EP3091819A1 - Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device - Google Patents
Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device Download PDFInfo
- Publication number
- EP3091819A1 EP3091819A1 EP16166030.3A EP16166030A EP3091819A1 EP 3091819 A1 EP3091819 A1 EP 3091819A1 EP 16166030 A EP16166030 A EP 16166030A EP 3091819 A1 EP3091819 A1 EP 3091819A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- determined
- actual voltage
- compensated
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000004044 response Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/50—Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
- H05B45/56—Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs
Definitions
- the invention relates to a method according to the preamble of claim 1 and a control device according to a non-independent claim.
- a circuit device for the failure detection of light-emitting diodes in a motor vehicle wherein the failure detection means comprise switching means which detects a detected in a light-emitting diode potential with one of a voltage of a motor vehicle electrical system compare dependent reference potential and depending on this comparison can cause the output of a corresponding failure detection signal.
- the object of the invention is therefore to improve the error detection.
- the light module By determining the voltage applied to the series circuit and their evaluation sensor is saved on the light module, such as the light sensors and / or voltage measuring sensors.
- additional separate measuring lines between the light module and the controller accounts.
- the sensor can be relocated to the control unit, whereby the light modules can be designed and manufactured cheaper and error-prone.
- a compensated actual voltage is determined as a function of a determined actual current through the series connection. This can advantageously be detected a change in the actual current and the actual voltage can be compensated accordingly.
- depending on a determined actual temperature of the Semiconductor light sources determines the compensated actual voltage.
- the compensated actual voltage can advantageously be determined temperature-compensated.
- the error is detected when the compensated actual voltage is outside a first limit around the reference voltage. This advantageously creates a tolerance range for detecting the error.
- the error is detected when the compensated actual voltage is at several measuring times of the measured actual voltage outside the first limit to the reference voltage. This advantageously achieves that the detection of the error is done on a secure database.
- the reference voltage is then updated as a function of the compensated actual voltage when the compensated actual voltage is within a second limit around the reference voltage.
- a drift compensation is advantageously created, which in particular a component aging and a compensation of the component tolerance is created.
- the reference voltage is determined as an exponentially smoothed value from a plurality of compensated actual voltages. This also compensates for component drift and component tolerance. In particular, by this drift compensation or component tolerance compensation, the error detection can be significantly improved.
- a lighting device for motor vehicles is designated in its entirety by the reference numeral 1.
- the lighting device 1 is formed in the illustrated embodiment as a motor vehicle headlight.
- the lighting device 1 can also be designed as a light or the like, which is arranged at the rear or laterally on the motor vehicle.
- the lighting device 1 is a turn signal for the motor vehicle.
- the headlight 1 comprises a housing 2, which is preferably made of plastic.
- the headlight housing 2 has a light exit opening, which is closed by a transparent cover 4.
- the cover 4 is made of colorless plastic or glass.
- the disk 4 may be formed as a so-called clear disk without optically effective profiles (for example, prisms).
- the pane 4 may be provided, at least in regions, with optically active profiles, which in particular cause a scattering of the light passing through in the horizontal direction.
- the light modules 5, 6 are arranged inside the headlight housing 2 movable. By a relative movement of the light modules 5, 6 to the housing 2 in the horizontal direction, for example, a dynamic cornering light function can be realized. In a movement of the light modules 5, 6 about a horizontal axis, ie in the vertical direction, a headlight range control can be realized.
- the light modules 5, 6 are for generating a desired light distribution, for example a low beam, a high beam, a city light, a highway light, a motorway light, a fog light, a static or dynamic Kurvenlicht- or any other static or adaptive Light distribution formed.
- the light modules 5, 6 generate the desired light function either alone or in combination with each other by the light module 5 of each individual light module; 6 delivered partial light distributions are superimposed to the desired total light distribution.
- the light modules 5, 6 can be designed as reflection modules and / or as projection modules. Of course, more or less than the illustrated two light modules 5, 6 may be provided in the headlight housing 2.
- a control unit 7 is arranged in a control unit housing 8.
- the control unit 7 can also be arranged at any other point of the headlamp 1.
- a separate control device can be provided for each of the light modules 5, 6, wherein the control devices can be an integral part of the light modules 5, 6.
- the control unit 7 may also be arranged remotely from the headlight 1.
- the control unit 7 serves to control and / or regulate the light modules 5, 6 or of subcomponents of the light modules 5, 6, such as light sources of the light modules 5, 6.
- the control of the light modules 5, 6 or of the subcomponents by the control unit. 7 takes place via connecting lines 10, which in FIG. 1 are shown only symbolically by a dashed line.
- the lines 10 is a supply of the light modules 5, 6 with electrical energy.
- the lines 10 are guided through an opening in the headlight housing 2 in the control unit housing 8 and connected there to the circuit of the control unit 7. If a plurality of control devices are provided as an integral part of the light modules 5, 6, the lines 10 and can account for the opening in the headlight housing 2.
