EP3090482A2 - Convertisseur d'energie multi-sorties a commande par dephasage - Google Patents

Convertisseur d'energie multi-sorties a commande par dephasage

Info

Publication number
EP3090482A2
EP3090482A2 EP14820897.8A EP14820897A EP3090482A2 EP 3090482 A2 EP3090482 A2 EP 3090482A2 EP 14820897 A EP14820897 A EP 14820897A EP 3090482 A2 EP3090482 A2 EP 3090482A2
Authority
EP
European Patent Office
Prior art keywords
voltage
controlled rectifier
switches
inverter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14820897.8A
Other languages
German (de)
English (en)
Inventor
Kevin GUEPRATTE
Hervé STEPHAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3090482A2 publication Critical patent/EP3090482A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Definitions

  • the present invention relates to the field of converters for continuous signals into continuous DC or DC signals.
  • the present invention more particularly relates to a multi-output power conversion circuit with phase shift control or "shift phase.
  • the invention can find its application in multi-voltage electrical networks such as those embedded in the transport means, particularly in aeronautics, automotive or rail.These networks allow to supply different devices requiring different DC voltages from a source of DC voltage.
  • An object of the invention is in particular to correct one or more of the disadvantages of the prior art by proposing a solution making it possible to obtain, from a source of DC voltage, several DC voltage sources, each of which can be regulated independently of each other.
  • the activity of each of the output voltage sources must have a minimum impact on that of the neighboring outputs.
  • the subject of the invention is a phase shift control or "phase shift" multi-output energy conversion circuit receiving a DC voltage input and supplying a plurality of DC voltages comprising a transformer having an input and a plurality of outputs, said input being connected to an inverter comprising at least two switches and configured to convert a DC voltage to an AC voltage and each output being connected to a controlled rectifier configured to convert an AC voltage to a DC voltage, each controlled rectifier comprising a magnetic storage inductor connected to an AC-to-DC converter comprising at least two switches, the energy conversion circuit further comprising a control module configured to generate phase-shifted control signals arranged to drive the switching of the switches inverters and controlled rectifiers, said control module being also configured to vary the phase difference between the control signals of the power switches of the inverter and those of each controlled rectifier in order to adjust the amplitude of the output voltage of each controlled rectifier independently of each other.
  • the input of the transformer is not connected to a magnetic storage inductor in order to have outputs totally independent of each other.
  • the inverter is made with a capacitive half-bridge structure.
  • the inverter is made with a complete bridge structure.
  • at least one controlled rectifier is produced with a capacitive half-bridge structure.
  • At least one controlled rectifier is made with a complete bridge structure.
  • control block of at least one controlled rectifier comprises an input on which is applied a signal making it possible to form the phase difference between the control signals of the switches of the inverter and those of said controlled rectifier.
  • At least one secondary controlled circuit comprises a filtering capacity.
  • the invention also relates to a multi-voltage electrical network comprising a phase-shift controlled multi-output energy conversion circuit as described above and at least one DC voltage source, said conversion circuit being connected to its input. to said voltage source and supplying across its different outputs the different voltages of the network.
  • the subject of the invention is also a method for manufacturing such a phase-shift-controlled multi-output energy conversion circuit, characterized in that it includes a step of designing said circuit including a step of optimizing the value.
  • a magnetic storage inductor said dimensioning step comprising:
  • a step of defining a phase shift range for which the output current of said conversion circuit is a substantially linear function of the phase shift a step of reducing the width of said phase shift range so as to reduce the current in the switches when switching them to a value close to zero
  • FIG. 1 represents an exemplary embodiment of a phase-shift controlled multi-output energy conversion circuit according to the invention
  • FIG. 2 represents a particular embodiment of a phase-shift controlled multi-output energy conversion circuit according to the invention
  • FIG. 3 represents, by timing diagrams, an example of control signals for the circuit of FIG. 2;
  • FIG. 4 shows an example of the evolution of the average current output of the multi output converter relative to the phase difference between the inverter and a controlled rectifier
  • FIG. 1 schematically represents an exemplary embodiment of a phase-shift or phase shift multi-output energy conversion circuit according to the English terminology.
  • the circuit may include a transformer 12 comprising an input having at least one primary winding and a plurality of outputs having at least one secondary winding.
  • the transformer 12 may be a single-phase transformer, three-phase or generally polyphase. In the case of a three-phase transformer 12 and more generally a polyphase transformer, the input and the output of this transformer 12 has several windings connected to each other according to different arrangements.
  • the input of the transformer 12 can be connected to an inverter 1 1 converting a DC voltage Ve to an AC voltage.
  • the inverter 1 1 can be produced using a power switch structure, such as insulated gate bipolar transistors (or IGBTs for Insulated Gate Bipolar Transistors) or metal oxide semiconductor MOS transistors, which are bridge.
  • the inverter 1 1 can be made with a capacitive half-bridge as shown in FIG. 2. According to alternative embodiments, the inverter 1 1 can be made with a complete bridge structure, with at least two arms.
  • Each output of the transformer 12 may be connected to a controlled rectifier 13 converting the AC voltage at the output of the transformer 12 into a DC voltage Vsi, VS 2 .. .VSN. Between each controlled rectifier 13 and each output of the transformer 12 is connected, in series, a magnetic storage inductance Li, L 2 , L N.
  • the controlled rectifier 13 can be realized with a structure of power switches, such as insulated gate bipolar transistors (or IGBTs for Insulated Gate Bipolar Transistor) or MOS transistors for metal oxide semiconductor, mounted in bridge.
  • the controlled rectifier 13 can be realized with a capacitive half bridge, a complete bridge structure, with at least two arms or any equivalent means.
  • Each of the inverters 1 1 and controlled rectifier 13 comprises at least two power switches.
  • the multi-output energy conversion circuit may comprise at least one control module (see FIG. 2) configured to generate phase-shifted control signals arranged to control the switching of these switches.
  • This control module may be of the pulse width modulation type in order to vary the cycle ratio of the control signals.
  • control signals are generated with a cycle ratio substantially equal to 50%.
  • control module 25 controlling these two circuits may for example comprise an input on which a voltage is applied whose value allows defining said phase shift.
