EP3095845A1 - Acylhydrazone als bleichverstärkende wirkstoffe - Google Patents

Acylhydrazone als bleichverstärkende wirkstoffe Download PDF

Info

Publication number
EP3095845A1
EP3095845A1 EP16168843.7A EP16168843A EP3095845A1 EP 3095845 A1 EP3095845 A1 EP 3095845A1 EP 16168843 A EP16168843 A EP 16168843A EP 3095845 A1 EP3095845 A1 EP 3095845A1
Authority
EP
European Patent Office
Prior art keywords
acid
alkyl
weight
use according
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16168843.7A
Other languages
English (en)
French (fr)
Inventor
André HÄTZELT
Hendrik Hellmuth
Sean Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3095845A1 publication Critical patent/EP3095845A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring

Definitions

  • the present invention relates to the removal of stains from textile or hard surfaces by the combination of peroxygen bleaching agents with certain acylhydrazones and with certain surfactants.
  • the present invention relates to the use of a combination of a peroxidic bleach with surfactant selected from the group consisting of alkoxylated alcohol type nonionic surfactant, linear alkylbenzenesulfonate type anionic surfactant, ether sulfate type anionic surfactant and mixtures thereof, and a Acylhydrazone of the general formula (I), in the R 1 is a CF 3 or a C 1-28 -alkyl, C 2-28 -alkenyl, C 2-22 -alkynyl, C 3-12 -cycloalkyl, C 3-12 -cycloalkenyl- , Phenyl, naphthyl, C 7-9 -aralkyl, C 3-20 -heteroalkyl or C 3-12 -cycloheteroalkyl, R 2 and R 3 independently of one another represent hydrogen or an optionally substituted C 1-28 -alkyl, C 2-28 alkenyl, C 2-22 alkynyl
  • the acylhydrazones may be in E or Z configuration; when R 2 is hydrogen, the compound of general formula (I) may be in one of its tautomeric forms or as a mixture of these.
  • R 2 is preferably hydrogen.
  • R 1 and / or R 3 is preferably an electron-withdrawing group-substituted methyl, phenyl or naphthyl group.
  • R 4 is preferably hydrogen.
  • an electron-withdrawing group is preferably an ammonium group in question, which optionally carries alkyl or hydroxyalkyl groups or is formed with the inclusion of the N-atom carrying an alkyl group as heterocycloalkyl optionally carrying further heteroatoms.
  • the anion A - is preferably carboxylate such as lactate, citrate, tartrate or succinate, perchlorate, tetrafluoroborate, hexafluorophosphate, alkyl sulfonate, alkyl sulfate, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, isocyanate, rhodanide, nitrate, fluoride, chloride, bromide, bicarbonate or Carbonate, wherein in polyvalent anions, the charge balance can be achieved by the presence of additional cations such as sodium or ammonium ions.
  • carboxylate such as lactate, citrate, tartrate or succinate, perchlorate, tetrafluoroborate, hexafluorophosphate, alkyl sulfonate, alkyl sulfate, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphat
  • nonionic surfactants are alkoxylated, preferably ethoxylated, especially primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol used in which the alcohol radical may be linear or methyl branched preferably in the 2-position, or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of native origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • Nonionic surfactant of the alkoxylated alcohol type is preferably present in detergents or cleaners in amounts of from 0.5% to 10% by weight, especially from 4% to 6% by weight.
  • the presence of the said nonionic surfactants, and in particular of C 12-18 -alcohol having an average of 7 EO is particularly preferred, including also embodiments which additionally comprise the linear alkylbenzenesulfonate-type anionic surfactants and ether sulfate anionic surfactants mentioned below or not included.
  • Anionic surfactants of the linear alkylbenzenesulfonate type are the salts, preferably the alkali metal salts and in particular the sodium salts of benzenesulfonic acids substituted by linear alkyl groups having from 6 to 19, preferably 7 to 15 and in particular 9 to 13 carbon atoms.
  • a most preferred representative is sodium dodecylbenzenesulfonate.
  • Anionic surfactant of the linear alkylbenzenesulfonate type is preferably present in detergents or cleaners in amounts of from 0.5% to 10%, and more preferably from 4% to 6%, by weight.
  • Ethhersulfate type anionic surfactants are the salts of sulfuric acid monoesters of straight or branched C 7-21 alcohols reacted with alkylene oxide, such as 2-methyl branched C 9-11 alcohols containing on average 3.5 moles of ethylene oxide (EO) or C 12-18 fatty alcohols with 1 to 4 EO.
  • Suitable ether sulfates are, for example, compounds of the formula R 21 -O- (AO) n -SO 3 - X + , in which R 21 is a linear or branched, substituted or unsubstituted alkyl radical, preferably a linear, unsubstituted alkyl radical, particularly preferably one Fatty alcohol residue, stands.
  • Preferred radicals R 21 are selected from decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl radicals and mixtures thereof, where the representatives with even number of carbon atoms Atoms are preferred.
  • Particularly preferred radicals R 21 are derived from C 12 -C 18 -fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or C 10 -C 20 -oxo alcohols.
  • AO represents an ethylene oxide (EO) or propylene oxide (PO) moiety, preferably an ethylene oxide moiety.
  • EO ethylene oxide
  • PO propylene oxide
  • n is a number in the range of 1 to 50, preferably 1 to 20 and especially 2 to 10; Most preferably, n represents numbers in the range from 2 to 8.
  • the stated degrees of alkoxylation n are generally statistical averages, which may be an integer or a fractional number.
  • X stands for a monovalent cation or the n-th part of an n-valent cation, the alkali metal ions being preferred, and Na + or K + being preferred, Na + being extremely preferred.
  • cations X + may be selected from NH 4 +, 1 ⁇ 2 Zn 2+, 1/2 Mg 2+, 1/2 Ca 2+, 1/2 min 2+, and mixtures thereof.
  • Anionic surfactant of the ether sulfates type is preferably present in detergents or cleaners in amounts of from 1% to 10%, and more preferably from 5% to 8%, by weight.
  • the use of the invention essential combination leads to significantly improved removal of bleachable and non-bleachable stains in the washing process at low temperatures.
  • finetuning of stain removal performance is achieved by optimizing the bleach-surfactant system and saving energy through improved stain removal performance and consequent lower wash temperatures, as well as water savings by avoiding multiple washes since stains are immediately removed on the first wash.
  • H 2 O 2 or water-H 2 O 2 releasing substances are preferably used as peroxidic bleaching agents, which include, in particular, alkali metal perborates, alkali metal perborates and urea perhydrate; However, it is also possible to use them in combination with peroxycarboxylic acids such as diperoxodecanedicarboxylic acid or phthalimidopercaproic acid, with other acids or acids Salts, such as alkali persulfates or peroxodisulfates or caroates, or with diacyl peroxides or tetraacyl diperoxides.
  • peroxidic bleaching agents include, in particular, alkali metal perborates, alkali metal perborates and urea perhydrate;
  • peroxycarboxylic acids such as diperoxodecanedicarboxylic acid or phthalimidopercaproic acid
  • other acids or acids Salts such as alkali persulfates or peroxodisulfates or caro
  • the performance of compounds of general formula (I) may optionally be controlled by the presence of manganese, titanium, cobalt, nickel or copper ions, preferably Mn (II) - (III) - (IV) - (V), Cu ( I) - (II) - (III), Fe (I) - (II) - (III) - (IV), Co (I) - (II) - (III), Ni (I) - (II) - (III), Ti (II) - (III) - (IV) and particularly preferably selected from Mn (II) - (III) - (IV) - (V), Cu (I) - (II) - (III) Fe (I) - (II) - (III) - (IV) and Co (I) - (II) - (III) are further enhanced; If desired, it is also possible to use complex compounds of the abovementioned metal central atoms with ligands of the general formula (I
  • a peroxycarboxylic acid under perhydrolysis forming a compound together with a acylhydrazone of the formula (I) or (II) is used in the presence of H 2 O.
  • Suitable are customary bleach activators which carry O- and / or N-acyl groups for example polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), acylated triazine derivatives, in particular 1,5-diacetyl-2,4 dioxohexahydro-1,3,5-triazine (DADHT), acylated phenylsulfonates and carboxylates, especially nonanoyloxy or isononanoyloxybenzenesulfonate or benzoate, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran, as well as acetylated sorbitol and mannitol, and acylated sugar derivatives, especially pentaace
  • the concentration of the compound according to formula (I) or (II) in the aqueous washing or cleaning liquor is used, 0.5 ⁇ mol / l to 500 ⁇ mol / l, in particular 5 ⁇ mol / l to 100 ⁇ mol / l.
  • the concentration of manganese, titanium, cobalt, nickel or copper ions in the aqueous washing or cleaning liquor is preferably in the range from 0.1 ⁇ mol / l to 500 ⁇ mol / l, in particular 1 ⁇ mol / l to 100 ⁇ mol / l
  • Preferred peroxygen concentrations (calculated as H 2 O 2 ) in the washing or cleaning liquor are in the range from 0.001 g / l to 10 g / l, in particular from 0.1 g / l to 1 g / l and more preferably from 0.2 g / l to 0.5 g / l.
  • the use according to the invention is preferably carried out at temperatures in the range from 10 ° C.
  • the water hardness of the water used for preparing the aqueous washing or cleaning liquor is preferably in the range from 0 ° dH to 27 ° dH, in particular 0 ° dH to 21 ° dH.
  • the water hardness is preferably in the range of 0 ° dH to 16 ° dH, in particular 0 ° dH to 3 ° dH, which can be achieved for example by the use of conventional builder materials or water softeners.
  • the use according to the invention is preferably carried out at pH values in the range from pH 5 to pH 12, in particular from pH 7 to pH 11.
  • the uses according to the invention can be realized particularly simply by the use of a washing or cleaning agent which comprises peroxidic bleach, at least one surfactant and a compound of the formula (I) or (II) or a bleach catalyst obtainable therefrom by complex formation with a transition metal ion mentioned become.
  • a bleach-catalyzing complex which has a ligand with a skeleton of the formula (I) or (II) may have the corresponding ligand once or even several times, in particular twice. It can be one-or possibly two- or Pathkerning.
  • It may also contain other neutral, anion or cationic ligands such as H 2 O, NH 3 , CH 3 OH, acetylacetone, terpyridine, organic anions such as citrate, oxalate, tartrate, formate, a C 2-18 -carboxylate, a C 1-18 alkyl sulfate, especially methosulfate, or a corresponding alkanesulfonate, inorganic anions such as halide, especially chloride, perchlorate, tetrafluoroborate, hexafluorophosphate, nitrate, bisulfate, hydroxide or hydroperoxide. It may also have bridging ligands such as alkylenediamines.
  • the agent Preferably in detergents or cleaners 0.01 wt .-% to 5 wt .-%, in particular 0.05 wt .-% to 0.2 wt .-% of the compound according to formula (I) or (II).
  • the agent additionally comprise a manganese, titanium, cobalt, nickel or copper salt and / or a manganese, titanium, cobalt, nickel or manganese Copper complex without a ligand which corresponds to a compound according to formula (I) contains.
  • the molar ratio of said transition metal or the sum of said transition metals to the compound of formula (I) is preferably in the range of 0.001: 1 to 2: 1, especially 0.01: 1 to 1: 1.
  • Preferred transition metal is Mn.
  • peroxygen compounds contained in the compositions are in particular organic peracids or pers acid salts of organic acids, such as phthalimidopercaproic acid, perbenzoic acid or salts of diperdodecanedioic acid, hydrogen peroxide and under the washing conditions hydrogen peroxide-releasing inorganic salts, such as perborate, percarbonate and / or persilicate into consideration.
  • Hydrogen peroxide can also be produced by means of an enzymatic system, ie an oxidase and its substrate. If solid peroxygen compounds are to be used, they can be used in the form of powders or granules, which can also be enveloped in a manner known in principle.
  • alkali metal percarbonate alkali metal perborate monohydrate, alkali metal perborate tetrahydrate or hydrogen peroxide in the form of aqueous solutions which contain 3% by weight to 10% by weight of hydrogen peroxide.
