EP3091819B1 - Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device - Google Patents

Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device Download PDF

Info

Publication number
EP3091819B1
EP3091819B1 EP16166030.3A EP16166030A EP3091819B1 EP 3091819 B1 EP3091819 B1 EP 3091819B1 EP 16166030 A EP16166030 A EP 16166030A EP 3091819 B1 EP3091819 B1 EP 3091819B1
Authority
EP
European Patent Office
Prior art keywords
voltage
actual voltage
compensated
detected
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16166030.3A
Other languages
German (de)
French (fr)
Other versions
EP3091819A1 (en
Inventor
Thomas SCHNIZER
Klaus Steininger
Tim WOISETSCHLÄGER
Peter Ott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3091819A1 publication Critical patent/EP3091819A1/en
Application granted granted Critical
Publication of EP3091819B1 publication Critical patent/EP3091819B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs

Definitions

  • the invention relates to a method according to the preamble of claim 1 and a control device according to a non-independent claim.
  • the US 2007/159118 A1 discloses a motor vehicle headlamp with a DC voltage source and a diode array having a plurality of light emitting diodes connected in series. The forward voltage of a diode string is measured. Average Vav data is stored. The measured forward voltage and the stored data are used in a comparison. A short circuit is detected.
  • a circuit device for the failure detection of light-emitting diodes in a motor vehicle is known in the failure detection means comprise switching means which compare a detected in a light-emitting diode potential with a dependent of a voltage of a vehicle electrical system reference potential and effect depending on this comparison, the output of a corresponding failure detection signal can.
  • the object of the invention is therefore to improve the error detection.
  • the light module By determining the voltage applied to the series circuit and their evaluation sensor is saved on the light module, such as the light sensors and / or voltage measuring sensors.
  • additional separate measuring lines between the light module and the controller accounts.
  • the sensors can be relocated to the controller, which constructs the light modules cheaper and error-prone and can be produced.
  • a compensated actual voltage is determined as a function of a determined actual current through the series connection. This can advantageously be detected a change in the actual current and the actual voltage can be compensated accordingly.
  • the compensated actual voltage is determined as a function of a determined actual temperature of the semiconductor light sources. Thus, the compensated actual voltage can advantageously be determined temperature-compensated.
  • the error is detected when the compensated actual voltage is outside a first limit around the reference voltage. This advantageously creates a tolerance range for detecting the error.
  • the error is detected when the compensated actual voltage is at several measuring times of the measured actual voltage outside the first limit to the reference voltage. This advantageously achieves that the detection of the error is done on a secure database.
  • the reference voltage is then updated as a function of the compensated actual voltage when the compensated actual voltage is within a second limit around the reference voltage.
  • a drift compensation is advantageously created, which in particular a component aging and a compensation of the component tolerance is created.
  • the reference voltage is determined as an exponentially smoothed value from a plurality of compensated actual voltages. This also compensates for component drift and component tolerance. In particular, by this drift compensation or component tolerance compensation, the error detection can be significantly improved.
  • a lighting device for motor vehicles is designated in its entirety by the reference numeral 1.
  • the lighting device 1 is formed in the illustrated embodiment as a motor vehicle headlight.
  • the lighting device 1 as a lamp or the like, which is arranged at the rear or side of the motor vehicle, be formed.
  • the lighting device 1 is a turn signal for the motor vehicle.
  • the headlight 1 comprises a housing 2, which is preferably made of plastic.
  • the headlight housing 2 has a light exit opening, which is closed by a transparent cover 4.
  • the cover 4 is made of colorless plastic or glass.
  • the disk 4 may be formed as a so-called clear disk without optically effective profiles (for example, prisms).
  • the pane 4 may be provided, at least in regions, with optically active profiles, which in particular cause a scattering of the light passing through in the horizontal direction.
  • the light modules 5, 6 are arranged inside the headlight housing 2 movable. By a relative movement of the light modules 5, 6 to the housing 2 in the horizontal direction, for example, a dynamic cornering light function can be realized. In a movement of the light modules 5, 6 about a horizontal axis, ie in the vertical direction, a headlight range control will be realized.
  • the light modules 5, 6 are for generating a desired light distribution, for example a low beam, a high beam, a city light, a highway light, a motorway light, a fog light, a static or dynamic Kurvenlicht- or any other static or adaptive Light distribution formed.
  • the light modules 5, 6 generate the desired light function either alone or in combination with each other by the light module 5 of each individual light module; 6 supplied partial light distributions are superimposed to the desired total light distribution.
  • the light modules 5, 6 can be designed as reflection modules and / or as projection modules. Of course, more or less than the illustrated two light modules 5, 6 may be provided in the headlight housing 2.
  • a control unit 7 is arranged in a control unit housing 8.
  • the control unit 7 can also be arranged at any other point of the headlamp 1.
  • a separate control device can be provided for each of the light modules 5, 6, wherein the control devices can be an integral part of the light modules 5, 6.
  • the control unit 7 may also be arranged remotely from the headlight 1.
  • the control unit 7 serves to control and / or regulate the light modules 5, 6 or of subcomponents of the light modules 5, 6, such as light sources of the light modules 5, 6.
  • the control of the light modules 5, 6 or the subcomponents by the control unit. 7 takes place via connecting lines 10, which in FIG. 1 are shown only symbolically by a dashed line.
  • the lines 10 is a supply of the light modules 5, 6 with electrical energy.
  • the lines 10 are through an opening in Headlight housing 2 is guided in the control unit housing 8 and connected there to the circuit of the control unit 7. If a plurality of control devices are provided as an integral part of the light modules 5, 6, the lines 10 and can account for the opening in the headlight housing 2.
  • the control unit housing 8 consists of an electrically conductive material, in particular of metal, preferably of die-cast aluminum. Also for better EMC shielding the lines 10 are shielded, in particular by means of a line 10 surrounding metal braid or a metal-plastic braid. In the control unit housing 8, an opening is further provided, in which a plug / socket element 9 is arranged. Via the plug / socket element 9, the control unit 7 with a higher-level control unit (for example, a so-called body controller) and / or a power supply of the motor vehicle (for example, a vehicle battery) may be connected.
  • a higher-level control unit for example, a so-called body controller
  • a power supply of the motor vehicle for example, a vehicle battery
  • the light modules 5, 6 of the illumination device 1 use as light sources one or more semiconductor light sources, in particular light emitting diodes (LEDs).
  • LED headlights 1 which have a large number of LEDs, are increasingly used. By switching individual LEDs or individual LED groups off and on, variable light distributions can be achieved.
  • Such headlights 1 are referred to as pixel or matrix headlights.
  • Usually several LEDs are connected in a series circuit (also branch or chain).
  • FIG. 2 shows a schematic circuit diagram 12 comprising the control unit 7 and by way of example the light module 5, wherein the Control unit 7 and the light module 5 are electrically connected to each other by means of the line 10.
  • the light module 5 comprises a series connection of semiconductor light sources 14b, 14c and 14z.
  • the control unit 7 comprises a current source 16 and a measuring resistor 18.
  • An actual voltage 20 applied to the series connection of the semiconductor light sources 14 is measured in the control unit 7.
  • an actual current 22 is measured by the series connection of semiconductor light sources 14.
  • a temperature sensor is arranged on the light module 5, with which an actual temperature in the region of the semiconductor light sources 14 is determined.
  • the temperature sensor is a temperature-dependent resistor. Accordingly, an additional measuring line between the light module 5 and control unit 7 according to the line 10 is available for determining the actual temperature.
  • FIG. 3 12 shows a schematic block diagram 24.
  • the block diagram 24 is part of the presented method for operating the control device 7.