  • the control module 25 may for example be made by a controller, a microprocessor, a device comprising various logic and comparator circuits, a dedicated integrated circuit (or ASIC for Application-Specific Integrated Circuit) or any other means. equivalent.
  • At least one controlled rectifier may comprise a filter capacitor Ci, C 2 , CN in order to smooth the signal at the output of said controlled rectifier 1 3.
  • the fact of placing a magnetic storage inductor at the level of the controlled rectifiers 1 3 and having no inductance at the primary circuit makes it possible to have secondary circuits totally independent of one another.
  • the voltage across the input of the transformer 1 2 can thus be distributed to the different secondary windings and create different voltage sources. These different sources can be transformed, thanks to the various control modules, to adapt them to the desired voltage and to supply different loads.
  • FIG 2 shows a particular embodiment of the invention.
  • the inverter 1 1 comprises a DC / AC converter made using a capacitive half-bridge.
  • Each switch comprises a gate insulated bipolar transistor in parallel with a freewheeling diode.
  • This converter converts a DC voltage Ve into an AC voltage which supplies the input of a transformer 1 2 muiti outputs (which, in the example of Figure 2, given as non-limiting, has three outputs).
  • Each circuit connected at the output of the transformer 1 2 comprises an inductance Li, L 2 , L 3 of magnetic storage connected in series with a AC / DC converter 13 formed using full bridge switches.
  • each switch may comprise an insulated gate bipolar transistor in parallel with a freewheeling diode.
  • Each AC / DC converter 13 is connected to a control module 25 configured to drive switching of the switches of said converter.
  • Each control module 25 is also connected to the DC / AC converter 1 1 in order to control the switching of these switches.
  • Each control module 25 makes it possible to define the phase difference between the control signals of the inverter 1 1 and of each controlled rectifier 13.
  • Each control module 25 is configured to vary the phase difference between the control signals of the power switches of the inverter 1 1 and those of each controlled rectifier 13 in order to adjust the amplitude of the output voltage of each controlled rectifier. 13 independently of each other.
  • the control module could generate a phase shift between the control signals of the switches of the two arms.
  • each output of the multi-output energy conversion circuit comprises a filtering capacitor Ci, C 2 , C 3 connected across the converter 13 and configured to filter the output voltages of said converter 13.
  • At least one control module is configured to:
  • FIG. 25 is configured to allow to vary the phase between the control signals of the power switches of the inverter 1 1 and a controlled rectifier 13 and thus adjust the amplitude of the output voltage of the controlled rectifier 13 managed by said control module 25.
  • the phase shift applied to the control signals of the switches of the inverter 1 1 and the controlled rectifier 13 it is possible to realize either a voltage booster circuit or a voltage attenuator circuit.
  • the same circuit can thus be used to perform both functions.
  • FIG. 3 shows examples of control signals for controlling the switches of the controlled rectifiers 13 and of the inverter 1 1 of the circuit of FIG. 2 and providing the phase-shift control of each output of the conversion circuit of FIG. multi-output energy.
  • each of the signals ⁇ _ ⁇ 0, IP 1, I_PN has a duty ratio of 50%.
  • the signals l_P0n, l_P1 n, l_PNn are complementary to the signals l_P0, l_P1, I_PN at dead times 5t near. In a known manner, these dead times make it possible to take into account the switching time of the power switches and thus avoid short circuits.
  • the signals of the first two chronograms 1_P0 and 1_P0n correspond to the control of the inverter 1 1. They make it possible to define the phase reference.
  • the 2N signals of the following timing diagrams IP 1 and I_P1n, l_P2 and l_P2n, I_PN and l_PNn correspond to the control signals of the switches of the controlled rectifiers 13 of the secondary. These signals make it possible to define the phase shift ⁇ - ⁇ , ⁇ 2 ,..., ⁇ between the inverter 1 1 and each controlled rectifier 1 3.
  • the conversion structure with phase shift control or "phase shift" allows the realization of multi-output converter with a single primary circuit and a single transformer.
  • Each of the secondary circuits can be regulated independently of one another and on different ground references.
  • the invention can find its application in multi-voltage electrical networks. These networks can, for example, be embedded in land, air and / or maritime transport means.
  • the multi-voltage electrical network may comprise at least one DC voltage source connected at the input of a phase-shift controlled multi-output energy conversion circuit as described above, the different voltages supplying said multi-voltage network being found again. at the terminals of said conversion circuit.
  • a method for optimizing the value of the magnetic storage inductance L of a controlled rectifier 13 will be presented.
  • FIG. 4 represents the shape of the average current Is at the output of a controlled rectifier 13 as a function of the phase shift ⁇ applied between the control signals of the switches of said rectifier 13 and those of the inverter 1 1.
  • the graphical representation of this current is in the form of a sinusoid.
  • a range of phase variation or operating range is thus chosen, making it possible to have a substantially linear variation of the current as a function of the phase difference applied between the inverter 1 1 and the controlled rectifier 13.
  • the fact of setting the operating range allows to set a value of the inductance.
  • FIG. 5 illustrates the shape of the current at a switch at the time of switching of the latter as a function of the phase for different values ⁇ , ⁇ 2 , ⁇ 3 of the phase shift ⁇ applied between the inverter 1 1 and the controlled rectifier 13. It is noted that when the value of the phase shift between the control signals of the switches of the inverter 1 1 and those of the controlled rectifier 13 is modified, the value of the peak of current and the maximum value of this current are also modified. is higher or lower. Thus, when the switch will switch, it will interrupt a higher or lower current following the applied phase shift. In order to reduce the current in the switches at the moment of switching, the phase shift range is reduced.
  • the second step of the optimization is to reduce the value of the width of the operating range so that the current at the terminals of the switches is close to zero at the time of the switching of the latter to perform a so-called soft switching or ZCS for Zero Current Switching according to the Anglo-Saxon terminology.
  • the next step will be to deduce from this range - using conventional formulas known to those skilled in the art - the value of the magnetic storage inductance L.
  • the fact of using a degraded inductance value L relative to the case where an operating range of 90 ° is covered makes it possible to be in an area where the output current is a substantially linear function of the phase shift and perform smooth switching.
  • the fact that the value of the inductance L is reduced makes it possible to reduce the number of turns of the latter and therefore the losses in said inductance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