  • peroxygen compounds are present in detergents or cleaners in amounts of up to 50% by weight, especially from 5% to 30% by weight.
  • Detergents and cleaners which may be in the form of homogeneous solutions or suspensions in particular as pulverulent solids, in densified particle form, may in principle all except the combination of peroxidic bleach, surfactant and compound of formula (I) or (II) to be used according to the invention contain known and customary in such agents ingredients.
  • the agents may, in particular, builders, other surfactants, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators, polymers with special effects, such as soil release polymers, dye transfer inhibitors, grayness inhibitors, wrinkle-reducing polymeric agents and shape-retaining polymeric agents, and other adjuvants, such as optical brighteners, foam regulators, dyes and fragrances.
  • An agent may contain conventional antimicrobial agents in addition to the ingredients previously mentioned to enhance the disinfecting effect, for example against specific germs.
  • antimicrobial additives are contained in disinfectants preferably in amounts of up to 10 wt .-%, in particular from 0.1 wt .-% to 5 wt .-%.
  • bleach activators which form peroxycarboxylic acids or peroxoimidic acids under perhydrolysis conditions and / or customary bleach-activating transition metal complexes can be used.
  • polyacylated alkylenediamines especially tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles, urazoles, diketopiperazines, sulfurylamides and cyanurates
  • carboxylic anhydrides in particular phthalic anhydride
  • carboxylic acid esters in particular
  • the bleach activators may have been coated or granulated in a known manner with coating substances in order to avoid the interaction with the per compounds, whereby granulated tetraacetylethylenediamine having mean particle sizes of 0.01 mm to 0.8 mm, granulated 1.5% by means of carboxymethylcellulose.
  • Diacetyl-2,4-dioxohexahydro-1,3,5-triazine, and / or formulated in particulate trialkylammonium acetonitrile is particularly preferred.
  • the agents may contain one or more other surfactants, in particular anionic surfactants, nonionic surfactants and mixtures thereof, but also cationic and / or amphoteric surfactants may be included.
  • Suitable nonionic surfactants are in particular alkyl glycosides and ethoxylation and / or propoxylation of alkyl glycosides or linear or branched alcohols each having 12 to 18 carbon atoms in the alkyl moiety and 3 to 20, preferably 4 to 10 alkyl ether groups.
  • N-alkyl-amines vicinal diols, fatty acid esters and fatty acid amides, which correspond to said alcohol derivatives with respect to the alkyl part, as well as of alkylphenols having 5 to 12 carbon atoms in the alkyl radical.
  • anionic surfactants are, in particular, soaps and those which contain sulfate or sulfonate groups with preferably alkali metal ions as cations.
  • Soaps are preferably the alkali salts of saturated or unsaturated fatty acids having 12 to 18 carbon atoms. Such fatty acids can also be used in incompletely neutralized form.
  • the surfactants of the sulfate type include the salts of sulfuric acid half esters of fatty alcohols having 12 to 18 carbon atoms.
  • Sulfonate type surfactants include alkane sulfonates of 12 to 18 carbon atoms, olefin sulfonates of 12 to 18 carbon atoms resulting from the reaction of corresponding monoolefins with sulfur trioxide, and alpha sulfo fatty acid esters useful in the sulfonation of fatty acid methyl or silane sulfonates. ethyl esters arise.
  • the cationic surfactants have customary anions in the charge balance necessary type and number, which can be selected in addition to, for example halides also from the anionic surfactants.
  • the cationic surfactants used are hydroxyalkyl trialkylammonium compounds, in particular C 12-18 -alkyl (hydroxyethyl) dimethylammonium compounds, and preferably their halides, in particular chlorides.
  • Texturing agents contain up to 25% by weight, in particular from 0.5% to 15% by weight, of cationic surfactant.
  • a washing or cleaning agent preferably contains at least one water-soluble and / or water-insoluble, organic and / or inorganic builder.
  • the water-soluble organic builder substances include polycarboxylic acids, in particular citric acid and sugar acids, monomeric and polymeric aminopolycarboxylic acids, in particular methylglycinediacetic acid, nitrilotriacetic acid and ethylenediaminetetraacetic acid and polyaspartic acid, polyphosphonic acids, in particular aminotris (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid) and 1-hydroxyethane-1,1-diphosphonic acid, polymeric hydroxy compounds such as dextrin and polymeric (poly) carboxylic acids, in particular by oxidation of polysaccharides or dextrins accessible polycarboxylates, and / or polymeric acrylic acids, methacrylic acids, maleic acids and copolymers thereof, which may also contain polymerized small amounts of polyme
  • the molecular weight of the homopolymers of unsaturated carboxylic acids is generally between 5,000 and 200,000, of the copolymers between 2,000 and 200,000, preferably 50,000 to 120,000, each based on the free acid.
  • a particularly preferred acrylic acid-maleic acid copolymer has a molecular weight of 50,000 to 100,000.
  • Suitable, though less preferred compounds of this class are copolymers of acrylic acid or methacrylic acid with vinyl ethers such as vinylmethyl ethers, vinyl esters, ethylene, propylene and styrene in which the proportion of acid is at least 50% by weight.
  • the first acidic monomer or its salt is derived from a monoethylenically unsaturated C 3 -C 8 -carboxylic acid and preferably from a C 3 -C 4 -monocarboxylic acid, in particular from (meth) -acrylic acid.
  • the second acidic monomer or its salt may be a derivative of a C 4 -C 8 -dicarboxylic acid, with maleic acid being particularly preferred, and / or a derivative of an allylsulfonic acid which is substituted in the 2-position by an alkyl or aryl radical.
  • Such polymers generally have a molecular weight between 1,000 and 200,000.
  • Further preferred copolymers are those which have as monomers acrolein and acrylic acid / acrylic acid salts or vinyl acetate.
  • the organic builder substances can be used, in particular for the preparation of liquid agents, in the form of aqueous solutions, preferably in the form of 30 to 50 percent by weight aqueous solutions. All of the acids mentioned are generally used in the form of their water-soluble salts, in particular their alkali metal salts.
  • organic builder substances may be present in amounts of up to 40% by weight, in particular up to 25% by weight and preferably from 1% by weight to 8% by weight. Quantities close to the stated upper limit are preferably used in pasty or liquid, in particular water-containing agents.
  • Suitable water-soluble inorganic builder materials are, in particular, polymeric alkali metal phosphates, which may be in the form of their alkaline neutral or acidic sodium or potassium salts. Examples of these are tetrasodium diphosphate, disodium dihydrogen diphosphate, pentasodium triphosphate, so-called sodium hexametaphosphate and the corresponding potassium salts or mixtures of sodium and potassium salts. Crystalline or amorphous alkali metal aluminosilicates, in amounts of up to 50% by weight, preferably not more than 40% by weight, and in liquid agents, in particular from 1% by weight to 5% by weight, are particularly suitable as water-insoluble, water-dispersible inorganic builder materials. used.
  • detergent grade crystalline sodium aluminosilicates especially zeolite A, P and optionally X. Amounts near the above upper limit are preferably used in solid, particulate agents.
  • suitable aluminosilicates have no particles with a particle size greater than 30 .mu.m and preferably consist of at least 80% by weight of particles having a size of less than 10 .mu.m.
  • Their calcium binding capacity is usually in the range of 100 to 200 mg CaO per gram.
  • Suitable substitutes or partial substitutes for the said aluminosilicate are crystalline alkali silicates which may be present alone or in a mixture with amorphous silicates.
  • the alkali metal silicates useful as builders preferably have a molar ratio of alkali metal oxide to SiO 2 below 0.95, in particular from 1: 1.1 to 1:12, and may be present in amorphous or crystalline form.
  • Preferred alkali metal silicates are the sodium silicates, in particular the amorphous sodium silicates, with a molar ratio of Na 2 O: SiO 2 of 1: 2 to 1: 2.8.
  • the crystalline silicates which may be present alone or in admixture with amorphous silicates, are crystalline layer silicates with the general formula of Na 2 Si x O used 2x + 1 ⁇ y H 2 O in which x, known as the modulus, an integer of 1, 9 to 4 and y is a number from 0 to 20 and preferred values for x are 2, 3 or 4.
  • Preferred crystalline phyllosilicates are those in which x in the abovementioned general formula assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O
  • amorphous alkali metal silicates practically anhydrous crystalline alkali metal silicates of the abovementioned general formula in which x is a number from 1.9 to 2.1, can be used.
  • a crystalline sodium layer silicate with a modulus of 2 to 3 is used, as can be prepared from sand and soda. Crystalline sodium silicates with a modulus in the range 1.9 to 3.5 are used in a further preferred embodiment.
  • a granular compound of alkali metal silicate and alkali metal carbonate is used, as it is commercially available, for example, under the name Nabion® 15.
  • the weight ratio of aluminosilicate to silicate is preferably 1:10 to 10: 1.
  • the weight ratio of amorphous alkali metal silicate to crystalline alkali metal silicate is preferably 1: 2 to 2: 1 and especially 1: 1 to 2: 1.
  • Builder substances are preferably present in detergents or cleaners in amounts of up to 60% by weight, in particular from 5% by weight to 40% by weight.
  • the water-soluble builder block contains at least 2 of the components b), c), d) and e) in amounts greater than 0 wt .-%.
  • component a in a preferred embodiment, 15% by weight to 25% by weight of alkali carbonate, which may be replaced at least proportionally by alkali metal bicarbonate, and up to 5% by weight, in particular 0.5% by weight, bis 2.5% by weight of citric acid and / or alkali citrate.
  • the component comprises a) alkali carbonate and alkali metal bicarbonate, preferably in a weight ratio of 10: 1 to 1: 1.
  • component b in a preferred embodiment, 1 wt .-% to 5 wt .-% alkali silicate with a modulus in the range of 1.8 to 2.5 are included.
  • phosphonic acid and / or alkali metal phosphonate in a preferred embodiment, from 0.05% by weight to 1% by weight of phosphonic acid and / or alkali metal phosphonate is contained.
  • Phosphonic acids are also understood as meaning optionally substituted alkylphosphonic acids, which may also have a plurality of phosphonic acid groups (so-called polyphosphonic acids).
  • They are preferably selected from the hydroxy and / or aminoalkylphosphonic acids and / or their alkali salts, for example dimethylaminomethane diphosphonic acid, 3-aminopropane-1-hydroxy-1,1-diphosphonic acid, 1-amino-1-phenylmethane diphosphonic acid, 1-hydroxyethane 1,1-diphosphonic acid, amino-tris (methylenephosphonic acid), N, N, N ', N'-ethylenediamine tetrakis (methylenephosphonic acid) and acylated derivatives of phosphorous acid, which can also be used in any mixtures.
  • dimethylaminomethane diphosphonic acid 3-aminopropane-1-hydroxy-1,1-diphosphonic acid
  • 1-amino-1-phenylmethane diphosphonic acid 1-hydroxyethane 1,1-diphosphonic acid
  • amino-tris methylenephosphonic acid
  • alkali metal phosphate in particular trisodium polyphosphate, is contained.
  • Alkaliphosphat is the summary term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to high molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 gcm -3 , melting point 60 °) and as a monohydrate (density 2.04 gcm -3 ). Both salts are white powders which are very soluble in water and which lose their water of crystallization when heated and at 200 ° C into the weak acid diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and pass on Madrell's salt.
  • NaH 2 PO 4 is acidic; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (potassium phosphate primary or monobasic potassium, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt of density 2.33 gcm -3 , has a melting point of 253 ° (decomposition to form (KPO 3 ) x , potassium polyphosphate) and is slightly soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 is a colorless, very slightly water-soluble crystalline salt.