- the control unit housing 8 consists of an electrically conductive Material, in particular of metal, preferably of die-cast aluminum. Also for better EMC shielding the lines 10 are shielded, in particular by means of a line 10 surrounding metal braid or a metal-plastic braid. In the control unit housing 8, an opening is further provided, in which a plug / socket element 9 is arranged. Via the plug / socket element 9, the control unit 7 with a higher-level control unit (for example, a so-called body controller) and / or a power supply of the motor vehicle (for example, a vehicle battery) may be connected.
- a higher-level control unit for example, a so-called body controller
- a power supply of the motor vehicle for example, a vehicle battery
- the light modules 5, 6 of the illumination device 1 use as light sources one or more semiconductor light sources, in particular light emitting diodes (LEDs).
- LED headlights 1 which have a large number of LEDs, are increasingly used. By switching individual LEDs or individual LED groups off and on, variable light distributions can be achieved.
- Such headlights 1 are referred to as pixel or matrix headlights.
- Usually several LEDs are connected in a series circuit (also branch or chain).
- FIG. 2 shows a schematic circuit diagram 12 comprising the control unit 7 and exemplified the light module 5, wherein the control unit 7 and the light module 5 are electrically connected to each other by means of the line 10.
- the light module 5 comprises a series connection of semiconductor light sources 14b, 14c and 14z.
- the control unit 7 comprises a current source 16 and a measuring resistor 18.
- An actual voltage 20 applied to the series connection of the semiconductor light sources 14 is measured in the control unit 7.
- an actual current 22 is measured by the series connection of semiconductor light sources 14.
- a temperature sensor is arranged on the light module 5, with which an actual temperature in the region of the semiconductor light sources 14 is determined. Of course, several temperature sensors may be present. In one embodiment, the temperature sensor is a temperature-dependent resistor. Accordingly, an additional measuring line between the light module 5 and control unit 7 according to the line 10 is available for determining the actual temperature.
- FIG. 3 12 shows a schematic block diagram 24.
- the block diagram 24 is part of the presented method for operating the control device 7.
- a block 26 is supplied with the actual voltage 20, the actual current 22 and the actual temperature 28. Depending on the actual voltage 20, the actual current 22 and the actual temperature 28 of the block 26 generates a compensated actual voltage 30, which in the following FIG. 4 is explained in more detail.
- the compensated actual voltage 30 is supplied to a block 32 and a block 34.
- the block 32 determines a reference voltage 36 as a function of the compensated actual voltage 30 and supplies it to the block 34.
- the determination of the reference voltage 36 by the block 32 is in FIG. 5 explained in more detail.
- the block 34 detects an error 48 of the series connection of semiconductor light sources 14 as a function of the compensated actual voltage 30 and in dependence on the reference voltage 36.
- the compensated actual voltage 30 comprises a compensation of variable variables, such as temperature and / or aging drift, which are reflected directly in the actual voltage 20 and would make monitoring of the light module 5, 6 more difficult.
- monitoring be performed in dependence on the actual voltage 20.
- the compensated actual voltage 30 is determined as a function of the voltage applied to the series circuit 20 actual voltage.
- the reference voltage 36 is determined in the block 32 as a function of the compensated actual voltage 30.
- the compensated actual voltage 30 is compared with the reference voltage 36. Depending on the comparison, block 34 determines an error of the series connection of semiconductor light sources 14.
- FIG. 4 schematically illustrates a block diagram as part of the block 26 FIG. 3 ,
- the measured actual temperature 28 is fed to an addition point 42.
- a reference temperature 44 of the addition point 42 is supplied.
- a temperature difference 46 results from the subtraction of the reference temperature 44 from the actual temperature 28.
- the temperature difference 46 represents a comparison of the reference temperature 44 with the actual temperature 28. By this comparison with the reference temperature 44 is the Actual temperature 28 normalized.
- a first voltage value 48 is formed from the multiplication of the temperature difference 46 and a temperature coefficient 50 by means of the multiplication point 52.
- a compensated actual voltage 30a is formed from the addition of the actual voltage 20 and the first voltage value 48 by means of the addition point 54.
- a current difference 56 is formed by means of the addition point 58 from the subtraction of a reference current 60 from the actual current 22.
- the current difference 56 represents a comparison of the reference current 60 with the actual current 22. By this comparison with the reference current 60, the actual current 22 is normalized.
- a second voltage value 62 will determined by means of the multiplication point 64 as a product of the current difference 46 and a determined from a characteristic current coefficient 66.
- a compensated actual voltage 30b is determined by means of the addition point 68 as the sum of the second voltage value 62 and the compensated actual voltage 30a.
- the compensated actual voltage 30b is output as compensated actual voltage 30 from the block 26.