Circuit de conversion d'énergie multi-sorties à commande par déphasage, recevant en entrée une tension continue et fournissant en sortie une pluralité de tensions continues modulables, ledit circuit comprenant un transformateur (12) comportant une entrée et une pluralité de sorties, ladite entrée étant connectée à un onduleur (11) comprenant au moins deux commutateurs et configuré pour convertir une tension continue en une tension alternative et chaque sortie étant connectée à un redresseur commandé (13) configuré pour convertir une tension alternative en une tension continue, chaque redresseur commandé (13) comprenant une inductance (L1, L2,..., LN) de stockage magnétique connectée à un convertisseur (13) alternatif vers continu comprenant au moins deux commutateurs, le circuit de conversion d'énergie comprenant en outre un module de commande (25) configuré pour générer des signaux de commande déphasés agencés pour piloter la commutation des commutateurs des onduleur (11) et redresseurs commandés (13).

Description

CONVERTISSEUR D'ENERGIE MULTI-SORTIES A COMMANDE
PAR DEPHASAGE
La présente invention concerne le domaine des convertisseurs de signaux continus en signaux continus dit DC/DC. La présente invention concerne plus particulièrement un circuit de conversion d'énergie multi- sorties à commande en déphasage ou " phase shift L'invention peut trouver son application dans des réseaux électriques multi tensions comme par exemple ceux embarqués dans les moyens de transport notamment dans les domaines aéronautique, automobile ou ferroviaire. Ces réseaux permettent d'alimenter différents appareils nécessitant des tensions continues différentes à partir d'une source de tension continue.
Actuellement, les solutions proposées pour réaliser de tels réseaux sont généralement réalisées à base de structure de type Flyback ou Forward et la régulation des tensions de sortie de la structure se fait uniquement par une action sur les semi-conducteurs du circuit primaire. Un inconvénient de ces structures est que les tensions des différentes sorties sont liées et de ce fait, une seule et unique sortie peut être régulée. La dépendance des tensions des différentes sorties fait que toute variation de charge sur une des sorties à des répercutions sur les autres sorties. II est connu dans l'art antérieur, notamment par les publications "A current-fed three-port bi-clirectional DC-DC converter", de KRISHNASWAMI H ET AL (TELECOMMUNICATIONS ENERGY CONFERENCE, 2007. INTELEC 2007. 29TH INTERNATIONAL, IEEE, PISCATAWAY, NJ, USA - 30 septembre 2007) et "Family of multiport bidirectional DC-DC converters" de TAO H ET AL: (IEE PROCEEDINGS: ELECTRIC POWER APPLICATIONS, INSTITUTION 0F ELECTRICAL ENGINEERS, GB, vol. 153, no. 3 - 3 mai 2006). Cependant ces deux publications enseignent de placer des inductances de stockage magnétique dans chaque bus. Les inductances se retrouvent ainsi au primaire et au secondaire du transformateur. Du fait de la présence de l'inductance au primaire, la tension en entrée du transformateur est variable et dépend de la puissance qui est consommée. Un couplage est donc créé entre les différentes sorties et ces dernières ne peuvent donc pas délivrer différentes valeurs de tension indépendantes en sortie.
Un but de l'invention est notamment de corriger un ou plusieurs des inconvénients de l'art antérieur en proposant une solution permettant d'obtenir, à partir d'une source de tension continue, plusieurs sources de tension continues dont chacun des niveaux peut être régulé indépendamment les uns des autres. De plus l'activité de chacune des sources de tension de sortie doit avoir un impact minimum sur celle des sorties voisines.
A cet effet, l'invention a pour objet un circuit de conversion d'énergie multi-sorties à commande par déphasage ou " phase shift " recevant en entrée une tension continue et fournissant en sortie une pluralité de tensions continues comprenant un transformateur comportant une entrée et une pluralité de sorties, ladite entrée étant connectée à un onduleur comprenant au moins deux commutateurs et configuré pour convertir une tension continue en une tension alternative et chaque sortie étant connectée à un redresseur commandé configuré pour convertir une tension alternative en une tension continue, chaque redresseur commandé comprenant une inductance de stockage magnétique connectée à un convertisseur alternatif vers continu comprenant au moins deux commutateurs, le circuit de conversion d'énergie comprenant en outre un module de commande configuré pour générer des signaux de commande déphasés agencés pour piloter la commutation des commutateurs des onduleurs et redresseurs commandés, ledit module de commande étant également configuré pour faire varier le déphasage entre les signaux de commande des commutateurs de puissance de l'onduleur et ceux de chaque redresseur commandé afin d'ajuster l'amplitude de la tension en sortie de chaque redresseur commandé indépendamment les unes des autres.
