EP3106541A1 - Dvc-coating with fully and partially stabilized zirconia - Google Patents

Dvc-coating with fully and partially stabilized zirconia Download PDF

Info

Publication number
EP3106541A1
EP3106541A1 EP15172884.7A EP15172884A EP3106541A1 EP 3106541 A1 EP3106541 A1 EP 3106541A1 EP 15172884 A EP15172884 A EP 15172884A EP 3106541 A1 EP3106541 A1 EP 3106541A1
Authority
EP
European Patent Office
Prior art keywords
layer
stabilized zirconia
fully
ceramic layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15172884.7A
Other languages
German (de)
French (fr)
Inventor
Arturo Flores Renteria
Neil Hitchman
Werner Stamm
Dimitrios Zois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP15172884.7A priority Critical patent/EP3106541A1/en
Priority to EP16722589.5A priority patent/EP3283667A1/en
Priority to US15/736,340 priority patent/US20180179645A1/en
Priority to PCT/EP2016/059828 priority patent/WO2016202495A1/en
Publication of EP3106541A1 publication Critical patent/EP3106541A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides

Definitions

  • the invention relates to a ceramic layer-system with partially and fully stabilized zirconia which has also a dense vertical cracked microstructure (DVC).
  • DVC dense vertical cracked microstructure
  • TBC Thermal Barrier Coatings
  • the task of the invention is therefore to solve the problems given above.
  • DVC Dense Vertical Cracked
  • the system consists of partially stabilized zirconia, especially 8YSZ as the high fracture toughness lower layer to accommodate the CTE mismatch with bond coat and TGO and a lower toughness upper layer of fully stabilized zirconia, especially 48YSZ to provide the high temperature capability.
  • partially stabilized zirconia especially 8YSZ as the high fracture toughness lower layer to accommodate the CTE mismatch with bond coat and TGO
  • a lower toughness upper layer of fully stabilized zirconia especially 48YSZ to provide the high temperature capability.
  • the similar chemistry between the two coatings enhances their bonding.
  • DVC PSZ Appropriate preheating of the DVC PSZ will prepare its surface to receive the fully molten particles of FSZ and due to the high local temperatures during spraying allow diffusion between the two similar materials. Ideally a number of the vertical cracks will progress from one coating to the other demonstrating the continuity between the two coatings. In this manner the interface which has shown to be the weakest link in other bi-layer systems will be reinforced.
  • the figure shows a layer system 1.
  • the layer system 1 comprises a substrate 4 which is preferably metallic and very preferably made of a nickel or cobalt based super alloy.
  • a bond coat especially a metallic bond coat 7 and very especially a NiCoCrAlY-based bond coat 7 is applied on.
  • TGO thermally grown oxide
  • first zirconia layer 10 made of a partially stabilized zirconia.
  • the thickness of the partially stabilized zirconia layer 10 is preferable between 75 ⁇ m - 800 ⁇ m.
  • the porosity of the partially stabilized zirconia 10 is preferably lower than 5% and very preferably lower than 3%.
  • a fully stabilized zirconia layer 13 which is especially the outer most layer of the layer system 1.
  • This outer layer can also be made of a pyrochlore ceramic, such as gadolinium zirconate (GZO), which partially or fully replaces the fully stabilized zirconia (FSZ).
  • GZO gadolinium zirconate
  • FSZ fully stabilized zirconia
  • the porosity of the fully stabilized zirconia 13 is lower than 5% and preferably lower than 3%.
  • the thickness of the fully stabilized zirconia 13 is preferable between 50 ⁇ m - 800 ⁇ m.
  • the stabilization in this zirconia based system can be reached by yttria or by any other rare earth element as known by the state of the art or by a combination of that.
  • yttrium is used for stabilization.

Abstract

A dense vertical cracked microstructure in a ceramic layer system made of an underline partially stabilized zirconia layer and an above laying fully stabilized zirconia layer show good erosion resistance and long life time.