  • a block 26 is supplied with the actual voltage 20, the actual current 22 and the actual temperature 28. Depending on the actual voltage 20, the actual current 22 and the actual temperature 28 of the block 26 generates a compensated actual voltage 30, which in the following FIG. 4 is explained in more detail.
  • the compensated actual voltage 30 is supplied to a block 32 and a block 34.
  • the block 32 determines a reference voltage 36 as a function of the compensated actual voltage 30 and supplies it to the block 34.
  • the determination of the reference voltage 36 by the block 32 is in FIG. 5 explained in more detail.
  • the block 34 detects in response to the compensated actual voltage 30 and in response to the reference voltage 36 an error 48 of the series circuit of Semiconductor light sources 14.
  • the compensated actual voltage 30 comprises a compensation of variable variables, such as temperature and / or aging drift, which are reflected directly in the actual voltage 20 and would make monitoring of the light module 5, 6 more difficult.
  • a monitoring in dependence on the actual voltage 20 can be performed.
  • the compensated actual voltage 30 is determined as a function of the voltage applied to the series circuit 20 actual voltage.
  • the reference voltage 36 is determined in the block 32 as a function of the compensated actual voltage 30.
  • the compensated actual voltage 30 is compared with the reference voltage 36. Depending on the comparison, block 34 determines an error of the series connection of semiconductor light sources 14.
  • FIG. 4 schematically illustrates a block diagram as part of the block 26 FIG. 3 ,
  • the measured actual temperature 28 is fed to an addition point 42.
  • a reference temperature 44 of the addition point 42 is supplied.
  • a temperature difference 46 results from the subtraction of the reference temperature 44 from the actual temperature 28.
  • the temperature difference 46 represents a comparison of the reference temperature 44 with the actual temperature 28. By this comparison with the reference temperature 44 is the Actual temperature 28 normalized.
  • a first voltage value 48 is formed from the multiplication of the temperature difference 46 and a temperature coefficient 50 by means of the multiplication point 52.
  • a compensated actual voltage 30a is obtained from the addition of Actual voltage 20 and the first voltage value 48 is formed by means of the addition point 54.
  • a current difference 56 is formed by means of the addition point 58 from the subtraction of a reference current 60 from the actual current 22.
  • the current difference 56 represents a comparison of the reference current 60 with the actual current 22. By this comparison with the reference current 60, the actual current 22 is normalized.
  • a second voltage value 62 is determined by means of the multiplication point 64 as the product of the current difference 46 and a current coefficient 66 determined from a characteristic curve.
  • a compensated actual voltage 30b is determined by means of the addition point 68 as the sum of the second voltage value 62 and the compensated actual voltage 30a.
  • the compensated actual voltage 30b is output as compensated actual voltage 30 from the block 26.
  • the compensated actual voltage 30 a can also be output as compensated actual voltage 30 from the block 26.
  • the measured actual voltage 20 can also be supplied to the addition point 68 in order to output the sum of the measured actual voltage 20 as compensated actual voltage 30 from the block 26.
  • the reference temperature 44 can originate, for example, from a reference measurement or a plurality of reference measurements for the light module 5 or 6.
  • the temperature is measured and stored as reference temperature 44 in a non-volatile memory.
  • the temperature coefficient 50 depends on the light-emitting diode type and the number of LEDs and is determined from a characteristic curve.
  • the temperature coefficient 50 is stored in a non-volatile memory.
  • the reference current 60 can be determined from a reference measurement or several reference measurements and stored in a non-volatile memory of the control unit 7.
  • the current coefficient 66 is dependent on the type of light emitting diode and the number of light-emitting diodes and is stored in a non-volatile memory of the control unit 7.
  • the reference current 60 can also be measured during the first switch-on of the control unit 7 and stored in a non-volatile memory of the control unit 7.
  • the control unit 7 is supplied with information about the installation location of the illumination device. When the light module 5, 6 is switched on for the first time, the control unit 7 stores this installation location. If the controller 7 detects a change in the installation site, the stored reference measurements of the reference temperature 44 and / or the reference current 60 are invalidated and the reference measurement is performed again.
  • FIG. 5 shows an embodiment of the block 32 in a schematic block diagram FIG. 3
  • the reference 36 is determined as an exponentially smoothed value from a plurality of compensated values of the actual voltage 30.
  • a voltage difference 70 is determined from a subtraction of a reference voltage 36 (n-1) determined at the instant n-1 from the compensated actual voltage 30 (n) at the time n by means of the addition point 72.
  • a product 74 results from the multiplication of the voltage difference 70 with a forgetting factor 76, which preferably assumes a value of less than 0.05.
  • the reference voltage 36 (n) at time n is taken from the Addition of the product 74 with the reference voltage 36 (n-1) at time n-1 determined by the addition point 78.
  • FIG. 6 shows a schematically illustrated voltage-time diagram 80.
  • the value of the first measurement 82 of the reference voltage 36 is determined. If the values of the measurements 84, 86 and 88 are each within a second limit 90 about the reference voltage 36 at the respective time, then the reference voltage 36 is updated as a function of the compensated actual voltage 30 according to the block 32.
  • the control unit 7 If the control unit 7 is switched off, then the current value of the measurement 92 of the reference voltage 36 is stored in a non-volatile memory of the control unit 7. After a renewed switching on of the control unit 7, the value of the measurement 92 is used as a starting point for the further calculation or adaptation of the reference voltage 36. Exemplary are in FIG. 6 further measurements and the course of the reference voltage 36 shown. For example, the measurements 94, 96 and 98 are not used to update the reference voltage 36 according to the block 32, since they are outside the second limit 90 by the respective value of the reference voltage 36.
  • the error 40 of the series connection of the semiconductor light source 14 is detected when the compensated actual voltage 30, for example in the form of a value of one of the measurements 100 to 108, is outside a first limit 110 around the respective value of the reference voltage 36.
  • the error 40 is detected when the compensated actual voltage 30 in the form of the measurements 100 to 108 at several times outside the first limits 110 is about the reference voltage 36.
  • the error 40 is detected in response to a value of an error counter. For example, with a value of the error counter of 0, the error counter increments the reference voltage 36 upon detection of the measurement 100 outside the first boundary 110. The same applies to the measurements 102 to 108. However, if a measurement 112 within the first limit 110 or within the second limit 90 is around the reference voltage 36 between the measurements 102 and 104, the error counter is decremented. Thus, the error counter has a value of 1 in the measurement 100, a value of 2 in the measurement 102, a value of 1 in the measurement 112, a value 2 in the measurement 104, a value of 3 in the measurement 106, and 3 in the measurement Measurement 108 has a value of 4.
  • the threshold value for detecting or for determining the error 40 is, for example, at a value of 4, the error 40 in the control unit 7 is determined during the measurement 108.
  • the error 40 is detected when the compensated actual voltage 30 is at a plurality of measurement times of the measured actual voltage 20, in particular at least 4 measurement times of the measured actual voltage 20, outside the first limit 110 to the reference voltage 36.

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 und ein Steuergerät nach einem nebengeordneten Anspruch.The invention relates to a method according to the preamble of claim 1 and a control device according to a non-independent claim.

Die US 2007/159118 A1 offenbart einen Kraftfahrzeugscheinwerfer mit einer Gleichspannungsquelle und einem Diodenarray mit einer Mehrzahl von in Reihe geschalteten Leuchtdioden. Die Durchlassspannung eines Diodenstrangs wird gemessen. Durchschnittsdaten Vav werden gespeichert. Die gemessene Durchlassspannung und die gespeicherten Daten werden in einem Vergleich verwendet. Es wird ein Kurzschluss festgestellt.The US 2007/159118 A1 discloses a motor vehicle headlamp with a DC voltage source and a diode array having a plurality of light emitting diodes connected in series. The forward voltage of a diode string is measured. Average Vav data is stored. The measured forward voltage and the stored data are used in a comparison. A short circuit is detected.

