (and, optionally, activator) described herein.
  • alkenes are defined to include multi-alkenes (such as dialkenes) and alkenes having just one double bond.
  • Polymerization may be homogeneous (solution or bulk polymerization) or heterogeneous (slurry -in a liquid diluent, or gas phase -in a gaseous diluent).
  • the complex and activator may be supported.
  • Silica is useful as a support herein.
  • Chain transfer agents (such as hydrogen, or diethyl zinc) may be used in the practice of this invention.
  • the present polymerization processes may be conducted under conditions preferably including a temperature of about 30°C to about 200°C, preferably from 60°C to 195°C, preferably from 75°C to 190°C.
  • the process may be conducted at a pressure of from 0.05 MPa to 1500 MPa. In a preferred embodiment, the pressure is between 1.7 MPa and 30 MPa, or in another embodiment, especially under supercritical conditions, the pressure is between 15 MPa and 1500 MPa.
  • Monomers useful herein include olefins having from 2 to 20 carbon atoms, alternately 2 to 12 carbon atoms (preferably ethylene, propylene, butylene, pentene, hexene, heptene, octene, nonene, decene, and dodecene) and optionally also polyenes (such as dienes).
  • the complexes described herein are also particularly effective for the polymerization of ethylene, either alone or in combination with at least one other olefinically unsaturated monomer, such as a C3 to C20 a-olefin, and particularly a C3 to a-olefin.
  • the present complexes are also particularly effective for the polymerization of propylene, either alone or in combination with at least one other olefinically unsaturated monomer, such as ethylene or a C 4 to C20 a-olefin, and particularly a C 4 to C20 a-olefin.
  • Examples of preferred a-olefins include ethylene, propylene, butene-1, pentene- 1, hexene- 1, heptene- 1, octene- 1, nonene-1, decene-1, dodecene-1, 4-methylpentene-l, 3-methylpentene-l, 3, 5, 5- trimethylhexene-1, and 5-ethylnonene-l .
  • propylene polymer such as propylene homopolymer is produced.
  • the monomer mixture may also comprise one or more dienes at up to 10 wt%, such as from 0.00001 to 1.0 wt%, for example from 0.002 to 0.5 wt%, such as from 0.003 to 0.2 wt%, based upon the monomer mixture.
  • Non-limiting examples of useful dienes include, cyclopentadiene, norbornadiene, dicyclopentadiene, 5-ethylidene-2- norbornene, 5-vinyl-2-norbornene, 1,4-hexadiene, 1,5-hexadiene, 1,5-heptadiene, 1,6- heptadiene, 6-methyl-l,6-heptadiene, 1,7-octadiene, 7-methyl-l,7-octadiene, 1,9-decadiene, land 9-methyl- 1,9-decadiene.
  • the catalyst systems may, under appropriate conditions, generate stereoregular polymers or polymers having stereoregular sequences in the polymer chains.
  • the catalyst system when using the complexes described herein, particularly when they are immobilized on a support, the catalyst system will additionally comprise one or more scavenging compounds.
  • scavenging compound means a compound that removes polar impurities from the reaction environment. These impurities adversely affect catalyst activity and stability.
  • the scavenging compound will be an organometallic compound such as the Group-13 organometallic compounds of US Patent Nos. 5, 153,157 and 5,241,025 and WO-A-91/09882, WO-A-94/03506, WO-A-93/14132, and that of WO 95/07941.
  • Exemplary compounds include triethyl aluminum, triethyl borane, tri-zso-butyl aluminum, methyl alumoxane, z ' so-butyl alumoxane, and tri-n-octyl aluminum.
  • Those scavenging compounds having bulky or C6-C20 linear hydrocarbyl substituents connected to the metal or metalloid center usually minimize adverse interaction with the active catalyst.
  • Examples include triethylaluminum, but more preferably, bulky compounds such as tri-iso- butyl aluminum, tri-z ' so-prenyl aluminum, and long-chain linear alkyl-substituted aluminum compounds, such as tri-n-hexyl aluminum, tri-n-octyl aluminum, or tri-n-dodecyl aluminum.
  • bulky compounds such as tri-iso- butyl aluminum, tri-z ' so-prenyl aluminum, and long-chain linear alkyl-substituted aluminum compounds, such as tri-n-hexyl aluminum, tri-n-octyl aluminum, or tri-n-dodecyl aluminum.
  • two or more complexes are combined with diethyl zinc in the same reactor with monomer.
  • one or more complexes is combined with another catalyst (such as a metallocene) and diethyl zinc in the same reactor with monomer.
  • the homopolymer and copolymer products produced by the present process may have an Mw of about 1,000 to about 2,000,000 g/mol, alternately of about 30,000 to about 600,000 g/mol, or alternately of about 100,000 to about 500,000 g/mol, as determined by GPC.
  • Preferred polymers produced here may be homopolymers or copolymers.
  • the comonomer(s) are present at up to 50 mol%, preferably from 0.01 to 40 mol%, preferably 1 to 30 mol%, preferably from 5 to 20 mol%.
  • a multimodal polyolefin composition comprising a first polyolefin component and at least another polyolefin component, different from the first polyolefin component by molecular weight, preferably such that the GPC trace has more than one peak or inflection point.
  • a propylene polymer (such as homopolypropylene) is produced having a melting point (Tm, DSC, second melt) of 150°C or more, preferably 151°C or more, preferably 152°C or more, preferably 153°C or more, preferably 154°C or more, preferably 155°C or more, preferably 156°C or more.
  • Tm melting point
