EP3089692A1 - Système et procédé de suivi du déplacement d'un instrument médical dans le corps d'un sujet - Google Patents

Système et procédé de suivi du déplacement d'un instrument médical dans le corps d'un sujet

Info

Publication number
EP3089692A1
EP3089692A1 EP14831018.8A EP14831018A EP3089692A1 EP 3089692 A1 EP3089692 A1 EP 3089692A1 EP 14831018 A EP14831018 A EP 14831018A EP 3089692 A1 EP3089692 A1 EP 3089692A1
Authority
EP
European Patent Office
Prior art keywords
subject
determination
instant
medical instrument
acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14831018.8A
Other languages
German (de)
English (en)
Inventor
Mario SANZ LOPEZ
Stéphane COTIN
Jérémie DEQUIDT
Christian Duriez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de Recherche en Informatique et en Automatique INRIA
Original Assignee
Institut National de Recherche en Informatique et en Automatique INRIA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de Recherche en Informatique et en Automatique INRIA filed Critical Institut National de Recherche en Informatique et en Automatique INRIA
Publication of EP3089692A1 publication Critical patent/EP3089692A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image

Definitions

  • the present invention relates to a system for monitoring a first portion of a medical instrument, inserted into the body of a subject, during its movement in the body of the subject, said system comprising means for determining a position of said first portion relative to the body of the subject in at least one determination instant, and means for displaying, to a user, at said instant of determination, an image representative of at least a portion of the body of the subject. subject and the first portion of the medical instrument in the position of the first portion determined by said determination means at this time of determination.
  • These techniques are for example implemented by acquiring an initial image of the vascular system of the subject, before the intervention, and by superimposing on this initial image successive images of the instrument during its displacement in the vascular system. These images are for example acquired at a frequency of 30 images per second.
  • the initial image of the vascular system is generally acquired by means of angiographic CT, by previously injecting into the vascular system of the subject an X-ray contrast agent, for example an iodinated product.
  • an X-ray contrast agent for example an iodinated product.
  • the successive images are also acquired by scanner, the instrument being opaque to X-rays.
  • Such techniques require the repeated emission of X-rays to the body of the subject and therefore present a risk to his health.
  • the object of the invention is therefore to solve the drawbacks mentioned above, in particular to provide a system making it possible to follow the movement of a medical instrument in the body of a subject with great precision, which minimizes the risks incurred by the subject, and reduced cost.
  • the subject of the invention is a system of the aforementioned type, characterized in that the said determination means comprise:
  • an imaging module adapted to acquire, at least a moment of acquisition prior to said instant of determination, a position of the first portion of the medical instrument relative to the body of the subject
  • a determination module able to determine, starting from the position of the first portion at said instant of acquisition from said imaging module and said displacement of the second portion of the medical instrument between said instant of acquisition and said instant determining, detected by said detection module, the position of the first portion of the medical instrument relative to the body of the subject at said instant of determination.
  • the method comprises one or more of the following features:
  • said detection module is able to detect a translation of said second portion of the medical instrument in its longitudinal direction and a rotation of said second portion of the medical instrument around its longitudinal direction relative to the body of the subject between said instant acquisition and said instant of determination;
  • said determination module is capable of determining the position of the first portion of the medical instrument relative to the body of the subject at each of a plurality of successive instants of determination comprised between a first and a second successive acquisition instants from the position of the first portion from said imaging module to said first acquisition instant and the displacement of the second portion of the medical instrument between said first acquisition instant and each instant of determination of said plurality of instants of determination, detected by said detection module; said detection module comprises at least one detector of a displacement of the second portion with respect to this detector;
  • said detector is comprised in a housing comprising a conduit for the passage of the medical instrument
  • said housing comprises a first portion enclosing said detector and a second portion enclosing said passage duct;
  • said second portion is sealed, said medical instrument circulating in said passage duct being sealed from said first portion;
  • said second portion is removably mounted on said first portion
  • said detector is an optical detector
  • said optical detector comprises at least one light source, capable of emitting an incident light beam on an area of the second portion of the medical instrument and an optical receiver, able to detect a light beam reflected by the second portion of the instrument medical;
  • said light source is adapted to emit the incident light beam onto an area of the second portion of the medical instrument during the passage of said second portion in said passage duct;
  • said detector is movable relative to the body of the subject, and said detection module comprises means for detecting a movement of the detector relative to the body of the subject;
  • said first portion of the medical instrument comprises at least one visible zone by optical imaging
  • said imaging module comprises a transmitter capable of emitting optical rays towards the body of the subject, and a detector capable of receiving optical rays transmitted by said transmitter through the body of the subject;
  • said second portion of said medical instrument is outside the body of the subject.
  • the invention also relates to a method of monitoring a first portion of a medical instrument inserted into the body of a subject during his movement in the body of the subject, comprising:
  • determining the position of said first portion comprises:
  • the acquisition in at least one acquisition instant prior to said instant of determination, of a position of the first portion of the medical instrument relative to the body of the subject,
  • FIG. 1 is a block diagram of a tracking system according to one embodiment of the invention.
  • Figure 2 is a diagram illustrating an exemplary implementation of the tracking system of Figure 1;
  • FIG. 3 is a perspective diagram of a part of the system of FIG.
  • FIG. 4 is an exemplary image provided by the system according to the invention.
  • FIG. 5 is a block diagram of a monitoring method implemented by the system of Figure 1.
  • FIG. 1 Shown in Figures 1 to 3, schematically, a system 1 for tracking the movement of a medical instrument 3 in the body of a subject 5 according to one embodiment of the invention.
  • the medical instrument 3 is a flexible instrument of generally tubular shape, such as a catheter, microcatheter or guide.
  • the medical instrument 3 is a flexible tube of substantially circular cross section, extending in a curvable longitudinal direction.
  • the medical instrument 3 is rigid in torsion about its longitudinal direction. Thus, a rotation of a portion of this medical instrument 3 around its longitudinal direction causes a rotation of the whole of this medical instrument 3 around its longitudinal direction. Furthermore, a translation of a portion of the instrument 3 in its longitudinal direction causes a displacement of the entire instrument 3
  • the medical instrument 3 considered is a catheter, and the system 1 according to the invention is used to follow the displacement of a portion of this catheter 3 in the vascular system of the subject 5.
  • the length of the catheter 3 is for example between a few tens of centimeters and 2 meters, and its diameter is between a few tenths of millimeters and a few millimeters, in particular between 0.5 mm and 5 mm.
  • distal portion 3d of the catheter 3 will be referred to as the part of this catheter 3 introduced and moved in the body of the subject 5, and by the "proximal portion” 3p of this catheter 3 as the portion of this catheter. remaining outside the body of the subject 5, this portion being manipulated by an operator to move the distal portion 3d in the body of the subject 5.
  • the catheter 3 is in this case made from an X-ray opaque material, for example a plastic material such as a fluoropolymer.
  • the distal portion 3d of the catheter 3 is for example introduced into an artery or a vein of the subject 5 through a trocar 58 fixed to the skin of the subject 5.
  • the system 1 comprises means 9 for determining the position of the distal portion 3d of the catheter relative to the vascular system of the subject 5 at a plurality of instants of determination t d , as well as means 1 1 for displaying the movement of the catheter 3 in the vascular system of the subject 5.
  • the instants of determination t d are regularly spaced, the position of the distal portion 3d of the catheter 3 being determined by the means 9 and displayed by the display means 1 1 at a determination frequency f d for example between 20 and 40 frames per second, in particular equal to 30 frames per second.
  • the means 9 comprise an imaging module adapted to acquire, in a plurality of successive acquisition instants t a , the position of the distal portion 3d of the catheter 3 during its displacement in the vascular system of the subject 5.
  • the instants of acquisition t a are times such that at least one determination instant t d is between two instants of acquisition t a .
  • the acquisition times t a are regularly spaced, the position of the distal portion 3d of the catheter 3 being acquired by the module 15 to an imaging acquisition frequency f is lower than the frequency f d of determination.
  • the acquisition frequency f a is for example between 2 and 10 frames per second.
  • the acquisition frequency f a is for example a sub-multiple of the determination frequency f d
  • the means 9 further comprise a module 17 for detecting the displacement of the proximal portion 3p of the catheter 3 between two instants of determination t ⁇ y in succession, and a module 19 for determining the position of the distal portion 3d of the catheter 3 in each time t d of determination, from the positions of this distal portion 3d acquired by the imaging module 15 at each acquisition time t a and the displacement of the proximal portion 3p from the detection module 17.
  • the instants t d of determination at which the position of the distal portion 3d of the catheter is determined comprise, besides the acquisition instants t a at which an image of this distal portion 3d is acquired, intermediate moments between two instants of acquisition t a successive, the position of the distal portion 3d of the catheter 3 at each intermediate instant being determined from the displacement of the proximal portion 3p of the catheter 3.
  • the imaging module 15 comprises, for example, an X-ray imaging system, comprising an X-ray emitter 23, an X-ray detector and a control and processing unit 27, connected to the transmitter 23 and the X-ray detector. detector 25.
  • an X-ray imaging system comprising an X-ray emitter 23, an X-ray detector and a control and processing unit 27, connected to the transmitter 23 and the X-ray detector. detector 25.
  • the transmitter 23 of X-rays is for example an X-ray tube
  • the transmitter 23 is positioned with respect to a support table 24 of about 5. It is capable of transmitting in each acquisition instant t has radii X towards a subject 5 extended on this support table, in particular the area of interest of the body of the subject 5, ie the zone of his vascular system in which it is intended to move the catheter 3.
  • the X-ray detector 25 is arranged facing the transmitter 23, the support table being placed between the emitter 23 and the detector 25.
  • the X-ray detector is adapted to receive x-rays emitted by the emitter 23 through the body of the subject 5.
  • the catheter 3 is at least partly opaque to X-rays.
  • the catheter 3 when it is introduced into the vascular system of the subject 5, the catheter 3 does not transmit the X-rays it receives from the emitter 23 to the detector 25.
  • the detector 25 is able to emit signals representative of the rays. X detected to the control and processing unit 27.
  • the unit 27 is able to control the emission of X-rays by the emitter 23 at each acquisition instant t a , to receive signals from the detector 25 representative of the X-rays detected by this detector 25 at this instant of time. acquisition t a, and generating, from these signals, an X-ray image of the subject's body 5.
  • this image generated by the control and treatment device 27 makes the catheter 3 appear, and in particular its distal portion 3d.
  • This image does not show the vascular system of subject 5 because it is not opaque to X-rays.
  • the control and treatment unit 27 is capable of reconstructing an image of the subject's vascular system 5 showing both this vascular system and the catheter 3, by superimposing each x-ray image on an initial image of the vascular system of the subject.
  • This initial image is, for example, an image previously acquired by the imaging module after introduction into the vascular system of the subject of an X-ray opaque contrast agent.
  • the control and treatment unit 27 is furthermore able to determine, from this reconstituted image, what is the position of the catheter 3, in particular of its distal portion 3d, at the moment of acquisition t a , in a reference frame R linked to the vascular system of the subject 5.
  • the detection module 17 is able to detect any displacement of the proximal portion 3p of the catheter 3 with respect to the subject 5, in particular with respect to the vascular system of the subject 5, between two successive instants of determination t d .
  • the detection module 17 comprises a displacement detector 40 capable of detecting the relative displacement of the proximal portion 3p of the catheter 3 with respect to this detector 40 between two successive instants of determination t d in two degrees of freedom. corresponding firstly to a translation of the catheter 3 in the longitudinal direction and a rotation of the catheter around its longitudinal direction.
  • the detection module 17 furthermore comprises a unit 41 for processing the data coming from the detector 40 in order to deduce the displacement of the proximal portion 3p of the catheter 3 relative to the reference frame R linked to the vascular system of the subject 5 between two instants of determination successive.
  • the detector 40 is an optical detector. It comprises a laser transmitter 42, able to emit a laser beam towards a predetermined detection zone 43, an optical receiver 44, able to receive and detect laser radiation from the laser emitter 42 after reflection on the catheter 3.
  • the detection zone 43 is disposed along the passage of the proximal portion 3p of the catheter 3 during its movement by an operator.
  • the laser transmitter 42 comprises, for example, a laser diode capable of emitting a laser beam, through a lens, towards the detection zone 43. The laser beam emitted by the laser emitter 42 is thus received and reflected by the outer wall of the laser beam. catheter 3.
  • the distance between the laser emitter 42 and the outer wall of the catheter 3 is a fixed distance, for example between 2.2 and 2.4 mm.
  • the laser diode 48 emits in the infrared.
  • the optical receiver 44 comprises a matrix of sensors, for example CCD or CMOS sensors.
  • the optical receiver 44 is for example formed of an area of 32x32 sensors.
  • the sensors are adapted to receive the laser radiation from the laser emitter 42 after reflection on the catheter 3 and to convert this radiation into electrical signals representative of the received light intensity.
  • the optical receiver 44 is thus adapted to acquire at times of reception t r images of the portion of the catheter 3 passing through the zone 43, at a reception frequency f r greater than the determination frequency f d .
  • the reception frequency f r is for example between 125 and 1000 images per second.
  • the detector 40 is comprised in a housing 50 enclosing the laser emitter 42 and the optical receiver 44, and comprising a duct 52 allowing the circulation of the catheter 3, the detection zone 43 being disposed in this duct. 52.
  • a movement printed on the proximal portion 3p of the catheter 3 by an operator to move the distal portion 3d of the catheter 3 into the body of the subject 5 induces a displacement of the proximal portion 3p through the conduit 52, and in particular in the detection zone 43, which allows the detector 40 to capture any displacement of this proximal portion 3p.