- the compensated actual voltage 30 a can also be output as compensated actual voltage 30 from the block 26.
- the measured actual voltage 20 can also be supplied to the addition point 68 in order to output the sum of the measured actual voltage 20 as compensated actual voltage 30 from the block 26.
- the reference temperature 44 can originate, for example, from a reference measurement or a plurality of reference measurements for the light module 5 or 6.
- the temperature is measured and stored as reference temperature 44 in a non-volatile memory.
- the temperature coefficient 50 depends on the light-emitting diode type and the number of LEDs and is determined from a characteristic curve.
- the temperature coefficient 50 is stored in a non-volatile memory.
- the reference current 60 can be determined from a reference measurement or several reference measurements and stored in a non-volatile memory of the control unit 7.
- the current coefficient 66 is dependent on the type of LED and the number of LEDs and is in a non-volatile memory of the controller. 7 deposited.
- the reference current 60 can also be measured during the first switch-on of the control unit 7 and stored in a non-volatile memory of the control unit 7.
- the control unit 7 is supplied with information about the installation location of the illumination device. When the light module 5, 6 is switched on for the first time, the control unit 7 stores this installation location. If the controller 7 detects a change in the installation site, the stored reference measurements of the reference temperature 44 and / or the reference current 60 are invalidated and the reference measurement is performed again.
- FIG. 5 shows an embodiment of the block 32 in a schematic block diagram FIG. 3
- the reference 36 is determined as an exponentially smoothed value from a plurality of compensated values of the actual voltage 30.
- a voltage difference 70 is determined from a subtraction of a reference voltage 36 (n-1) determined at the instant n-1 from the compensated actual voltage 30 (n) at the time n by means of the addition point 72.
- a product 74 results from the multiplication of the voltage difference 70 with a forgetting factor 76, which preferably assumes a value of less than 0.05.
- the reference voltage 36 (n) at time n is determined from the addition of the product 74 with the reference voltage 36 (n-1) at time n-1 by means of the addition point 78.
- FIG. 6 shows a schematically illustrated voltage-time diagram 80.
- the value of the first measurement 82 of the reference voltage 36 is determined. If the values of the measurements 84, 86 and 88 are in each case within a second limit 90 about the reference voltage 36 at the respective time, the Reference voltage 36 as a function of the compensated actual voltage 30 according to the block 32 is updated.
- the control unit 7 If the control unit 7 is switched off, then the current value of the measurement 92 of the reference voltage 36 is stored in a non-volatile memory of the control unit 7. After a renewed switching on of the control unit 7, the value of the measurement 92 is used as a starting point for the further calculation or adaptation of the reference voltage 36. Exemplary are in FIG. 6 further measurements and the course of the reference voltage 36 shown. For example, the measurements 94, 96 and 98 are not used to update the reference voltage 36 according to the block 32, since they are outside the second limit 90 by the respective value of the reference voltage 36.
- the error 40 of the series connection of the semiconductor light source 14 is detected when the compensated actual voltage 30, for example in the form of a value of one of the measurements 100 to 108, is outside a first limit 110 around the respective value of the reference voltage 36.
- the error 40 is detected when the compensated actual voltage 30 in the form of the measurements 100 to 108 at several times outside the first limits 110 is about the reference voltage 36.
- the error 40 is detected in response to a value of an error counter. For example, with a value of the error counter of 0, the error counter increments the reference voltage 36 upon detection of the measurement 100 outside the first boundary 110. The same applies to the measurements 102 to 108. However, if there is a measurement 112 within the first boundary 110 or within the second one between the measurements 102 and 104 Limit 90 by the reference voltage 36, the error counter is decremented. Thus, the error counter has a value of 1 in the measurement 100, a value of 2 in the measurement 102, a value of 1 in the measurement 112, a value 2 in the measurement 104, a value of 3 in the measurement 106, and 3 in the measurement Measurement 108 has a value of 4.
- the threshold value for detecting or for determining the error 40 is, for example, at a value of 4, the error 40 in the control unit 7 is determined during the measurement 108.
- the error 40 is detected when the compensated actual voltage 30 is at a plurality of measurement times of the measured actual voltage 20, in particular at least 4 measurement times of the measured actual voltage 20, outside the first limit 110 to the reference voltage 36.