Suivant un mode de réalisation, l'entrée du transformateur n'est pas connectée à une inductance de stockage magnétique afin d'avoir des sorties totalement indépendantes les unes des autres. Suivant un mode de réalisation, l'onduleur est réalisé avec une structure en demi-pont capacitif.
Suivant un mode de réalisation, l'onduleur est réalisé avec une structure en pont complet. Suivant un mode de réalisation, au moins un redresseur commandé est réalisé avec une structure en demi-pont capacitif.
Suivant un mode de réalisation, au moins un redresseur commandé est réalisé avec une structure en pont complet.
Suivant un mode de réalisation, le bloc de régulation d'au moins un redresseur commandé comprend une entrée sur laquelle est appliqué un signal permettant de former le déphasage entre les signaux de commande des commutateurs de l'onduleur et de ceux dudit redresseur commandé.
Suivant un mode de réalisation, au moins un circuit commandé secondaire comprend une capacité de filtrage.
L'invention a également pour objet un réseau électrique multi-tensions comprenant un circuit de conversion d'énergie multi-sorties à commande par déphasage tel que décrit précédemment et au moins une source de tension continue, ledit circuit de conversion étant connecté à son entrée à ladite source de tension et fournissant aux bornes de ses différentes sorties les différentes tensions du réseau.
L'invention a également pour objet un procédé de fabrication d'un tel circuit de conversion d'énergie multi-sorties à commande par déphasage caractérisé en ce qu'il comprend une étape de conception dudit circuit comportant une étape d'optimisation de la valeur d'une inductance de stockage magnétique, ladite étape de dimensionnement comprenant :
- une étape de définition d'une plage de déphasage pour laquelle le courant de sortie dudit circuit de conversion est une fonction sensiblement linéaire du déphasage, - une étape de réduction de la largeur de ladite plage de déphasage de façon à réduire le courant dans les commutateurs lors de la commutation de ces derniers jusqu'à une valeur proche de zéro,
- une étape d'estimation, à partir de la plage de déphasage, de la valeur de l'inductance.
D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après, donnée à titre illustratif et non limitatif, et faite en référence aux dessins annexés, dans lesquels :
- la figure 1 , représente un exemple de mode de réalisation d'un circuit de conversion d'énergie multi-sorties à commande par déphasage selon l'invention ;
- la figure 2, représente un mode de réalisation particulier d'un circuit de conversion d'énergie multi-sorties à commande par déphasage selon l'invention ;
- la figure 3 représente, par des chronogrammes, un exemple de signaux de commande pour le circuit de la figure 2 ;
- la figure 4 représente un exemple d'allure de l'évolution du courant moyen en sortie du convertisseur multi sorties par rapport au déphasage entre l'onduleur et un redresseur commandé ;
- la figure 5 représente un exemple d'allure de l'évolution du courant traversant les commutateurs lors de leur commutation.
La figure 1 représente, de façon schématique, un exemple de mode de réalisation d'un circuit de conversion d'énergie multi-sorties à commande par déphasage ou " phase shift " selon la terminologie anglo-saxonne.
Le circuit peut comprendre un transformateur 12 comprenant une entrée comportant au moins un enroulement primaire et une pluralité de sorties comportant au moins un enroulement secondaire. Le transformateur 12 peut être un transformateur monophasé, triphasé ou d'une façon générale polyphasé. Dans le cas d'un transformateur 12 triphasé et plus généralement d'un transformateur polyphasé, l'entrée et la sortie de ce transformateur 12 comporte plusieurs enroulements connectés entre eux selon différents arrangements.
L'entrée du transformateur 12 peut être connectée à un onduleur 1 1 convertissant une tension continue Ve en une tension alternative. L'onduleur 1 1 peut être réalisé à l'aide d'une structure de commutateurs de puissance, comme par exemple des transistors bipolaires à grille isolée (ou IGBT pour Insulated Gâte Bipolar Transistor) ou des transistors MOS pour Métal Oxide Semiconductor, montés en pont. L'onduleur 1 1 peut être réalisé avec un demi pont capacitif comme illustré figure 2. Suivant des modes de réalisation alternatifs, l'onduleur 1 1 peut être réalisé avec une structure en pont complet, avec au moins deux bras.
Chaque sortie du transformateur 12 peut être connecté à un redresseur commandé 13 convertissant la tension alternative en sortie du transformateur 12 en une tension continue Vsi , VS2.. .VSN. Entre chaque redresseur commandé 13 et chaque sortie du transformateur 12 est connectée, en série, une inductance de stockage magnétique L-i , L2, LN. Le redresseur commandé 13 peut être réalisé avec une structure de commutateurs de puissance, comme par exemple des transistors bipolaires à grille isolée (ou IGBT pour Insulated Gâte Bipolar Transistor) ou des transistors MOS pour Métal Oxide Semiconductor, montés en pont. Le redresseur commandé 13 peut être réalisé avec un demi pont capacitif, une structure en pont complet, avec au moins deux bras ou tout moyens équivalents.