  • Disodium hydrogen phosphate is prepared by neutralization of phosphoric acid with soda solution using phenolphthalein as an indicator.
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which have a density of 1.62 gcm -3 as dodecahydrate and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • Tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder of density 2.56 gcm -3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction. It arises, for example, when heating Thomasschlacke with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over the corresponding sodium compounds in the detergent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) , For substances are colorless, in water with alkaline Reaction soluble crystals.
  • Na 4 P 2 O 7 is formed on heating of disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH being 1% Solution at 25 ° 10.4. Condensation of the NaH 2 PO 4 or the KH 2 PO 4 results in higher molecular weight sodium and potassium phosphates, in which one can distinguish cyclic representatives, the sodium or potassium metaphosphates and chain types, the sodium or potassium polyphosphates.
  • Pentakaliumtriphosphat, K 5 P 3 O 10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) in the trade.
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two applicable are just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two applicable; It is also possible to use mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate.
  • the agent is 1.5% by weight to 5% by weight of polymeric polycarboxylate, in particular selected from the polymerization or copolymerization products of acrylic acid, methacrylic acid and / or maleic acid contain.
  • polymeric polycarboxylate in particular selected from the polymerization or copolymerization products of acrylic acid, methacrylic acid and / or maleic acid contain.
  • homopolymers of acrylic acid particularly preferred are those having an average molecular weight in the range from 5,000 D to 15,000 D (PA standard).
  • enzymes which can be used in the compositions apart from the abovementioned oxidase, those from the class of the proteases, lipases, cutinases, amylases, pullulanases, mannanases, cellulases, hemicellulases, xylanases and peroxidases and mixtures thereof are suitable, for example proteases such as BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Alcalase®, Esperase®, Savinase®, Durazym® and / or Purafect® OxP, amylases such as Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® and / or Purafect® OxAm, lipases such as Lipolase®, Lipomax®, Lumafast® and / or Lipozym®, cellulases such as Celluzyme® and / or Carezyme®.
  • proteases such
  • fungi or bacteria such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes or Pseudomonas cepacia derived enzymatic agents.
  • the optionally used enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature inactivation. They are present in detergents, cleaners and disinfectants, preferably in amounts of up to 10% by weight, in particular from 0.2% by weight to 2% by weight, particular preference being given to using enzymes which are stabilized against oxidative degradation.
  • the composition contains 5% by weight to 50% by weight, in particular 8-30% by weight of anionic and / or nonionic surfactant, up to 60% by weight, in particular 5-40% by weight.
  • organic solvents which can be used in the detergents and cleaners, especially if they are in liquid or pasty form, are alcohols having 1 to 4 carbon atoms, in particular methanol, ethanol, isopropanol and tert-butanol, diols having 2 to 4C -Atomen, in particular ethylene glycol and propylene glycol, and mixtures thereof and derived from the classes of compounds mentioned ether.
  • Such water-miscible solvents are preferably present in the compositions in amounts not exceeding 30% by weight, in particular from 6% by weight to 20% by weight.
  • the agents can system and environmentally acceptable acids, in particular citric acid, acetic acid, tartaric acid, malic acid, lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, but also, mineral acids, in particular sulfuric acid, or bases, in particular ammonium or alkali metal hydroxides.
  • Such pH regulators are in the compositions preferably not more than 20% by weight, in particular from 1.2% by weight to 17% by weight.
  • Soil release polymers often referred to as “soil release” agents or because of their ability to soil-repel the treated surface, for example, the fiber, are referred to as "soil repellents", for example, nonionic or cationic cellulose derivatives.
  • the particularly polyester-active soil release polymers include copolyesters of dicarboxylic acids, for example adipic acid, phthalic acid or terephthalic acid, diols, for example ethylene glycol or propylene glycol, and polydiols, for example polyethylene glycol or polypropylene glycol.
  • Preferred soil release polymers include those compounds which are formally accessible by esterification of two monomeric moieties, wherein the first monomer is a dicarboxylic acid HOOC-Ph-COOH and the second monomer is a diol HO- (CHR 11 -) a OH, also known as polymeric Diol H- (O- (CHR 11 -) a ) b OH may be present.
  • Ph is an o-, m- or p-phenylene radical which can carry 1 to 4 substituents selected from alkyl radicals having 1 to 22 C atoms, sulfonic acid groups, carboxyl groups and mixtures thereof
  • R 11 denotes hydrogen
  • a is a number from 2 to 6
  • b is a number from 1 to 300.
  • the molar ratio of monomer diol units to polymer diol units is preferably 100: 1 to 1: 100, in particular 10: 1 to 1:10.
  • the degree of polymerization b is preferably in the range of 4 to 200, especially 12 to 140.
  • the molecular weight or the average molecular weight or the maximum molecular weight distribution of preferred soil release polyester is in the range of 250 to 100,000, especially 500 to 50,000
  • the acid underlying the radical Ph is preferably selected from terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, mellitic acid, the isomers of sulfophthalic acid, sulfoisophthalic acid and sulfoterephthalic acid and mixtures thereof.
  • acids having at least two carboxyl groups may be included in the soil release-capable polyester.
  • alkylene and alkenylene dicarboxylic acids such as malonic acid, succinic acid, fumaric acid, maleic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
  • HO- (CHR 11 -) a OH include those in which R 11 is hydrogen and a is a number from 2 to 6, and those in which a is 2 and R 11 is selected from hydrogen and the alkyl radicals having 1 to 10, in particular 1 to 3, carbon atoms.
  • R 11 is the has the abovementioned meaning, particularly preferred.
  • diol components are ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,2-decanediol, 1, 2-dodecanediol and neopentyl glycol.
  • Particularly preferred among the polymeric diols is polyethylene glycol having an average molecular weight in the range of 1000 to 6000.
  • these polyesters may also be end developmentver consideration, with alkyl groups having 1 to 22 carbon atoms and esters of monocarboxylic acids in question as end groups.
  • the ester groups bonded via end groups can be based on alkyl, alkenyl and aryl monocarboxylic acids having 5 to 32 carbon atoms, in particular 5 to 18 carbon atoms. These include valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, undecenoic acid, lauric acid, lauroleinic acid, tridecanoic acid, myristic acid, myristoleic acid, pentadecanoic acid, palmitic acid, stearic acid, petroselinic acid, petroselaidic acid, oleic acid, linoleic acid, linolaidic acid, linolenic acid, levostearic acid, arachidic acid , Gadoleic acid, arachidonic acid, behenic acid, erucic acid, brassidic acid, clupanodonic acid, lignoceric acid, cerotic acid,
  • the hydroxymonocarboxylic acids may in turn be linked to one another via their hydroxyl group and their carboxyl group and thus be present several times in an end group.
  • the number of hydroxymonocarboxylic acid units per end group is in the range from 1 to 50, in particular from 1 to 10.
  • suitable for use in laundry detergents of textiles color transfer inhibitors include polyvinylpyrrolidones, polyvinylimidazoles, polymeric N-oxides such as poly (vinylpyridine-N-oxide) and copolymers of vinylpyrrolidone with vinylimidazole and optionally other monomers.
  • the means for use in textile laundry may contain anti-wrinkling agents, since textile fabrics, in particular of rayon, wool, cotton and their mixtures, may tend to wrinkle, because the individual fibers are sensitive to bending, buckling, pressing and squeezing transverse to the fiber direction.
  • anti-wrinkling agents include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid esters.
  • Graying inhibitors have the task of keeping suspended from the hard surface and in particular from the textile fiber suspended dirt in the fleet.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example starch, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • starch derivatives can be used, for example aldehyde starches.
  • cellulose ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof, for example in amounts of from 0.1 to 5% by weight, based on the compositions.
  • the agents may contain optical brighteners, among these in particular derivatives of diaminostilbenedisulfonic acid or their alkali metal salts.
  • Suitable salts are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulphonic acid or compounds of similar construction which, instead of the morpholino Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyrene type may be present, for example, the alkali salts of 4,4'-bis (2-sulfostyryl) -diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) -diphenyl, or 4 - (4-chlorostyryl) -4 '- (2-sulfostyryl).
  • Mixtures of the aforementioned optical brightener can be used.
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silicic acid or bis-fatty acid alkylenediamides. It is also advantageous to use mixtures of various foam inhibitors, for example those of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone- and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. In particular, mixtures of paraffins and bistearylethylenediamide are preferred.
  • agents can be used to prevent the tarnishing of silver objects, so-called silver corrosion inhibitors.
  • Preferred silver corrosion inhibitors are organic disulfides, dihydric phenols, trihydric phenols, optionally alkyl- or aminoalkyl-substituted triazoles such as benzotriazole and cobalt, manganese, titanium, zirconium, hafnium, vanadium or cerium salts and / or complexes in which the Metals in one of the oxidation states II, III, IV, V or VI are present.
  • the compound according to formula (I) or (II) or the correspondingly preformed complex may be present in the form of powders or as granules, which may also be coated and / or colored and may contain conventional carrier materials and / or granulation aids. In the case of their use as granules, if desired, these may also contain further active substances, in particular bleach activator.
  • compositions having an increased bulk density in particular in the range from 650 g / l to 950 g / l
  • a process comprising an extrusion step is preferred.
  • Detergents, cleaners or disinfectants in the form of aqueous or other conventional solvent-containing solutions are particularly advantageously prepared by simply mixing the ingredients, which can be added in bulk or as a solution in an automatic mixer. In a preferred embodiment of means for the particular machine cleaning of dishes, these are tablet-shaped.
  • cotton substrates which had been provided with 90 standardized soils were treated at 20 ° C. with the detergents 12.5% by weight of sodium percarbonate and 3.5% by weight of TAED (containing 5.5% by weight of TAED).
  • % Sodium dodecylbenzenesulfonate V2 (containing 5.5% by weight of C 12-18 -alcohol 7EO) or V 3 (containing 5% by weight of sodium lauryl ether sulfate-2EO) or the otherwise identically combined agents M1, M2 and M2, to each of which 0.2% by weight of morpholinium 4- (2- (2 - ((2-hydroxyphenylmethyl) methylene) hydrazinyl) -2-oxoethyl) -4-methyl chloride had been added under the same conditions washed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Reinigungsleistung von Wasch- und Reinigungsmitteln gegenüber Anschmutzungen sollte verbessert werden. Dies gelang im Wesentlichen durch das Einarbeiten einer Kombination von peroxidischem Bleichmittel mit bestimmten Acylhydrazonen und mit bestimmten Tensiden.