Es ist bekannt, dass ein Ausfall einer einzelnen Leuchtdiode einer Reihenschaltung von Leuchtdioden durch die Überwachung der einzelnen Leuchtdioden beispielsweise über Lichtsensoren oder über einen Spannungsabgriff der einzelnen Leuchtdiode und die Überwachung der jeweiligen Signale erkannt wird.It is known that a failure of a single light emitting diode of a series circuit of LEDs by monitoring the individual LEDs, for example is detected via light sensors or via a voltage tap of the individual light-emitting diode and the monitoring of the respective signals.

Aus der DE 101 31 824 A1 ist eine Schaltungseinrichtung für die Ausfallerkennung von Leuchtdioden in einem Kraftfahrzeug bekannt, bei dem Ausfallerkennungsmittel Schaltmittel umfassen, die ein in einem Leuchtdiodenzweig erfasste Potential mit einem von einer Spannung eines Kfz-Bordnetzes abhängigen Referenzpotential vergleichen und in Abhängigkeit von diesem Vergleich die Ausgabe eines entsprechenden Ausfallerkennungssignals bewirken können.From the DE 101 31 824 A1 a circuit device for the failure detection of light-emitting diodes in a motor vehicle is known in the failure detection means comprise switching means which compare a detected in a light-emitting diode potential with a dependent of a voltage of a vehicle electrical system reference potential and effect depending on this comparison, the output of a corresponding failure detection signal can.

Aufgabe der Erfindung ist es daher die Fehlererkennung zu verbessern.The object of the invention is therefore to improve the error detection.

Die der Erfindung zu Grunde liegende Aufgabe wird durch ein Verfahren nach dem Anspruch 1 und ein Steuergerät nach einem nebengeordneten Anspruch gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. Für die Erfindung wichtige Merkmale finden sich ferner in der nachfolgenden Beschreibung und in den Zeichnungen, wobei die Merkmale sowohl als Alleinstellung als auch in unterschiedlichen Kombinationen für die Erfindung wichtig sein können, ohne dass hierauf nochmals explizit hingewiesen wird.The object underlying the invention is achieved by a method according to claim 1 and a control device according to an independent claim. Advantageous developments are specified in the subclaims. Features which are important for the invention can also be found in the following description and in the drawings, wherein the features can be important both alone and in different combinations for the invention, without being explicitly referred to again.

Durch die Ermittlung der an der Reihenschaltung anliegenden Ist-Spannung und deren Auswertung wird Sensorik auf dem Lichtmodul eingespart, beispielsweise die Lichtsensoren und/oder Spannungsmesssensoren. Darüber hinaus entfallen zusätzliche separate Messleitungen zwischen dem Lichtmodul und dem Steuergerät. Somit kann insbesondere die Sensorik auf das Steuergerät verlagert werden, womit die Lichtmodule günstiger und fehlerunanfälliger konstruiert und hergestellt werden können.By determining the voltage applied to the series circuit and their evaluation sensor is saved on the light module, such as the light sensors and / or voltage measuring sensors. In addition, additional separate measuring lines between the light module and the controller accounts. Thus, in particular, the sensors can be relocated to the controller, which constructs the light modules cheaper and error-prone and can be produced.

In einer vorteilhaften Ausführungsform wird in Abhängigkeit von einem ermittelten Ist-Strom durch die Reihenschaltung eine kompensierte Ist-Spannung ermittelt. Damit kann vorteilhaft eine Änderung im Ist-Strom erkannt und die Ist-Spannung entsprechend kompensiert werden. In einer vorteilhaften Ausführungsform wird in Abhängigkeit von einer ermittelten Ist-Temperatur der Halbleiterlichtquellen die kompensierte Ist-Spannung ermittelt. Damit kann vorteilhaft die kompensierte Ist-Spannung temperaturkompensiert ermittelt werden.In an advantageous embodiment, a compensated actual voltage is determined as a function of a determined actual current through the series connection. This can advantageously be detected a change in the actual current and the actual voltage can be compensated accordingly. In an advantageous embodiment, the compensated actual voltage is determined as a function of a determined actual temperature of the semiconductor light sources. Thus, the compensated actual voltage can advantageously be determined temperature-compensated.

In einer vorteilhaften Ausführungsform wird der Fehler dann erkannt, wenn sich die kompensiert Ist-Spannung außerhalb einer ersten Grenze um die Referenz-Spannung befindet. Damit wird vorteilhaft ein Toleranzbereich zur Erkennung des Fehlers geschaffen.In an advantageous embodiment, the error is detected when the compensated actual voltage is outside a first limit around the reference voltage. This advantageously creates a tolerance range for detecting the error.

In einer weiteren vorteilhaften Ausführungsform wird der Fehler dann erkannt, wenn sich die kompensierte Ist-Spannung zu mehreren Messzeitpunkten der gemessenen Ist-Spannung außerhalb der ersten Grenze um die Referenz-Spannung befindet. Damit wird vorteilhaft erreicht, dass die Erkennung des Fehlers auf einer sicheren Datenbasis geschieht.In a further advantageous embodiment, the error is detected when the compensated actual voltage is at several measuring times of the measured actual voltage outside the first limit to the reference voltage. This advantageously achieves that the detection of the error is done on a secure database.

In einer vorteilhaften Ausführungsform wird die Referenz-Spannung dann in Abhängigkeit von der kompensierten Ist-Spannung aktualisiert, wenn sich die kompensierte Ist-Spannung innerhalb einer zweiten Grenze um die Referenz-Spannung befindet. Damit wird vorteilhaft eine Driftkompensation geschaffen, womit insbesondere eine Bauteilealterung und eine Kompensation der Bauteiltoleranz geschaffen wird.In an advantageous embodiment, the reference voltage is then updated as a function of the compensated actual voltage when the compensated actual voltage is within a second limit around the reference voltage. In order for a drift compensation is advantageously created, which in particular a component aging and a compensation of the component tolerance is created.

In einer vorteilhaften Ausführungsform wird die Referenz-Spannung als exponentiell geglätteter Wert aus einer Mehrzahl von kompensierten Ist-Spannungen ermittelt. Auch hierdurch wird ein Bauteildrift und eine Bauteiltoleranz ausgeglichen. Insbesondere durch diese Driftkompensation bzw. Bauteiltoleranzkompensation kann die Fehlererkennung erheblich verbessert werden.In an advantageous embodiment, the reference voltage is determined as an exponentially smoothed value from a plurality of compensated actual voltages. This also compensates for component drift and component tolerance. In particular, by this drift compensation or component tolerance compensation, the error detection can be significantly improved.

Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung. Es werden für funktionsäquivalente Größen und Merkmale in allen Figuren auch bei unterschiedlichen Ausführungsformen die gleichen Bezugszeichen verwendet.Other features, applications and advantages of the invention will become apparent from the following description of embodiments of the invention, which are illustrated in the figures of the drawing. All described or illustrated features, alone or in any combination form the subject matter of the invention, regardless of their summary in the claims or their dependency and regardless of their formulation or representation in the description or in the drawing. The same reference numbers are used for functionally equivalent quantities and features in all figures, even in different embodiments.

Nachfolgend werden beispielhafte Ausführungsformen der Erfindung unter Bezugnahme auf die Zeichnung erläutert. In der Zeichnung zeigen

Figur 1
eine schematisch dargestellte Beleuchtungseinrichtung für Kraftfahrzeuge;
Figur 2
ein schematisches Schaltbild;
Figuren 3 bis 5
jeweils ein schematisches Blockdiagramm; und
Figur 6
ein schematisch dargestelltes Spannungs-Zeit-Diagramm.
Hereinafter, exemplary embodiments of the invention will be explained with reference to the drawings. In the drawing show
FIG. 1
a schematically illustrated illumination device for motor vehicles;
FIG. 2
a schematic diagram;
FIGS. 3 to 5
each a schematic block diagram; and
FIG. 6
a schematically illustrated voltage-time diagram.