  • DSC second melt
  • Tm Melting temperature
  • DSC Differential Scanning Calorimetry
  • TA Instruments 2920 DSC Differential Scanning Calorimetry
  • 6 to 10 mg of molded polymer are sealed in an aluminum pan and loaded into the instrument at room temperature.
  • Melting data (first heat) is acquired by heating the sample to at least 30°C above its melting temperature, typically 220°C for polypropylene, at a heating rate of 10°C/min. The sample is held for at least 5 minutes at this temperature to destroy its thermal history.
  • Crystallization data are acquired by cooling the sample from the melt to at least 50°C below the crystallization temperature, typically -50°C for polypropylene, at a cooling rate of 20°C/min.
  • the sample is held at this temperature for at least 5 minutes, and finally heated at 10°C/min to acquire additional melting data (second heat).
  • the endothermic melting transition (first and second heat) and exothermic crystallization transition are analyzed according to standard procedures.
  • the melting temperatures reported are the peak melting temperatures from the second heat unless otherwise specified.
  • the melting temperature is defined to be the peak melting temperature from the melting trace associated with the largest endothermic calorimetric response (as opposed to the peak occurring at the highest temperature).
  • Measurements of weight average molecular weight (Mw), number average molecular weight (Mn), and z average molecular weight (Mz) are determined by Gel Permeation Chromatography (GPC) as described in Macromolecules, 2001, Vol. 34, No. 19, pg. 6812, which is fully incorporated herein by reference, including that, a High Temperature Size Exclusion Chromatograph (SEC, Waters Alliance 2000), equipped with a differential refractive index detector (DRI) equipped with three Polymer Laboratories PLgel 10 mm Mixed-B columns is used. The instrument is operated with a flow rate of 1.0 cm 3 /min, and an injection volume of 300 ⁇ .
  • GPC Gel Permeation Chromatography
  • the various transfer lines, columns and differential refractometer (the DRI detector) are housed in an oven maintained at 145°C.
  • Polymer solutions are prepared by heating 0.75 to 1.5 mg/mL of polymer in filtered 1,2,4- Trichlorobenzene (TCB) containing -1000 ppm of butylated hydroxy toluene (BHT) at 160°C for 2 hours with continuous agitation.
  • TCB 1,2,4- Trichlorobenzene
  • BHT butylated hydroxy toluene
  • a sample of the polymer containing solution is injected into to the GPC and eluted using filtered 1 ,2,4-trichlorobenzene (TCB) containing -1000 ppm of BHT.
  • the separation efficiency of the column set is calibrated using a series of narrow MWD polystyrene standards reflecting the expected Mw range of the sample being analyzed and the exclusion limits of the column set. Seventeen individual polystyrene standards, obtained from Polymer Laboratories (Amherst, MA) and ranging from Peak Molecular Weight (Mp) -580 to 10,000,000, were used to generate the calibration curve. The flow rate is calibrated for each run to give a common peak position for a flow rate marker (taken to be the positive inject peak) before determining the retention volume for each polystyrene standard. The flow marker peak position is used to correct the flow rate when analyzing samples. A calibration curve (log(Mp) vs.
  • retention volume is generated by recording the retention volume at the peak in the DRI signal for each PS standard, and fitting this data set to a 2nd-order polynomial.
  • the equivalent polyethylene molecular weights are determined by using the Mark-Houwink coefficients shown in Table B.
  • the homopolymer and copolymer products produced by the present process may have an Mw of about 1,000 to about 2,000,000 g/mol, alternately of about 30,000 to about 600,000 g/mol, or alternately of about 100,000 to about 500,000 g/mol, as determined by GPC and have a Tm of 150°C or more, alternately 151°C or more, alternately 152°C or more, alternately 153°C or more, alternately 154°C or more, alternately 155°C or more, alternately 156°C or more, as determined by DSC. End Uses
  • Articles made using polymers produced herein may include, for example, molded articles (such as containers and bottles, e.g., household containers, industrial chemical containers, personal care bottles, medical containers, fuel tanks, and storageware, toys, sheets, pipes, tubing) films, non-wovens, and the like. It should be appreciated that the list of applications above is merely exemplary, and is not intended to be limiting.
  • this invention relates to:
  • a pyridyldiamido transition metal complex (optionally for use in alkene polymerization) represented by the formula (A) or (B):
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 metal
  • Q 1 is a group that links R 2 and Z by a three atom bridge with the central of the three atoms being a group 15 or 16 element that preferably forms a dative bond to M preferably represented by the formula: -G 1 -G 2 -G 3 - where G 2 is a group 15 or 16 atom, G 1 and G 3 are each a group 14, 15 or 16 atom, where G 1 , G 2 and G 3 , or G 1 and G 2 , or G 1 and G 3 , or G 2 and G 3 may form a singular or multi ring system, and if any of G 1 and/or G 3 is a group 14 atom then R 30 and R 3 1 are bound to such G atom(s), and if any of G 1 , G 2 and/or G 3 is a group 15 atom then R 30 is bound to such G atom(s), where each R 30 and R 31 is, independently, hydrogen or a to C ⁇ QO hydrocarbyl group;