Description

  • The invention relates to a ceramic layer-system with partially and fully stabilized zirconia which has also a dense vertical cracked microstructure (DVC).
  • Field feedback has shown that the current Thermal Barrier Coatings (TBC) of turbines suffer from issues related to:
    1. 1) Erosion: turbine blades with high porosity coatings containing a large number of unmolten or semimolten particles show low erosion resistance.
      The development during the last years has pushed thermal spray coatings porosity upwards. However, that has caused the shrinkage of the spray ability window that allows coatings to receive high porosity and good cohesion. As a result, erosion has started manifesting itself as a major issue for coatings in specific parts and engines.
    2. 2) Drilling damage: High porosity coatings contain less intimate contacts between splats or splat and substrate and thus the required energy for a crack to propagate is relatively low.
      This problem has been addressed by drilling before the coating deposition and reopening of the holes after coating deposition. This approach minimizes the interaction between coating and laser and that reduces significantly the coating delamination around the drilled holes. However, since each part has to be processed twice, this solution is associated with longer drilling times that are reflected as increased cost.
    3. 3) Coating life: Thermal Spray porous coatings do not demonstrate at the same level the high strain tolerance along the coating thickness which can be seen in other coating types such as EB-PVD.
      The thermal barrier coatings porosity has been increased to improve strain tolerance. However as mentioned above, that can reduce the spray ability process window and influence negatively the cohesion and erosion resistance of the coatings.
    4. 4) YSZ for TBC chemistries are currently limited to 1528K maximum temperature due to phase transformation issues.
      New chemistries have been adopted that present phase stability in higher temperatures. However they show significantly lower fracture toughness compared to the partially stabilized zirconia and it is certain that their erosion resistance will be even less.
  • The task of the invention is therefore to solve the problems given above.
  • The problem is solved by a ceramic layer system according to claim 1.
  • In the subclaims further advantages are given which can be abitrality combined with each other to yield additional advantages.
  • The figure and the description show only examples of the invention.
  • The problems named under point 1 are addressed by adopting Dense Vertical Cracked (DVC) coatings.
    1. 1) Erosion. DVC thermal barrier coatings have shown significantly lower rates compared to their porous counterparts. That means for the same chemistry a porous coating will show more than 3x the erosion rate compared to the DVC one.
    2. 2) DVC coatings have increased cohesion and adhesion compared to the typical porous coatings. The reason is that a very high ratio of fully molten particles deposit on hot substrate or hot previously deposited splats which promotes a good intimate bonding to develop between them. Improved adhesion requires high energy for a horizontal crack to propagate so that guarantees a lower delamination.
    3. 3) Coating life. Due to the intimate contact between splats, the DVC coatings show high fracture toughness along the parallel to the substrate plane. That, combined with their ability to accommodate thermal strain along the coating thickness due to their columnar microstructure ensures a high TBC life.
    4. 4) DVC microstructures can be adopted on the new coating chemistries. That will create a bilayer DVC with partially stabilized zirconia as a lower layer and fully stabilized zirconia as the upper layer. The lower layer will accommodate CTE mismatch with the bond coat and the TGO while the upper layer will provide the higher temperature capability.
  • The system consists of partially stabilized zirconia, especially 8YSZ as the high fracture toughness lower layer to accommodate the CTE mismatch with bond coat and TGO and a lower toughness upper layer of fully stabilized zirconia, especially 48YSZ to provide the high temperature capability. Unlike other possible bilayer coating approaches, the similar chemistry between the two coatings enhances their bonding.
  • Appropriate preheating of the DVC PSZ will prepare its surface to receive the fully molten particles of FSZ and due to the high local temperatures during spraying allow diffusion between the two similar materials. Ideally a number of the vertical cracks will progress from one coating to the other demonstrating the continuity between the two coatings. In this manner the interface which has shown to be the weakest link in other bi-layer systems will be reinforced.
  • The advantages that arise are:
    1. 1) The low fracture toughness of the FSZ with the adoption of a DVC microstructure will significantly increase. That will improve the erosion resistance of the coating.
    2. 2) A good bonding between the two layers and as well with the bond coat will increase the drilling damage tolerance. Less delamination will be observed compared to other bilayer coating systems which have suffered in the past from drilling.
    3. 3) The columnar microstructure along the bilayer coating thickness will allow improved strain tolerance, thus increased coating life.
    4. 4) Higher temperature capability compared to single layer DVC coatings.
  • The figure shows a layer system 1.
  • The layer system 1 comprises a substrate 4 which is preferably metallic and very preferably made of a nickel or cobalt based super alloy.
  • On the substrate 4 a bond coat especially a metallic bond coat 7 and very especially a NiCoCrAlY-based bond coat 7 is applied on.
  • On this bond coat 7 there is a thermally grown oxide (TGO, not shown) layer which is formed during further application of the ceramic layers or by an additional oxidation step or at least during use of the layer system 1.
  • On the bond coat 7 there is applied a first zirconia layer 10 made of a partially stabilized zirconia.
  • The thickness of the partially stabilized zirconia layer 10 is preferable between 75µm - 800µm.
  • The porosity of the partially stabilized zirconia 10 is preferably lower than 5% and very preferably lower than 3%.
  • As an outer ceramic layer there is applied a fully stabilized zirconia layer 13, which is especially the outer most layer of the layer system 1.
  • This outer layer can also be made of a pyrochlore ceramic, such as gadolinium zirconate (GZO), which partially or fully replaces the fully stabilized zirconia (FSZ).
  • The porosity of the fully stabilized zirconia 13 is lower than 5% and preferably lower than 3%.
  • The thickness of the fully stabilized zirconia 13 is preferable between 50µm - 800µm.
  • The same parameters for thickness and porosity are also valid for the pyrochlore layer or pyrochlore/FSZ layer.
  • The stabilization in this zirconia based system can be reached by yttria or by any other rare earth element as known by the state of the art or by a combination of that.
  • Preferably yttrium is used for stabilization.
  • In this layers 10, 13 there are cracks 16 present, which 19 are mostly present in the outer most layer 13 and preferably some of them 21 are present in both layers 10, 13.