Chacun des onduleur 1 1 et redresseur commandé 13 comprend au moins deux commutateurs de puissance.
Afin de commander les différents commutateurs des onduleurs 1 1 et redresseur commandé 13, le circuit de conversion d'énergie multi-sorties peut comprendre au moins un module 25 de commande (voir la figure 2) configuré pour générer des signaux de commande déphasés agencés pour piloter la commutation de ces commutateurs. Ce module 25 de commande peut être du type à modulation de largeur d'impulsion afin de faire varier le rapport de cycle des signaux de commande.
Suivant un mode de réalisation préféré, les signaux de commande sont générés avec un rapport de cycle sensiblement égal à 50%. Afin de faire varier le déphasage entre les signaux de commande de l'onduleur 1 1 et d'un redresseur commandé 1 3, le module 25 de commande pilotant ces deux circuits peut par exemple comprendre une entrée sur laquelle on applique une tension dont la valeur permet de définir ledit déphasage.
Le module 25 de commande peut par exemple être réalisé par un contrôleur, un microprocesseur, un dispositif comprenant divers circuits logiques et comparateurs, un circuit intégré dédié (ou ASIC pour Application- Specific Integrated Circuit selon la terminologie anglo-saxonne) ou tout autre moyen équivalent.
Suivant un mode de réalisation, au moins un redresseur commandé peut comprendre une capacité Ci , C2, C N de filtrage afin de lisser le signal en sortie dudit redresseur commandé 1 3.
De façon avantageuse, le fait de placer une inductance de stockage magnétique au niveau des redresseurs commandés 1 3 et de n'avoir aucune inductance au niveau du circuit primaire permet d'avoir des circuits secondaires totalement indépendants les uns des autres.
La tension aux bornes de l'entrée du transformateur 1 2 peut ainsi être distribuée aux différents enroulements secondaires et créer différentes sources de tension. Ces différentes sources peuvent être transformées, grâce aux différents modules de commande, pour les adapter à la tension voulue et alimenter différentes charges.
La figure 2 représente un mode de réalisation particulier de l'invention. Dans ce mode de réalisation, l'onduleur 1 1 comprend un convertisseur continu/alternatif réalisé à l'aide d'un demi pont capacitif. Chaque commutateur comprend un transistor bipolaire à grille isolée en parallèle avec une diode de roue libre. Ce convertisseur transforme une tension continue Ve en une tension alternative qui alimente l'entrée d'un transformateur 1 2 muiti sorties (qui, dans l'exemple de la figure 2, donné à titre non limitatif, présente trois sorties).
Chaque circuit connecté en sortie du transformateur 1 2 comprend une inductance L-i , L2, L3 de stockage magnétique connectée en série avec un convertisseur alternatif/continu 13 formé à l'aide de commutateurs montés en pont complet. Comme précédemment, chaque commutateur peut comprendre un transistor bipolaire à grille isolée en parallèle avec une diode de roue libre.
Chaque convertisseur alternatif/continu 13 est connecté à un module de commande 25 configuré pour piloter la commutation des commutateurs dudit convertisseur. Chaque module de commande 25 est également connecté au convertisseur continu/alternatif 1 1 afin de piloter la commutation de ces commutateurs. Chaque module de commande 25 permet de définir le déphasage entre les signaux de commande de l'onduleur 1 1 et de chaque redresseur commandé 13.
Chaque module de commande 25 est configuré pour faire varier le déphasage entre les signaux de commande des commutateurs de puissance de l'onduleur 1 1 et ceux de chaque redresseur commandé 13 afin d'ajuster l'amplitude de la tension en sortie de chaque redresseur commandé 13 indépendamment les unes des autres.
Suivant un mode de réalisation particulier, dans le cas où les onduleur 1 1 et/ou redresseur 13 seraient réalisés avec une structure à pont complet, le module de commande pourrait générer un déphasage entre les signaux de commande des commutateurs des deux bras.
Dans ce mode de réalisation particulier, chaque sortie du circuit de conversion d'énergie multi-sorties comprend une capacité de filtrage C-i , C2, C3 connectée aux bornes du convertisseur 13 et configurée pour filtrer les tensions de sorties dudit convertisseur 13.
Suivant un mode de réalisation, au moins un module de commande