  • the housing 50 comprises a first portion 50a enclosing the laser emitter 42 and the optical receiver 44, hereinafter referred to as the sensor 50a, and a second portion 50b enclosing the conduit 52, removably mounted on the first portion, hereinafter referred to as support 50b.
  • the support 50b is sealed, so that the medical instruments flowing in the conduit 52 are sealingly isolated from the sensor 50a, in particular from the laser transmitter 42 and the optical receiver 44.
  • This support 50b is adapted to be sterilized in an autoclave.
  • the conduit 52 comprises an opening allowing the laser beam coming from the laser emitter 42 to pass to the catheter 3.
  • This opening is for example formed by a transparent window 53 formed on a surface of the support 50b.
  • the dimensions of the support 50b which make it possible to adjust the position of the duct 52 with respect to the sensor 50a and the diameter of the duct 52, are chosen as a function of the diameter of the catheter 3 so as to guarantee an optimum distance between the emitter laser 42 and the outer wall of the catheter 3.
  • the internal diameter of the duct 52 is chosen as a function of the external diameter of the catheter 3, so as to guarantee the desired distance between the laser emitter 42 and the outer wall of the catheter 3, for example between 2.2 and 2, 4mm.
  • the support 50b also comprises a first outer connector 56a for fixing the housing 50 to the medical instrument through which the catheter 3 is introduced into the vascular system, in this case a trocar 58, and a second outer connector 56b allowing attaching the housing 50 to a hemostasis valve or other device which in conventional use would have been attached to the trocar 58.
  • the sensor 50a and the support 50b are fixed to one another by fixing means, for example screws 59.
  • the housing 50 further comprises a communication interface 60 for transferring the data picked up by the detector 40 to the processing unit 41.
  • this interface 60 is a wireless interface, for example a radio frequency transmitter.
  • the detector 40 is powered by a battery 62 included in the housing.
  • the housing 50 can be used without being connected by a wired connection to a power source or to the processing unit 41.
  • the housing 50 is preferably made from sintered polyamide, allowing it to be autoclaved.
  • the processing unit 41 is adapted to receive from the receiver 44 signals representative of the images acquired by this receiver 44, and to analyze these images to determine the relative displacement of the proximal portion 3p of the catheter 3 in a reference frame R 'linked to the detector 40 between two instants of determination t d successive.
  • this analysis is performed by determining a correlation between two images taken successively by the receiver 44.
  • This correlation makes it possible to detect the relative displacement of the proximal portion 3p of the catheter 3 with respect to the detector 40 according to the two degrees of freedom mentioned. above between two times of reception t r .
  • the treatment unit 41 is able to deduce the relative displacement of the proximal portion 3p of the catheter 3 in the reference frame R 'linked to the detector 40 between two successive instants of determination t d by composition of the movements detected between the reception instants t r between these two instants of determination t d successive.
  • the treatment unit 41 is able to determine the relative displacement of the proximal portion 3p of the catheter 3 in the reference frame R of the vascular system of the subject 5 from the relative displacement of this proximal portion 3p in the reference frame R 'of the detector 40.
  • the housing 50 is attached to the trocar 58 itself attached to the skin of the subject 5.
  • the housing 50 and the detector 40 thus occupy a fixed position relative to the vascular system of the patient. 5. Consequently, the relative displacement of the proximal portion 3p of the catheter 3 in the reference frame R of the vascular system of the subject 5 is identical to the relative displacement of this proximal portion 3p in the reference frame R 'of the detector 40.
  • the optical receiver 44 has, for example, a resolution of 1200 dots per inch, or 48 dots per millimeter, which makes it possible to accurately capture the translational and rotational displacements of the proximal portion 3p of the catheter 3.
  • the maximum speed of displacement that can be detected is between 100 and 1000 mm / s, in particular equal to 378 mm / s.
  • the module 19 for determining the position of the distal portion 3d is connected to the imaging module 15 and to the detection module 17.
  • the module 19 is able to determine the position of the distal portion 3d of the catheter 3 at each determination instant t d , from the positions of this distal portion 3d acquired by the imaging module 15 at each acquisition time fa and displacements of the proximal portion 3p of the catheter 3 between two instants of determination t d coming from the detection module 17.
  • the module 19 is able to deduce from the displacement of the proximal portion 3p of the catheter 3 between two instants of determination t d successive t d (k-1) and t d (k) and the mapping of the vascular system of the subject 5, what is the displacement of the distal portion 3d of this catheter 3 in the vascular system of the subject 5 between the two instants of determination t d (k-1) and t d (k).
  • the mapping of the vascular system of the subject 5 is predetermined by the module 19 from the initial image of the vascular system of the subject 5 acquired by the imaging module.
  • the position of the distal portion 3d is determined at each acquisition instant t a as the position of this distal portion 3d acquired by the module 15 imaging. Furthermore, in each determination instant t d (k) distinct from an acquisition instant t a , the position of the distal portion 3d is determined from the position of this distal portion 3d at the instant of determination t d (k-1) immediately preceding and an estimate of the displacement of the distal portion 3d between the instants t d (k-1) and t d (k).
  • the module 19 is able to determine the successive positions of the distal portion 3d of the catheter 3 at the instants of determination t d from the displacements of the proximal portion 3p from the detection module 17, and to reset the position of this portion distal 3d in each moment of acquisition t a , from the position acquired by the imaging module.
  • This periodic adjustment makes it possible to correct position accuracy errors as determined from the single detection module 17.
  • the display means 1 1 comprise a display device 68 adapted to receive from the module 19 the successive positions of the distal portion 3d of the catheter 3 at the instants of determination t d and to display to a practitioner, at each instant. t d of determination, a representative image of the vascular system of the subject 5 and the position of the catheter 3, in particular of its distal portion 3d, with respect to this vascular system at this instant of determination t d .
  • An example of such an image is illustrated in FIG. 4. This image comprises a representation of the vascular system of the subject 5 on which is superimposed a representation of the distal portion 3d of the catheter 3.
  • control and processing unit 27, the processing unit 41 and the positional determination module 19 of the distal portion 3d are applications implemented by FIG. a calculator 72.
  • the computer 72 comprises for this purpose a processor 78, one or more memory (s) 80, the man-machine interface means 82, and means 84 interface.
  • the memory 80 comprises different areas of memory containing applications intended to be executed by the processor 78, in particular applications corresponding to the functions executed by the control and processing unit 27, and / or the processing unit 41 and / or the module 19.
  • the memory 80 also contains data relating to the vascular system of the subject 5, in particular the initial image of the vascular system of the subject 5 acquired by the imaging module and the mapping of this vascular system determined by the module 19 from this initial image.
  • the processor 78 is adapted to execute applications contained in the memory 80, in particular an operating system allowing the conventional operation of a computer system.
  • the computer 72 is able to exchange data with the transmitter 23 and the detector 25 of the imaging module 15 and with the detector 40 of the detection module 17 via the interface means 84.
  • the interface means 84 comprise a wireless transmitter / receiver capable of exchanging data with the communication interface 60 of the box 50.
  • the man-machine interface means 82 comprise means 84 for inputting information by an operator for the parameterization of the system 1 and the display device 68.
  • the interface means 82 allow the user to define the acquisition frequency f has the position of the distal portion 3d of the catheter by the imaging module.
  • This method comprises an initial step 100 in which an initial image of the subject's vascular system is acquired by the imaging module after introducing into the subject's vascular system an X-ray opaque contrast agent.
  • the initial image is transmitted to the module 19 which determines, from this initial image, a mapping of the vascular system of the subject 5.
  • the initial image and the mapping of the vascular system are then stored in the memory 80 of the computer 72.
  • the intervention is then initiated, for example by the practitioner, during a stage
  • the trocar 58 by introducing the trocar 58 into a vein or artery of the vascular system through the skin of the subject 5, and by attaching this trocar 58 to the skin of the subject 5.
  • the housing 50 is then fixed by its outer connector 56 to trocar 58, and the distal portion 3d of the catheter 3 is introduced, through the conduit 52 of the housing 50 and through the trocar 58, into the vascular system of the subject 5.
  • a displacement of the distal portion 3d of the catheter 3 in the vascular system of the subject 5 is then generated, for example by a displacement of the proximal portion 3p of the catheter 3 by an operator, in particular by a translation of this proximal portion 3p towards the body of the subject 5 and / or a rotation of this proximal portion 3p around the longitudinal direction of the catheter 3.
  • the displacement of the distal portion 3d of the catheter 3 in the vascular system is then followed by the system 1 and displayed for the practitioner according to the following steps, performed iteratively.
  • the imaging module acquires the position of the distal portion 3d of the catheter 3 in the vascular system of the subject 5.
  • the X-ray emitter 23 emits at the instant of acquisition t a (n) X-rays towards the area of interest of the body of the subject 5 in which the catheter 3 is moved in response to a control command from the control and processing unit 27.
  • These rays pass through the body of the subject 5 and are then received by the detector 25.
  • the detector 25 then emits electrical signals representative of the detected X-rays to the control and processing unit 27.
  • the unit 27 generates from these signals an X-ray image of the body of the subject 5, showing the distal portion 3d of the catheter 3.
  • the control and processing unit 27 then superimposes the x-ray image thus generated on the initial image of the vascular system of the subject 5 to form an image showing both this vascular system and the catheter 3.
  • the unit 27 determines, from this reconstituted image, what is the position of the catheter 3, in particular of its distal portion 3d, in the reference frame R of the vascular system of the subject 5 at the moment of acquisition t a and transmit this position to module 19.
  • the module 19 transmits this position to the display means 1 1 which then display to the practitioner an image representing both the vascular system of the subject 5 and the distal portion 3d of the catheter 3 in this vascular system.
  • This acquisition step 106 is then repeated at the next acquisition instant t a (n + 1).
  • the position of the distal portion 3d of the catheter 3 is determined according to a plurality of steps 120 121 from the displacement of the proximal portion 3p of the catheter 3 detected by the detection module 17.
  • the detection step 21 is thus reiterated to determine the position of the distal portion 3d at each determination instant t d ().
  • the detection step 121 comprises a phase 122 of detection by the module 17 of the displacements of the proximal portion 3p of the catheter 3 relative to the system Vascular subject 5, between the instants of determination f d (k-1) and t d (k).
  • i d (k-1) corresponds to the acquisition instant t a (n).
  • the displacement detector 40 determines the rotational displacements of the proximal portion 3p of the catheter around its longitudinal direction and the translational movements of the catheter of the proximal portion 3p in its longitudinal direction with respect to this detector 40 between the two instants f d (k-1) and t d (k).
  • the laser emitter 42 emits a laser beam towards the detection zone 43, through which the catheter 3 circulates.
  • the laser beam, reflected by the outer wall of the catheter 3, is received by the optical receiver 44.
  • the optical receiver 44 thus acquires at multiple times of reception R between the instants of determination i d (k-1) and t d (k) images of the portion of the catheter 3 passing through the zone 43, and transmits this information to the unit 41 for processing via the wireless communication interface 60.
  • the processing unit 41 analyzes these images to determine the relative displacement of translation and rotation of the proximal portion 3p of the catheter 3 with respect to the detector 40 between the instants of determination t d (k-1) and t d (k) and deduces therefrom the relative displacement of the proximal portion 3p of the catheter 3 in the reference frame R of the vascular system of the subject 5.
  • the processing unit 41 transmits this information to the module 19.
  • the detection phase 122 is followed by a phase 124 during which the module
  • the module 19 determines, from the displacement of the proximal portion
  • the module 19 determines the position of the distal portion 3d at time t d (k) from the position of this distal portion at time t d (k-1) and an estimate of the displacement of the distal portion 3d between instants t d (k-1) and t d (k).
  • the module 19 transmits this position to the display means 1 1 which then display to the practitioner an image representing both the vascular system of the subject 5 and the catheter 3 in this vascular system .
  • the system and the method according to the invention thus make it possible to display, for the practitioner, images illustrating the displacement of the catheter that it manipulates in the vascular system of the subject 5 at a satisfactory frequency, while reducing the frequency of emission of X-rays to the body of the subject 5, thus reducing the risks for the subject 5.
  • the system according to the invention also has the advantage of being of reduced cost.
  • the housing 50 is miniaturized, which facilitates its handling, especially during an intervention.
  • the system according to the invention can be used to monitor the movement of several medical instruments in the body of the subject, for example to follow the displacement of a catheter and a micro-catheter, the micro-catheter being inserted and moved inside the catheter.
  • the system 1 then comprises a plurality of detectors 40 each suitable for determining the relative displacement of an associated medical instrument with respect to another medical instrument or with respect to the body of the subject.
  • Each detector 40 is included in a housing 50 which is either fixed or movable relative to the body of the subject.
  • the displacement of each medical instrument relative to the body of the subject is then determined by composition of the displacement of this medical instrument relative to the associated casing 50, determined by the detector 40 included in this housing, and the displacement of the associated casing 50.
  • the system includes a first housing associated with the catheter and fixed relative to the body of the subject, and a second housing associated with the microcatheter and fixed relative to the catheter.
  • the first housing makes it possible to determine the displacement of the catheter relative to the body of the subject.
  • the second housing makes it possible to determine the displacement of the microcatheter relative to the second housing, thus the displacement of this microcatheter with respect to the catheter. Displacement of the catheter relative to the subject's body is then determined by composition of the displacement of the microcatheter relative to the catheter and displacement of the catheter relative to the body of the subject.
  • the detector 40 and the processing unit are connected by a wired connection, and the data picked up by the detector 40 are transmitted to the processing unit 41 via this wired link.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Endoscopes (AREA)

