EP3084489A1 - Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations - Google Patents

Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations

Info

Publication number
EP3084489A1
EP3084489A1 EP14823950.2A EP14823950A EP3084489A1 EP 3084489 A1 EP3084489 A1 EP 3084489A1 EP 14823950 A EP14823950 A EP 14823950A EP 3084489 A1 EP3084489 A1 EP 3084489A1
Authority
EP
European Patent Office
Prior art keywords
optical fiber
fiber
annealing
temperature
bragg grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14823950.2A
Other languages
German (de)
English (en)
Inventor
Jocelyn Perisse
Adriana MORANA
Emmanuel Marin
Jean-Reynald MACÉ
Sylvain Girard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Jean Monnet Saint Etienne
Areva SA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Jean Monnet Saint Etienne
Areva SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Jean Monnet Saint Etienne, Areva SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3084489A1 publication Critical patent/EP3084489A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02123Refractive index modulation gratings, e.g. Bragg gratings characterised by the method of manufacture of the grating
    • G02B6/02128Internal inscription, i.e. grating written by light propagating within the fibre, e.g. "self-induced"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/02185Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations based on treating the fibre, e.g. post-manufacture treatment, thermal aging, annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves
    • C03C25/6208Laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a method of manufacturing a processed optical fiber for a temperature sensor, in which at least one Bragg grating is inscribed in the fiber with the aid of a laser, the Bragg grating extending longitudinally in a portion of the fiber and being adapted to reflect light waves propagating along the inscribed optical fiber.
  • the invention also relates to the use of such an optical fiber processed in a temperature sensor.
  • optical fibers comprising a Bragg grating (or FBG in English, for Fiber Bragg Grating) for measuring a temperature.
  • the Bragg grating is constituted by a periodic disturbance of the refractive index of the fiber core along the axis of the fiber.
  • the light propagating in the heart of the broadband spectrum fiber is reflected by the grating around a certain wavelength, called the "Bragg wavelength", which is a function of the pitch of the grating.
  • the Bragg wavelength varies depending on the temperature at which the Bragg grating is located, with a sensitivity of for example about 10 pm / ° C.
  • Bragg grating fiber optic sensors do not require local power supply, are insensitive to electromagnetic interference. They allow a long range offset between a measurement point and a measurement processing point, as well as the multiplexing of a large number of measurement points on the same fiber. They are also not very intrusive, and have a zero intrinsic drift.
  • the fiber optic sensors of the state of the art show their limits in severe environments in temperature and radiation. For high temperatures, for example above 300 ° C., and for radiation doses exceeding a few tens of kilogray, there is a gradual loss of the measurement by erasure of the Bragg grating, and or an offset of the Bragg wavelength inducing a drift of the measurement, and / or a loss of transmission of the optical fiber.
  • An object of the invention is therefore to provide a method for manufacturing a processed optical fiber for a temperature sensor, the fiber being able to withstand higher temperatures and higher radiation doses.
  • the subject of the invention is a method for manufacturing a processed optical fiber for a temperature sensor, comprising at least the following steps:
  • the method comprises one or more of the following characteristics, taken separately or in any technically possible combination:
  • step b) of inscription using the laser has a duration greater than or equal to
  • the optical fiber obtained is a monomode fiber
  • the optical fiber obtained is an optical fiber with a pure silica core or doped with one or more element (s) taken from fluorine and nitrogen;
  • the laser emits pulses, each pulse having a width less than or equal to 150 femtoseconds;
  • the optical fiber obtained comprises a core with a diameter of between 2 micrometers and 20 microns;
  • step b) during the inscription, the optical fiber is tensioned by a weight of 4 grams to 300 grams fixed on the optical fiber;
  • the inscribed fiber is heated to an annealing temperature greater than or equal to 500 ° C. for at least 15 minutes;
  • the method further comprises a step of determining a maximum temperature of use of the optical fiber treated as a component of a temperature sensor, and during the annealing step (140), the fiber inscribed (135) is brought to an annealing temperature, the difference between the annealing temperature and the maximum use temperature being between 100 ° C and 200 ° C.
  • the invention also relates to a use of at least one processed optical fiber obtained by a method as described above in a temperature sensor.