Landscapes
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
Abstract
Ein Verfahren zum Betrieben eines Steuergeräts für eine Reihenschaltung von Halbleiterlichtquellen beschrieben. Eine andere Reihenschaltung anliegende Ist-Spannung (20) wird ermittelt. Eine kompensierte Ist-Spannung (30) wird in Abhängigkeit von der anliegenden Ist-Spannung (20) ermittelt. Eine Referenz-Spannung (36) wird in Abhängigkeit von der kompensierten Ist-Spannung (30) ermittelt. Die kompensierte Ist-Spannung (30) wird mit der Referenz-Spannung (36) verglichen. Ein Fehler (40) der Reihenschaltung wird in Abhängigkeit von dem Vergleich ermittelt.A method for operating a control device for a series connection of semiconductor light sources is described. Another series connection applied actual voltage (20) is determined. A compensated actual voltage (30) is determined as a function of the applied actual voltage (20). A reference voltage (36) is determined as a function of the compensated actual voltage (30). The compensated actual voltage (30) is compared with the reference voltage (36). An error (40) of the series connection is determined as a function of the comparison.
Description
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1 und ein Steuergerät nach einem nebengeordneten Anspruch.The invention relates to a method according to the preamble of
Es ist bekannt, dass ein Ausfall einer einzelnen Leuchtdiode einer Reihenschaltung von Leuchtdioden durch die Überwachung der einzelnen Leuchtdioden beispielsweise über Lichtsensoren oder über einen Spannungsabgriff der einzelnen Leuchtdiode und die Überwachung der jeweiligen Signale erkannt wird.It is known that a failure of a single light-emitting diode of a series connection of light-emitting diodes is detected by the monitoring of the individual light-emitting diodes, for example via light sensors or via a voltage tap of the individual light-emitting diode and the monitoring of the respective signals.
Aus der
Aufgabe der Erfindung ist es daher die Fehlererkennung zu verbessern.The object of the invention is therefore to improve the error detection.
Die der Erfindung zu Grunde liegende Aufgabe wird durch ein Verfahren nach dem Anspruch 1 und ein Steuergerät nach einem nebengeordneten Anspruch gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. Für die Erfindung wichtige Merkmale finden sich ferner in der nachfolgenden Beschreibung und in den Zeichnungen, wobei die Merkmale sowohl als Alleinstellung als auch in unterschiedlichen Kombinationen für die Erfindung wichtig sein können, ohne dass hierauf nochmals explizit hingewiesen wird.The object underlying the invention is achieved by a method according to
Durch die Ermittlung der an der Reihenschaltung anliegenden Ist-Spannung und deren Auswertung wird Sensorik auf dem Lichtmodul eingespart, beispielsweise die Lichtsensoren und/oder Spannungsmesssensoren. Darüber hinaus entfallen zusätzliche separate Messleitungen zwischen dem Lichtmodul und dem Steuergerät. Somit kann insbesondere die Sensorik auf das Steuergerät verlagert werden, womit die Lichtmodule günstiger und fehlerunanfälliger konstruiert und hergestellt werden können.By determining the voltage applied to the series circuit and their evaluation sensor is saved on the light module, such as the light sensors and / or voltage measuring sensors. In addition, additional separate measuring lines between the light module and the controller accounts. Thus, in particular, the sensor can be relocated to the control unit, whereby the light modules can be designed and manufactured cheaper and error-prone.
In einer vorteilhaften Ausführungsform wird in Abhängigkeit von einem ermittelten Ist-Strom durch die Reihenschaltung eine kompensierte Ist-Spannung ermittelt. Damit kann vorteilhaft eine Änderung im Ist-Strom erkannt und die Ist-Spannung entsprechend kompensiert werden.
In einer vorteilhaften Ausführungsform wird in Abhängigkeit von einer ermittelten Ist-Temperatur der Halbleiterlichtquellen die kompensierte Ist-Spannung ermittelt. Damit kann vorteilhaft die kompensierte Ist-Spannung temperaturkompensiert ermittelt werden.In an advantageous embodiment, a compensated actual voltage is determined as a function of a determined actual current through the series connection. This can advantageously be detected a change in the actual current and the actual voltage can be compensated accordingly.
In an advantageous embodiment, depending on a determined actual temperature of the Semiconductor light sources determines the compensated actual voltage. Thus, the compensated actual voltage can advantageously be determined temperature-compensated.
In einer vorteilhaften Ausführungsform wird der Fehler dann erkannt, wenn sich die kompensiert Ist-Spannung außerhalb einer ersten Grenze um die Referenz-Spannung befindet. Damit wird vorteilhaft ein Toleranzbereich zur Erkennung des Fehlers geschaffen.In an advantageous embodiment, the error is detected when the compensated actual voltage is outside a first limit around the reference voltage. This advantageously creates a tolerance range for detecting the error.
In einer weiteren vorteilhaften Ausführungsform wird der Fehler dann erkannt, wenn sich die kompensierte Ist-Spannung zu mehreren Messzeitpunkten der gemessenen Ist-Spannung außerhalb der ersten Grenze um die Referenz-Spannung befindet. Damit wird vorteilhaft erreicht, dass die Erkennung des Fehlers auf einer sicheren Datenbasis geschieht.In a further advantageous embodiment, the error is detected when the compensated actual voltage is at several measuring times of the measured actual voltage outside the first limit to the reference voltage. This advantageously achieves that the detection of the error is done on a secure database.