Description

  • Die vorliegende Erfindung betrifft die Entfernung von Anschmutzungen von textilen oder harten Oberflächen durch die Kombination von persauerstoffhaltigen Bleichmitteln mit bestimmten Acylhydrazonen und mit bestimmten Tensiden.
  • Herkömmliche Waschmittel mit Bleichmitteln auf Basis von Aktivsauerstoff, insbesondere in Gegenwart üblicher stöchiometrischer Aktivatoren (wie zum Beispiel TAED, NOBS, DECOBS, DOBA) zeigen eine gute Leistung bei Anwendungstemperaturen von 40°C und darüber. Bei niedrigeren Temperaturen wird ihre Leistung jedoch manchmal als verbesserungswürdig empfunden. So lassen sich bei Waschtemperaturen unter 40 °C nicht alle bleichbaren oder nicht bleichbaren Anschmutzungen immer ausreichend entfernen. Verbraucher tendieren dazu, bei immer niedrigeren Temperaturen zu waschen, erwarten aber trotzdem eine zufriedenstellende Leistung ihres Waschmittels. Hohe Waschtemperaturen gehen auch mit einem erhöhten Energieverbrauch einher, welcher aufgrund von Umweltschutz und Resourcenschonung zu vermeiden ist.
  • Aus der internationalen Patentanmeldung WO 2009/124855 sind Metallkomplexe mit Acylhydrazon-Liganden bekannt, die elektronenziehende Substituenten in der Nähe der Acylgruppe tragen. Die internationale Patentanmeldung WO 2012/080088 offenbart Acylhydrazone mit cyclischen Ammoniumgruppen als Substituenten in der Nähe der Acylgruppe.
  • Nun wurde gefunden, dass die Kombination aus bestimmten Acylhydrazonen mit bestimmten Bleichmitteln und bestimmten Tensiden insbesondere bei niedrigen Temperaturen zu verbesserten Entfernungen von Anschmutzungen führt, wenn man die Kombination in Wasch- oder Reinigungsmitteln einsetzt.
  • Gegenstand der vorliegenden Erfindung ist die Verwendung einer Kombination aus einem peroxidischen Bleichmittel mit Tensid, ausgewählt aus der Gruppe umfassend nichtionisches Tensid vom Typ der alkoxylierten Alkohole, anionisches Tensid vom Typ der linearen Alkylbenzolsulfonate, anionisches Tensid vom Typ der Ethersulfate und deren Mischungen, und mit einem Acylhydrazon der allgemeinen Formel (I),
    Figure imgb0001
    in der R1 für eine CF3 oder für eine C1-28-Alkyl-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, Phenyl-, Naphthyl-, C7-9-Aralkyl, C3-20-Heteroalkyl- oder C3-12-Cycloheteroalkylgruppe, R2 und R3 unabhängig voneinander für Wasserstoff oder eine gegebenenfalls substituierte C1-28-Alkyl-,C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-28-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkyl-, Phenyl-, Naphthyl- oder Heteroarylgruppe oder R2 und R3 zusammen mit dem sie verbindenden Kohlenstoffatom für einen gegebenenfalls substituierten 5-, 6-, 7-, 8- oder 9-gliedrigen Ring, der gegebenenfalls Heteroatome enthalten kann, und
    R4 für Wasserstoff oder eine C1-28-Alkyl-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-20-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkylgruppe oder eine gegebenenfalls substituierte Phenyl- oder Naphthyl- oder Heteroarylgruppe stehen,
    zur Verbesserung der Schmutzentfernungsleistung von Wasch- oder Reinigungsmitteln.
  • Die Acylhydrazone können in E- oder Z-Konfiguration vorliegen; wenn R2 Wasserstoff ist, kann die Verbindung der allgemeinen Formel (I) in einer ihrer tautomeren Formen oder als Mischung aus diesen vorliegen.
  • In den Verbindungen der allgemeinen Formel (I) ist R2 vorzugsweise Wasserstoff. R1 und/oder R3 ist vorzugsweise eine mit einer elektronenziehenden Gruppe substituierte Methyl-, Phenyl- oder Naphthylgruppe. R4 ist vorzugsweise Wasserstoff. Als elektronenziehende Gruppe kommt vorzugsweise eine Ammoniumgruppe in Frage, die gegebenenfalls Alkyl- oder Hydroxyalkylgruppen trägt oder unter Einschluss des eine Alkylgruppe tragenden N-Atoms als gegebenenfalls weitere Heteroatome tragende Heterocycloalkylgruppe ausgebildet ist.
  • Zu bevorzugten Ausgestaltungen der Acylhydrazone gehören solche der allgemeinen Formel (II),
    Figure imgb0002
    in der
    • R1 für eine C1-4-Alkylgruppe, die einen Substituenten
      Figure imgb0003
      trägt, in dem R10 für Wasserstoff oder eine C1-28-Alkyl-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-20-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkylgruppe und A- für das Anion einer organischen oder anorganischen Säure steht,
    • R2 und R4 die für Formel (I) angegebenen Bedeutung haben und
    • R5, R6, R7 und R8 unabhängig voneinander für R1, Wasserstoff, Halogen, eine Hydroxy-, Amino-, eine gegebenenfalls substituierte N-mono-oder di-C1-4-alkyl- oder C2-4-hydroxyalkyl-amino-, N-Phenyl- oder N-Naphthyl-amino-, C1-28-Alkyl-, C1-28-Alkoxy-, Phenoxy-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-20-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkyl-, Phenyl- oder Naphthylgruppe stehen, wobei die Substituenten ausgewählt werden aus C1-4-Alkyl-, C1-4-Alkoxy-, Hydroxy-, Sulfo-, Sulfato-, Halogen-, Cyano-, Nitro-, Carboxy-, Phenyl-, Phenoxy-, Naphthoxy-, Amino-, N-mono-oder di-C1-4-alkyl- oder C2-4-hydroxyalkyl-amino-, N-Phenyl- oder N-Naphthyl-aminogruppen, oder
    • R5 und R6 oder R6 und R7 oder R7 und R8 unter Ausbildung von 1, 2 oder 3 carbocyclischen oder O-, NR10- oder S-heterocyclischen, gegebenenfalls aromatischen und/oder gegebenenfalls C1-6-alkylsubstituierten Ringen miteinander verbunden sind.
  • Das Anion A- ist vorzugsweise Carboxylat wie Lactat, Citrat, Tartrat oder Succinat, Perchlorat, Tetrafluoroborat, Hexafluorophosphat, Alkylsulfonat, Alkylsulfat, Hydrogensulfat, Sulfat, Dihydrogenphosphat, Hydrogenphosphat, Phosphat, Isocyanat, Rhodanid, Nitrat, Fluorid, Chlorid, Bromid, Hydrogencarbonat oder Carbonat, wobei bei mehrwertigen Anionen der Ladungsausgleich durch die Anwesenheit zusätzlicher Kationen wie Natrium- oder Ammoniumionen erreicht werden kann.
  • Besonders bevorzugt ist das Acylhydrazon der Formel
    Figure imgb0004
  • Als nichtionische Tenside werden alkoxylierte, vorzugsweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann oder lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, zum Beispiel aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Nichtionisches Tensid vom Typ der alkoxylierten Alkohole ist in Wasch- oder Reinigungsmitteln vorzugsweise in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere von 4 Gew.-% bis 6 Gew.-% enthalten. In den Ausführungsformen der Erfindung ist die Anwesenheit der genannten nichtionischen Tenside und insbesondere von C12-18-Alkohol mit durchschnittlich 7 EO besonders bevorzugt, wobei darunter auch Ausführungsformen umfasst sind, welche die im folgenden genannten Aniontenside vom Typ der linearen Alkylbenzolsulfonate und der Ethersulfate zusätzlich oder nicht enthalten.
  • Anionische Tenside vom Typ der linearen Alkylbenzolsulfonate sind die Salze, vorzugsweise die Alkalisalze und insbesondere die Natriumsalze von mit linearen Alkylgruppen mit 6 bis 19, vorzugsweise 7 bis 15 und insbesondere 9 bis 13 C-Atomen substituierter Benzolsulfonsäuren. Ein ganz besonders bevorzugter Vertreter ist Natriumdodecylbenzolsulfonat. Anionisches Tensid vom Typ der linearen Alkylbenzolsulfonate ist in Wasch- oder Reinigungsmitteln vorzugsweise in Mengen von 0,5 Gew.-% bis 10 Gew.-% , insbesondere von 4 Gew.-% bis 6 Gew.-% enthalten. Anionische Tenside vom Typ der Ethersulfate sind die Salze der Schwefelsäuremonoester von mit Alkylenoxid umgesetzten geradkettigen oder verzweigten C7-21-Alkoholen, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO. Geeignete Ethersulfate sind beispielsweise Verbindungen der Formel R21-O-(AO)n-SO3 - X+, in der R21 für einen linearen oder verzweigten, substituierten oder unsubstituierten Alkylrest, vorzugsweise für einen linearen, unsubstituierten Alkylrest, besonders bevorzugt für einen Fettalkoholrest, steht. Bevorzugte Reste R21 sind ausgewählt aus Decyl-, Undecyl-, Dodecyl-, Tridecyl-, Tetradecyl, Pentadecyl-, Hexadecyl-, Heptadecyl-, Octadecyl-, Nonadecyl-, Eicosylresten und deren Mischungen, wobei die Vertreter mit gerader Anzahl an C-Atomen bevorzugt sind. Besonders bevorzugte Reste R21 sind abgeleitet von C12-C18-Fettalkoholen, beispielsweise von Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder von C10-C20-Oxoalkoholen. AO steht für eine Ethylenoxid- (EO) oder Propylenoxid- (PO) Gruppierung, vorzugsweise für eine Ethylenoxidgruppierung. Der Index n steht für eine Zahl im Bereich von 1 bis 50, vorzugsweise von 1 bis 20 und insbesondere von 2 bis 10; ganz besonders bevorzugt steht n für Zahlen im Bereich von 2 bis 8. Die angegebenen Alkoxylierungsgrade n stellen in der Regel statistische Mittelwerte dar, die eine ganze oder eine gebrochene Zahl sein können. X steht für ein einwertiges Kation oder den n-ten Teil eines n-wertigen Kations, bevorzugt sind dabei die Alkalimetallionen und darunter Na+ oder K+, wobei Na+ äußerst bevorzugt ist. Weitere Kationen X+ können ausgewählt sein aus NH4 +, ½ Zn2+,1/2 Mg2+,1/2 Ca2+,1/2 Min2+, und deren Mischungen. Anionisches Tensid vom Typ der Ethersulfate ist in Wasch- oder Reinigungsmitteln vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere von 5 Gew.-% bis 8 Gew.-% enthalten.
  • Der Einsatz der erfindungswesentlichen Kombination führt zur deutlich verbesserten Entfernung von bleichbaren und nicht-bleichbaren Anschmutzungen im Waschprozess bei niedrigen Temperaturen. Außerdem ist ein "Finetuning" der Fleckentfernungsleistung durch Optimierung des Bleiche-Tensid-Systems und eine Energieersparnis durch die verbesserte Fleckentfernungsleistung und dadurch bedingte niedrigere Waschtemperaturen sowie eine Wasserersparnis durch Vermeidung von multiplen Waschvorgängen, da Flecken auf Anhieb beim ersten Waschgang entfernt werden, gegeben.