25 est configuré pour permettre de faire varier la phase entre les signaux de commande des commutateurs de puissance de l'onduleur 1 1 et d'un redresseur commandé 13 et ainsi ajuster l'amplitude de la tension en sortie du redresseur commandé 13 géré par ledit module de commande 25. Suivant le déphasage appliqué aux signaux de commande des commutateurs de l'onduleur 1 1 et du redresseur commandé 13, on peut réaliser soit un circuit élévateur de tension soit un montage atténuateur de tension. Le même circuit peut ainsi être utilisé pour réaliser les deux fonctions. A titre illustratif, la figure 3 présente des exemples de signaux de commande pour piloter les commutateurs des redresseurs commandés 13 et de l'onduleur 1 1 du circuit de la figure 2 et assurer la commande par déphasage de chaque sortie du circuit de conversion d'énergie multi-sorties. Dans ce mode de réalisation, chacun des signaux Ι_Ρ0, I P 1 , I_PN a un rapport cyclique de 50%. Les signaux l_P0n, l_P1 n, l_PNn sont les complémentaires des signaux l_P0, l_P1 , I_PN aux temps morts 5t près. De façon connue, ces temps morts permettent de tenir compte du temps de commutation des commutateurs de puissance et ainsi éviter des courts circuits.
Les signaux des deux premiers chronogrammes l_P0 et l_P0n correspondent à la commande de l'onduleur 1 1 . Ils permettent de définir la référence de phase. Les 2N signaux des chronogrammes suivants I P 1 et l_P1 n, l_P2 et l_P2n, I_PN et l_PNn correspondent aux signaux de commande des commutateurs des redresseurs commandés 1 3 du secondaire. Ces signaux permettent de définir le déphasage φ-ι , φ2, ... , ΨΝ entre l'onduleur 1 1 et chaque redresseur commandé 1 3.
De façon avantageuse, la structure de conversion à commande par décalage de phase ou " phase shift " selon l'invention permet la réalisation de convertisseur multi-sorties avec un seul circuit primaire et un seul transformateur. Chacun des circuits secondaires peut être régulé indépendamment l'un des autres et sur des références de masse différentes.
L'invention peut trouver son application dans des réseaux électriques multi tensions. Ces réseaux peuvent, par exemple, être embarqués dans des moyens de transport terrestre, aérien et/ou maritime.
Le réseau électrique multi-tensions peut comprendre au moins une source de tension continue connecté en entrée d'un circuit de conversion d'énergie multi-sorties à commande par déphasage tel que décrit précédemment, les différentes tensions alimentant ledit réseau multi-tensions se retrouvant aux bornes dudit ledit circuit de conversion. En référence aux figures 4 et 5 une méthode d'optimisation de la valeur de la inductance L de stockage magnétique d'un redresseur commandé 13 va être présentée.
La figure 4 représente d'allure du courant Is moyen en sortie d'un redresseur commandé 13 en fonction du déphasage Δφ appliqué entre les signaux de commande des commutateurs dudit redresseur 13 et ceux de l'onduleur 1 1 . La représentation graphique de ce courant a la forme d'une sinusoïde. Pour faire de la régulation, il est intéressant de se placer au niveau d'une partie sensiblement linéaire de la courbe comme par exemple celle entre les phases cpa et cpb. On choisit donc une plage de variation de phase ou plage de fonctionnement, permettant d'avoir une variation sensiblement linéaire du courant en fonction du déphasage appliqué entre l'onduleur 1 1 et le redresseur commandé 13. De façon connue, le fait de fixer la plage de fonctionnement permet de fixer une valeur de l'inductance.
La figure 5 illustre la forme du courant au niveau d'un commutateur au moment de la commutation de ce dernier en fonction de la phase pour différentes valeurs φι , φ2, φ3 du déphasage Δφ appliqué entre l'onduleur 1 1 et le redresseur commandé 13. On remarque que lorsque l'on modifie la valeur du déphasage entre les signaux de commande des commutateurs de l'onduleur 1 1 et ceux du redresseur commandé 13, on modifie également la valeur du pic de courant et la valeur maximale de ce courant est plus ou moins élevée. Ainsi, lorsque le commutateur va basculer, il va interrompre un courant plus ou moins élevé suivant le déphasage appliqué. Afin de réduire le courant dans les commutateurs au moment du basculement on réduit la plage de déphasage.
La deuxième étape de l'optimisation consiste à réduire la valeur de la largeur de la plage de fonctionnement pour que le courant aux bornes des commutateurs soit proche de zéro au moment du basculement de ces derniers afin de réaliser une commutation dite douce ou ZCS pour Zéro Current Switching selon la terminologie anglo saxonne. L'étape suivante consistera à déduire de cette plage - à l'aide de formules classiques connues de l'homme du métier - la valeur de l'inductance de stockage magnétique L. De façon avantageuse, le fait d'utiliser une valeur d'inductance L dégradée par rapport au cas où l'on couvrirait une plage de fonctionnement de 90° permet de se trouver dans une zone où le courant de sortie est une fonction sensiblement linéaire du déphasage et d'effectuer des commutations douces. De plus le fait que la valeur de l'inductance L soit réduite permet de réduire le nombre de spires de cette dernière et donc les pertes dans ladite inductance.