In Figur 1 ist eine Beleuchtungseinrichtung für Kraftfahrzeuge in ihrer Gesamtheit mit dem Bezugszeichen 1 bezeichnet. Die Beleuchtungseinrichtung 1 ist in dem dargestellten Ausführungsbeispiel als ein Kraftfahrzeugscheinwerfer ausgebildet. Selbstverständlich kann die Beleuchtungseinrichtung 1 auch als eine Leuchte oder ähnliches, die am Heck oder seitlich am Kraftfahrzeug angeordnet ist, ausgebildet sein. Insbesondere ist die Beleuchtungseinrichtung 1 ein Blinker für das Kraftfahrzeug. Der Scheinwerfer 1 umfasst ein Gehäuse 2, das vorzugsweise aus Kunststoff gefertigt ist. In einer Lichtaustrittsrichtung 3 weist das Scheinwerfergehäuse 2 eine Lichtaustrittsöffnung auf, die durch eine transparente Abdeckscheibe 4 verschlossen ist. Die Abdeckscheibe 4 ist aus farblosem Kunststoff oder Glas gefertigt. Die Scheibe 4 kann ohne optisch wirksame Profile (zum Beispiel Prismen) als sogenannte klare Scheibe ausgebildet sein. Alternativ kann die Scheibe 4 zumindest bereichsweise mit optisch wirksamen Profilen, die insbesondere eine Streuung des hindurch tretenden Lichts in horizontaler Richtung bewirken, versehen sein.In FIG. 1 a lighting device for motor vehicles is designated in its entirety by the reference numeral 1. The lighting device 1 is formed in the illustrated embodiment as a motor vehicle headlight. Of course, the lighting device 1 as a lamp or the like, which is arranged at the rear or side of the motor vehicle, be formed. In particular, the lighting device 1 is a turn signal for the motor vehicle. The headlight 1 comprises a housing 2, which is preferably made of plastic. In a light exit direction 3, the headlight housing 2 has a light exit opening, which is closed by a transparent cover 4. The cover 4 is made of colorless plastic or glass. The disk 4 may be formed as a so-called clear disk without optically effective profiles (for example, prisms). Alternatively, the pane 4 may be provided, at least in regions, with optically active profiles, which in particular cause a scattering of the light passing through in the horizontal direction.

Im Inneren des Scheinwerfergehäuses 2 sind in dem dargestellten Ausführungsbeispiel zwei Lichtmodule 5, 6 angeordnet. Die Lichtmodule 5, 6 sind fest oder relativ zu dem Gehäuse 2 bewegbar angeordnet. Durch eine Relativbewegung der Lichtmodule 5, 6 zum Gehäuse 2 in horizontaler Richtung kann beispielsweise eine dynamische Kurvenlichtfunktion realisiert werden. Bei einer Bewegung der Lichtmodule 5, 6 um eine horizontale Achse, also in vertikaler Richtung, kann eine Leuchtweitenregelung realisiert werden. Die Lichtmodule 5, 6 sind zur Erzeugung einer gewünschten Lichtverteilung, beispielsweise einer Abblendlicht-, einer Fernlicht-, einer Stadtlicht-, einer Landstrassenlicht-, einer Autobahnlicht-, einer Nebellicht-, einer statischen oder dynamischen Kurvenlicht- oder einer beliebig anderen statischen oder adaptiven Lichtverteilung ausgebildet. Die Lichtmodule 5, 6 erzeugen die gewünschte Lichtfunktion entweder alleine oder in Kombination miteinander, indem die von jedem einzelnen Lichtmodul 5; 6 gelieferten Teillichtverteilungen zu der gewünschten Gesamtlichtverteilung überlagert werden. Die Lichtmodule 5, 6 können als Reflexionsmodule und/oder als Projektionsmodule ausgebildet sein. Selbstverständlich können in dem Scheinwerfergehäuse 2 auch mehr oder weniger als die dargestellten zwei Lichtmodule 5, 6 vorgesehen sein.Inside the headlight housing 2, two light modules 5, 6 are arranged in the illustrated embodiment. The light modules 5, 6 are arranged fixed or relative to the housing 2 movable. By a relative movement of the light modules 5, 6 to the housing 2 in the horizontal direction, for example, a dynamic cornering light function can be realized. In a movement of the light modules 5, 6 about a horizontal axis, ie in the vertical direction, a headlight range control will be realized. The light modules 5, 6 are for generating a desired light distribution, for example a low beam, a high beam, a city light, a highway light, a motorway light, a fog light, a static or dynamic Kurvenlicht- or any other static or adaptive Light distribution formed. The light modules 5, 6 generate the desired light function either alone or in combination with each other by the light module 5 of each individual light module; 6 supplied partial light distributions are superimposed to the desired total light distribution. The light modules 5, 6 can be designed as reflection modules and / or as projection modules. Of course, more or less than the illustrated two light modules 5, 6 may be provided in the headlight housing 2.

An der Außenseite des Scheinwerfergehäuses 2 ist ein Steuergerät 7 in einem Steuergerätegehäuse 8 angeordnet. Selbstverständlich kann das Steuergerät 7 auch an einer beliebig anderen Stelle des Scheinwerfers 1 angeordnet sein. Insbesondere kann für jedes der Lichtmodule 5, 6 ein eigenes Steuergerät vorgesehen sein, wobei die Steuergeräte integraler Bestandteil der Lichtmodule 5, 6 sein können. Selbstverständlich kann das Steuergerät 7 auch entfernt vom dem Scheinwerfer 1 angeordnet sein. Das Steuergerät 7 dient zur Steuerung und/oder Regelung der Lichtmodule 5, 6 bzw. von Teilkomponenten der Lichtmodule 5, 6, wie beispielsweise von Lichtquellen der Lichtmodule 5, 6. Die Ansteuerung der Lichtmodule 5, 6 bzw. der Teilkomponenten durch das Steuergerät 7 erfolgt über Verbindungsleitungen 10, die in Figur 1 durch eine gestrichelte Linie lediglich symbolisch dargestellt sind. Über die Leitungen 10 erfolgt eine Versorgung der Lichtmodule 5, 6 mit elektrischer Energie. Die Leitungen 10 sind durch eine Öffnung im Scheinwerfergehäuse 2 in das Steuergerätegehäuse 8 geführt und dort an die Schaltung des Steuergerätes 7 angeschlossen. Falls mehrere Steuergeräte als integraler Bestandteil der Lichtmodule 5, 6 vorgesehen sind, können die Leitungen 10 und kann die Öffnung in Scheinwerfergehäuse 2 entfallen.On the outside of the headlight housing 2, a control unit 7 is arranged in a control unit housing 8. Of course, the control unit 7 can also be arranged at any other point of the headlamp 1. In particular, a separate control device can be provided for each of the light modules 5, 6, wherein the control devices can be an integral part of the light modules 5, 6. Of course, the control unit 7 may also be arranged remotely from the headlight 1. The control unit 7 serves to control and / or regulate the light modules 5, 6 or of subcomponents of the light modules 5, 6, such as light sources of the light modules 5, 6. The control of the light modules 5, 6 or the subcomponents by the control unit. 7 takes place via connecting lines 10, which in FIG. 1 are shown only symbolically by a dashed line. About the lines 10 is a supply of the light modules 5, 6 with electrical energy. The lines 10 are through an opening in Headlight housing 2 is guided in the control unit housing 8 and connected there to the circuit of the control unit 7. If a plurality of control devices are provided as an integral part of the light modules 5, 6, the lines 10 and can account for the opening in the headlight housing 2.