  • Die Verbindungen der allgemeinen Formel (I) oder der allgemeinen Formel (II) in der erfindungswesentlichen Kombination verstärken die bleichende Wirkung von peroxidischen Bleichmitteln, ohne das zu reinigende Substrat, beispielsweise das Textil, in unannehmbarer Weise zu schädigen. Vorzugsweise werden als peroxidische Bleichmittel H2O2 oder in Wasser H2O2 freisetzenden Substanzen eingesetzt, zu denen insbesondere Alkaliperborate, Alkalipercarbonate und Harnstoffperhydrat gehören; möglich ist jedoch auch ihr Einsatz in Kombination mit Peroxocarbonsäuren wie Diperoxodecandicarbonsäure oder Phthalimidopercapronsäure, mit anderen Säuren oder sauren Salzen, wie Alkalipersulfaten oder -peroxodisulfaten oder Caroaten, oder mit Diacylperoxiden oder Tetraacyldiperoxiden.
  • Die Leistung von Verbindungen der allgemeinen Formel (I) kann gegebenenfalls durch die Anwesenheit von Mangan-, Titan-, Cobalt-, Nickel- oder Kupferionen, vorzugsweise Mn(II)-(III)-(IV)-(V), Cu(I)-(II)-(III), Fe(I)-(II)-(III)-(IV), Co(I)-(II)-(III), Ni(I)-(II)-(III), Ti(II)-(III)-(IV) und besonders bevorzugt ausgewählt aus Mn(II)-(III)-(IV)-(V), Cu(I)-(II)-(III), Fe(I)-(II)-(III)-(IV) und Co(I)-(II)-(III), weiter verstärkt werden; gewünschtenfalls können auch Komplexverbindungen der genannten Metallzentralatome mit Liganden der allgemeinen Formel (I) eingesetzt werden.
  • In einer weiteren bevorzugten Ausgestaltung der Erfindung wird in Gegenwart von H2O2 freisetzenden Persauerstoffverbindungen eine unter Perhydrolysebedingungen eine Peroxocarbonsäure ausbildenden Verbindung zusammen mit einem Acylhydrazon der allgemeinen Formel (I) oder (II) eingesetzt. Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder Peroxocarbonsäuren mit 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, sind dabei bevorzugt. Geeignet sind übliche Bleichaktivatoren, die O- und/oder N-Acylgruppen tragen, zum Beispiel mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Phenylsulfonate und -carboxylate, insbesondere Nonanoyloxy- oder Isononanoyloxybenzolsulfonat oder -benzoat, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran sowie acetyliertes Sorbit und Mannit, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton. Vorzugsweise werden unter Perhydrolysebedingungen Peroxocarbonsäure ausbildende Verbindung und Acylhydrazon in Molverhältnissen im Bereich von 4:1 bis 100:1, insbesondere von 25:1 bis 50:1 eingesetzt.
  • Im Rahmen der erfindungsgemäßen Verwendung ist bevorzugt, wenn die Konzentration der Verbindung gemäß Formel (I) oder (II) in der wässrigen Wasch- beziehungsweise Reinigungsflotte, wie sie beispielsweise in Waschmaschinen aber auch bei der Reinigung von Teppichen oder Polstermaterialien oder beim Reinigen harter Oberflächen, wie Kacheln, Fliesen oder Geschirr, das auch unter Einsatz von üblichen Geschirrspülmaschinen erfolgen kann, zum Einsatz kommt,
    0,5 µmol/l bis 500 µmol/l, insbesondere 5 µmol/l bis 100 µmol/l beträgt. Vorzugsweise liegt die Konzentration an Mangan-, Titan-, Cobalt-, Nickel- oder Kupferionen in der wässrigen Wasch- beziehungsweise Reinigungsflotte im Bereich von 0,1 µmol/l bis 500 µmol/l, insbesondere 1 µmol/l bis 100 µmol/l. Bevorzugte Persauerstoffkonzentrationen (berechnet als H2O2) in der Wasch- beziehungsweise Reinigungsflotte liegen im Bereich von 0,001 g/l bis 10 g/l, insbesondere von 0,1 g/l bis 1 g/l und besonders bevorzugt von 0,2 g/l bis 0,5 g/l. Die erfindungsgemäße Verwendung wird vorzugsweise bei Temperaturen im Bereich von 10 °C bis 95 °C, insbesondere von 20 °C bis unter 40 °C durchgeführt. Die Wasserhärte des zur Zubereitung der wässrigen Wasch- beziehungsweise Reinigungsflotte zum Einsatz kommenden Wassers liegt vorzugsweise im Bereich von 0°dH bis 27°dH, insbesondere 0°dH bis 21°dH. In der Waschflotte liegt die Wasserhärte vorzugsweise im Bereich von 0°dH bis 16°dH, insbesondere 0°dH bis 3°dH, was beispielsweise durch den Einsatz üblicher Buildermaterialien oder Wasserenthärter erreicht werden kann. Die erfindungsgemäße Verwendung wird vorzugsweise bei pH-Werten im Bereich von pH 5 bis pH 12, insbesondere von pH 7 bis pH 11 durchgeführt.
  • Die erfindungsgemäßen Verwendungen können besonders einfach durch den Einsatz eines Wasch- oder Reinigungsmittels, das peroxidisches Bleichmittel, mindestens ein genanntes Tensid und eine Verbindung der Formel (I) oder (II) oder einen durch Komplexbildung mit einem genannten Übergangsmetallion aus dieser zugänglichen Bleichkatalysator enthält, realisiert werden.
  • Ein bleichkatalysierender Komplex, der einen Liganden mit einem Gerüst gemäß Formel (I) oder (II) aufweist, kann den entsprechenden Liganden einmal oder auch mehrfach, insbesondere zweimal, aufweisen. Er kann ein- oder gegebenenfalls zwei- oder mehrkerning sein. Er kann außerdem weitere Neutral-, Anion- oder Kationliganden, wie beispielsweise H2O, NH3, CH3OH, Acetylaceton, Terpyridin,organische Anionen, wie beispielsweise Citrat, Oxalat, Tartrat, Formiat, ein C2-18-Carboxylat, ein C1-18-Alkylsulfat, insbesondere Methosulfat, oder ein entsprechendes Alkansulfonat, anorganische Anionen, wie beispielsweise Halogenid, insbesondere Chlorid, Perchlorat, Tetrafluoroborat, Hexafluorophosphat, Nitrat, Hydrogensulfat, Hydroxid oder Hydroperoxid. Er kann auch verbrückende Liganden, wie beispielsweise Alkylendiamine, aufweisen.
  • Vorzugsweise ist in Wasch- oder Reinigungsmitteln 0,01 Gew.-% bis 5 Gew.-%, insbesondere 0,05 Gew.-% bis 0,2 Gew.-% der Verbindung gemäß Formel (I) oder (II) enthalten. Wenn eine Verbindung der Formel (I) enthalten ist, ist bevorzugt, dass das Mittel zusätzlich ein Mangan-, Titan-, Cobalt-, Nickel- oder Kupfer-Salz und/oder einen Mangan-, Titan-, Cobalt-, Nickel- oder Kupfer-Komplex ohne einen Liganden, welcher einer Verbindung gemäß Formel (I) entspricht, enthält. Dann liegt das Molverhältnis des genannten Übergangsmetalls oder der Summe der genannten Übergangsmetalle zu der Verbindung gemäß Formel (I) vorzugsweise im Bereich von 0,001:1 bis 2:1, insbesondere 0,01:1 bis 1:1. In einer weiteren bevorzugten Ausgestaltung der Mittel sind in diesen 0,05 Gew.-% bis 1 Gew.-%, insbesondere 0,1 Gew.-% bis 0,5 Gew.-% an bleichkatalysierendem Komplex, der einen Liganden gemäß Formel (I) aufweist, enthalten. Bevorzugtes Übergangsmetall ist Mn.
  • Als in den Mitteln enthaltene Persauerstoffverbindungen kommen insbesondere organische Persäuren beziehungsweise persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure oder Salze der Diperdodecandisäure, Wasserstoffperoxid und unter den Waschbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Perborat, Percarbonat und/oder Persilikat, in Betracht. Wasserstoffperoxid kann dabei auch mit Hilfe eines enzymatischen Systems, das heißt einer Oxidase und ihres Substrats, erzeugt werden. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat, Alkaliperborat-Tetrahydrat oder Wasserstoffperoxid in Form wässriger Lösungen, die 3 Gew.-% bis 10 Gew.-% Wasserstoffperoxid enthalten, eingesetzt. Vorzugsweise sind Persauerstoffverbindungen in Mengen von bis zu 50 Gew.-%, insbesondere von 5 Gew.-% bis 30 Gew.-%, in Wasch- oder Reinigungsmitteln vorhanden.
  • Wasch- und Reinigungsmittel, die als insbesondere pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können außer der erfindungsgemäß zu verwendenden Kombination aus peroxidischem Bleichmittel, genanntem Tensid und Verbindung gemäß Formel (I) oder (II) im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die Mittel können insbesondere Buildersubstanzen, weitere Tenside, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren, Polymere mit Spezialeffekten, wie soil release-Polymere, Farbübertragungsinhibitoren, Vergrauungsinhibitoren, knitterreduzierende polymere Wirkstoffe und formerhaltende polymere Wirkstoffe, und weitere Hilfsstoffe, wie optische Aufheller, Schaumregulatoren, Farb- und Duftstoffe enthalten.
  • Ein Mittel kann zur Verstärkung der Desinfektionswirkung, beispielsweise gegenüber speziellen Keimen, zusätzlich zu den bisher genannten Inhaltsstoffen übliche antimikrobielle Wirkstoffe enthalten. Derartige antimikrobielle Zusatzstoffe sind in Desinfektionsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,1 Gew.-% bis 5 Gew.-%, enthalten.
  • Zusätzlich zu der erfindungsgemäß zu verwendenden Kombination können übliche Bleichaktivatoren, die unter Perhydrolysebedingungen Peroxocarbonsäuren oder Peroxoimidsäuren bilden, und/oder übliche die Bleiche aktivierende Übergangsmetallkomplexe eingesetzt werden. Die fakultativ, insbesondere in Mengen von 0,01 Gew.-% bis 10 Gew.-% und besonders bevorzugt von 1 Gew.-% bis 3 Gew.-%, vorhandene Komponente der Bleichaktivatoren umfasst die üblicherweise verwendeten N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-isononanoyl-phenolsulfonat, und acylierte Zuckerderivate, insbesondere Pentaacetylglukose, sowie kationische Nitrilderivate wie Trimethylammoniumacetonitril-Salze. Die Bleichaktivatoren können zur Vermeidung der Wechselwirkung mit den Perverbindungen bei der Lagerung in bekannter Weise mit Hüllsubstanzen überzogen beziehungsweise granuliert worden sein, wobei mit Hilfe von Carboxymethylcellulose granuliertes Tetraacetylethylendiamin mit mittleren Korngrößen von 0,01 mm bis 0,8 mm, granuliertes 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin, und/oder in Teilchenform konfektioniertes Trialkylammoniumacetonitril besonders bevorzugt ist.
  • Die Mittel können ein oder mehrere weitere Tenside enthalten, wobei insbesondere anionische Tenside, nichtionische Tenside und deren Gemische in Frage kommen, aber auch kationische und/oder amphotere Tenside enthalten sein können. Geeignete nichtionische Tenside sind insbesondere Alkylglykoside und Ethoxylierungs- und/oder Propoxylierungsprodukte von Alkylglykosiden oder linearen oder verzweigten Alkoholen mit jeweils 12 bis 18 C-Atomen im Alkylteil und 3 bis 20, vorzugsweise 4 bis 10 Alkylethergruppen. Weiterhin sind entsprechende Ethoxylierungs- und/oder Propoxylierungsprodukte von N-Alkyl-aminen, vicinalen Diolen, Fettsäureestern und Fettsäureamiden, die hinsichtlich des Alkylteils den genannten Alkoholderivaten entsprechen, sowie von Alkyl-phenolen mit 5 bis 12 C-Atomen im Alkylrest brauchbar.