Abstract

Ce système comprend des moyens (9) de détermination d'une position d'une première portion d'un instrument médical dans le corps d'un sujet en un instant de détermination, et des moyens (11 ) d'affichage d'une image de la première portion dans la position déterminée. Les moyens (9) de détermination comprennent un module (15) d'imagerie, propre à acquérir, en un instant d'acquisition antérieur audit instant de détermination, une position de la première portion, un module (17) de détection d'un déplacement d'une deuxième portion de l'instrument médical entre lesdits instant d'acquisition et de détermination, et un module (19) de détermination, à partir de ladite position de la première portion audit instant d'acquisition et dudit déplacement de la deuxième portion, de la position de la première portion (3d) audit instant de détermination.

Description

Système et procédé de suivi du déplacement d'un instrument médical dans le corps d'un sujet
La présente invention concerne un système de suivi d'une première portion d'un instrument médical, insérée dans le corps d'un sujet, lors de son déplacement dans le corps du sujet, ledit système comprenant des moyens de détermination d'une position de ladite première portion par rapport au corps du sujet en au moins un instant de détermination, et des moyens d'affichage, à destination d'un utilisateur, audit instant de détermination, d'une image représentative d'au moins une partie du corps du sujet et de la première portion de l'instrument médical dans la position de la première portion déterminée par lesdits moyens de détermination à cet instant de détermination.
Elle s'applique en particulier au guidage du déplacement d'instruments médicaux tels que des cathéters, des guides, des aiguilles ou des endoscopes dans la lumière d'un vaisseau sanguin ou une cavité naturelle du corps d'un sujet, lors d'interventions médicales. La réussite de ces interventions dépend notamment de la précision du déplacement des instruments médicaux dans le corps du sujet.
Le guidage d'un tel instrument est classiquement réalisé à l'aide de techniques d'imagerie scanner permettant de visualiser le déplacement de l'instrument dans le corps du sujet.
Ces techniques sont par exemple mises en oeuvre en acquérant une image initiale du système vasculaire du sujet, avant l'intervention, et en superposant à cette image initiale des images successives de l'instrument lors de son déplacement dans le système vasculaire. Ces images sont par exemple acquises à une fréquence de 30 images par seconde.
L'image initiale du système vasculaire est généralement acquise au moyen d'un scanner par angiographie, en injectant préalablement dans le système vasculaire du sujet un agent de contraste opaque aux rayons X, par exemple un produit iodé. Lors de l'intervention, les images successives sont également acquises par scanner, l'instrument étant opaque aux rayons X.
De telles techniques nécessitent l'émission répétée de rayons X vers le corps du sujet et présentent donc un risque pour sa santé.
Pour minimiser ce risque, il est possible de réduire la fréquence d'acquisition des images lors du déplacement de l'instrument, par exemple jusqu'à 15 voire 7,5 images par seconde. Cependant, cette solution entraîne une dégradation des images fournies au praticien, notamment un scintillement de ces images, et une dégradation de la précision du déplacement de l'instrument. Pour résoudre ces inconvénients, il est connu de remplacer les images obtenues par scanner par des images obtenues par résonance magnétique (IRM). Néanmoins, cette solution s'avère très coûteuse.
L'invention a donc pour but de résoudre les inconvénients mentionnés ci-dessus, en particulier de fournir un système permettant de suivre le déplacement d'un instrument médical dans le corps d'un sujet avec une grande précision, qui minimise les risques encourus par le sujet, et de coût réduit.
A cet effet, l'invention a pour objet un système du type précité, caractérisé en ce que lesdits moyens de détermination comprennent :
- un module d'imagerie, propre à acquérir, en au moins un instant d'acquisition antérieur audit instant de détermination, une position de la première portion de l'instrument médical par rapport au corps du sujet,
- un module de détection d'un déplacement d'une deuxième portion de l'instrument médical par rapport au corps du sujet entre ledit instant d'acquisition et ledit instant de détermination, et
- un module de détermination propre à déterminer, à partir de la position de la première portion audit instant d'acquisition issue dudit module d'imagerie et dudit déplacement de la deuxième portion de l'instrument médical entre ledit instant d'acquisition et ledit instant de détermination, détecté par ledit module de détection, la position de la première portion de l'instrument médical par rapport au corps du sujet audit instant de détermination.
Selon d'autres aspects de l'invention, le procédé comprend l'une ou plusieurs des caractéristiques suivantes :
- ledit module de détection est propre à détecter une translation de ladite deuxième portion de l'instrument médical selon sa direction longitudinale et une rotation de ladite deuxième portion de l'instrument médical autour de sa direction longitudinale par rapport au corps du sujet entre ledit instant d'acquisition et ledit instant de détermination ;
- ledit module de détermination est propre à déterminer la position de la première portion de l'instrument médical par rapport au corps du sujet en chacun d'une pluralité d'instants de détermination successifs compris entre un premier et un deuxième instants d'acquisition successifs, à partir de la position de la première portion issue dudit module d'imagerie audit premier instant d'acquisition et du déplacement de la deuxième portion de l'instrument médical entre ledit premier instant d'acquisition et chaque instant de détermination de ladite pluralité d'instants de détermination, détecté par ledit module de détection ; - ledit module de détection comprend au moins un détecteur d'un déplacement de la deuxième portion par rapport à ce détecteur ;
- ledit détecteur est compris dans un boîtier comportant un conduit de passage de l'instrument médical ;
- ledit boîtier comporte une première portion renfermant ledit détecteur et une deuxième portion renfermant ledit conduit de passage ;
- ladite deuxième portion est étanche, ledit instrument médical circulant dans ledit conduit de passage étant isolé de manière étanche de ladite première portion ;
- ladite deuxième portion est montée de manière amovible sur ladite première portion ;
- ledit détecteur est un détecteur optique ;
- ledit détecteur optique comprend au moins une source lumineuse, propre à émettre un faisceau lumineux incident sur une zone de la deuxième portion de l'instrument médical et un récepteur optique, propre à détecter un faisceau lumineux réfléchi par la deuxième portion de l'instrument médical ;
- ladite source lumineuse est propre à émettre le faisceau lumineux incident sur une zone de la deuxième portion de l'instrument médical lors du passage de ladite deuxième portion dans ledit conduit de passage ;
- ledit détecteur est mobile par rapport au corps du sujet, et ledit module de détection comprend des moyens de détection d'un déplacement du détecteur par rapport au corps du sujet ;
- ladite première portion de l'instrument médical comprend au moins une zone visible par imagerie optique, et ledit module d'imagerie comprend un émetteur propre à émettre des rayons optiques vers le corps du sujet, et un détecteur, propre à recevoir des rayons optiques émis par ledit émetteur à travers le corps du sujet ;
- ladite deuxième portion dudit instrument médical est à l'extérieur du corps du sujet.
L'invention a également pour objet un procédé de suivi d'une première portion d'un instrument médical inséré dans le corps d'un sujet lors de son déplacement dans le corps du sujet, comprenant :
- la détermination d'une position de ladite première portion par rapport au corps du sujet en au moins un instant de détermination, et
- l'affichage, à destination d'un utilisateur, en chaque instant de détermination, d'une image représentative d'au moins une partie du corps du sujet et de la première portion de l'instrument médical dans la position de la première portion déterminée par lesdits moyens de détermination à cet instant de détermination, le procédé étant caractérisé en ce que la détermination de la position de ladite première portion comprend :
- l'acquisition en au moins un instant d'acquisition antérieur audit instant de détermination, d'une position de la première portion de l'instrument médical par rapport au corps du sujet,
- la détection d'un déplacement d'une deuxième portion de l'instrument médical par rapport au corps du sujet entre ledit instant d'acquisition et ledit instant de détermination, et
- la détermination, à partir de la position de la première portion audit instant d'acquisition et dudit déplacement de la deuxième portion de l'instrument médical entre ledit instant d'acquisition et ledit instant de détermination, de la position de la première portion de l'instrument médical par rapport au corps du sujet audit instant de détermination.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la Figure 1 est un schéma synoptique d'un système de suivi selon un mode de réalisation de l'invention ;
- la Figure 2 est un schéma illustrant un exemple d'implémentation du système de suivi de la Figure 1 ;
- la Figure 3 est un schéma en perspective d'une partie du système de la Figure
2 ;
- la Figure 4 est un exemple d'image fournie par le système selon l'invention ;
- la Figure 5 est un schéma synoptique d'un procédé de suivi mis en oeuvre par le système de la Figure 1.
On a représenté sur les Figures 1 à 3, de manière schématique, un système 1 de suivi du déplacement d'un instrument médical 3 dans le corps d'un sujet 5 selon un mode de réalisation de l'invention.