Claims

REVENDICATIONS
Circuit de conversion d'énergie multi-sorties à commande par déphasage, recevant en entrée une tension continue et fournissant en sortie une pluralité de tensions continues modulables, ledit circuit de conversion comprenant un transformateur (12) comportant une entrée et une pluralité de sorties, ladite entrée étant connectée à un onduleur (1 1 ) comprenant au moins deux commutateurs et configuré pour convertir une tension continue en une tension alternative et chaque sortie étant connectée à un redresseur commandé (13) configuré pour convertir une tension alternative en une tension continue, chaque redresseur commandé (13) comprenant une inductance (L-i , L2, I_N) de stockage magnétique connectée à un convertisseur (13) alternatif vers continu comprenant au moins deux commutateurs, le circuit de conversion d'énergie comprenant en outre un module de commande (25) configuré pour générer des signaux de commande déphasés agencés pour piloter la commutation des commutateurs des onduleur (1 1 ) et redresseurs commandés (13), ledit circuit de conversion étant caractérisé en ce que ledit module de commande (25) est également configuré pour faire varier le déphasage entre les signaux de commande des commutateurs de puissance de l'onduleur (1 1 ) et ceux de chaque redresseur commandé (13) afin d'ajuster l'amplitude de la tension en sortie de chaque redresseur commandé (13) indépendamment les unes des autres.
Circuit suivant la revendication précédente selon lequel l'entrée du transformateur (12) n'est pas connectée à une inductance de stockage magnétique afin d'avoir des sorties totalement indépendantes les unes des autres.
Circuit suivant une des revendications précédentes selon lequel l'onduleur (1 1 ) est réalisé avec une structure en demi-pont capacitif.
4. Circuit suivant la revendication 1 ou 2 selon lequel l'onduleur (1 1 ) est réalisé avec une structure en pont complet.
5. Circuit suivant la revendication 1 ou 2 selon lequel au moins un redresseur commandé (13) est réalisé avec une structure en demi- pont capacitif.
6. Circuit suivant la revendication 1 ou 2 selon lequel au moins un redresseur commandé (13) est réalisé avec une structure en pont complet.
7. Circuit suivant une des revendications précédentes selon lequel le bloc de régulation (25) d'au moins un redresseur commandé (13) comprend une entrée sur laquelle est appliquée un signal permettant de former le déphasage entre les signaux de commande des commutateurs de l'onduleur (1 1 ) et de ceux dudit redresseur commandé (13).
8. Circuit suivant une des revendications précédentes selon lequel au moins un circuit commandé secondaire (13) comprend une capacité (C-i , C2, CN) de filtrage.
9. Réseau électrique multi-tensions caractérisé en ce qu'il comprend un circuit de conversion d'énergie multi-sorties à commande par déphasage selon une des revendications précédentes et au moins une source de tension continue, ledit circuit de conversion étant connecté à son entrée à ladite source de tension et fournissant aux bornes de ses différentes sorties les différentes tensions du réseaux.
10. Procédé de fabrication d'un circuit de conversion d'énergie multi- sorties à commande par déphasage selon l'une des revendications 1 à 7 caractérisé en ce qu'il comprend une étape de conception dudit circuit comportant une étape d'optimisation de la valeur d'une inductance (L) de stockage magnétique, ladite étape de dimensionnement comprenant :
- une étape de définition d'une plage de déphasage pour laquelle le courant de sortie dudit circuit de conversion est une fonction sensiblement linéaire du déphasage, - une étape de réduction de la largeur de ladite plage de déphasage de façon à réduire le courant dans les commutateurs lors de la commutation de ces derniers jusqu'à une valeur proche de zéro,
- une étape d'estimation, à partir de la plage de déphasage, de la valeur de l'inductance (L).
EP14820897.8A 2013-12-31 2014-12-29 Convertisseur d'energie multi-sorties a commande par dephasage Withdrawn EP3090482A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1303118A FR3016096B1 (fr) 2013-12-31 2013-12-31 Convertisseur d'energie multi-sorties a commande par dephasage
PCT/EP2014/079361 WO2015101594A2 (fr) 2013-12-31 2014-12-29 Convertisseur d'energie multi-sorties a commande par dephasage

Publications (1)

Publication Number Publication Date
EP3090482A2 true EP3090482A2 (fr) 2016-11-09

Family

ID=51063462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14820897.8A Withdrawn EP3090482A2 (fr) 2013-12-31 2014-12-29 Convertisseur d'energie multi-sorties a commande par dephasage

Country Status (4)