In einer vorteilhaften Ausführungsform wird die Referenz-Spannung dann in Abhängigkeit von der kompensierten Ist-Spannung aktualisiert, wenn sich die kompensierte Ist-Spannung innerhalb einer zweiten Grenze um die Referenz-Spannung befindet. Damit wird vorteilhaft eine Driftkompensation geschaffen, womit insbesondere eine Bauteilealterung und eine Kompensation der Bauteiltoleranz geschaffen wird.In an advantageous embodiment, the reference voltage is then updated as a function of the compensated actual voltage when the compensated actual voltage is within a second limit around the reference voltage. In order for a drift compensation is advantageously created, which in particular a component aging and a compensation of the component tolerance is created.
In einer vorteilhaften Ausführungsform wird die Referenz-Spannung als exponentiell geglätteter Wert aus einer Mehrzahl von kompensierten Ist-Spannungen ermittelt. Auch hierdurch wird ein Bauteildrift und eine Bauteiltoleranz ausgeglichen. Insbesondere durch diese Driftkompensation bzw. Bauteiltoleranzkompensation kann die Fehlererkennung erheblich verbessert werden.In an advantageous embodiment, the reference voltage is determined as an exponentially smoothed value from a plurality of compensated actual voltages. This also compensates for component drift and component tolerance. In particular, by this drift compensation or component tolerance compensation, the error detection can be significantly improved.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung. Es werden für funktionsäquivalente Größen und Merkmale in allen Figuren auch bei unterschiedlichen Ausführungsformen die gleichen Bezugszeichen verwendet.Other features, applications and advantages of the invention will become apparent from the following description of embodiments of the invention, which are illustrated in the figures of the drawing. All described or illustrated features, alone or in any combination form the subject matter of the invention, regardless of their summary in the claims or their dependency and regardless of their formulation or representation in the description or in the drawing. The same reference numbers are used for functionally equivalent quantities and features in all figures, even in different embodiments.
Nachfolgend werden beispielhafte Ausführungsformen der Erfindung unter Bezugnahme auf die Zeichnung erläutert. In der Zeichnung zeigen
Figur 1- eine schematisch dargestellte Beleuchtungseinrichtung für Kraftfahrzeuge;
Figur 2- ein schematisches Schaltbild;
Figuren 3 bis 5- jeweils ein schematisches Blockdiagramm; und
Figur 6- ein schematisch dargestelltes Spannungs-Zeit-Diagramm.
- FIG. 1
- a schematically illustrated illumination device for motor vehicles;
- FIG. 2
- a schematic diagram;
- FIGS. 3 to 5
- each a schematic block diagram; and
- FIG. 6
- a schematically illustrated voltage-time diagram.
In
Im Inneren des Scheinwerfergehäuses 2 sind in dem dargestellten Ausführungsbeispiel zwei Lichtmodule 5, 6 angeordnet. Die Lichtmodule 5, 6 sind fest oder relativ zu dem Gehäuse 2 bewegbar angeordnet. Durch eine Relativbewegung der Lichtmodule 5, 6 zum Gehäuse 2 in horizontaler Richtung kann beispielsweise eine dynamische Kurvenlichtfunktion realisiert werden. Bei einer Bewegung der Lichtmodule 5, 6 um eine horizontale Achse, also in vertikaler Richtung, kann eine Leuchtweitenregelung realisiert werden. Die Lichtmodule 5, 6 sind zur Erzeugung einer gewünschten Lichtverteilung, beispielsweise einer Abblendlicht-, einer Fernlicht-, einer Stadtlicht-, einer Landstrassenlicht-, einer Autobahnlicht-, einer Nebellicht-, einer statischen oder dynamischen Kurvenlicht- oder einer beliebig anderen statischen oder adaptiven Lichtverteilung ausgebildet. Die Lichtmodule 5, 6 erzeugen die gewünschte Lichtfunktion entweder alleine oder in Kombination miteinander, indem die von jedem einzelnen Lichtmodul 5; 6 gelieferten Teillichtverteilungen zu der gewünschten Gesamtlichtverteilung überlagert werden. Die Lichtmodule 5, 6 können als Reflexionsmodule und/oder als Projektionsmodule ausgebildet sein. Selbstverständlich können in dem Scheinwerfergehäuse 2 auch mehr oder weniger als die dargestellten zwei Lichtmodule 5, 6 vorgesehen sein.Inside the