Zur besseren EMV-Abschirmung besteht das Steuergerätegehäuse 8 aus einem elektrisch leitfähigen Material, insbesondere aus Metall, vorzugsweise aus Aluminium-Druckguss. Ebenfalls zur besseren EMV-Abschirmung sind die Leitungen 10 abgeschirmt, insbesondere mittels eines die Leitungen 10 umgebenden Metallgeflechts oder eines Metall-Kunststoff-Geflechts. In dem Steuergerätegehäuse 8 ist des Weiteren eine Öffnung vorgesehen, in der ein Stecker-/Buchsenelement 9 angeordnet ist. Über das Stecker-/Buchsenelement 9 kann das Steuergerät 7 mit einem übergeordneten Steuergerät (zum Beispiel einen sogenannten Body-Controller) und/oder einer Energieversorgung des Kraftfahrzeugs (zum Beispiel einer Fahrzeugbatterie) verbunden sein.For better EMC shielding, the control unit housing 8 consists of an electrically conductive material, in particular of metal, preferably of die-cast aluminum. Also for better EMC shielding the lines 10 are shielded, in particular by means of a line 10 surrounding metal braid or a metal-plastic braid. In the control unit housing 8, an opening is further provided, in which a plug / socket element 9 is arranged. Via the plug / socket element 9, the control unit 7 with a higher-level control unit (for example, a so-called body controller) and / or a power supply of the motor vehicle (for example, a vehicle battery) may be connected.

Die Lichtmodule 5, 6 der Beleuchtungseinrichtung 1 nutzen als Lichtquellen eine oder mehrere Halbleiterlichtquellen, insbesondere Leuchtdioden (LEDs). LED-Scheinwerfer 1, die eine Vielzahl von LEDs aufweisen, finden verstärkt Einsatz. Durch Aus- und Einschalten einzelner LEDs oder einzelner LED-Gruppen können variable Lichtverteilungen erzielt werden. Derartige Scheinwerfer 1 werden als Pixel- oder Matrixscheinwerfer bezeichnet. Üblicherweise sind jeweils mehrere LEDs in einer Reihenschaltung (auch Zweig oder Kette) geschaltet.The light modules 5, 6 of the illumination device 1 use as light sources one or more semiconductor light sources, in particular light emitting diodes (LEDs). LED headlights 1, which have a large number of LEDs, are increasingly used. By switching individual LEDs or individual LED groups off and on, variable light distributions can be achieved. Such headlights 1 are referred to as pixel or matrix headlights. Usually several LEDs are connected in a series circuit (also branch or chain).

Figur 2 zeigt ein schematisches Schaltbild 12 umfassend das Steuergerät 7 und beispielhaft das Lichtmodul 5, wobei das Steuergerät 7 und das Lichtmodul 5 miteinander elektrischmittels der Leitung 10 verbunden sind. Das Lichtmodul 5 umfasst eine Reihenschaltung von Halbleiterlichtquellen 14b, 14c und 14z. Das Steuergerät 7 umfasst eine Stromquelle 16 und einen Messwiderstand 18. Eine an der Reihenschaltung der Halbleiterlichtquellen 14 anliegende Ist-Spannung 20 wird in dem Steuergerät 7 gemessen. Mittels des Messwiderstands 18 wird ein Ist-Strom 22 durch die Reihenschaltung von Halbleiterlichtquellen 14 gemessen. In Figur 2 nicht gezeigter Form ist auf dem Lichtmodul 5 ein Temperatursensor angeordnet, mit dem eine Ist-Temperatur im Bereich der Halbleiterlichtquellen 14 ermittelt wird. Selbstverständlich können auch mehrere Temperatursensoren vorhanden sein. In einer Ausführungsform ist der Temperatursensor ein temperaturabhängiger Widerstand. Entsprechend ist für die Ermittlung der Ist-Temperatur eine zusätzliche Messleitung zwischen dem Lichtmodul 5 und Steuergerät 7 gemäß der Leitung 10 vorhanden. FIG. 2 shows a schematic circuit diagram 12 comprising the control unit 7 and by way of example the light module 5, wherein the Control unit 7 and the light module 5 are electrically connected to each other by means of the line 10. The light module 5 comprises a series connection of semiconductor light sources 14b, 14c and 14z. The control unit 7 comprises a current source 16 and a measuring resistor 18. An actual voltage 20 applied to the series connection of the semiconductor light sources 14 is measured in the control unit 7. By means of the measuring resistor 18, an actual current 22 is measured by the series connection of semiconductor light sources 14. In FIG. 2 not shown form a temperature sensor is arranged on the light module 5, with which an actual temperature in the region of the semiconductor light sources 14 is determined. Of course, several temperature sensors may be present. In one embodiment, the temperature sensor is a temperature-dependent resistor. Accordingly, an additional measuring line between the light module 5 and control unit 7 according to the line 10 is available for determining the actual temperature.

Figur 3 zeigt ein schematisches Blockdiagramm 24. Das Blockdiagramm 24 ist Teil des vorgestellten Verfahrens zum Betreiben des Steuergeräts 7. Einem Block 26 werden die Ist-Spannung 20, der Ist-Strom 22 und die Ist-Temperatur 28 zugeführt. In Abhängigkeit von der Ist-Spannung 20, dem Ist-Strom 22 und der Ist-Temperatur 28 erzeugt der Block 26 eine kompensierte Ist-Spannung 30, was nachgehend in der Figur 4 näher erläutert wird. Die kompensierte Ist-Spannung 30 wird einem Block 32 und einem Block 34 zugeführt. Der Block 32 ermittelt in Abhängigkeit von der kompensierten Ist-Spannung 30 eine Referenz-Spannung 36 und führt diese dem Block 34 zu. Die Ermittlung der Referenz-Spannung 36 durch den Block 32 wird in Figur 5 näher erläutert. Der Block 34 erkennt in Abhängigkeit von der kompensierten Ist-Spannung 30 und in Abhängigkeit von der Referenz-Spannung 36 einen Fehler 48 der Reihenschaltung von Halbleiterlichtquellen 14. FIG. 3 12 shows a schematic block diagram 24. The block diagram 24 is part of the presented method for operating the control device 7. A block 26 is supplied with the actual voltage 20, the actual current 22 and the actual temperature 28. Depending on the actual voltage 20, the actual current 22 and the actual temperature 28 of the block 26 generates a compensated actual voltage 30, which in the following FIG. 4 is explained in more detail. The compensated actual voltage 30 is supplied to a block 32 and a block 34. The block 32 determines a reference voltage 36 as a function of the compensated actual voltage 30 and supplies it to the block 34. The determination of the reference voltage 36 by the block 32 is in FIG. 5 explained in more detail. The block 34 detects in response to the compensated actual voltage 30 and in response to the reference voltage 36 an error 48 of the series circuit of Semiconductor light sources 14.

Die kompensierte Ist-Spannung 30 umfasst gegenüber der gemessenen Ist-Spannung 20 eine Kompensation von veränderlichen Größen, wie beispielsweise Temperatur und/oder Alterungsdrift, die sich unmittelbar in der Ist-Spannung 20 niederschlagen und eine Überwachung des Lichtmoduls 5, 6 erschweren würde. Demgegenüber kann mittels der kompensierten Ist-Spannung 30 eine Überwachung in Abhängigkeit von der Ist-Spannung 20 durchgeführt werden.Compared with the measured actual voltage 20, the compensated actual voltage 30 comprises a compensation of variable variables, such as temperature and / or aging drift, which are reflected directly in the actual voltage 20 and would make monitoring of the light module 5, 6 more difficult. In contrast, by means of the compensated actual voltage 30, a monitoring in dependence on the actual voltage 20 can be performed.