  • FIG. 1 is a schematic view of a temperature sensor according to the invention, comprising a treated optical fiber obtained by a method according to the invention
  • FIG. 2 is a graph illustrating the evolution of the Bragg wavelength of the Bragg grating of the treated optical fiber represented in FIG. 1 as a function of the revolution of the temperature to which the Bragg grating is subjected
  • FIG. 3 is a diagram showing the main steps of a method according to the invention adapted to manufacture the treated optical fiber represented in FIG. 1;
  • FIG. 4 is a graph illustrating the effect of different annealing temperatures on the Bragg peak of the Bragg grating of an optical fiber similar to that shown in FIG. 1;
  • FIG. 5 is a graph illustrating an offset of the Bragg wavelength of the Bragg grating of an optical fiber similar to that represented in FIG. 1 during two successive phases of irradiation,
  • FIG. 6 is a graph illustrating the effect of the treatment annealing step illustrated in FIG. 3 on the amplitude of the Bragg peak of a grating in a reference optical fiber obtained by a method different from FIG. that of the invention, and
  • FIG. 7 is a graph illustrating the effect of two successive irradiations on a fiber obtained by a process similar to that according to the invention, but whose annealing temperature differs from that of the invention.
  • the temperature sensor 1 comprises a treated optical fiber 5.
  • the temperature sensor 1 is for example intended to be placed in a nuclear reactor (not shown).
  • the sensor 1 is used to measure the temperature of a heat transfer fluid, such as the water of the primary cooling circuit of a pressurized water reactor, or the liquid sodium of a fast neutron reactor, or an installation of manufacture or storage of high-level nuclear waste.
  • the processed optical fiber 5 comprises a core 15, a peripheral portion 20, sometimes called an optical sheath, surrounding the core 15 around the axis D, and a Bragg grating 25 located in the core 15.
  • the processed optical fiber 5 comprises a plurality of Bragg gratings similar to the Bragg grating 25.
  • the treated optical fiber 5 is for example a pure silica fiber or a doped fiber, for example by fluorine and / or nitrogen.
  • the processed optical fiber 5 is single-mode at the Bragg wavelength of the Bragg grating 25.
  • element-doped is meant that the core or sheath of the doped fiber comprises at least 10 ppm of this element.
  • the core 15 has a DC diameter for example between 2 ⁇ and 20 ⁇ .
  • the Bragg grating 25 comprises an alternation of portions 27 and portions 29 along the axis D, the portions 29 having for example a refractive index higher than the refractive index of the portions 27.
  • the portions 29 having for example a refractive index higher than the refractive index of the portions 27.
  • a light signal 30 is sent into the treated optical fiber 5.
  • the light signal 30 comprises, for example, a symbolized wavelength range. by the curve 35.
  • the light signal 30 travels along the processed optical fiber 5 to the Bragg grating 25 which transmits a transmitted light signal 40, and reflects a reflected light signal 45.
  • the reflected light signal 45 has a wavelength range 50 in the shape of a peak, called a "Bragg peak".
  • the Bragg peak is centered on a wavelength ⁇ called “Bragg wavelength” of the Bragg grating 25.
  • the transmitted light signal 40 comprises a wavelength range 55 corresponding to the wavelength range minus the wavelength range 50.
  • FIG. 2 is a graph 100 comprising a curve C0 giving the evolution of the wavelength of Bragg ⁇ , in nanometer, as a function of the temperature T, in degrees Celsius, seen by the Bragg grating 25 of the optical fiber treated 5 shown in Figure 1.
  • the method 1 10 makes it possible to manufacture the treated optical fiber 5 represented in FIG. 1, adapted for the temperature sensor 1.
  • the method 1 comprises a step 120 of obtaining an optical fiber 125, a step 130 of writing a Bragg grating in the optical fiber 125 to obtain a listed fiber 135 comprising the Bragg grating 25, and a step 140 of annealing at least a portion of the inscribed fiber 135, to obtain the treated optical fiber 5.
  • step 130 several Bragg gratings are inscribed in the optical fiber 125.
  • the optical fiber 125 obtained is for example a monomode fiber, pure silica or advantageously doped with one or more elements selected from fluorine and / or nitrogen.
  • the method 1 further comprises a step 150 of determining a maximum operating temperature of the processed optical fiber as a component of the temperature sensor 1.
  • step 130 the longitudinal portion of the fiber 125 obtained in which the Bragg grating 25 is inscribed is denuded.
  • the inscription is made using a femtosecond laser, for example using the conventional mask technique. phase.
  • the focusing of the femtosecond laser is done with a cylindrical lens of short focal length, for example from twelve to nineteen millimeters.