  • Unter den anionischen Tensiden sind insbesondere Seifen und solche, die Sulfat- oder SulfonatGruppen mit bevorzugt Alkaliionen als Kationen enthalten, zu nennen. Seifen sind bevorzugt die Alkalisalze der gesättigten oder ungesättigten Fettsäuren mit 12 bis 18 C-Atomen. Derartige Fettsäuren können auch in nicht vollständig neutralisierter Form eingesetzt werden. Zu den Tensiden des Sulfat-Typs gehören die Salze der Schwefelsäurehalbester von Fettalkoholen mit 12 bis 18 C-Atomen. Zu den Tensiden vom Sulfonat-Typ gehören Alkansulfonate mit 12 bis 18 C-Atomen, Olefinsulfonate mit 12 bis 18 C-Atomen, die bei der Umsetzung entsprechender Monoolefine mit Schwefeltrioxid entstehen, sowie alpha-Sulfofettsäureester, die bei der Sulfonierung von Fettsäuremethyl- oder -ethylestern entstehen.
  • Die Mittel können, insbesondere wenn es sich bei ihnen um solche handelt, die für die Behandlung von Textilien vorgesehen sind, als kationische Aktivsubstanzen mit textilweichmachender Wirkung insbesondere einen oder mehrere der kationischen, textilweichmachenden Stoffe der allgemeinen Formeln X, XI oder XII enthalten:
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyloder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist. Die kationischen Tenside weisen übliche Anionen in zum Ladungsausgleich notwendiger Art und Anzahl auf, wobei diese neben beispielsweise Halogeniden auch aus den anionischen Tensiden ausgewählt werden können. In bevorzugten Ausführungsformen kommen als kationische Tenside Hydroxyalkyl-trialkyl-ammoniumverbindungen, insbesondere C12-18-Alkyl(hydroxyethyl)dimethylammoniumverbindungen, und vorzugsweise deren Halogenide, insbesondere Chloride, zum Einsatz. Textibehandlungsmittel enthalten bis zu 25 Gew.-%, insbesondere 0,5 Gew.-% bis 15 Gew.-% kationisches Tensid.
  • Ein Wasch- oder Reinigungsmittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Methylglycindiessigsäure, Nitrilotriessigsäure und Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere durch Oxidation von Polysacchariden beziehungsweise Dextrinen zugänglichen Polycarboxylate, und/oder polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5 000 und 200 000, die der Copolymeren zwischen 2 000 und 200 000, vorzugsweise 50 000 bis 120 000, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-MaleinsäureCopolymer weist eine relative Molekülmasse von 50 000 bis 100 000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder einem veresterten Vinylalkohol oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäure, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure, wobei Maleinsäure besonders bevorzugt ist, und/oder ein Derivat einer Allylsulfonsäure, die in 2-Stellung mit einem Alkyl- oder Arylrest substituiert ist, sein. Derartige Polymere weisen im Allgemeinen eine relative Molekülmasse zwischen 1 000 und 200 000 auf. Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen nahe der genannten Obergrenze werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen Mitteln eingesetzt.
  • Als wasserlösliche anorganische Buildermaterialien kommen insbesondere polymere Alkaliphosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können, in Betracht. Beispiele hierfür sind Tetranatriumdiphosphat, Dinatriumdihydrogendiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat sowie die entsprechenden Kaliumsalze beziehungsweise Gemische aus Natrium- und Kaliumsalzen. Als wasserunlösliche, wasserdispergierbare anorganische Buildermaterialien werden insbesondere kristalline oder amorphe Alkalialumosilikate, in Mengen von bis zu 50 Gew.-%, vorzugsweise nicht über 40 Gew.-% und in flüssigen Mitteln insbesondere von 1 Gew.-% bis 5 Gew.-%, eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, P und gegebenenfalls X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 µm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 µm. Ihr Calciumbindevermögen, das nach den Angaben der deutschen Patentschrift DE 24 12 837 bestimmt werden kann, liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
  • Geeignete Substitute beziehungsweise Teilsubstitute für das genannte Alumosilikat sind kristalline Alkalisilikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können. Die als Gerüststoffe brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1 · y H2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate (Na2Si2O5 · y H2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können eingesetzt werden. In einer weiteren bevorzugten Ausführungsform wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es n aus Sand und Soda hergestellt werden kann. Kristalline Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5 werden in einer weiteren bevorzugten Ausführungsform eingesetzt. In einer bevorzugten Ausgestaltung setzt man ein granulares Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist. Falls als zusätzliche Buildersubstanz auch Alkalialumosilikat, insbesondere Zeolith, vorhanden ist, beträgt das Gewichtsverhältnis Alumosilikat zu Silikat, jeweils bezogen auf wasserfreie Aktivsubstanzen, vorzugsweise 1:10 bis 10:1. In Mitteln, die sowohl amorphe als auch kristalline Alkalisilikate enthalten, beträgt das Gewichtsverhältnis von amorphem Alkalisilikat zu kristallinem Alkalisilikat vorzugsweise 1:2 bis 2:1 und insbesondere 1:1 bis 2:1.
  • Buildersubstanzen sind in Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 40 Gew.-%, enthalten.
  • In einer bevorzugten Ausgestaltung weist das Mittel einen wasserlöslichen Builderblock auf. Durch die Verwendung des Begriffes "Builderblock" soll hierbei ausgedrückt werden, daß die Mittel keine weiteren Buildersubstanzen enthalten als solche, die wasserlöslich sind, das heißt sämtliche in dem Mittel enthaltenen Buildersubstanzen sind in dem so charakterisierten "Block" zusammengefasst, wobei allenfalls die Mengen an Stoffen ausgenommen sind, die als Verunreinigungen beziehungsweise stabilisierende Zusätze in geringen Mengen in den übrigen Inhaltsstoffen der Mittel handelsüblicherweise enthalten sein können. Unter dem Begriff "wasserlöslich" soll dabei verstanden werden, daß sich der Builderblock bei der Konzentration, die sich durch die Einsatzmenge des ihn enthaltenden Mittels bei den üblichen Bedingungen ergibt, rückstandsfrei löst. Vorzugsweise sind mindestens 15 Gew.-% und bis zu 55 Gew.-%, insbesondere 25 Gew.-% bis 50 Gew.-% an wasserlöslichem Builderblock in den Mitteln enthalten. Dieser setzt sich vorzugsweise zusammen aus den Komponenten
    1. a) 5 Gew.-% bis 35 Gew.-% Citronensäure, Alkalicitrat und/oder Alkalicarbonat, welches auch zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann,
    2. b) bis zu 10 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1,8 bis 2,5,
    3. c) bis zu 2 Gew.-% Phosphonsäure und/oder Alkaliphosphonat,
    4. d) bis zu 50 Gew.-% Alkaliphosphat, und
    5. e) bis zu 10 Gew.-% polymerem Polycarboxylat,
    wobei die Mengenangaben sich auf das gesamte Wasch- beziehungsweise Reinigungsmittel beziehen. Dies gilt auch für alle folgenden Mengenangaben, sofern nicht ausdrücklich anders angegeben.
  • In einer bevorzugten Ausführungsform enthält der wasserlösliche Builderblock mindestens 2 der Komponenten b), c), d) und e) in Mengen größer 0 Gew.-%.
  • Hinsichtlich der Komponente a) sind in einer bevorzugten Ausführungsform 15 Gew.-% bis 25 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, und bis zu 5 Gew.-%, insbesondere 0,5 Gew.-% bis 2,5 Gew.-% Citronensäure und/oder Alkalicitrat enthalten. In einer alternativen Ausführungsform sind als Komponente a) 5 Gew.-% bis 25 Gew.-%, insbesondere 5 Gew.-% bis 15 Gew.-% Citronensäure und/oder Alkalicitrat und bis zu 5 Gew.-% , insbesondere 1 Gew.-% bis 5 Gew.-% Alkalicarbonat, welches zumindest anteilig durch Alkalihydrogencarbonat ersetzt sein kann, enthalten. Falls sowohl Alkalicarbonat wie auch Alkalihydrogencarbonat vorhanden sind, weist die Komponte a) Alkalicarbonat und Alkalihydrogencarbonat vorzugsweise im Gewichtsverhältnis von 10:1 bis 1:1 auf.
  • Hinsichtlich der Komponente b) sind in einer bevorzugten Ausführungsform 1 Gew.-% bis 5 Gew.-% Alkalisilikat mit einem Modul im Bereich von 1,8 bis 2,5 enthalten.
  • Hinsichtlich der Komponente c) sind in einer bevorzugten Ausführungsform 0,05 Gew.-% bis 1 Gew.-% Phosphonsäure und/oder Alkaliphosphonat enthalten. Unter Phosphonsäuren werden dabei auch gegebenenfalls substituierte Alkylphosphonsäuren verstanden, die auch mehrere Phosphonsäuregruppierungen aufweisen könne (sogenannte Polyphosphonsäuren). Bevorzugt werden sie ausgewählt aus den Hydroxy- und/oder Aminoalkylphosphonsäuren und/oder deren Alkalisalzen, wie zum Beispiel Dimethylaminomethandiphosphonsäure, 3-Aminopropan-1-hydroxy-1,1-diphosphonsäure, 1-Amino-1-phenyl-methandiphosphonsäure, 1-Hydroxyethan-1,1-diphosphonsäure, Amino-tris(methylenphosphonsäure), N,N,N',N'-Ethylendiamin-tetrakis(methylenphosphonsäure) und acylierte Derivate der phosphorigen Säure, die auch in beliebigen Mischungen eingesetzt werden können.
  • Hinsichtlich der Komponente d) sind in einer bevorzugten Ausführungsform 15 Gew.-% bis 35 Gew.-% Alkaliphosphat, insbesondere Trinatriumpolyphosphat, enthalten. Alkaliphosphat ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei. Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Madrellsches Salz übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° (Zersetzung unter Bildung von (KPO3)x, Kaliumpolyphosphat) und ist leicht löslich in Wasser. Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist. Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt. Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt. Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Madrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet. Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lösung durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