  • Q 2 is NR 17 or PR 17 , where R 17 is selected from hydrocarbyl groups containing 1 to 20 carbon atoms (preferably from 2 to 16, preferably from 4 to 14, preferably from 5 to 12, preferably from 6 to 10) having a H/C ratio of 1.66 or more (alternately 1.70 or more, alternately 1.80 or more, alternately 1.83 or more) where the carbon atom bonded to the N or P is not a tertiary carbon atom, and where R 17 may be unsubstituted or substituted (preferably substituted with between one to five substituents that include F, CI, Br, I, CF 3 , ⁇ (3 ⁇ 4, alkoxy, dialkylamino, silyl, siloxy, aryloxy, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, dec
  • R 1 is selected from the group consisting of hydrocarbyls, and substituted hydrocarbyls, or silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • R 14 and R ⁇ are independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, and wherein adjacent R 14 and R ⁇ groups may be joined to form an aromatic or saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings, p is 1 or 2, and q is 1 or 2;
  • L is an anionic leaving group, where the L groups may be the same or different and any two
  • L groups may be linked to form a dianionic leaving group
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3 or 4;
  • n + w is no greater than 4.
  • G 1 and G 3 are each independently selected from C, N, O, and S, preferably G 1 and G 3 with their respective R groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, and the like, preferably G 1 and G 3 with their respective R groups are formed into a ring structure, preferably pyridine.
  • Q 2 is NR 17 .
  • a pyridyldiamido transition metal complex (optionally for use in alkene olymerization) represented by the formula (I) or (II):
  • M is a Group 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 metal
  • R 17 is selected from hydrocarbyl groups containing 1 to 20 carbon atoms (preferably from 2 to 16, preferably from 4 to 14, preferably from 5 to 12, preferably from 6 to 10) having a H/C ratio of 1.66 or more (alternately 1.70 or more, alternately 1.80 or more, alternately 1.83 or more) where the carbon atom bonded to the N is not a tertiary carbon atom, and where R 17 may be unsubstituted or substituted (preferably substituted with between one to five substituents that include F, CI, Br, I, CF 3 , ⁇ (3 ⁇ 4, alkoxy, dialkylamino, silyl, siloxy, aryloxy, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof);
  • R 1 is selected from the group consisting of hydrocarbyls, and substituted hydrocarbyls, or silyl groups;
  • R 2 and R 10 are each, independently, -E(R 12 )(R 13 )- with E being carbon, silicon, or germanium, and each R 12 and R 13 being independently selected from the group consisting of hydrogen, hydrocarbyls, and substituted hydrocarbyls, alkoxy, silyl, amino, aryloxy, halogen, and phosphino, R 12 and R 13 may be joined to form a saturated, substituted or unsubstituted hydrocarbyl ring, where the ring has 4, 5, 6, or 7 ring carbon atoms and where substitutions on the ring can join to form additional rings, or R 12 and R 13 may be joined to form a saturated heterocyclic ring, or a saturated substituted heterocyclic ring where substitutions on the ring can join to form additional rings;
  • L is an anionic leaving group, where the L groups may be the same or different and any two L groups may be linked to form a dianionic leaving group;
  • n 0, 1, 2, 3, or 4;
  • L' is neutral Lewis base
  • w 0, 1, 2, 3 or 4;
  • n + w is no greater than 4.
  • R 3 , R 4 , and R 5 are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, aryloxy, halogen, amino, and silyl, and wherein adjacent R groups (R 3 & R 4 and/or R 4 & R 5 ) may be joined to form a substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring atoms and where substitutions on the ring can join to form additional rings; and
  • R 6 ; R 7 R 8 , R 9 , R 15 *, and R 16 * are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl, and wherein adjacent R groups (R 6 & R 7 , and/or R 7 & R 15 *, and/or R 16 * & R 15 *, and/or R 8 & R 9 ) may be joined to form a saturated, substituted or unsubstituted hydrocarbyl or heterocyclic ring, where the ring has 5, 6, 7, or 8 ring carbon atoms and where substitutions on the ring can join to form additional rings.
  • L is or are selected from halide, alkyl, aryl, alkoxy, amido, hydrido, phenoxy, hydroxy, silyl, allyl, alkenyl, and alkynyl; and/or L' is or are selected from ethers, thio-ethers, amines, nitriles, imines, pyridines, and phosphines.
  • R 2 is represented by the formula:
  • R 12 is hydrogen, alkyl, aryl, or halogen
  • R 13 is hydrogen, alkyl, aryl, or halogen
  • R 6 , R 7 , R 8 , R 9 , R 15 *, and R 16 * are independently selected from the group consisting of hydrogen, hydrocarbyls, substituted hydrocarbyls, alkoxy, halogen, amino, and silyl.
  • R 2 group(s) are selected from the group consisting of CH 2 , CMe2, SiMe2, SiEt 2 , SiPr 2 , SiBu2, SiPh 2 , Si(aryl) 2 , and
  • Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), CH(2-isopropylphenyl), and or the R 10 group(s) are selected from the group consisting of CH 2 , CMe 2 , SiMe 2 , SiEt 2 , SiPr 2 , SiBu 2 , SiPh 2 , Si(aryl) 2 , and Si(alkyl) 2 , CH(aryl), CH(Ph), CH(alkyl), CH(2-isopropylphenyl), where alkyl is a to C40 alkyl group, aryl is a C 5 to C40 aryl group, and Ph is phenyl.