Die kompensierte Ist-Spannung 30 wird in Abhängigkeit von der an der Reihenschaltung anliegenden Ist-Spannung 20 ermittelt. Die Referenz-Spannung 36 wird in dem Block 32 in Abhängigkeit von der kompensierten Ist-Spannung 30 ermittelt. In dem Block 34 wird die kompensierte Ist-Spannung 30 mit der Referenz-Spannung 36 verglichen. In Abhängigkeit von dem Vergleich ermittelt der Block 34 einen Fehler der Reihenschaltung von Halbleiterlichtquellen 14.The compensated actual voltage 30 is determined as a function of the voltage applied to the series circuit 20 actual voltage. The reference voltage 36 is determined in the block 32 as a function of the compensated actual voltage 30. In block 34, the compensated actual voltage 30 is compared with the reference voltage 36. Depending on the comparison, block 34 determines an error of the series connection of semiconductor light sources 14.

Figur 4 zeigt in schematischer Form ein Blockschaltbild als Teil des Blocks 26 aus Figur 3. Die gemessene Ist-Temperatur 28 wird einer Additionsstelle 42 zugeführt. Ebenso wird eine Referenz-Temperatur 44 der Additionsstelle 42 zugeführt. Eine Temperaturdifferenz 46 ergibt sich aus der Subtraktion der Referenz-Temperatur 44 von der Ist-Temperatur 28. Die Temperaturdifferenz 46 stellt einen Vergleich der Referenz-Temperatur 44 mit der Ist-Temperatur 28 dar. Durch diesen Vergleich mit der Referenz-Temperatur 44 wird die Ist-Temperatur 28 normiert. Ein erster Spannungswert 48 wird aus der Multiplikation der Temperaturdifferenz 46 und eines Temperaturkoeffizienten 50 mittels der Multiplikationsstelle 52 gebildet. Eine kompensierte Ist-Spannung 30a wird aus der Addition der Ist-Spannung 20 und dem ersten Spannungswert 48 mittels der Additionsstelle 54 gebildet. FIG. 4 FIG. 12 schematically illustrates a block diagram as part of the block 26 FIG. 3 , The measured actual temperature 28 is fed to an addition point 42. Likewise, a reference temperature 44 of the addition point 42 is supplied. A temperature difference 46 results from the subtraction of the reference temperature 44 from the actual temperature 28. The temperature difference 46 represents a comparison of the reference temperature 44 with the actual temperature 28. By this comparison with the reference temperature 44 is the Actual temperature 28 normalized. A first voltage value 48 is formed from the multiplication of the temperature difference 46 and a temperature coefficient 50 by means of the multiplication point 52. A compensated actual voltage 30a is obtained from the addition of Actual voltage 20 and the first voltage value 48 is formed by means of the addition point 54.

Eine Stromdifferenz 56 wird mittels der Additionsstelle 58 aus der Subtraktion eines Referenz-Stroms 60 von dem Ist-Strom 22 gebildet. Die Stromdifferenz 56 stellt einen Vergleich des Referenz-Stroms 60 mit dem Ist-Strom 22 dar. Durch diesen Vergleich mit dem Referenz-Strom 60 wird der Ist-Strom 22 normiert. Ein zweiter Spannungswert 62 wird mittels der Multiplikationsstelle 64 als Produkt aus der Stromdifferenz 46 und einem aus einer Kennlinie bestimmten Strom-Koeffizienten 66 ermittelt. Eine kompensierte Ist-Spannung 30b wird mittels der Additionsstelle 68 als Summe des zweiten Spannungswerts 62 und der kompensierten Ist-Spannung 30a ermittelt.A current difference 56 is formed by means of the addition point 58 from the subtraction of a reference current 60 from the actual current 22. The current difference 56 represents a comparison of the reference current 60 with the actual current 22. By this comparison with the reference current 60, the actual current 22 is normalized. A second voltage value 62 is determined by means of the multiplication point 64 as the product of the current difference 46 and a current coefficient 66 determined from a characteristic curve. A compensated actual voltage 30b is determined by means of the addition point 68 as the sum of the second voltage value 62 and the compensated actual voltage 30a.

Gemäß Figur 4 wird die kompensierte Ist-Spannung 30b als kompensierte Ist-Spannung 30 von dem Block 26 ausgegeben. Selbstverständlich kann auch die kompensierte Ist-Spannung 30a als kompensierte Ist-Spannung 30 von dem Block 26 ausgegeben werden. Selbstverständlich kann anstatt der kompensierten Ist-Spannung 30a auch die gemessene Ist-Spannung 20 der Additionsstelle 68 zugeführt werden, um die Summe der gemessenen Ist-Spannung 20 als kompensierte Ist-Spannung 30 von dem Block 26 auszugeben.According to FIG. 4 the compensated actual voltage 30b is output as compensated actual voltage 30 from the block 26. Of course, the compensated actual voltage 30 a can also be output as compensated actual voltage 30 from the block 26. Of course, instead of the compensated actual voltage 30a, the measured actual voltage 20 can also be supplied to the addition point 68 in order to output the sum of the measured actual voltage 20 as compensated actual voltage 30 from the block 26.

Die Referenz-Temperatur 44 kann beispielsweise aus einer Referenzmessung oder mehreren Referenzmessungen für das Lichtmodul 5 bzw. 6 stammen. In einer anderen Ausführungsform wird bei einem ersten Einschalten des Lichtmoduls 5, 6 die Temperatur gemessen und als Referenz-Temperatur 44 in einem nicht-flüchtigen Speicher hinterlegt. Der Temperatur-Koeffizient 50 ist abhängig von den Leuchtdioden-Typ und der Anzahl der Leuchtdioden und wird aus einer Kennlinie ermittelt. Der Temperatur-koeffizient 50 wird in einem nicht flüchtigen Speicher hinterlegt.The reference temperature 44 can originate, for example, from a reference measurement or a plurality of reference measurements for the light module 5 or 6. In another embodiment, when the light module 5, 6 is switched on for the first time, the temperature is measured and stored as reference temperature 44 in a non-volatile memory. The temperature coefficient 50 depends on the light-emitting diode type and the number of LEDs and is determined from a characteristic curve. The temperature coefficient 50 is stored in a non-volatile memory.

Der Referenz-Strom 60 kann aus einer Referenzmessung oder mehreren Referenzmessungen ermittelt werden und in einem nicht-flüchtigen Speicher des Steuergeräts 7 hinterlegt werden. Der Strom-Koeffizient 66 ist abhängig vom Leuchtdiodentyp und von der Anzahl der Leuchtdioden und wird in einem nicht-flüchtigen Speicher des Steuergeräts 7 hinterlegt. Selbstverständlich kann der Referenz-Strom 60 in einer Ausführungsform auch bei dem ersten Einschalten des Steuergeräts 7 gemessen und in einem nicht-flüchtigen Speicher des Steuergeräts 7 hinterlegt werden.The reference current 60 can be determined from a reference measurement or several reference measurements and stored in a non-volatile memory of the control unit 7. The current coefficient 66 is dependent on the type of light emitting diode and the number of light-emitting diodes and is stored in a non-volatile memory of the control unit 7. Of course, in one embodiment, the reference current 60 can also be measured during the first switch-on of the control unit 7 and stored in a non-volatile memory of the control unit 7.