             (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O

  • Diese sind genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind einsetzbar.
  • Hinsichtlich der Komponente e) sind in einer bevorzugten Ausführungsform der Mittel 1,5 Gew.-% bis 5 Gew.-% polymeres Polycarboxylat, insbesondere ausgewählt aus den Polymerisations- beziehungsweise Copolymerisationsprodukten von Acrylsäure, Methacrylsäure und/oder Maleinsäure enthalten. Unter diesen sind die Homopolymere der Acrylsäure und unter diesen wiederum solche mit einer mittleren Molmasse im Bereich von 5 000 D bis 15 000 D (PA-Standard) besonders bevorzugt.
  • Als in den Mitteln verwendbare Enzyme kommen außer der obengenannten Oxidase solche aus der Klasse der Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Hemicellulasen, Xylanasen und Peroxidasen sowie deren Gemische in Frage, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Alcalase®, Esperase®, Savinase®, Durazym® und/oder Purafect® OxP, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®, Cellulasen wie Celluzyme® und/oder Carezyme®. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes oder Pseudomonas cepacia gewonnene enzymatische Wirkstoffe. Die gegebenenfalls verwendeten Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in Wasch-, Reinigungs- und Desinfektionsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,2 Gew.-% bis 2 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme eingesetzt werden.
  • In einer bevorzugten Ausführungsform enthält das Mittel 5 Gew.-% bis 50 Gew.-%, insbesondere 8 - 30 Gew.-% anionisches und/oder nichtionisches Tensid, bis zu 60 Gew.-%, insbesondere 5 - 40 Gew.-% Buildersubstanz und 0,2 Gew.-% bis 2 Gew.-% Enzym, ausgewählt aus den Proteasen, Lipasen, Cutinasen, Amylasen, Pullulanasen, Mannanasen, Cellulasen, Oxidasen und Peroxidasen sowie deren Gemischen.
  • Zu den in den Wasch- und Reinigungsmitteln, insbesondere wenn sie in flüssiger oder pastöser Form vorliegen, verwendbaren organischen Lösungsmitteln gehören Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol und Propylenglykol, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 6 Gew.-% bis 20 Gew.-%, vorhanden.
  • Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den Mitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.
  • Schmutzablösevermögende Polymere, die oft als "Soil Release"-Wirkstoffe oder wegen ihres Vermögens, die behandelte Oberfläche, zum Beispiel der Faser, schmutzabstoßend auszurüsten, als "Soil Repellents" bezeichnet werden, sind beispielsweise nichtionische oder kationische Cellulose-derivate. Zu den insbesondere polyesteraktiven schmutzablösevermögenden Polymeren gehören Copolyester aus Dicarbonsäuren, beispielsweise Adipinsäure, Phthalsäure oder Terephthalsäure, Diolen, beispielsweise Ethylenglykol oder Propylenglykol, und Polydiolen, beispielsweise Polyethylenglykol oder Polypropylenglykol. Zu den bevorzugt eingesetzten schmutzablösevermögenden Polyestern gehören solche Verbindungen, die formal durch Veresterung zweier Monomerteile zugänglich sind, wobei das erste Monomer eine Dicarbonsäure HOOC-Ph-COOH und das zweite Monomer ein Diol HO-(CHR11-)aOH, das auch als polymeres Diol H-(O-(CHR11-)a)bOH vorliegen kann, ist. Darin bedeutet Ph einen o-, m- oder p-Phenylenrest, der 1 bis 4 Substituenten, ausgewählt aus Alkylresten mit 1 bis 22 C-Atomen, Sulfonsäuregruppen, Carboxylgruppen und deren Mischungen, tragen kann, R11 Wasserstoff, einen Alkylrest mit 1 bis 22 C-Atomen und deren Mischungen, a eine Zahl von 2 bis 6 und b eine Zahl von 1 bis 300. Vorzugsweise liegen in den aus diesen erhältlichen Polyestern sowohl Monomerdioleinheiten -O-(CHR11-)aO- als auch Polymerdioleinheiten -(O-(CHR11-)a)bO- vor. Das molare Verhältnis von Monomerdioleinheiten zu Polymerdioleinheiten beträgt vorzugsweise 100:1 bis 1:100, insbesondere 10:1 bis 1:10. In den Polymerdioleinheiten liegt der Polymerisationsgrad b vorzugsweise im Bereich von 4 bis 200, insbesondere von 12 bis 140. Das Molekulargewicht beziehungsweise das mittlere Molekulargewicht oder das Maximum der Molekulargewichtsverteilung bevorzugter schmutzablösevermögender Polyester liegt im Bereich von 250 bis 100 000, insbesondere von 500 bis 50 000. Die dem Rest Ph zugrundeliegende Säure wird vorzugsweise aus Terephthalsäure, Isophthalsäure, Phthalsäure, Trimellithsäure, Mellithsäure, den Isomeren der Sulfophthalsäure, Sulfoisophthalsäure und Sulfoterephthalsäure sowie deren Gemischen ausgewählt. Sofern deren Säuregruppen nicht Teil der Esterbindungen im Polymer sind, liegen sie vorzugsweise in Salzform, insbesondere als Alkali- oder Ammoniumsalz vor. Unter diesen sind die Natrium- und Kaliumsalze besonders bevorzugt. Gewünschtenfalls können statt des Monomers HOOC-Ph-COOH geringe Anteile, insbesondere nicht mehr als 10 Mol-% bezogen auf den Anteil an Ph mit der oben gegebenen Bedeutung, anderer Säuren, die mindestens zwei Carboxylgruppen aufweisen, im schmutzablösevermögenden Polyester enthalten sein. Zu diesen gehören beispielsweise Alkylen- und Alkenylendicarbonsäuren wie Malonsäure, Bernsteinsäure, Fumarsäure, Maleinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure und Sebacinsäure. Zu den bevorzugten Diolen HO-(CHR11-)aOH gehören solche, in denen R11 Wasserstoff und a eine Zahl von 2 bis 6 ist, und solche, in denen a den Wert 2 aufweist und
    R11 unter Wasserstoff und den Alkylresten mit 1 bis 10, insbesondere 1 bis 3 C-Atomen ausgewählt wird. Unter den letztgenannten Diolen sind solche der Formel HO-CH2-CHR11-OH, in der R11 die obengenannte Bedeutung besitzt, besonders bevorzugt. Beispiele für Diolkomponenten sind Ethylenglykol, 1,2-Propylenglykol, 1,3-Propylenglykol, 1,4-Butandiol, 1,5-Pentandiol, 1,6-Hexandiol, 1,8-Octandiol, 1,2-Decandiol, 1,2-Dodecandiol und Neopentylglykol. Besonders bevorzugt unter den polymeren Diolen ist Polyethylenglykol mit einer mittleren Molmasse im Bereich von 1000 bis 6000. Gewünschtenfalls können diese Polyester auch endgruppenverschlossen sein, wobei als Endgruppen Alkylgruppen mit 1 bis 22 C-Atomen und Ester von Monocarbonsäuren in Frage kommen. Den über Esterbindungen gebundenen Endgruppen können Alkyl-, Alkenyl- und Arylmonocarbonsäuren mit 5 bis 32 C-Atomen, insbesondere 5 bis 18 C-Atomen, zugrunde liegen. Zu diesen gehören Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelargonsäure, Caprinsäure, Undecansäure, Undecensäure, Laurinsäure, Lauroleinsäure, Tridecansäure, Myristinsäure, Myristoleinsäure, Pentadecansäure, Palmitinsäure, Stearinsäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Linolsäure, Linolaidinsäure, Linolensäure, Eläostearinsäure, Arachinsäure, Gadoleinsäure, Arachidonsäure, Behensäure, Erucasäure, Brassidinsäure, Clupanodonsäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, Benzoesäure, die 1 bis 5 Substituenten mit insgesamt bis zu 25 C-Atomen, insbesondere 1 bis 12 C-Atomen tragen kann, beispielsweise tert.-Butylbenzoesäure. Den Endgruppen können auch Hydroxymonocarbonsäuren mit 5 bis 22 C-Atomen zugrunde liegen, zu denen beispielsweise Hydroxyvaleriansäure, Hydroxycapronsäure, Ricinolsäure, deren Hydrierungsprodukt Hydroxystearinsäure sowie o-, m- und p-Hydroxybenzoesäure gehören. Die Hydroxymonocarbonsäuren können ihrerseits über ihre Hydroxylgruppe und ihre Carboxylgruppe miteinander verbunden sein und damit mehrfach in einer Endgruppe vorliegen. Vorzugsweise liegt die Anzahl der Hydroxymonocarbonsäureeinheiten pro Endgruppe, das heißt ihr Oligomerisierungsgrad, im Bereich von 1 bis 50, insbesondere von 1 bis 10. In einer bevorzugten Ausgestaltung der Erfindung werden Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, allein oder in Kombination mit Cellulosederivaten verwendet.
  • Zu den für den Einsatz in Mitteln für die Wäsche von Textilien in Frage kommenden Farbübertragungsinhibitoren gehören insbesondere Polyvinylpyrrolidone, Polyvinylimidazole, polymere N-Oxide wie Poly-(vinylpyridin-N-oxid) und Copolymere von Vinylpyrrolidon mit Vinylimidazol und gegebenenfalls weiteren Monomeren.
  • Die Mittel zum Einsatz in der Textilwäsche können Knitterschutzmittel enthalten, da textile Flächengebilde, insbesondere aus Reyon, Wolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der harten Oberfläche und insbesondere von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Die Mittel können optische Aufheller, unter diesen insbesondere Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze, enthalten. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
  • Insbesondere beim Einsatz in maschinellen Wasch- beziehungsweise Reinigungsverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
  • In den Mitteln können außerdem Wirkstoffe zur Vermeidung des Anlaufens von Gegenständen aus Silber, sogenannte Silberkorrosionsinhibitoren, eingesetzt werden. Bevorzugte Silberkorrosionsschutzmittel sind organische Disulfide, zweiwertige Phenole, dreiwertige Phenole, gegebenenfalls alkyl- oder aminoalkylsubstituierte Triazole wie Benzotriazol sowie Cobalt-, Mangan-, Titan-, Zirkonium-, Hafnium-, Vanadium- oder Cersalze und/oder -komplexe, in denen die genannten Metalle in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.
  • Die Verbindung gemäß Formel (I) oder (II) oder der entsprechend vorgebildete Komplex können in Form von Pulvern oder als Granulate, die auch gegebenenfalls umhüllt und/oder gefärbt sein können und übliche Trägermaterialien und/oder Granulationshilfsmittel enthalten können, vorliegen. Im Fall ihres Einsatzes als Granulate können diese gewünschtenfalls auch weitere Aktivstoffe, insbesondere Bleichaktivator, enthalten.
  • Die Herstellung fester Mittel bietet keine Schwierigkeiten und kann in im Prinzip bekannter Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Persauerstoffverbindung und Bleichaktivatorkombination gegebenenfalls später zugesetzt werden. Zur Herstellung der Mittel mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt. Wasch-, Reinigungs- oder Desinfektionsmittel in Form wässriger oder sonstige übliche Lösungsmittel enthaltender Lösungen werden besonders vorteilhaft durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt. In einer bevorzugten Ausführung von Mitteln für die insbesondere maschinelle Reinigung von Geschirr sind diese tablettenförmig.
  • Beispiele
  • Für die Messung der Primärwaschleistung wurden Baumwollsubstrate, die mit 90 standardisierten Anschmutzungen versehen worden waren, bei 20 °C mit den 12,5 Gew.-% Natriumpercarbonat und 3,5 Gew.-% TAED enthaltenden Waschmitteln V1 (enthaltend 5,5 Gew.-% Natriumdodecylbenzolsulfonat), V2 (enthaltend 5,5 Gew.-% C12-18-Alkohol 7EO) oder V3 (enthaltend 5 Gew.-% Natrium-laurylethersulfat-2EO) oder den ansonsten gleich zusammengesetzten Mitteln M1, M2 und M2, denen man jeweils 0,2 Gew.-% Morpholinium-4-(2-(2-((2-Hydroxyphenylmethyl)-methylen)-hydrazinyl)-2-oxoethyl)-4-methyl-chlorid zugesetzt hatte, unter den gleichen Bedingungen gewaschen. Die behandelten Stoffsubstrate wurden anschließend getrocknet und zur Bestimmung des Y-Wertes (Helligkeitswert) farbvermessen. In der nachfolgenden Tabelle ist der Unterschied des Helligkeitswerts der Baumwollmeßstücke (Mittelwert von 6fach-Bestimmungen) zwischen der Wäsche mit dem genannten Waschmittel und der Wäsche mit einem entsprechenden Waschmittel, dem das jeweils genannte Tensid fehlte, in der Summe über die Anschmutzungen angegeben. Tabelle 1: Waschleistung
    V1 103
    V2 71
    V3 168
    M1 119
    M2 126
    M3 181