Country Link
US (1) US10044279B2 (fr)
EP (1) EP3090482A2 (fr)
FR (1) FR3016096B1 (fr)
WO (1) WO2015101594A2 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176121B2 (ja) * 2014-01-10 2017-08-09 住友電気工業株式会社 電力変換装置及び三相交流電源装置
WO2015192133A2 (fr) * 2014-06-13 2015-12-17 University Of Maryland Chargeur embarqué et intégré du type entre le réseau électrique et le véhicule (g2v) et entre le véhicule et le réseau électrique (v2g) et à double sortie pour des véhicules électriques enfichables
FR3040114B1 (fr) * 2015-08-12 2018-07-20 Psa Automobiles Sa. Dispositif electrique multifonction
US9753510B2 (en) 2015-08-26 2017-09-05 Intel Corporation Apparatus and method to reduce power losses in an integrated voltage regulator
WO2017078355A1 (fr) * 2015-11-02 2017-05-11 Samsung Electronics Co., Ltd. Système, appareil électronique et son procédé de commande
DE102016213464A1 (de) * 2016-07-22 2018-01-25 Robert Bosch Gmbh Wandler und Verfahren zur Steuerung eines Wandlers
FR3064851B1 (fr) 2017-03-28 2019-04-05 Valeo Siemens Eautomotive France Sas Dispositif convertisseur de tension continu/continu
WO2020152746A1 (fr) * 2019-01-21 2020-07-30 三菱電機株式会社 Dispositif de conversion de puissance et système de distribution de courant continu
DE102019211553A1 (de) * 2019-08-01 2021-02-04 Audi Ag Bidirektionale DC-Wallbox für Elektrofahrzeuge
US11070136B2 (en) * 2019-10-31 2021-07-20 Deere & Company System for controlling a direct-current-to-direct-current converter to provide electrical energy to a vehicle implement
US11070138B2 (en) * 2019-10-31 2021-07-20 Deere & Company System for controlling a direct-current-to-direct-current converter to provide electrical energy to a vehicle implement
CN111049397B (zh) * 2019-12-28 2022-03-08 新风光电子科技股份有限公司 一种多组并联型轧辊变频加热电源系统的控制方法
US11114932B1 (en) 2020-06-18 2021-09-07 Ge Aviation Systems Llc Method and apparatus for reduction of ripple current
US11594973B2 (en) * 2020-08-04 2023-02-28 Delta Electronics Inc. Multiple-port bidirectional converter and control method thereof
US11290022B2 (en) * 2020-09-01 2022-03-29 Virginia Tech Intellectual Properties, Inc. Bidirectional architectures with partial energy processing for DC/DC converters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323962A (en) * 1981-02-02 1982-04-06 General Electric Company High efficiency rectifier with multiple outputs
US7679937B2 (en) * 2007-04-10 2010-03-16 Ciena Corporation Flyback converter providing simplified control of rectifier MOSFETS when utilizing both stacked secondary windings and synchronous rectification
US8736102B1 (en) * 2010-10-07 2014-05-27 The Boeing Company Multifunctional power converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015101594A2 *

Also Published As

Publication number Publication date
FR3016096A1 (fr) 2015-07-03
WO2015101594A3 (fr) 2015-08-27
US20170005584A1 (en) 2017-01-05
FR3016096B1 (fr) 2023-06-16
WO2015101594A2 (fr) 2015-07-09
US10044279B2 (en) 2018-08-07

Similar Documents

Publication Publication Date Title
EP3090482A2 (fr) Convertisseur d'energie multi-sorties a commande par dephasage
EP3568905B1 (fr) Chargeur de batterie d'accumulateurs électriques bidirectionnel
EP0898357B1 (fr) Dispositif de conversion d'énergie à courant continu
KR101241221B1 (ko) 마일드 하이브리드 차량용 충전 장치
US8541989B2 (en) Power supply apparatus
US8681522B2 (en) Method for operating an electronically controlled inverter with switches that alternate between being elements of a boost-buck converter and an inverting Cuk converter
TW201621507A (zh) 多相切換功率轉換器
EP3161951B1 (fr) Convertisseur de tension comprenant un circuit convertisseur dc/dc isole
US9042145B2 (en) Circuit configuration with a step-up converter, and inverter circuit having such a circuit configuration
EP3207629B1 (fr) Convertisseur dc/dc isole
WO2019110297A1 (fr) Convertisseur continu-continu avec pre-charge d'un premier reseau electrique a partir d'un deuxieme reseau electrique
WO2016001547A1 (fr) Convertisseur de tension comprenant un circuit convertisseur dc/dc isole
FR3001843A1 (fr) Dispositif et procede correspondant de gestion de batteries de vehicule automobile, en particulier une batterie basse tension et une batterie haute tension
WO2014114878A2 (fr) Convertisseur d'énergie électrique à découpage
EP3276812B1 (fr) Convertisseur dc-dc isolé et batterie électrique comprenant un convertisseur dc-dc isolé
FR3016097A1 (fr) Convertisseur a absorption sinusoidale de courant
JP7054835B2 (ja) 電力変換装置
EP3276810B1 (fr) Convertisseur dc-dc isolé et batterie électrique comprenant un convertisseur dc-dc isolé
WO2017081386A1 (fr) Dispositif de conversion d'energie a tension continue reversible
FR3029715B1 (fr) Convertisseur electrique continu-continu comprenant un circuit limiteur de tension
EP0966092A1 (fr) Convertisseur courant continu-courant continu
RU2355101C1 (ru) Устройство преобразования энергии
FR3103655A1 (fr) Module de commutation et convertisseur de puissance comportant un tel module
WO2018219905A1 (fr) Convertisseur continu-continu pour vehicule electrique ou hybride
FR3026580A1 (fr) Procede de commande d'un etage redresseur d'un systeme de charge et systeme de charge correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160623

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190704

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200115

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516