L'instrument médical 3 est un instrument flexible de forme générale tubulaire, tel qu'un cathéter, un micro-cathéter ou un guide.
L'instrument médical 3 est un tube souple de section transversale sensiblement circulaire, s'étendant selon une direction longitudinale pouvant être courbée.
L'instrument médical 3 est rigide en torsion autour de sa direction longitudinale. Ainsi, une rotation d'une portion de cet instrument médical 3 autour de sa direction longitudinale entraîne une rotation de l'ensemble de cet instrument médical 3 autour de sa direction longitudinale. Par ailleurs, une translation d'une partie de l'instrument 3 selon sa direction longitudinale entraîne un déplacement de l'ensemble de l'instrument 3
Dans ce mode de réalisation, l'instrument médical 3 considéré est un cathéter, et le système 1 selon l'invention est utilisé pour suivre le déplacement d'une portion de ce cathéter 3 dans le système vasculaire du sujet 5.
La longueur du cathéter 3 est par exemple comprise entre quelques dizaines de centimètres et 2 mètres, et son diamètre est compris entre quelques dizièmes de millimètres et quelques millimètres, notamment entre 0,5 mm et 5 mm.
Dans la suite de la description, on désignera par « portion distale » 3d du cathéter 3 la partie de ce cathéter 3 introduite et déplacée dans le corps du sujet 5, et par « portion proximale » 3p de ce cathéter 3 la partie de ce cathéter restant hors du corps du sujet 5, cette partie étant manipulée par un opérateur pour déplacer la portion distale 3d dans le corps du sujet 5.
Le cathéter 3 est dans le cas présent réalisé à partir d'un matériau opaque aux rayons X, par exemple un matériau plastique tel qu'un polymère fluoré.
La portion distale 3d du cathéter 3 est par exemple introduite dans une artère ou une veine du sujet 5 à travers un trocart 58 fixé à la peau du sujet 5.
Le système 1 comprend des moyens 9 de détermination de la position de la portion distale 3d du cathéter par rapport au système vasculaire du sujet 5 en une pluralité d'instants de détermination td, ainsi que des moyens 1 1 d'affichage du déplacement du cathéter 3 dans le système vasculaire du sujet 5.
De préférence, les instants de détermination td sont régulièrement espacés, la position de la portion distale 3d du cathéter 3 étant déterminée par les moyens 9 et affichée par les moyens 1 1 d'affichage à une fréquence de détermination fd par exemple comprise entre 20 et 40 images par seconde, notamment égale à 30 images par seconde.
On notera par la suite td(k-1) et td(k) deux instants de détermination successifs. Les moyens 9 comportent un module 15 d'imagerie propre à acquérir, en une pluralité d'instants d'acquisition ta successifs, la position de la portion distale 3d du cathéter 3 lors de son déplacement dans le système vasculaire du sujet 5.
Les instants d'acquisition ta sont des instants tels qu'au moins un instant de détermination td est compris entre deux instants d'acquisition ta.
De préférence, les instants d'acquisition ta sont régulièrement espacés, la position de la portion distale 3d du cathéter 3 étant acquise par le module 15 d'imagerie à une fréquence d'acquisition fa inférieure à la fréquence de détermination fd. La fréquence d'acquisition fa est par exemple comprise entre 2 et 10 images par seconde. La fréquence d'acquisition fa est par exemple un sous-multiple de la fréquence de détermination fd
On notera par la suite ta(n-1) et ta(n) deux instants d'acquisition successifs.
Les moyens 9 comportent en outre un module 17 de détection du déplacement de la portion proximale 3p du cathéter 3 entre deux instants de détermination t<y successifs, et un module 19 de détermination de la position de la portion distale 3d du cathéter 3 en chaque instant td de détermination, à partir des positions de cette portion distale 3d acquises par le module 15 d'imagerie en chaque instant ta d'acquisition et des déplacements de la portion proximale 3p issus du module 17 de détection.
Ainsi, les instants td de détermination auxquels la position de la portion distale 3d du cathéter est déterminée comprennent, outre les instants d'acquisition ta auxquels une image de cette portion distale 3d est acquise, des instants intermédiaires compris entre deux instants d'acquisition ta successifs, la position de la portion distale 3d du cathéter 3 en chaque instant intermédiaire étant déterminée à partir du déplacement de la portion proximale 3p du cathéter 3.
Le module 15 d'imagerie comprend par exemple un système d'imagerie à rayons X, comprenant un émetteur 23 de rayons X, un détecteur 25 de rayons X et une unité 27 de commande et de traitement, reliée à l'émetteur 23 et au détecteur 25.
L'émetteur 23 de rayons X est par exemple un tube à rayons X. L'émetteur 23 est positionné au regard d'une table 24 de support du sujet 5. Il est propre à émettre en chaque instant d'acquisition ta des rayons X en direction d'un sujet 5 étendu sur cette table de support, en particulier de la zone d'intérêt du corps du sujet 5, i.e. de la zone de son système vasculaire dans laquelle il est prévu de déplacer le cathéter 3.
Le détecteur 25 de rayons X est disposé face à l'émetteur 23, la table de support étant placée entre l'émetteur 23 et le détecteur 25.
Ainsi, le détecteur 25 de rayons X est propre à recevoir des rayons X émis par l'émetteur 23 à travers le corps du sujet 5. Le cathéter 3 est au moins en partie opaque aux rayons X.
Ainsi, lorsqu'il est introduit dans le système vasculaire du sujet 5, le cathéter 3 ne transmet pas les rayons X qu'il reçoit de l'émetteur 23 vers le détecteur 25. Le détecteur 25 est propre à émettre des signaux représentatifs des rayons X détectés à destination de l'unité 27 de commande et de traitement.
L'unité 27 est propre à commander l'émission de rayons X par l'émetteur 23 en chaque instant d'acquisition ta, à recevoir des signaux issus du détecteur 25 représentatifs des rayons X détectés par ce détecteur 25 à cet instant d'acquisition ta, et à générer, à partir de ces signaux, une image par rayons X du corps du sujet 5. Lorsque le cathéter 3 est présent dans le système vasculaire du sujet 5, cette image générée par le dispositif 27 de commande et de traitement fait apparaître le cathéter 3, et en particulier sa portion distale 3d.
Cette image ne fait pas apparaître le système vasculaire du sujet 5, car celui-ci n'est pas opaque aux rayons X.
L'unité 27 de commande et de traitement est propre à reconstituer une image du système vasculaire du sujet 5 faisant apparaître à la fois ce système vasculaire et le cathéter 3, par superposition de chaque image par rayons X à une image initiale du système vasculaire du sujet 5. Cette image initiale est par exemple une image préalablement acquise par le module 15 d'imagerie après introduction dans le système vasculaire du sujet 5 d'un agent de contraste opaque aux rayons X.
L'unité 27 de commande et de traitement est en outre propre à déterminer, à partir de cette image reconstituée, quelle est la position du cathéter 3, en particulier de sa portion distale 3d, à l'instant d'acquisition ta, dans un référentiel R lié au système vasculaire du sujet 5.
Le module 17 de détection est propre à détecter tout déplacement de la portion proximale 3p du cathéter 3 par rapport au sujet 5, en particulier par rapport au système vasculaire du sujet 5, entre deux instants de détermination td successifs.
A cette fin, le module 17 de détection comprend un détecteur 40 de déplacement, propre à détecter le déplacement relatif de la portion proximale 3p du cathéter 3 par rapport à ce détecteur 40 entre deux instants de détermination td successifs, selon deux degrés de liberté correspondant d'une part à une translation du cathéter 3 selon sa direction longitudinale et une rotation du cathéter autour de sa direction longitudinale.
Le module 17 de détection comprend par ailleurs une unité 41 de traitement des données issues du détecteur 40 pour en déduire le déplacement de la portion proximale 3p du cathéter 3 par rapport au référentiel R lié au système vasculaire du sujet 5 entre deux instants de détermination ^ successifs.
De préférence, et comme illustré sur la Figure 2, le détecteur 40 est un détecteur optique. Il comprend un émetteur laser 42, propre à émettre un faisceau laser vers une zone prédéterminée 43 de détection, un récepteur optique 44, propre à recevoir et à détecter un rayonnement laser issu de l'émetteur laser 42 après réflexion sur le cathéter 3.
La zone de détection 43 est disposée le long du passage de la portion proximale 3p du cathéter 3 lors de son déplacement par un opérateur. L'émetteur laser 42 comprend par exemple une diode laser propre à émettre un faisceau laser, à travers une lentille, vers la zone de détection 43. Le faisceau laser émis par l'émetteur laser 42 est donc reçu et réfléchi par la paroi extérieure du cathéter 3.
La distance entre l'émetteur laser 42 et la paroi extérieure du cathéter 3 est une distance fixe, comprise par exemple entre 2,2 et 2, 4mm.
De préférence, la diode laser 48 émet dans l'infrarouge.
Le récepteur optique 44 comprend une matrice de capteurs, par exemple des capteurs CCD ou CMOS. Le récepteur optique 44 est par exemple formé d'une aire de 32x32 capteurs. Les capteurs sont propres à recevoir le rayonnement laser issu de l'émetteur laser 42 après réflexion sur le cathéter 3 et à convertir ce rayonnement en signaux électriques représentatifs de l'intensité lumineuse reçue.
Le récepteur optique 44 est ainsi propre à acquérir à des instants de réception tr des images de la portion du cathéter 3 traversant la zone 43, à une fréquence de réception fr supérieure à la fréquence fd de détermination. La fréquence de réception fr est par exemple comprise entre 125 et 1000 images par seconde.
Comme illustré sur la Figure 2, le détecteur 40 est compris dans un boîtier 50 renfermant l'émetteur laser 42 et le récepteur optique 44, et comprenant un conduit 52 permettant la circulation du cathéter 3, la zone 43 de détection étant disposée dans ce conduit 52.