Claims (10)

  1. Verwendung einer Kombination aus einem peroxidischen Bleichmittel mit Tensid, ausgewählt aus der Gruppe umfassend nichtionisches Tensid vom Typ der alkoxylierten Alkohole, anionisches Tensid vom Typ der linearen Alkylbenzolsulfonate, anionisches Tensid vom Typ der Ethersulfate und deren Mischungen, und mit einem Acylhydrazon der allgemeinen Formel (I),
    Figure imgb0008
    in der R1 für eine CF3 oder für eine C1-28-Alkyl-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, Phenyl-, Naphthyl-, C7-9-Aralkyl, C3-20-Heteroalkyl- oder C3-12-Cycloheteroalkylgruppe,
    R2 und R3 unabhängig voneinander für Wasserstoff oder eine gegebenenfalls substituierte C1-28-Alkyl-,C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-28-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkyl-, Phenyl-, Naphthyl- oder Heteroarylgruppe oder R2 und R3 zusammen mit dem sie verbindenden Kohlenstoffatom für einen gegebenenfalls substituierten 5-, 6-, 7-, 8- oder 9-gliedrigen Ring, der gegebenenfalls Heteroatome enthalten kann, und
    R4 für Wasserstoff oder eine C1-28-Alkyl-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-20-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkylgruppe oder eine gegebenenfalls substituierte Phenyl- oder Naphthyl- oder Heteroarylgruppe
    stehen,
    zur Verbesserung der Schmutzentfernungsleistung von Wasch- oder Reinigungsmitteln.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das Acylhydrazon der allgemeinen Formel (II) entspricht
    Figure imgb0009
    in der
    R1 für eine C1-4-Alkylgruppe, die einen Substituenten
    Figure imgb0010
    trägt, in dem R10 für Wasserstoff oder eine C1-28-Alkyl-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-20-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkylgruppe und A- für das Anion einer organischen oder anorganischen Säure steht, R2 und R4 die für Formel (I) angegebenen Bedeutung haben und
    R5, R6, R7 und R8 unabhängig voneinander für R1, Wasserstoff, Halogen, eine Hydroxy-, Amino-, eine gegebenenfalls substituierte N-mono-oder di-C1-4-alkyl- oder C2-4-hydroxyalkylamino-, N-Phenyl- oder N-Naphthyl-amino-, C1-28-Alkyl-, C1-28-Alkoxy-, Phenoxy-, C2-28-Alkenyl-, C2-22-Alkinyl-, C3-12-Cycloalkyl-, C3-12-Cycloalkenyl-, C7-9-Aralkyl-, C3-20-Heteroalkyl-, C3-12-Cycloheteroalkyl-, C5-16-Heteroaralkyl-, Phenyl- oder Naphthylgruppe stehen, wobei die Substituenten ausgewählt werden aus C1-4-Alkyl-, C1-4-Alkoxy-, Hydroxy-, Sulfo-, Sulfato-, Halogen-, Cyano-, Nitro-, Carboxy-, Phenyl-, Phenoxy-, Naphthoxy-, Amino-, N-mono-oder di-C1-4-alkyl- oder C2-4-hydroxyalkyl-amino-, N-Phenyl- oder N-Naphthyl-aminogruppen, oder
    R5 und R6 oder R6 und R7 oder R7 und R8 unter Ausbildung von 1, 2 oder 3 carbocyclischen oder O-, NR10- oder S-heterocyclischen, gegebenenfalls aromatischen und/oder gegebenenfalls C1-6-alkylsubstituierten Ringen miteinander verbunden sind.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man Wasch- oder Reinigungsmittel einsetzt, die 0,01 Gew.-% bis 5 Gew.-%, insbesondere 0,05 Gew.-% bis 0,2 Gew.-% der Verbindung gemäß Formel (I) oder (II) enthalten.
  4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man Waschoder Reinigungsmittel einsetzt, die nichtionisches Tensid vom Typ der alkoxylierten Alkohole in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere von 4 Gew.-% bis 6 Gew.-% enthalten.
  5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man Wasch- oder Reinigungsmittel einsetzt, die anionisches Tensid vom Typ der linearen Alkylbenzolsulfonate in Mengen von 0,5 Gew.-% bis 10 Gew.-% , insbesondere von 4 Gew.-% bis 6 Gew.-% enthalten.
  6. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man Wasch- oder Reinigungsmittel einsetzt, die anionisches Tensid vom Typ der Ethersulfate in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere von 5 Gew.-% bis 8 Gew.-%, enthalten
  7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man eine unter Perhydrolysebedingungen eine Peroxocarbonsäure ausbildende Verbindung zusammen mit der Kombination einsetzt.
  8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Konzentration der Verbindung gemäß Formel (I) oder (II) in der wässrigen Wasch- oder Reinigungsflotte 0,5 µmol/l bis 500 µmol/l, insbesondere 5 µmol/l bis 100 µmol/l beträgt.
  9. Verwendung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Persauerstoffkonzentration (berechnet als H2O2) in der Wasch- beziehungsweise Reinigungsflotte im Bereich von 0,001 g/l bis 10 g/l, insbesondere von 0,1 g/l bis 1 g/l und besonders bevorzugt von 0,2 g/l bis 0,5 g/l liegt.
  10. Verwendung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sie bei Temperaturen im Bereich von 10 °C bis 95 °C, insbesondere von 20 °C bis unter 40 °C durchgeführt wird.
EP16168843.7A 2015-05-19 2016-05-10 Acylhydrazone als bleichverstärkende wirkstoffe Withdrawn EP3095845A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015209082.5A DE102015209082A1 (de) 2015-05-19 2015-05-19 Acylhydrazone als bleichverstärkende Wirkstoffe

Publications (1)

Publication Number Publication Date
EP3095845A1 true EP3095845A1 (de) 2016-11-23

Family

ID=55953054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16168843.7A Withdrawn EP3095845A1 (de) 2015-05-19 2016-05-10 Acylhydrazone als bleichverstärkende wirkstoffe

Country Status (2)

Country Link
EP (1) EP3095845A1 (de)
DE (1) DE102015209082A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2412837A1 (de) 1973-04-13 1974-10-31 Henkel & Cie Gmbh Verfahren zum waschen und reinigen der oberflaechen von festen werkstoffen, insbesondere von textilien, sowie mittel zur durchfuehrung des verfahrens
WO2009124855A1 (en) 2008-04-09 2009-10-15 Basf Se Use of metal hydrazide complex compounds as oxidation catalysts
WO2012080088A1 (en) 2010-12-13 2012-06-21 Basf Se Bleach catalysts
WO2013104631A1 (de) * 2012-01-11 2013-07-18 Henkel Ag & Co. Kgaa Acylhydrazone als bleichverstärkende wirkstoffe
DE102013215810A1 (de) * 2013-08-09 2015-02-12 Henkel Ag & Co. Kgaa Waschmittel mit erhöhter Primärwaschkraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2412837A1 (de) 1973-04-13 1974-10-31 Henkel & Cie Gmbh Verfahren zum waschen und reinigen der oberflaechen von festen werkstoffen, insbesondere von textilien, sowie mittel zur durchfuehrung des verfahrens
WO2009124855A1 (en) 2008-04-09 2009-10-15 Basf Se Use of metal hydrazide complex compounds as oxidation catalysts
WO2012080088A1 (en) 2010-12-13 2012-06-21 Basf Se Bleach catalysts
WO2013104631A1 (de) * 2012-01-11 2013-07-18 Henkel Ag & Co. Kgaa Acylhydrazone als bleichverstärkende wirkstoffe
DE102013215810A1 (de) * 2013-08-09 2015-02-12 Henkel Ag & Co. Kgaa Waschmittel mit erhöhter Primärwaschkraft

Also Published As

Publication number Publication date
DE102015209082A1 (de) 2016-11-24

Similar Documents

Publication Publication Date Title
EP2802644B1 (de) Acylhydrazone als bleichverstärkende wirkstoffe
EP2440641B1 (de) Nanopartikuläres mangandioxid
WO2010105962A1 (de) Wasch- oder reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem übergangsmetallkomplex
WO2010105961A1 (de) Wasch- oder reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem übergangsmetallkomplex
DE102011080099A1 (de) Wasch- oder Reinigungsmittel mit elektrochemisch aktivierbarer Mediatorverbindung
EP3134500B1 (de) Wasch- oder reinigungsmittel mit elektrochemisch aktivierbarer anionischer mediatorverbindung
EP1747259A1 (de) Waschmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem übergangsmetallkomplex
EP1749084B1 (de) Bleichverstärkerkombination für den einsatz in wasch- und reinigungsmitteln
EP2504418B1 (de) Wasch- oder reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem übergangsmetallkomplex
EP2504419B1 (de) Wasch- oder reinigungsmittel mit gegebenenfalls in situ erzeugtem bleichverstärkendem übergangsmetallkomplex
DE102006036896A1 (de) Wasch- oder Reinigungsmittel mit größenoptimierten Bleichwirkstoffteilchen
WO2017102475A1 (de) Pyridingruppenhaltige acylhydrazone
EP3440181B1 (de) N-methylpiperidingruppen-haltige acylhydrazone
EP3095845A1 (de) Acylhydrazone als bleichverstärkende wirkstoffe
EP2411495B1 (de) Schonendes bleichmittel
EP2411498B1 (de) Schonendes bleichmittel
EP2304014A1 (de) Textilschonendes waschmittel
WO2010108784A1 (de) Schonendes bleichmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20161130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 1/83 20060101AFI20171127BHEP

Ipc: C11D 1/22 20060101ALN20171127BHEP

Ipc: C11D 3/39 20060101ALI20171127BHEP

Ipc: C11D 1/29 20060101ALN20171127BHEP

Ipc: C11D 1/72 20060101ALN20171127BHEP

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20171213

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 3/39 20060101ALI20180202BHEP

Ipc: C11D 1/29 20060101ALN20180202BHEP

Ipc: C11D 1/72 20060101ALN20180202BHEP

Ipc: C11D 1/83 20060101AFI20180202BHEP

Ipc: C11D 1/22 20060101ALN20180202BHEP

INTG Intention to grant announced

Effective date: 20180227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180710