An der Außenseite des Scheinwerfergehäuses 2 ist ein Steuergerät 7 in einem Steuergerätegehäuse 8 angeordnet. Selbstverständlich kann das Steuergerät 7 auch an einer beliebig anderen Stelle des Scheinwerfers 1 angeordnet sein. Insbesondere kann für jedes der Lichtmodule 5, 6 ein eigenes Steuergerät vorgesehen sein, wobei die Steuergeräte integraler Bestandteil der Lichtmodule 5, 6 sein können. Selbstverständlich kann das Steuergerät 7 auch entfernt vom dem Scheinwerfer 1 angeordnet sein. Das Steuergerät 7 dient zur Steuerung und/oder Regelung der Lichtmodule 5, 6 bzw. von Teilkomponenten der Lichtmodule 5, 6, wie beispielsweise von Lichtquellen der Lichtmodule 5, 6. Die Ansteuerung der Lichtmodule 5, 6 bzw. der Teilkomponenten durch das Steuergerät 7 erfolgt über Verbindungsleitungen 10, die in
Zur besseren EMV-Abschirmung besteht das Steuergerätegehäuse 8 aus einem elektrisch leitfähigen Material, insbesondere aus Metall, vorzugsweise aus Aluminium-Druckguss. Ebenfalls zur besseren EMV-Abschirmung sind die Leitungen 10 abgeschirmt, insbesondere mittels eines die Leitungen 10 umgebenden Metallgeflechts oder eines Metall-Kunststoff-Geflechts. In dem Steuergerätegehäuse 8 ist des Weiteren eine Öffnung vorgesehen, in der ein Stecker-/Buchsenelement 9 angeordnet ist. Über das Stecker-/Buchsenelement 9 kann das Steuergerät 7 mit einem übergeordneten Steuergerät (zum Beispiel einen sogenannten Body-Controller) und/oder einer Energieversorgung des Kraftfahrzeugs (zum Beispiel einer Fahrzeugbatterie) verbunden sein.For better EMC shielding, the
Die Lichtmodule 5, 6 der Beleuchtungseinrichtung 1 nutzen als Lichtquellen eine oder mehrere Halbleiterlichtquellen, insbesondere Leuchtdioden (LEDs). LED-Scheinwerfer 1, die eine Vielzahl von LEDs aufweisen, finden verstärkt Einsatz. Durch Aus- und Einschalten einzelner LEDs oder einzelner LED-Gruppen können variable Lichtverteilungen erzielt werden. Derartige Scheinwerfer 1 werden als Pixel- oder Matrixscheinwerfer bezeichnet. Üblicherweise sind jeweils mehrere LEDs in einer Reihenschaltung (auch Zweig oder Kette) geschaltet.The
Die kompensierte Ist-Spannung 30 umfasst gegenüber der gemessenen Ist-Spannung 20 eine Kompensation von veränderlichen Größen, wie beispielsweise Temperatur und/oder Alterungsdrift, die sich unmittelbar in der Ist-Spannung 20 niederschlagen und eine Überwachung des Lichtmoduls 5, 6 erschweren würde. Demgegenüber kann mittels der kompensierten Ist-Spannung 30 eine Überwachung in Abhängigkeit von der Ist-Spannung 20 durchgeführt werden.Compared with the measured
Die kompensierte Ist-Spannung 30 wird in Abhängigkeit von der an der Reihenschaltung anliegenden Ist-Spannung 20 ermittelt. Die Referenz-Spannung 36 wird in dem Block 32 in Abhängigkeit von der kompensierten Ist-Spannung 30 ermittelt. In dem Block 34 wird die kompensierte Ist-Spannung 30 mit der Referenz-Spannung 36 verglichen. In Abhängigkeit von dem Vergleich ermittelt der Block 34 einen Fehler der Reihenschaltung von Halbleiterlichtquellen 14.The compensated
Eine Stromdifferenz 56 wird mittels der Additionsstelle 58 aus der Subtraktion eines Referenz-Stroms 60 von dem Ist-Strom 22 gebildet. Die Stromdifferenz 56 stellt einen Vergleich des Referenz-Stroms 60 mit dem Ist-Strom 22 dar. Durch diesen Vergleich mit dem Referenz-Strom 60 wird der Ist-Strom 22 normiert. Ein zweiter Spannungswert 62 wird mittels der Multiplikationsstelle 64 als Produkt aus der Stromdifferenz 46 und einem aus einer Kennlinie bestimmten Strom-Koeffizienten 66 ermittelt. Eine kompensierte Ist-Spannung 30b wird mittels der Additionsstelle 68 als Summe des zweiten Spannungswerts 62 und der kompensierten Ist-Spannung 30a ermittelt.A
Gemäß
Die Referenz-Temperatur 44 kann beispielsweise aus einer Referenzmessung oder mehreren Referenzmessungen für das Lichtmodul 5 bzw. 6 stammen. In einer anderen Ausführungsform wird bei einem ersten Einschalten des Lichtmoduls 5, 6 die Temperatur gemessen und als Referenz-Temperatur 44 in einem nicht-flüchtigen Speicher hinterlegt. Der Temperatur-Koeffizient 50 ist abhängig von den Leuchtdioden-Typ und der Anzahl der Leuchtdioden und wird aus einer Kennlinie ermittelt. Der Temperatur-koeffizient 50 wird in einem nicht flüchtigen Speicher hinterlegt.The
Der Referenz-Strom 60 kann aus einer Referenzmessung oder mehreren Referenzmessungen ermittelt werden und in einem nicht-flüchtigen Speicher des Steuergeräts 7 hinterlegt werden. Der Strom-Koeffizient 66 ist abhängig vom Leuchtdiodentyp und von der Anzahl der Leuchtdioden und wird in einem nicht-flüchtigen Speicher des Steuergeräts 7 hinterlegt. Selbstverständlich kann der Referenz-Strom 60 in einer Ausführungsform auch bei dem ersten Einschalten des Steuergeräts 7 gemessen und in einem nicht-flüchtigen Speicher des Steuergeräts 7 hinterlegt werden.The reference current 60 can be determined from a reference measurement or several reference measurements and stored in a non-volatile memory of the