Claims (10)

  1. Ceramic layer system,
    at least comprising:
    a substrate (4),
    especially a metallic substrate (4),
    very especially made of a nickel or cobalt based super alloy,
    optionally a metallic bond coat (7) on the substrate (4),
    which is especially metallic and
    very especially made of a NiCoCrAlY-based alloy,
    an inner partially stabilized zirconia layer (10) and
    on it (10) a fully stabilized zirconia layer (13),
    wherein vertical cracks (16, 19, 21) are present.
  2. Ceramic layer system according to claim 1,
    wherein the fully stabilized zirconia layer (13) is replaced partially or fully by a layer comprising or consisting of a pyrochlore material,
    especially by gadolinium zirconate.
  3. Ceramic layer system according to claim 1 or 2,
    wherein the cracks (19) are only present in the fully stabilized zirconia layer (13) or the outer layer with the pyrochlore material.
  4. Ceramic layer system according to any of the claims 1, 2 or 3,
    wherein the cracks (21) are present in both ceramic layers (10, 13).
  5. Ceramic layer according to any of the preceding claims,
    wherein the porosity of the fully stabilized zirconia layer (13) or the layer with the pyrochlore material is lower than 5%,
    especially lower than 3%.
  6. Ceramic layer system according to any of the preceding claims,
    wherein the thickness of the partially stabilized zirconia layer (10) is between 75µm - 800µm.
  7. Ceramic layer system according to any of the preceding claims,
    wherein the thickness of the fully stabilized zirconia layer (13) or the layer with the pyrochlore material is between 50µm - 800µm.
  8. Ceramic layer system according to any of the preceding claims,
    wherein the zirconia or the zirconia layers (10, 13) are stabilized by yttria,
    especially only by yttria.
  9. Ceramic layer system according to any of the preceding claims,
    wherein the porosity of the partially stabilized zirconia layer is lower than 5%,
    especially lower than 3%.
  10. Ceramic layer system according to any of the preceding claims,
    wherein the partially stabilized zirconia is stabilized by yttria,
    especially is 8YPSZ.
EP15172884.7A 2015-06-19 2015-06-19 Dvc-coating with fully and partially stabilized zirconia Withdrawn EP3106541A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15172884.7A EP3106541A1 (en) 2015-06-19 2015-06-19 Dvc-coating with fully and partially stabilized zirconia
EP16722589.5A EP3283667A1 (en) 2015-06-19 2016-05-03 Dvc-coating with fully and partially stabilized zirconia
US15/736,340 US20180179645A1 (en) 2015-06-19 2016-05-03 Dvc-coating with fully and partially stabilized zirconia
PCT/EP2016/059828 WO2016202495A1 (en) 2015-06-19 2016-05-03 Dvc-coating with fully and partially stabilized zirconia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15172884.7A EP3106541A1 (en) 2015-06-19 2015-06-19 Dvc-coating with fully and partially stabilized zirconia

Publications (1)

Publication Number Publication Date
EP3106541A1 true EP3106541A1 (en) 2016-12-21

Family

ID=53476716

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15172884.7A Withdrawn EP3106541A1 (en) 2015-06-19 2015-06-19 Dvc-coating with fully and partially stabilized zirconia
EP16722589.5A Pending EP3283667A1 (en) 2015-06-19 2016-05-03 Dvc-coating with fully and partially stabilized zirconia

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16722589.5A Pending EP3283667A1 (en) 2015-06-19 2016-05-03 Dvc-coating with fully and partially stabilized zirconia

Country Status (3)