Dem Steuergerät 7 wird eine Information über den Verbauort der Beleuchtungseinrichtung zugeführt. Bei dem ersten Einschalten des Lichtmoduls 5, 6 speichert das Steuergerät 7 diesen Verbauort ab. Stellt das Steuergerät 7 eine Änderung des Verbauorts fest, so werden die abgespeicherten Referenzmessungen der Referenz-Temperatur 44 und/oder des Referenz-Stroms 60 für ungültig erklärt und die Referenzmessung erneut durchgeführt.The control unit 7 is supplied with information about the installation location of the illumination device. When the light module 5, 6 is switched on for the first time, the control unit 7 stores this installation location. If the controller 7 detects a change in the installation site, the stored reference measurements of the reference temperature 44 and / or the reference current 60 are invalidated and the reference measurement is performed again.

Figur 5 zeigt in einem schematischen Blockdiagramm eine Ausführungsform des Blocks 32 auf Figur 3. Die Referenz 36 wird vorliegend als exponentiell geglätteter Wert aus einer Mehrzahl von kompensierten Werten der Ist-Spannung 30 ermittelt. Hierzu wird eine Spannungsdifferenz 70 aus einer Subtraktion einer zum Zeitpunkt n-1 ermittelten Referenz-Spannung 36(n-1) von der kompensierten Ist-Spannung 30(n) zum Zeitpunkt n mittels der Additionsstelle 72 ermittelt. Ein Produkt 74 ergibt sich aus der Multiplikation der Spannungsdifferenz 70 mit einem Vergessensfaktor 76, der bevorzugt einen Wert von kleiner 0,05 einnimmt. Die Referenz-Spannung 36(n) zum Zeitpunkt n wird aus der Addition des Produkts 74 mit der Referenz-Spannung 36(n-1) zum Zeitpunkt n-1 mittels der Additionsstelle 78 bestimmt. FIG. 5 shows an embodiment of the block 32 in a schematic block diagram FIG. 3 , In the present case, the reference 36 is determined as an exponentially smoothed value from a plurality of compensated values of the actual voltage 30. For this purpose, a voltage difference 70 is determined from a subtraction of a reference voltage 36 (n-1) determined at the instant n-1 from the compensated actual voltage 30 (n) at the time n by means of the addition point 72. A product 74 results from the multiplication of the voltage difference 70 with a forgetting factor 76, which preferably assumes a value of less than 0.05. The reference voltage 36 (n) at time n is taken from the Addition of the product 74 with the reference voltage 36 (n-1) at time n-1 determined by the addition point 78.

Figur 6 zeigt ein schematisch dargestelltes Spannungs-Zeitdiagramm 80. Beim ersten Einschalten des Steuergeräts 7 wird der Wert der ersten Messung 82 der Referenz-Spannung 36 bestimmt. Befinden sich die Werte der Messungen 84, 86 und 88 jeweils zum jeweiligen Zeitpunkt innerhalb einer zweiten Grenze 90 um die Referenz-Spannung 36, so wird die Referenz-Spannung 36 in Abhängigkeit von der kompensierten Ist-Spannung 30 gemäß dem Block 32 aktualisiert. FIG. 6 shows a schematically illustrated voltage-time diagram 80. When you first turn on the controller 7, the value of the first measurement 82 of the reference voltage 36 is determined. If the values of the measurements 84, 86 and 88 are each within a second limit 90 about the reference voltage 36 at the respective time, then the reference voltage 36 is updated as a function of the compensated actual voltage 30 according to the block 32.

Wird das Steuergerät 7 abgeschaltet, so wird der aktuelle Wert der Messung 92 der Referenz-Spannung 36 in einem nicht-flüchtigen Speicher des Steuergeräts 7 gespeichert. Nach einem erneuten Einschalten des Steuergeräts 7 wird der Wert der Messung 92 als Ausgangspunkt für die weitere Berechnung bzw. der Anpassung der Referenz-Spannung 36 verwendet. Beispielhaft sind in Figur 6 weitere Messungen und der Verlauf der Referenz-Spannung 36 gezeigt. Die Messungen 94, 96 und 98 werden beispielsweise nicht zur Aktualisierung der Referenz-Spannung 36 gemäß dem Block 32 herangezogen, da diese außerhalb der zweiten Grenze 90 um den jeweiligen Wert der Referenz-Spannung 36 liegen.If the control unit 7 is switched off, then the current value of the measurement 92 of the reference voltage 36 is stored in a non-volatile memory of the control unit 7. After a renewed switching on of the control unit 7, the value of the measurement 92 is used as a starting point for the further calculation or adaptation of the reference voltage 36. Exemplary are in FIG. 6 further measurements and the course of the reference voltage 36 shown. For example, the measurements 94, 96 and 98 are not used to update the reference voltage 36 according to the block 32, since they are outside the second limit 90 by the respective value of the reference voltage 36.

Der Fehler 40 der Reihenschaltung von Halbleiterlichtquelle 14 wird dann erkannt, wenn sich die kompensierte Ist-Spannung 30 beispielweise in Form von einem Wert von einer der Messungen 100 bis 108 außerhalb einer ersten Grenze 110 um den jeweiligen Wert der Referenz-Spannung 36 befindet.The error 40 of the series connection of the semiconductor light source 14 is detected when the compensated actual voltage 30, for example in the form of a value of one of the measurements 100 to 108, is outside a first limit 110 around the respective value of the reference voltage 36.

In einer Ausführungsform wird der Fehler 40 dann erkannt, wenn sich die kompensierte Ist-Spannung 30 in Form der Messungen 100 bis 108 zu mehreren Zeitpunkten außerhalb der ersten Grenzen 110 um die Referenz-Spannung 36 befindet.In one embodiment, the error 40 is detected when the compensated actual voltage 30 in the form of the measurements 100 to 108 at several times outside the first limits 110 is about the reference voltage 36.

In einer Ausführungsform wird der Fehler 40 in Abhängigkeit von einem Wert eines Fehlerzählers erkannt. So wird beispielsweise bei einem Wert des Fehlerzählers von 0 der Fehlerzähler bei Erkennung der Messung 100 außerhalb der ersten Grenze 110 die Referenz-Spannung 36 inkrementiert. Gleiches gilt für die Messungen 102 bis 108. Befindet sich jedoch zwischen den Messungen 102 und 104 eine Messung 112 innerhalb der ersten Grenze 110 oder innerhalb der zweiten Grenze 90 um die Referenz-Spannung 36, so wird der Fehlerzähler dekrementiert. Mithin hat der Fehlerzähler bei der Messung 100 einen Wert von 1, bei der Messung 102 einen Wert von 2, bei der Messung 112 einen Wert von 1, bei der Messung 104 einen Wert 2, bei der Messung 106 einen Wert von 3 und bei der Messung 108 einen Wert von 4. Ist der Schwellwert zur Erkennung beziehungsweise zur Ermittlung des Fehlers 40 beispielsweise bei einem Wert von 4, so wird bei der Messung 108 der Fehler 40 in dem Steuergerät 7 ermittelt. Somit wird der Fehler 40 dann erkannt, wenn sich die kompensierte Ist-Spannung 30 zu mehreren Messzeitpunkten der gemessenen Ist-Spannung 20, insbesondere mindestens 4 Messzeitpunkten der gemessenen Ist-Spannung 20, außerhalb der ersten Grenze 110 um die Referenz-Spannung 36 befindet.In one embodiment, the error 40 is detected in response to a value of an error counter. For example, with a value of the error counter of 0, the error counter increments the reference voltage 36 upon detection of the measurement 100 outside the first boundary 110. The same applies to the measurements 102 to 108. However, if a measurement 112 within the first limit 110 or within the second limit 90 is around the reference voltage 36 between the measurements 102 and 104, the error counter is decremented. Thus, the error counter has a value of 1 in the measurement 100, a value of 2 in the measurement 102, a value of 1 in the measurement 112, a value 2 in the measurement 104, a value of 3 in the measurement 106, and 3 in the measurement Measurement 108 has a value of 4. If the threshold value for detecting or for determining the error 40 is, for example, at a value of 4, the error 40 in the control unit 7 is determined during the measurement 108. Thus, the error 40 is detected when the compensated actual voltage 30 is at a plurality of measurement times of the measured actual voltage 20, in particular at least 4 measurement times of the measured actual voltage 20, outside the first limit 110 to the reference voltage 36.