Ainsi, un mouvement imprimé sur la portion proximale 3p du cathéter 3 par un opérateur pour déplacer la portion distale 3d du cathéter 3 dans le corps du sujet 5 induit un déplacement de la portion proximale 3p à travers le conduit 52, et en particulier dans la zone de détection 43, ce qui permet au détecteur 40 de capter tout déplacement de cette portion proximale 3p.
Par exemple, comme illustré sur la Figure 3, le boîtier 50 comporte une première portion 50a renfermant l'émetteur laser 42 et le récepteur optique 44, appelée par la suite capteur 50a, et une deuxième portion 50b renfermant le conduit 52, montée amovible sur la première portion, appelée par la suite support 50b.
De préférence, le support 50b est étanche, de telle sorte que les instruments médicaux circulant dans le conduit 52 sont isolés de manière étanche du capteur 50a, en particulier de l'émetteur laser 42 et du récepteur optique 44.
Ce support 50b est adapté pour être stérilisé en autoclave.
Le conduit 52 comprend une ouverture permettant le passage du faisceau laser issu de l'émetteur laser 42 vers le cathéter 3. Cette ouverture est par exemple formée par une fenêtre transparente 53 ménagée sur une surface du support 50b Le montage amovible du support 50b du boîtier 50 sur le capteur 50a permet d'adapter différents supports 50b, en fonction du type et de la taille de l'instrument médical disposé dans le conduit 52, sur un même capteur 50a, et donc d'assurer l'adaptabilité du boîtier 50 à différents instruments médicaux.
En particulier, les dimensions du support 50b, qui permettent de régler la position du conduit 52 par rapport au capteur 50a et le diamètre du conduit 52, sont choisis en fonction du diamètre du cathéter 3 de manière à garantir une distance optimale entre l'émetteur laser 42 et la paroi extérieure du cathéter 3.
Ainsi, le diamètre interne du conduit 52 est choisi en fonction du diamètre externe du cathéter 3, de manière à garantir la distance souhaitée entre l'émetteur laser 42 et la paroi extérieure du cathéter 3, par exemple comprise entre 2,2 et 2,4mm.
Le support 50b comprend par ailleurs un premier connecteur extérieur 56a permettant de fixer le boîtier 50 à l'instrument médical à travers lequel le cathéter 3 est introduit dans le système vasculaire, dans le cas présent un trocart 58, et un deuxième connecteur extérieur 56b permettant de fixer le boîtier 50 à une valve hémostatique ou un autre dispositif qui en usage conventionnel aurait été attaché au trocart 58.
Le capteur 50a et le support 50b sont fixés l'un à l'autre par des moyens de fixation, par exemple des vis 59.
Le boîtier 50 comprend en outre une interface de communication 60 permettant le transfert des données captées par le détecteur 40 vers l'unité 41 de traitement. De préférence, cette interface 60 est une interface sans fil, par exemple un émetteur radio- fréquences.
De préférence, le détecteur 40 est alimenté par une batterie 62 incluse dans le boîtier. Ainsi, le boîtier 50 peut être utilisé sans être relié par une connexion filaire à une source d'alimentation ou à l'unité 41 de traitement.
Le boîtier 50 est de préférence réalisé à partir de polyamide fritté, permettant sa mise en autoclave.
L'unité 41 de traitement est propre à recevoir du récepteur 44 des signaux représentatifs des images acquises par ce récepteur 44, et à analyser ces images pour déterminer le déplacement relatif de la portion proximale 3p du cathéter 3 dans un référentiel R' lié au détecteur 40 entre deux instants de détermination td successifs.
De manière connue, cette analyse est réalisée en déterminant une corrélation entre deux images prises successivement par le récepteur 44. Cette corrélation permet de détecter le déplacement relatif de la portion proximale 3p du cathéter 3 par rapport au détecteur 40 selon les deux degrés de liberté mentionnés ci-dessus entre deux instants de réception tr. L'unité 41 de traitement est propre à déduire le déplacement relatif de la portion proximale 3p du cathéter 3 dans le référentiel R' lié au détecteur 40 entre deux instants de détermination td successifs par composition des déplacements détectés entre les instants de réception tr compris entre ces deux instants de détermination td successifs.
Par ailleurs, l'unité 41 de traitement est propre à déterminer le déplacement relatif de la portion proximale 3p du cathéter 3 dans le référentiel R du système vasculaire du sujet 5 à partir du déplacement relatif de cette portion proximale 3p dans le référentiel R' du détecteur 40.
Dans le mode de réalisation représenté sur les Figures 2 et 3, le boîtier 50 est fixé au trocart 58 lui-même fixé à la peau du sujet 5. Le boîtier 50 et le détecteur 40 occupent donc une position fixe par rapport au système vasculaire du sujet 5. Par conséquent, le déplacement relatif de la portion proximale 3p du cathéter 3 dans le référentiel R du système vasculaire du sujet 5 est identique au déplacement relatif de cette portion proximale 3p dans le référentiel R' du détecteur 40.
Le récepteur optique 44 a par exemple une résolution de 1200 points par pouce, soit 48 points par millimètre, ce qui permet de capter avec précision les déplacements de translation et de rotation de la portion proximale 3p du cathéter 3.
Par exemple, la vitesse maximale de déplacement pouvant être détectée est comprise entre 100 et 1000 mm/s, notamment égale à 378 mm/s.
Le module 19 de détermination de la position de la portion distale 3d est relié au module 15 d'imagerie et au module 17 de détection.
Le module 19 est propre à déterminer la position de la portion distale 3d du cathéter 3 en chaque instant de détermination td, à partir des positions de cette portion distale 3d acquises par le module 15 d'imagerie en chaque instant d'acquisition fa et des déplacements de la portion proximale 3p du cathéter 3 entre deux instants de détermination td issus du module 17 de détection.
Pour cela, le module 19 est propre à déduire du déplacement de la portion proximale 3p du cathéter 3 entre deux instants de détermination td successifs td(k-1) et td(k) et de la cartographie du système vasculaire du sujet 5, quel est le déplacement de la portion distale 3d de ce cathéter 3 dans le système vasculaire du sujet 5 entre les deux instants de détermination td(k-1) et td(k).
La cartographie du système vasculaire du sujet 5 est par exemple préalablement déterminée par le module 19 à partir de l'image initiale du système vasculaire du sujet 5 acquise par le module 15 d'imagerie.
De préférence, la position de la portion distale 3d est déterminée en chaque instant d'acquisition ta comme la position de cette portion distale 3d acquise par le module 15 d'imagerie. Par ailleurs, en chaque instant de détermination td(k) distinct d'un instant d'acquisition ta, la position de la portion distale 3d est déterminée à partir de la position de cette portion distale 3d à l'instant de détermination td(k-1) immédiatement précédent et d'une estimation du déplacement de la portion distale 3d entre les instants td(k-1) et td(k).
Ainsi, le module 19 est propre à déterminer les positions successives de la portion distale 3d du cathéter 3 aux instants de détermination td à partir des déplacements de la portion proximale 3p issus du module 17 de détection, et à recaler la position de cette portion distale 3d en chaque instant d'acquisition ta, à partir de la position acquise par le module 15 d'imagerie.
Ce recalage périodique permet de corriger des erreurs de précision de la position telle que déterminée à partir du seul module 17 de détection.
Les moyens 1 1 d'affichage comprennent un dispositif d'affichage 68 propre à recevoir du module 19 les positions successives de la portion distale 3d du cathéter 3 aux instants de détermination td et à afficher à destination d'un praticien, en chaque instant td de détermination, une image représentative du système vasculaire du sujet 5 et de la position du cathéter 3, en particulier de sa portion distale 3d, par rapport à ce système vasculaire à cet instant de détermination td. Un exemple d'une telle image est illustré sur la Figure 4. Cette image comprend une représentation du système vasculaire du sujet 5 sur laquelle est superposée une représentation de la portion distale 3d du cathéter 3.
Comme illustré sur la Figure 2, dans un mode de réalisation, l'unité 27 de commande et de traitement, l'unité 41 de traitement et le module 19 de détermination de la position de la portion distale 3d sont des applications mises en oeuvre par un calculateur 72.
Le calculateur 72 comprend à cette fin un processeur 78, une ou plusieurs mémoire(s) 80, des moyens d'interface homme machine 82, et des moyens 84 d'interface.
La mémoire 80 comprend différentes zones de mémoire contenant des applications destinées à être exécutées par le processeur 78, en particulier des applications correspondant aux fonctions exécutées par l'unité 27 de commande et de traitement, et/ou l'unité 41 de traitement et/ou le module 19. La mémoire 80 contient également des données relatives au système vasculaire du sujet 5, notamment l'image initiale du système vasculaire du sujet 5 acquise par le module 15 d'imagerie et la cartographie de ce système vasculaire déterminée par le module 19 à partir de cette image initiale. Le processeur 78 est adapté pour exécuter des applications contenues dans la mémoire 80, notamment un système d'exploitation permettant le fonctionnement classique d'un système informatique.
Le calculateur 72 est propre à échanger des données avec l'émetteur 23 et le détecteur 25 du module d'imagerie 15 et avec le détecteur 40 du module 17 de détection via les moyens 84 d'interface. En particulier, les moyens 84 d'interface comprennent un émetteur/récepteur sans fil propre à échanger des données avec l'interface de communication 60 du boîtier 50.