Dem Steuergerät 7 wird eine Information über den Verbauort der Beleuchtungseinrichtung zugeführt. Bei dem ersten Einschalten des Lichtmoduls 5, 6 speichert das Steuergerät 7 diesen Verbauort ab. Stellt das Steuergerät 7 eine Änderung des Verbauorts fest, so werden die abgespeicherten Referenzmessungen der Referenz-Temperatur 44 und/oder des Referenz-Stroms 60 für ungültig erklärt und die Referenzmessung erneut durchgeführt.The
Wird das Steuergerät 7 abgeschaltet, so wird der aktuelle Wert der Messung 92 der Referenz-Spannung 36 in einem nicht-flüchtigen Speicher des Steuergeräts 7 gespeichert. Nach einem erneuten Einschalten des Steuergeräts 7 wird der Wert der Messung 92 als Ausgangspunkt für die weitere Berechnung bzw. der Anpassung der Referenz-Spannung 36 verwendet. Beispielhaft sind in
Der Fehler 40 der Reihenschaltung von Halbleiterlichtquelle 14 wird dann erkannt, wenn sich die kompensierte Ist-Spannung 30 beispielweise in Form von einem Wert von einer der Messungen 100 bis 108 außerhalb einer ersten Grenze 110 um den jeweiligen Wert der Referenz-Spannung 36 befindet.The
In einer Ausführungsform wird der Fehler 40 dann erkannt, wenn sich die kompensierte Ist-Spannung 30 in Form der Messungen 100 bis 108 zu mehreren Zeitpunkten außerhalb der ersten Grenzen 110 um die Referenz-Spannung 36 befindet.In one embodiment, the
In einer Ausführungsform wird der Fehler 40 in Abhängigkeit von einem Wert eines Fehlerzählers erkannt. So wird beispielsweise bei einem Wert des Fehlerzählers von 0 der Fehlerzähler bei Erkennung der Messung 100 außerhalb der ersten Grenze 110 die Referenz-Spannung 36 inkrementiert. Gleiches gilt für die Messungen 102 bis 108. Befindet sich jedoch zwischen den Messungen 102 und 104 eine Messung 112 innerhalb der ersten Grenze 110 oder innerhalb der zweiten Grenze 90 um die Referenz-Spannung 36, so wird der Fehlerzähler dekrementiert. Mithin hat der Fehlerzähler bei der Messung 100 einen Wert von 1, bei der Messung 102 einen Wert von 2, bei der Messung 112 einen Wert von 1, bei der Messung 104 einen Wert 2, bei der Messung 106 einen Wert von 3 und bei der Messung 108 einen Wert von 4. Ist der Schwellwert zur Erkennung beziehungsweise zur Ermittlung des Fehlers 40 beispielsweise bei einem Wert von 4, so wird bei der Messung 108 der Fehler 40 in dem Steuergerät 7 ermittelt. Somit wird der Fehler 40 dann erkannt, wenn sich die kompensierte Ist-Spannung 30 zu mehreren Messzeitpunkten der gemessenen Ist-Spannung 20, insbesondere mindestens 4 Messzeitpunkten der gemessenen Ist-Spannung 20, außerhalb der ersten Grenze 110 um die Referenz-Spannung 36 befindet.In one embodiment, the
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015208608.9A DE102015208608A1 (en) | 2015-05-08 | 2015-05-08 | Method for operating a control device for a series circuit of semiconductor light sources comprising light module and control unit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3091819A1 true EP3091819A1 (en) | 2016-11-09 |
EP3091819B1 EP3091819B1 (en) | 2018-09-05 |
Family
ID=55802255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16166030.3A Active EP3091819B1 (en) | 2015-05-08 | 2016-04-19 | Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3091819B1 (en) |
DE (1) | DE102015208608A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102023107021B3 (en) | 2023-03-21 | 2024-05-02 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for controlling an LED arrangement based on an individually learned current-voltage characteristic curve and corresponding lighting device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10131824A1 (en) | 2001-06-30 | 2003-02-20 | Hella Kg Hueck & Co | Device to be used for detection of failure of individual LEDs in LED array in vehicle, comparing potential with reference data related to potential of main power supply |
US20060226956A1 (en) * | 2005-04-07 | 2006-10-12 | Dialight Corporation | LED assembly with a communication protocol for LED light engines |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4457312B2 (en) * | 2006-01-12 | 2010-04-28 | 株式会社デンソー | Vehicle headlamp device |
WO2011030381A1 (en) * | 2009-09-10 | 2011-03-17 | 三菱電機株式会社 | Led lighting apparatus for head lamp, and head lamp lighting system for vehicle |
DE102012206891A1 (en) * | 2012-04-26 | 2013-10-31 | Zumtobel Lighting Gmbh | Arrangement and method for assessing the condition of an electronic unit used for lighting purposes |
-
2015
- 2015-05-08 DE DE102015208608.9A patent/DE102015208608A1/en not_active Ceased
-
2016