Claims (10)

  1. Method for operating a control device (7) for a light module (5; 6), comprising a series connection of semiconductor light sources (14), of a lighting means (1) for a motor vehicle, an actual voltage (20) that is applied to the series connection being detected, characterized in that a compensated actual voltage (30) is detected depending on the applied actual voltage (20), in that the compensated actual voltage (30) is detected by means of a reference temperature (44) and a temperature coefficient (50) and/or the compensated actual voltage (30) is detected by means of a reference current (60) and a current coefficient (66), in that a reference voltage (36) is detected depending on the compensated actual voltage (30), in that the compensated actual voltage (30) is compared with the reference voltage (36), and in that a fault (40) of the series connection is detected depending on the comparison.
  2. Method according to claim 1, wherein when the compensated actual voltage (30) is detected by means of the reference current (44) and the current coefficient (50), an actual current (22) through the series connection is detected, and wherein the compensated actual voltage (30) is detected depending on the actual current (22), the reference current (60) and the current coefficient (66).
  3. Method according to claim 1 or claim 2, wherein when the compensated actual voltage (30) is detected by means of the reference temperature (44) and the temperature coefficient (50), an actual temperature (28) in the region of the semiconductor sources (14) is detected, and wherein the compensated actual voltage (30) is detected depending on the actual temperature (28), the reference temperature (44) and the temperature coefficient (50).
  4. Method according to any of the preceding claims, wherein the fault (40) is identified when the compensated actual voltage (30) is outside a first limit (110) of the reference voltage (36).
  5. Method according to any of the preceding claims, wherein the fault (40) is identified when the compensated actual voltage (30) is outside the first limit (110) of the reference voltage (36) at a plurality of measurement times of the measured actual voltage (20), in particular at least four measurement times of the measured actual voltage (20).
  6. Method according to any of the preceding claims, wherein the reference voltage (36) is updated depending on the compensated actual voltage (30) when the compensated actual voltage (30) is inside a second limit (90) of the reference voltage (36).
  7. Method according to claim 6, wherein the magnitude of the first limit (110) is greater than the magnitude of the second limit (90).
  8. Method according to any of the preceding claims, wherein the reference voltage (36) is detected as an exponentially smoothed value from a plurality of compensated actual voltages (30).
  9. Control device (7) for a light module (5; 6), comprising a series connection of semiconductor light sources (14), of a lighting means (1) for a motor vehicle, the control device being designed to detect an actual voltage (20) applied to the series connection, characterized in that the control device is further designed to detect a compensated actual voltage (30) depending on the applied actual voltage (20), to detect the compensated actual voltage (30) by means of a reference temperature (44) and a temperature coefficient (50) and/or to detect the compensated actual voltage (30) by means of a reference current (60) and a current coefficient (66), to detect a reference voltage (36) depending on the compensated actual voltage (30), to compare the compensated actual voltage (30) with the reference voltage (36), and to detect a fault (40) of the series connection depending on the comparison.
  10. Lighting means (1) for a motor vehicle, comprising a light module (5; 6) and a control device (7) according to claim 9, wherein the control device (7) is connected to the light module (5; 6).
EP16166030.3A 2015-05-08 2016-04-19 Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device Active EP3091819B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015208608.9A DE102015208608A1 (en) 2015-05-08 2015-05-08 Method for operating a control device for a series circuit of semiconductor light sources comprising light module and control unit

Publications (2)

Publication Number Publication Date
EP3091819A1 EP3091819A1 (en) 2016-11-09
EP3091819B1 true EP3091819B1 (en) 2018-09-05

Family

ID=55802255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16166030.3A Active EP3091819B1 (en) 2015-05-08 2016-04-19 Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device

Country Status (2)

Country Link
EP (1) EP3091819B1 (en)
DE (1) DE102015208608A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023107021B3 (en) 2023-03-21 2024-05-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for controlling an LED arrangement based on an individually learned current-voltage characteristic curve and corresponding lighting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159118A1 (en) * 2006-01-12 2007-07-12 Denso Corporation Vehicle head lamp device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131824B4 (en) 2001-06-30 2011-09-29 Hella Kgaa Hueck & Co. Circuit device for failure detection of LEDs in a motor vehicle
US20060226956A1 (en) * 2005-04-07 2006-10-12 Dialight Corporation LED assembly with a communication protocol for LED light engines
WO2011030381A1 (en) * 2009-09-10 2011-03-17 三菱電機株式会社 Led lighting apparatus for head lamp, and head lamp lighting system for vehicle
DE102012206891A1 (en) * 2012-04-26 2013-10-31 Zumtobel Lighting Gmbh Arrangement and method for assessing the condition of an electronic unit used for lighting purposes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070159118A1 (en) * 2006-01-12 2007-07-12 Denso Corporation Vehicle head lamp device

Also Published As

Publication number Publication date
EP3091819A1 (en) 2016-11-09
DE102015208608A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
DE102006006778B4 (en) Vehicle lighting system
DE102014017917B3 (en) Method for configuring at least one radar sensor installed at one of a plurality of installation positions in a motor vehicle with regard to the installation position and motor vehicle
EP0856726A1 (en) Method of temperature compensation in mesuring systems
DE102011083025B4 (en) Lighting device for a vehicle
EP2178718A1 (en) System for generating a light beam in the area in front of a motor vehicle
DE102012218772B3 (en) Method and device for diagnosing a faulty light source
DE102011120781B4 (en) Method for fault detection in a lighting device, in particular in a vehicle, and lighting device with fault detection
DE102010029149A1 (en) Method and control unit for plausibility checking of a headlight range test value of a light cone of a vehicle headlight
DE102017119176A1 (en) Lighting device, luminaire, vehicle equipped therewith and lighting method
DE102008032345A1 (en) Headlight for use in motor vehicle, has LED source corresponding to responding sensor element, which is switched-off or dimmed down in dimmed beam position for forming dimmed region, where traffic object is located in region
DE102020116224A1 (en) Headlights for a vehicle and method of controlling the same
DE102011011699A1 (en) Lighting device for vehicles
DE102008047731A1 (en) Lighting device i.e. headlight, failure detecting method for motor vehicle, involves detecting failure of LEDs by determining or evaluating voltage drop of LEDs, where evaluation takes place by comparing voltage drop with reference value
DE102015219447A1 (en) Micromirror arrangement and method for calibrating a micromirror arrangement
DE102015209013A1 (en) Method and device for generating effect light
DE102011011344A1 (en) Circuit arrangement for an electric seat heating
EP3091819B1 (en) Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device
EP3084385A1 (en) Method and device for determining a beam width alignment of a headlight
EP3466756B1 (en) Animatable cascade light conductor
EP3239733A1 (en) Method for operating a radar sensor in a motor vehicle and motor vehicle
DE102019216478A1 (en) Lighting device for a motor vehicle
DE102012023126A1 (en) Method for automatically calibrating projection type headlamp for vehicle, involves detecting to-be deflected beams of reflector and lens, and projecting pattern generated in light distribution ahead of vehicle, on road
DE102014216085A1 (en) Monitoring unit for a semiconductor module comprising a light module for a lighting device of a motor vehicle
DE202013011958U1 (en) Dynamic daytime running light
DE102015221358A1 (en) A light module and a method for operating a light module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20170317

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170411

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1039454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016001842

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016001842

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

26N No opposition filed

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016001842

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160419

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1039454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210419

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240320

Year of fee payment: 9