Les moyens d'interface homme machine 82 comprennent des moyens 84 de saisie d'informations par un opérateur pour le paramétrage du système 1 et le dispositif d'affichage 68. En particulier, les moyens d'interface 82 permettent à l'utilisateur de définir la fréquence d'acquisition fa de la position de la portion distale 3d du cathéter par le module 15 d'imagerie.
Un exemple de mise en œuvre d'un procédé selon l'invention au moyen du système 1 de suivi de la portion distale du cathéter 3 lors d'une intervention va maintenant être décrit en référence à la Figure 5.
Ce procédé comprend une étape initiale 100 lors de laquelle une image initiale du système vasculaire du sujet 5 est acquise par le module 15 d'imagerie après introduction dans le système vasculaire du sujet 5 d'un agent de contraste opaque aux rayons X.
Par ailleurs, lors de cette étape initiale 100, l'image initiale est transmise au module 19 qui détermine, à partir de cette image initiale, une cartographie du système vasculaire du sujet 5.
L'image initiale et la cartographie du système vasculaire sont alors stockées dans la mémoire 80 du calculateur 72.
L'intervention est ensuite initiée, par exemple par le praticien, lors d'une étape
102, par introduction du trocart 58 dans une veine ou une artère du système vasculaire à travers la peau du sujet 5, et par fixation de ce trocart 58 à la peau du sujet 5. Le boîtier 50 est alors fixé par son connecteur extérieur 56 au trocart 58, et la portion distale 3d du cathéter 3 est introduite, à travers le conduit 52 du boîtier 50 et à travers le trocart 58, dans le système vasculaire du sujet 5.
Un déplacement de la portion distale 3d du cathéter 3 dans le système vasculaire du sujet 5 est alors généré, par exemple par un déplacement de la portion proximale 3p du cathéter 3 par un opérateur, notamment selon une translation de cette portion proximale 3p vers le corps du sujet 5 et/ou une rotation de cette portion proximale 3p autour de la direction longitudinale du cathéter 3. Le déplacement de la portion distale 3d du cathéter 3 dans le système vasculaire est alors suivi par le système 1 et affiché à destination du praticien selon les étapes suivantes, réalisées de manière itérative.
Lors d'une étape 106 d'acquisition, mise en oeuvre en un instant d'acquisition ta(n), le module 15 d'imagerie acquiert la position de la portion distale 3d du cathéter 3 dans le système vasculaire du sujet 5.
Pour cela, lors d'une phase 108, l'émetteur 23 de rayons X émet à l'instant d'acquisition ta(n) des rayons X en direction de la zone d'intérêt du corps du sujet 5 dans laquelle le cathéter 3 est déplacé, en réponse à un ordre de commande de l'unité 27 de commande et de traitement.
Ces rayons traversent le corps du sujet 5 et sont ensuite reçus par le détecteur 25. Le détecteur 25 émet alors des signaux électriques représentatifs des rayons X détectés à destination de l'unité 27 de commande et de traitement.
L'unité 27 génère à partir de ces signaux une image par rayons X du corps du sujet 5, faisant apparaître la portion distale 3d du cathéter 3.
L'unité 27 de commande et de traitement superpose alors l'image par rayons X ainsi générée à l'image initiale du système vasculaire du sujet 5 pour former une image faisant apparaître à la fois ce système vasculaire et le cathéter 3.
Par ailleurs, l'unité 27 détermine, à partir de cette image reconstituée, quelle est la position du cathéter 3, en particulier de sa portion distale 3d, dans le référentiel R du système vasculaire du sujet 5 à l'instant d'acquisition ta et transmet cette position au module 19.
Lors d'une phase 1 10 d'affichage, le module 19 transmet cette position aux moyens 1 1 d'affichage qui affichent alors à destination du praticien une image représentant à la fois le système vasculaire du sujet 5 et la portion distale 3d du cathéter 3 dans ce système vasculaire.
Cette étape 106 d'acquisition est ensuite répétée à l'instant d'acquisition ta(n+1) suivant.
En chaque instant de détermination td{k) compris entre ces instants d'acquisition ta(n) et ta(n+1), la position de la portion distale 3d du cathéter 3 est déterminée selon une pluralité 120 d'étapes 121 de détection, à partir du déplacement de la portion proximale 3p de ce cathéter 3 détecté par le module 17 de détection.
L'étape 21 de détection est ainsi réitérée pour déterminer la position de la portion distale 3d en chaque instant de détermination td( ).
L'étape 121 de détection comprend une phase 122 de détection par le module 17 des déplacements de la portion proximale 3p du cathéter 3 par rapport au système vasculaire du sujet 5, entre les instants de détermination fd(k-1 ) et td(k). Lors de la première itération de l'étape 120, id(k-1 ) correspond à l'instant d'acquisition ta(n).
Lors de la phase 122, le détecteur 40 de déplacement détermine les déplacements de rotation de la portion proximale 3p du cathéter autour de sa direction longitudinale et les déplacements de translation du cathéter de la portion proximale 3p selon sa direction longitudinale par rapport à ce détecteur 40 entre les deux instants fd(k-1 ) et td(k).
Pour cela, l'émetteur laser 42 émet un faisceau laser vers la zone 43 de détection, à travers laquelle circule le cathéter 3. Le faisceau laser, réfléchi par la paroi extérieure du cathéter 3, est reçu par le récepteur optique 44.
Le récepteur optique 44 acquiert ainsi à de multiples instants de réception R entre les instants de détermination id(k-1 ) et td(k) des images de la portion du cathéter 3 traversant la zone 43, et transmet ces informations à l'unité 41 de traitement via l'interface de communication 60 sans fil.
L'unité 41 de traitement analyse ces images pour déterminer le déplacement relatif de translation et de rotation de la portion proximale 3p du cathéter 3 par rapport au détecteur 40 entre les instants de détermination td(k-î ) et td(k), et en déduit le déplacement relatif de la portion proximale 3p du cathéter 3 dans le référentiel R du système vasculaire du sujet 5. L'unité 41 de traitement transmet ces informations au module 19.
La phase 122 de détection est suivie d'une phase 124 lors de laquelle le module
19 détermine la position de la portion distale 3d du cathéter 3 à l'instant de détermination td{k), à partir de la position de cette portion distale 3d à l'instant de détermination id(k-1 ) et du déplacement de la portion proximale 3p du cathéter 3 entre les instants de détermination td(k) et fd(k-1 ).
Pour cela, le module 19 détermine, à partir du déplacement de la portion proximale
3p du cathéter 3 entre les instants de td(k) et £d(k-1 ) et de la cartographie du système vasculaire stockée dans la mémoire 80, le déplacement de la portion distale 3d de ce cathéter 3 dans le système vasculaire du sujet 5 entre les instants de td(k) et id(k-1 ).
Le module 19 détermine alors la position de la portion distale 3d à l'instant td(k) à partir de la position de cette portion distale à l'instant td(k-1) et d'une estimation du déplacement de la portion distale 3d entre les instants td(k-1) et td(k).
Lors d'une phase 126 d'affichage, le module 19 transmet cette position aux moyens 1 1 d'affichage qui affichent alors à destination du praticien une image représentant à la fois le système vasculaire du sujet 5 et le cathéter 3 dans ce système vasculaire. Le système et le procédé selon l'invention permettent ainsi d'afficher à destination du praticien des images illustrant le déplacement du cathéter qu'il manipule dans le système vasculaire du sujet 5 à une fréquence satisfaisante, tout en réduisant la fréquence d'émission de rayons X vers le corps du sujet 5, donc en réduisant les risques pour le sujet 5.
Le système selon l'invention présente par ailleurs l'avantage d'être de coût réduit. En outre, le boîtier 50 est miniaturisé, ce qui facilite sa manipulation, en particulier lors d'une intervention.
Il devra être compris que les exemples de réalisation présentés ci-dessus ne sont pas limitatifs.
Notamment, le système selon l'invention peut être utilisé pour suivre le déplacement de plusieurs instruments médicaux dans le corps du sujet, par exemple pour suivre le déplacement d'un cathéter et d'un micro-cathéter, le micro-cathéter étant inséré et déplacé à l'intérieur du cathéter.
Le système 1 comporte alors plusieurs détecteurs 40, chacun propre à déterminer le déplacement relatif d'un instrument médical associé par rapport à un autre instrument médical ou par rapport au corps du sujet.
Chaque détecteur 40 est compris dans un boîtier 50 qui est soit fixe, soit mobile par rapport au corps du sujet.
Le déplacement de chaque instrument médical par rapport au corps du sujet est alors déterminé par composition du déplacement de cet instrument médical par rapport au boîtier 50 associé, déterminé par le détecteur 40 inclus dans ce boîtier, et du déplacement du boîtier 50 associé.
Par exemple, pour suivre le déplacement d'un cathéter et d'un micro-cathéter inséré et déplacé à l'intérieur du cathéter, le système comprend un premier boîtier associé au cathéter et fixe par rapport au corps du sujet, et un deuxième boîtier associé au microcathéter et fixe par rapport au cathéter.
Le premier boîtier permet de déterminer le déplacement du cathéter par rapport au corps du sujet.
Le deuxième boîtier permet de déterminer le déplacement du micro-cathéter par rapport au deuxième boîtier, donc le déplacement de ce micro-cathéter par rapport au cathéter. Le déplacement du cathéter par rapport au corps du sujet est alors déterminé par composition du déplacement du micro-cathéter par rapport au cathéter et du déplacement du cathéter par rapport au corps du sujet. En outre, selon une variante, le détecteur 40 et l'unité de traitement sont reliés par une liaison filaire, et les données captées par le détecteur 40 sont transmises vers l'unité 41 de traitement via cette liaison filaire.
Bien entendu, d'autres modes de réalisation peuvent être envisagés, et les caractéristiques techniques des modes de réalisation et variantes mentionnées ci-dessus peuvent être combinées entre elles.