  • R 17 is substituted with between one, two, three, four, or five substituents selected from the group consisting of F, CI, Br, I, CF 3 , N0 2 , alkoxy, dialkylamino, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof.
  • substituents selected from the group consisting of F, CI, Br, I, CF 3 , N0 2 , alkoxy, dialkylamino, aryl, and alkyl groups having 1 to 10 carbons, such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and isomers thereof.
  • a catalyst system comprising an activator and the complex of any of paragraphs 1 to 19. 21.
  • a polymerization process to produce a polyolefin comprising: a) contacting one or more olefin monomers with the catalyst system of paragraph 20, 21, or 22; and b) obtaining an olefin polymer, where the catalyst has an activity of 200 kg polymer/mmol of transition metal complex/hour or more.
  • complexes A and B were prepared as described below.
  • Complex J was made analogously to complex A, but with the cyclohexylamine being substituted by cyclooctylamine.
  • Complexes C and D were prepared as described in US 2012/0071616.
  • Complex K was prepared analogously to complex A, but using the pyridyldiamine ligand that was prepared as described in US 2012/0071616 Al .
  • N-(2-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)benzyl)cyclohexanamine (7) was added to 2-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)benzaldehyde (5.0 g, 21.54 mmol) followed by cyclohexylamine (2.37 g, 23.89 mmol) and formic acid ( ⁇ 1.0 mL of 88%) to form a clear solution.
  • the mixture was allowed to reflux using a Dean- Stark trap and the toluene/water mixture collected till clear.
  • 6-(2-((cyclohexylamino)methyl)phenyl)picolinaldehyde (8) MeOH (90 mL) and water (300 mL) were added to a 2 C03 (2.97 g, 28.0 mmol) and purged with N 2 for 30 min. The obtained solution was added to a mixture of compound 7 (7.95 g, 25.2 mmol), 6-bromopyridine-2-carbaldehyde (4.70 g, 25.2 mmol) and Pd(PPh 3 ) 4 (1.48 g, 1.28 mmol) dissolved in toluene (300 mL) under N 2 atmosphere. The mixture was allowed to reflux for
  • Table 1 Shown in Table 1 are propylene polymerization data complexes A, B, and J and comparative complexes C, D, and K. From these data it is shown that the catalysts formed by the activation of complexes A, B, and J have unexpectedly significantly higher activity than the comparative examples. Additionally polypropylene formed by complexes A, B, and J have unexpectedly higher melting points than the polypropylene prepared by comparative complexes C, D, and K. For example, comparing run 1 with run 3 (Table 1), it is observed that the catalyst formed from complex A has over 4 times the activity of the catalyst formed by complex C (comparative).
  • the catalyst formed by the activation of comparative complex K was found to have much lower activity for propylene polymerization than the other complexes. As shown in runs 14-16, the catalyst yielded only trace amounts of polypropylene. Thus, substitution at R 17 with tertiary butyl was not advantageous.
  • reaction vessel of the reactor which contains 48 individual reaction vessels.
  • solvent typically isohexane
  • Propylene gas was introduced and the reactor vessels were heated to their set temperature.
  • scavenger and/or co-catalyst and/or a chain transfer agent such as tri-n-octylaluminum in toluene (typically 100-1000 nmol) was added.
  • the reaction was then allowed to proceed until a pre-determined amount of pressure had been taken up by the reaction or a set amount of time had elapsed. At this point, the reaction was quenched by pressurizing the vessel with compressed air.
  • the glass vial insert containing the polymer product and solvent was removed from the pressure cell and the inert atmosphere glove box, and the volatile components were removed using a Genevac HT-12 centrifuge and Genevac VC3000D vacuum evaporator operating at elevated temperature and reduced pressure.
  • the vial was then weighed to determine the yield of the polymer product.
  • the resultant polymer was analyzed by Rapid GPC (see below) to determine the molecular weight and by DSC (see below) to determine melting point.
  • the system was operated at an eluent flow rate of 2.0 mL/minutes and an oven temperature of 165°C. 1,2,4-trichlorobenzene was used as the eluent.
  • the polymer samples were dissolved in 1,2,4-trichlorobenzene at a concentration of 0.1 - 0.9 mg/mL. 250 uL of a polymer solution was injected into the system. The concentration of the polymer in the eluent was monitored using an infrared absorption or evaporative light scattering (run 19 only) detector. The molecular weights presented are relative to linear polystyrene standards and are uncorrected.
  • DSC Differential Scanning Calorimetry
  • compositions, an element, or a group of elements are preceded with the transitional phrase “comprising”, it is understood that we also contemplate the same composition or group of elements with transitional phrases “consisting essentially of,” “consisting of, “selected from the group of consisting of,” or “is” preceding the recitation of the composition, element, or elements and vice versa.
EP15758472.3A 2014-03-03 2015-02-23 Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon Withdrawn EP3114130A4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461947052P 2014-03-03 2014-03-03
EP14168393 2014-05-15
PCT/US2015/017025 WO2015134213A1 (en) 2014-03-03 2015-02-23 Pyridyldiamido transition metal complexes, production and use thereof