Country Link
US (1) US20180179645A1 (en)
EP (2) EP3106541A1 (en)
WO (1) WO2016202495A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206063A1 (en) * 2017-04-10 2018-10-11 Siemens Aktiengesellschaft Partially and fully stabilized zirconium oxide powder as a ceramic layer
EP3453784A1 (en) * 2017-09-08 2019-03-13 United Technologies Corporation Coating with dense columns separated by gaps
EP3712379A1 (en) * 2019-03-22 2020-09-23 Siemens Aktiengesellschaft Fully stabilized zirconia in a seal system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113365963B (en) * 2018-12-18 2023-10-31 欧瑞康美科(美国)公司 Coating for protecting EBC and CMC layers and thermal spraying method thereof
US20220371967A1 (en) * 2021-05-18 2022-11-24 Rolls-Royce Corporation Cmas-resistant environmental barrier coating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170200A1 (en) * 2004-02-03 2005-08-04 General Electric Company Thermal barrier coating system
EP1674663A2 (en) * 2004-12-14 2006-06-28 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050170200A1 (en) * 2004-02-03 2005-08-04 General Electric Company Thermal barrier coating system
EP1674663A2 (en) * 2004-12-14 2006-06-28 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206063A1 (en) * 2017-04-10 2018-10-11 Siemens Aktiengesellschaft Partially and fully stabilized zirconium oxide powder as a ceramic layer
EP3453784A1 (en) * 2017-09-08 2019-03-13 United Technologies Corporation Coating with dense columns separated by gaps
US10550462B1 (en) 2017-09-08 2020-02-04 United Technologies Corporation Coating with dense columns separated by gaps
EP3712379A1 (en) * 2019-03-22 2020-09-23 Siemens Aktiengesellschaft Fully stabilized zirconia in a seal system
WO2020193043A1 (en) * 2019-03-22 2020-10-01 Siemens Aktiengesellschaft Fully stabilized zirconia in a seal system
CN113597501A (en) * 2019-03-22 2021-11-02 西门子能源全球有限两合公司 Fully stabilized zirconia in sealed systems
CN113597501B (en) * 2019-03-22 2024-04-19 西门子能源全球有限两合公司 Fully stabilized zirconia in a sealing system

Also Published As

Publication number Publication date
WO2016202495A1 (en) 2016-12-22
US20180179645A1 (en) 2018-06-28
EP3283667A1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
US20180179645A1 (en) Dvc-coating with fully and partially stabilized zirconia
US6294260B1 (en) In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components
US20210404045A1 (en) Method of manufacturing fiber reinforced barrier coating
Ahmaniemi et al. Thermal cycling resistance of modified thick thermal barrier coatings
US20190062890A1 (en) Cmc with outer ceramic layer
EP2834386A2 (en) Hybrid thermal barrier coating
US20110033630A1 (en) Techniques for depositing coating on ceramic substrate
US20150159492A1 (en) Self-Healing Environmental Barrier Coating
CN108715988B (en) Thermal barrier coating with thermal barrier and CMAS corrosion adhesion resistance and preparation process thereof
EP2415905B1 (en) CMAS resistant TBC coating
US10597329B2 (en) Thermal barrier coating for CMAS resistance and low thermal conductivity
US11466370B2 (en) Turbine engine part coated in a thermal barrier, and a method of obtaining it
CN104451672A (en) Laser powder deposition method for regulating and controlling interface morphology of thermal barrier coating
US8497028B1 (en) Multi-layer metallic coating for TBC systems
EP2811048B1 (en) Coating process
EP2322686B1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
EP3170918A1 (en) Dvc-coating with fully and partially stabilized zirconia
JP2019507828A (en) Adhesion promoting layer for bonding a high temperature protective layer on a substrate and method for producing the same
EP2971240B1 (en) Hybrid thermal barrier coating and process of making the same
US20160215382A1 (en) Thermal barrier coating with improved adhesion
Morelli Resistenza a corrosione da CMAS di barriere termiche (TBCs): influenza della microstruttura, materiali e architettura del rivestimento
US20190203333A1 (en) Thermal barrier coating with improved adhesion
US20200087795A1 (en) Ceramic layer constituted of partially and fully stabilized zirconium oxide
Ahn et al. Design and Experiments of Graded Thermal Barrier Coatings by Plasma Sprayings
Guo et al. Thermal and Mechanical Properties of Novel Lanthanum Zirconate Based Thermal Barrier Coatings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STAMM, WERNER

Inventor name: HITCHMAN, NEIL

Inventor name: FLORES RENTERIA, ARTURO

Inventor name: ZOIS, DIMITRIOS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170622