Claims

REVENDICATIONS
1 .- Système (1 ) de suivi d'une première portion (3d) d'un instrument médical (3), insérée dans le corps d'un sujet (5), lors de son déplacement dans le corps du sujet (5), ledit système (1 ) comprenant :
- des moyens (9) de détermination d'une position de ladite première portion (3d) par rapport au corps du sujet (5) en au moins un instant de détermination {td), et
- des moyens (1 1 ) d'affichage, à destination d'un utilisateur, audit instant de détermination (td), d'une image représentative d'au moins une partie du corps du sujet (5) et de la première portion (3d) de l'instrument médical (3) dans la position de la première portion (3d) déterminée par lesdits moyens (9) de détermination à cet instant de détermination (td),
le système (1 ) étant caractérisé en ce que lesdits moyens (9) de détermination comprennent :
- un module (15) d'imagerie, propre à acquérir, en au moins un instant d'acquisition {ta) antérieur audit instant de détermination (td) , une position de la première portion (3d) de l'instrument médical (3) par rapport au corps du sujet (5) ,
- un module (17) de détection d'un déplacement d'une deuxième portion (3p) de l'instrument médical (3) par rapport au corps du sujet (5) entre ledit instant d'acquisition {ta) et ledit instant de détermination (fd), et
- un module (19) de détermination propre à déterminer, à partir de la position de la première portion (3d) audit instant d'acquisition (fa) issue dudit module d'imagerie (15) et dudit déplacement de la deuxième portion (3p) de l'instrument médical (3) entre ledit instant d'acquisition (fa) et ledit instant de détermination {td), détecté par ledit module (17) de détection, la position de la première portion (3d) de l'instrument médical (3) par rapport au corps du sujet (5) audit instant de détermination {td), ledit module (19) de détermination étant propre à déterminer la position de la première portion (3d) de l'instrument médical (3) par rapport au corps du sujet (5) en chacun d'une pluralité d'instants de détermination {td) successifs compris entre un premier {ta(n-1)) et un deuxième {ta(n)) instants d'acquisition successifs, à partir de la position de la première portion (3d) issue dudit module d'imagerie (15) audit premier instant d'acquisition {ta(n-1)) et du déplacement de la deuxième portion (3p) de l'instrument médical (3) entre ledit premier instant d'acquisition {ta(n-1)) et chaque instant de détermination {td) de ladite pluralité d'instants de détermination {td), détecté par ledit module (1 7) de détection.
2. - Système (1 ) de suivi selon la revendication 1 , caractérisé en ce que ledit module (17) de détection est propre à détecter une translation de ladite deuxième portion (3p) de l'instrument médical (3) selon sa direction longitudinale et une rotation de ladite deuxième portion (3p) de l'instrument médical (3) autour de sa direction longitudinale par rapport au corps du sujet (5) entre ledit instant d'acquisition (ta) et ledit instant de détermination {td) .
3. - Système (1 ) de suivi selon la revendication 1 ou 2, caractérisé en ce que ledit module (17) de détection comprend au moins un détecteur (40) d'un déplacement de la deuxième portion (3p) par rapport à ce détecteur (40).
4.- Système (1 ) de suivi selon la revendication 3, caractérisé en ce que ledit détecteur (40) est compris dans un boîtier (50) comportant un conduit (52) de passage de l'instrument médical (3).
5. - Système (1 ) de suivi selon la revendication 4, caractérisé en ce que ledit boîtier (50) comporte une première portion (50a) renfermant ledit détecteur (40) et une deuxième portion (50b) renfermant ledit conduit (52) de passage.
6. - Système (1 ) de suivi selon la revendication 5, caractérisé en ce que ladite deuxième portion (50b) est étanche, ledit instrument médical (3) circulant dans ledit conduit (52) de passage étant isolé de manière étanche de ladite première portion (50a).
7. - Système (1 ) de suivi selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que ladite deuxième portion (50b) est montée de manière amovible sur ladite première portion (50a).
8. - Système (1 ) de suivi selon l'une quelconque des revendications 3 à 7, caractérisé en ce que ledit détecteur (40) est un détecteur optique.
9. - Système (1) de suivi selon la revendication 8, caractérisé en ce que ledit détecteur optique (40) comprend au moins une source lumineuse (42), propre à émettre un faisceau lumineux incident sur une zone de la deuxième portion (3p) de l'instrument médical (3) et un récepteur optique (44), propre à détecter un faisceau lumineux réfléchi par la deuxième portion (3p) de l'instrument médical (3).
10. - Système (1) de suivi selon la revendication 9 et l'une quelconque des revendications 4 à 7, caractérisé en ce que ladite source lumineuse (42) est propre à émettre le faisceau lumineux incident sur une zone de la deuxième portion (3p) de l'instrument médical (3) lors du passage de ladite deuxième portion (3p) dans ledit conduit (52) de passage.
. - Système (1 ) de suivi selon l'une quelconque des revendications 3 à 10, caractérisé en ce que ledit détecteur (40) est mobile par rapport au corps du sujet (5), et en ce que ledit module (17) de détection comprend des moyens de détection d'un déplacement du détecteur (40) par rapport au corps du sujet (5).
12. - Système (1 ) de suivi selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite première portion (3d) de l'instrument médical (3) comprend au moins une zone visible par imagerie optique, et en ce que ledit module (15) d'imagerie comprend un émetteur (23) propre à émettre des rayons optiques vers le corps du sujet (5) , et un détecteur (25), propre à recevoir des rayons optiques émis par ledit émetteur (23) à travers le corps du sujet (5).
13. - Système (1 ) de suivi selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit module (17) de détection est propre à détecter un déplacement de la deuxième portion (3p) de l'instrument médical (3) par rapport au corps du sujet (5), entre ledit instant d'acquisition (ta) et ledit instant de détermination (td), ladite deuxième portion (3p) étant à l'extérieur du corps du sujet (5).
14. - Procédé de suivi d'une première portion (3d) d'un instrument médical (3) inséré dans le corps d'un sujet (5) lors de son déplacement dans le corps du sujet (5), comprenant :
- la détermination (108, 124) d'une position de ladite première portion (3d) par rapport au corps du sujet (5) en au moins un instant de détermination (td) , et
- l'affichage (1 10, 126), à destination d'un utilisateur, en chaque instant de détermination (td) , d'une image représentative d'au moins une partie du corps du sujet (5) et de la première portion (3d) de l'instrument médical (3) dans la position de la première portion (3d) déterminée par lesdits moyens (9) de détermination à cet instant de détermination (td),
le procédé étant caractérisé en ce que la détermination (108, 124) de la position de ladite première portion (3d) comprend :
- l'acquisition (1 08) en au moins un instant d'acquisition (ta) antérieur audit instant de détermination (td) , d'une position de la première portion (3d) de l'instrument médical (3) par rapport au corps du sujet (5) ,
- la détection (122) d'un déplacement d'une deuxième portion (3p) de l'instrument médical (3) par rapport au corps du sujet (5) entre ledit instant d'acquisition (fa) et ledit instant de détermination (td), et
- la détermination (1 24), en chacun d'une pluralité d'instants de détermination (fd) successifs compris entre un premier {ta(n-1)) et un deuxième {ta(n)) instants d'acquisition successifs, de la position de la première portion (3d) de l'instrument médical (3) par rapport au corps du sujet (5), à partir de la position de la première portion (3d) audit premier instant d'acquisition {ta(n-1)) et du déplacement de la deuxième portion (3p) de l'instrument médical (3) entre ledit premier instant d'acquisition (ta(n-1)) et chaque instant de détermination (td) de ladite pluralité d'instants de détermination (td).
EP14831018.8A 2013-12-31 2014-12-23 Système et procédé de suivi du déplacement d'un instrument médical dans le corps d'un sujet Withdrawn EP3089692A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363755A FR3015883B1 (fr) 2013-12-31 2013-12-31 Systeme et procede de suivi du deplacement d'un instrument medical dans le corps d'un sujet
PCT/FR2014/053540 WO2015101747A1 (fr) 2013-12-31 2014-12-23 Système et procédé de suivi du déplacement d'un instrument médical dans le corps d'un sujet