Publications (2)

Publication Number Publication Date
EP3114130A1 true EP3114130A1 (de) 2017-01-11
EP3114130A4 EP3114130A4 (de) 2017-05-10

Family

ID=50693558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15758472.3A Withdrawn EP3114130A4 (de) 2014-03-03 2015-02-23 Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon

Country Status (3)

Country Link
EP (1) EP3114130A4 (de)
CN (1) CN106029675B (de)
WO (1) WO2015134213A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018022249A1 (en) * 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Heterocyclic amido transition metal complexes, production and use thereof
CN109563109A (zh) * 2016-07-29 2019-04-02 埃克森美孚化学专利公司 杂环氨基过渡金属配合物、其制备和用途
US10150821B2 (en) 2016-07-29 2018-12-11 Exxonmobil Chemical Patents Inc. Heterocyclic amido transition metal complexes, production and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194527B1 (en) * 1999-09-22 2001-02-27 Equistar Chemicals, L.P. Process for making polyolefins
AU2002241517A1 (en) * 2000-11-07 2002-06-18 Symyx Technologies, Inc. Methods of copolymerizing ethylene and isobutylene and polymers made thereby
US6953764B2 (en) * 2003-05-02 2005-10-11 Dow Global Technologies Inc. High activity olefin polymerization catalyst and process
US7973116B2 (en) * 2008-07-25 2011-07-05 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
US8394902B2 (en) * 2008-07-25 2013-03-12 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
US8674040B2 (en) * 2008-07-25 2014-03-18 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
WO2012134615A1 (en) * 2011-03-25 2012-10-04 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof

Also Published As

Publication number Publication date
EP3114130A4 (de) 2017-05-10
CN106029675A (zh) 2016-10-12
WO2015134213A1 (en) 2015-09-11
CN106029675B (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
EP2989130B1 (de) Pyridyldiamidmetallkatalysatoren und verfahren zur herstellung von polyolefinen
US9290519B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
US10815318B2 (en) Quinolinyldiamido transition metal complexes, production and use thereof
US8674040B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
US8710163B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
US8394902B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
US9102773B2 (en) Process for controlling molecular weight of polyolefins prepared using pyridyl diamide catalyst systems
US11203654B2 (en) Bis(aryl phenolate) lewis base catalysts and methods thereof
US9315593B2 (en) Catalyst systems comprising pyridyldiamido transition metal complexes and chain transfer agent and use thereof
US11248070B2 (en) Lewis base catalysts and methods thereof
EP2688895A1 (de) Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon
WO2014123683A1 (en) Process for controlling molecular weight of polyolefins prepared using pyridyl diamide catalyst systems
EP3274353A1 (de) Bisphenolatübergangsmetallkomplexe, herstellung und verwendung davon
WO2019027575A1 (en) BISPHENOLATED TRANSITION METAL COMPLEXES, PRODUCTION AND USE THEREOF
US9315526B2 (en) Pyridyldiamido transition metal complexes, production and use thereof
EP3114130A1 (de) Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon
WO2015073610A1 (en) Pyridyldiamido transition metal complexes, production and use thereof
US10138257B2 (en) Transition metal complexes, production and use thereof
JP2019527679A (ja) キノリニルジアミド遷移金属錯体、生成物およびその使用
EP3068810B1 (de) Pyridyldiamid-übergangsmetallkomplexe sowie herstellung und verwendung davon
US9598444B2 (en) Transition metal complexes of tridentate dianionic CNN ligands, production and use thereof
WO2015073145A1 (en) Pyridyldiamido transition metal complexes, production and use thereof
WO2018038880A1 (en) Transition metal complexes, production and use thereof
EP3317288A1 (de) Übergangsmetallkomplexe von tridentatdianionischen cnn-liganden, herstellung und verwendung davon

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: C07D 213/38 20060101ALI20170102BHEP

Ipc: C07D 213/53 20060101ALI20170102BHEP

Ipc: C07F 9/00 20060101ALI20170102BHEP

Ipc: C07F 7/00 20060101ALI20170102BHEP

Ipc: C07D 213/48 20060101ALI20170102BHEP

Ipc: C07F 5/00 20060101ALI20170102BHEP

Ipc: C08F 4/16 20060101ALI20170102BHEP

Ipc: C08F 4/64 20060101ALI20170102BHEP

Ipc: C08F 4/659 20060101ALI20170102BHEP

Ipc: C08F 10/00 20060101ALI20170102BHEP

Ipc: C07F 7/28 20060101AFI20170102BHEP

Ipc: C08F 10/06 20060101ALI20170102BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20170411

RIC1 Information provided on ipc code assigned before grant

Ipc: C07D 213/38 20060101ALI20170405BHEP

Ipc: C08F 10/06 20060101ALI20170405BHEP

Ipc: C07D 213/48 20060101ALI20170405BHEP

Ipc: C08F 4/16 20060101ALI20170405BHEP

Ipc: C08F 4/64 20060101ALI20170405BHEP

Ipc: C07D 213/53 20060101ALI20170405BHEP

Ipc: C07F 7/00 20060101ALI20170405BHEP

Ipc: C08F 10/00 20060101ALI20170405BHEP

Ipc: C08F 4/659 20060101ALI20170405BHEP

Ipc: C07F 5/00 20060101ALI20170405BHEP

Ipc: C07F 9/00 20060101ALI20170405BHEP

Ipc: C07F 7/28 20060101AFI20170405BHEP

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200901