- 2016-04-19 EP EP16166030.3A patent/EP3091819B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10131824A1 (en) | 2001-06-30 | 2003-02-20 | Hella Kg Hueck & Co | Device to be used for detection of failure of individual LEDs in LED array in vehicle, comparing potential with reference data related to potential of main power supply |
US20060226956A1 (en) * | 2005-04-07 | 2006-10-12 | Dialight Corporation | LED assembly with a communication protocol for LED light engines |
Also Published As
Publication number | Publication date |
---|---|
EP3091819B1 (en) | 2018-09-05 |
DE102015208608A1 (en) | 2016-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006006778B4 (en) | Vehicle lighting system | |
DE102012218772B3 (en) | Method and device for diagnosing a faulty light source | |
EP2178718A1 (en) | System for generating a light beam in the area in front of a motor vehicle | |
DE102011083025B4 (en) | Lighting device for a vehicle | |
EP0856726A1 (en) | Method of temperature compensation in mesuring systems | |
DE102011120781B4 (en) | Method for fault detection in a lighting device, in particular in a vehicle, and lighting device with fault detection | |
DE102010029149A1 (en) | Method and control unit for plausibility checking of a headlight range test value of a light cone of a vehicle headlight | |
DE102015104973B3 (en) | Arrangement and method for driving a plurality of light-emitting diodes arranged in a series circuit | |
DE102008032345A1 (en) | Headlight for use in motor vehicle, has LED source corresponding to responding sensor element, which is switched-off or dimmed down in dimmed beam position for forming dimmed region, where traffic object is located in region | |
DE102020116224A1 (en) | Headlights for a vehicle and method of controlling the same | |
DE102011011699A1 (en) | Lighting device for vehicles | |
DE102011011344A1 (en) | Circuit arrangement for an electric seat heating | |
EP3091819B1 (en) | Method for operating a control unit for a series connection of semiconductor light sources comprising light module and control device | |
WO2015090699A1 (en) | Method and device for determining a beam width alignment of a headlight | |
EP3466756B1 (en) | Animatable cascade light conductor | |
EP3239733A1 (en) | Method for operating a radar sensor in a motor vehicle and motor vehicle | |
DE102019216478A1 (en) | Lighting device for a motor vehicle | |
DE102014110282A1 (en) | Lighting device for vehicles | |
DE202013011958U1 (en) | Dynamic daytime running light | |
DE102014216085A1 (en) | Monitoring unit for a semiconductor module comprising a light module for a lighting device of a motor vehicle | |
DE102012023126A1 (en) | Method for automatically calibrating projection type headlamp for vehicle, involves detecting to-be deflected beams of reflector and lens, and projecting pattern generated in light distribution ahead of vehicle, on road | |
EP3163979B1 (en) | Light module and a method for operating a light module | |
DE202008008280U1 (en) | Control unit for controlling and / or regulating a motor vehicle lighting device and motor vehicle lighting device | |
DE102018109214A1 (en) | Device for detecting a malfunction of a planar OLED light source or a group of OLED light sources, in particular for a headlight or a lamp of a motor vehicle | |
DE102017119520A1 (en) | Method for controlling at least one light module of a lighting unit, lighting unit, computer program product and computer-readable medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20170317 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20170411 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1039454 Country of ref document: AT Kind code of ref document: T Effective date: 20180915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016001842 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181206 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190105 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016001842 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
26N | No opposition filed |
Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502016001842 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H05B0033080000 Ipc: H05B0045000000 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190419 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190419 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160419 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1039454 Country of ref document: AT Kind code of ref document: T Effective date: 20210419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210419 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230517 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240320 Year of fee payment: 9 |