Publications (1)

Publication Number Publication Date
EP3089692A1 true EP3089692A1 (fr) 2016-11-09

Family

ID=50729574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14831018.8A Withdrawn EP3089692A1 (fr) 2013-12-31 2014-12-23 Système et procédé de suivi du déplacement d'un instrument médical dans le corps d'un sujet

Country Status (5)

Country Link
US (1) US20170007333A1 (fr)
EP (1) EP3089692A1 (fr)
JP (1) JP6535674B2 (fr)
FR (1) FR3015883B1 (fr)
WO (1) WO2015101747A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
EP3019096B1 (fr) 2013-07-08 2023-07-05 Avinger, Inc. Système d'identification de limitante élastique pour guider une thérapie interventionnelle
CN107106190B (zh) 2014-07-08 2020-02-28 阿维格公司 高速慢性全闭塞部横穿装置
WO2017011587A1 (fr) 2015-07-13 2017-01-19 Avinger, Inc. Lentille réflectrice anamorphosante micro-moulée pour cathéters à usage diagnostique/thérapeutique guidés par imagerie
JP6927986B2 (ja) 2016-01-25 2021-09-01 アビンガー・インコーポレイテッドAvinger, Inc. 遅延補正を備えたoctイメージングカテーテル
WO2017173370A1 (fr) 2016-04-01 2017-10-05 Avinger, Inc. Cathéter d'athérectomie avec dispositif de coupe dentelé
CA3086505C (fr) 2016-05-16 2022-09-06 TrackX Technology, LLC Systeme et procede de localisation d'images d'effecteurs pendant un acte medical
WO2017210466A1 (fr) 2016-06-03 2017-12-07 Avinger, Inc. Cathéter à extrémité distale détachable
WO2018006041A1 (fr) 2016-06-30 2018-01-04 Avinger, Inc. Cathéter d'athérectomie avec pointe distale formable
EP3541275A4 (fr) * 2016-11-16 2020-07-29 Avinger, Inc. Procédés, systèmes et appareils pour afficher une position de cathéter en temps réel
WO2021076356A1 (fr) 2019-10-18 2021-04-22 Avinger, Inc. Dispositifs de croisement d'occlusion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136768A2 (fr) * 2006-05-19 2007-11-29 Mako Surgical Corp. Procédé et appareil pour commander un dispositif haptique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695501A (en) * 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
US20060020239A1 (en) * 2004-07-20 2006-01-26 Geiger Mark A Cerebral spinal fluid flow sensing device
JP2008516722A (ja) * 2004-10-19 2008-05-22 ナヴォテック メディカル リミテッド 追跡ガイドを使用するカテーテル端の位置決定
US7603161B2 (en) * 2005-12-30 2009-10-13 Medtronic, Inc. Position detection in a magnetic field
EP2626030A3 (fr) * 2007-08-14 2017-03-08 Koninklijke Philips N.V. Systèmes d'instruments robotisés, et procédés utilisant des capteurs à fibres optiques
US8675996B2 (en) * 2009-07-29 2014-03-18 Siemens Aktiengesellschaft Catheter RF ablation using segmentation-based 2D-3D registration
WO2012037213A1 (fr) * 2010-09-17 2012-03-22 Corindus Inc. Roue pour mécanisme d'entraînement de système de cathéter robotique
WO2012056386A1 (fr) * 2010-10-27 2012-05-03 Koninklijke Philips Electronics N.V. Imagerie adaptative et optimisation de fréquence d'image sur la base d'une détection de forme en temps réel d'instruments médicaux
EP2648641B1 (fr) * 2010-12-09 2020-04-15 Koninklijke Philips N.V. Tomodensitométrie (tdm) activé par appareil d'intervention
WO2012095845A1 (fr) * 2011-01-14 2012-07-19 Technion Research & Development Foundation Ltd. Robot pour neurochirurgie mini-invasive
JP5989312B2 (ja) * 2011-08-18 2016-09-07 東芝メディカルシステムズ株式会社 画像処理表示装置及び画像処理表示プログラム
RU2634296C2 (ru) * 2012-01-03 2017-10-24 Конинклейке Филипс Н.В. Устройство для определения положения
US9623211B2 (en) * 2013-03-13 2017-04-18 The Spectranetics Corporation Catheter movement control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136768A2 (fr) * 2006-05-19 2007-11-29 Mako Surgical Corp. Procédé et appareil pour commander un dispositif haptique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015101747A1 *

Also Published As

Publication number Publication date
JP6535674B2 (ja) 2019-06-26
US20170007333A1 (en) 2017-01-12
FR3015883A1 (fr) 2015-07-03
JP2017502759A (ja) 2017-01-26
FR3015883B1 (fr) 2021-01-15
WO2015101747A1 (fr) 2015-07-09

Similar Documents

Publication Publication Date Title
EP3089692A1 (fr) Système et procédé de suivi du déplacement d&#39;un instrument médical dans le corps d&#39;un sujet
US11435233B2 (en) Calibration and image processing devices, methods, and systems
EP2878325B1 (fr) Système de navigation chirurgicale pour un instrument incluant un motif non-périodique optiquement reconnaissable
FR2779339A1 (fr) Procede et appareil de mise en correspondance pour la chirurgie robotisee, et dispositif de mise en correspondance en comportant application
FR2723832A1 (fr) Appareil pour l&#39;examen endoscopique ou gastroscopique
FR2945724A1 (fr) Appareil a rayons x
US20160206290A1 (en) Imaging apparatus for diagnosis, method of controlling the same, program, and computer readable storage medium
US20210128111A1 (en) Imaging apparatus for diagnosis and program
FR2957514A1 (fr) Dispositif d&#39;imagerie medicale comprenant des moyens d&#39;acquisition radiographique et des moyens de guidage d&#39;une sonde ultrasonore
FR3068880A1 (fr) Procede et systeme de calibration en ligne d&#39;un dispositif medical a rayons x
US10470665B2 (en) Imaging apparatus for diagnosis and method of controlling the same
FR2820629A1 (fr) Procede pour le calibrage d&#39;un systeme d&#39;assistance pour intervention chirurgicale du type a imagerie medicale
EP2854668B1 (fr) Dispositif de guidage d&#39;une sonde d&#39;imagerie medicale et procede de guidage d&#39;une telle sonde
JP2015070939A (ja) 測定システム
WO2020208078A1 (fr) Dispositif et procede de synchronisation pour la determination d&#39;un instant du cycle respiratoire d&#39;un patient, et ensemble comportant un robot medical
US20230389892A1 (en) Devices, systems, and methods for automated delay detection between medical-imaging devices
FR2909454A1 (fr) Procede de detection d&#39;un champ electromagnetique dans un systeme d&#39;imagerie et dispositif permettant d&#39;ameliorer la qualite d&#39;image dans un systeme d&#39;imagerie
FR3099985A1 (fr) Changement de vue à mi-procédure pour diagnostic par ultrasons
FR2909453A1 (fr) Procede de detection d&#39;un champ electromagnatique dans un systeme d&#39;imagerie et dispositif permettant d&#39;ameliorer la qualite d&#39;image dans un systeme d&#39;imagerie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190328

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191008