  • femtosecond laser is meant a laser that produces pulses whose duration is of the order of a few femtoseconds to a few hundred femtoseconds.
  • the laser advantageously has an average power greater than or equal to 450 mW.
  • the laser emits pulses, each pulse having a width less than or equal to 150 femtoseconds.
  • the laser has for example a wavelength of 800 nm.
  • the optical fiber 125 is advantageously tensioned by a weight of 6 to 8 grams (not shown) attached to the optical fiber.
  • the inscribed fiber 135 is for example brought to an annealing temperature greater than or equal to 500 ° C, for at least fifteen minutes.
  • the inscribed fiber 135 is brought to an annealing temperature, the difference between the annealing temperature and the maximum use temperature determined in step 150 being between 100 ° C. C and 200 ° C.
  • the maximum temperature of use is 600 ° C and the annealing temperature is 750 ° C.
  • the Bragg grating 25 of the inscribed optical fiber 135 is then more or less erased by the annealing step 140.
  • Exposure parameters are determined to have stable Bragg gratings at the temperature of use of the treated optical fiber 5 and having interesting performance in terms of radiation resistance.
  • the radiation resistance of the Bragg grating increases with the annealing temperature.
  • the annealing temperature is 750 ° C
  • the Bragg grating has an offset (BWS) of its Bragg wavelength under irradiation less than the offset obtained when the annealing temperature is 350 ° C.
  • BWS offset of its Bragg wavelength under irradiation
  • no erasure phenomenon of the Bragg grating is observed under irradiation.
  • Fig. 4 is a graph 200 illustrating the effect of the annealing temperature on the Bragg peak.
  • Graph 200 includes four curves C1, C2, C3 and C4.
  • Curve C1 represents the Bragg peak of the Bragg grating 25 in the absence of annealing step 140.
  • Curves C2, C3 and C4 respectively represent the Bragg peak of the Bragg grating obtained for annealing temperatures of 300 ° C, 550 ° C and 750 ° C, respectively.
  • the Bragg grating is obtained from a fluorine-doped silica core fiber inscribed using a femtosecond laser with an average power of 500 mW and a wavelength of 800. nm.
  • Each curve C1 to C4 gives the evolution of the intensity of the reflected light signal 45, in decibels, as a function of the wavelength in nanometers.
  • Each curve C1 to C4 is analogous to the range of wavelengths 50 shown in FIG.
  • the gradual rise in the annealing temperature causes an attenuation of the Bragg peak, as well as a shift of the Bragg wavelength ⁇ towards the shorter wavelengths.
  • FIG. 5 is a graph 300 illustrating the radiation resistance of the Bragg grating 25 of a processed optical fiber obtained by the same method as for graph 200, with an annealing temperature of 750 ° C.
  • the graph 300 comprises a curve C5 illustrating the evolution, as a function of the time t in seconds, on the one hand of the shift ⁇ of the Bragg wavelength in nanometers, and on the other hand of the AND error, in degree Celsius, committed on the measured temperature.
  • the offset ⁇ is read on the left y-axis of graph 300, while the AND error is read on the right y-axis of graph 300.
  • the Bragg grating 25 of the treated optical fiber 5 is irradiated at a constant dose rate.
  • the dose received at the end of the first phase A is 1.5 MGy (megagray).
  • a third phase C of a duration of approximately 30,000 seconds again the Bragg grating 25 is irradiated under the same conditions as in the first phase A, that is to say that it receives again a dose equal to 1, 5 MGy.
  • the wavelength of Bragg begins to decrease by four pm (picometers), and then goes up about twelve pm gradually during the first phase A. This drift of the wavelength of Bragg corresponds to a error ET1 (FIG. 5) on the temperature measured by the sensor 1 of approximately 0.4 ° C.
  • the Bragg wavelength decreases sharply to stabilize at about twelve microns below the initial value.
  • the Bragg wavelength rises sharply substantially to the value it had at the end of the first phase A and remains relatively stable throughout the third phase C.
  • the drift of the wavelength of Bragg during the third phase C corresponds to an error ET2 on the measured temperature of the order of 0.4 ° C.
  • FIGs 6 and 7 illustrate the result of parametric studies conducted to determine the impact of non-compliance with one of the process steps 1 10.
  • FIG. 6 is a graph 400 having a curve C6 illustrating the effect of the annealing temperature T in degrees Celsius (on the abscissa) on the normalized amplitude AN (ordinate) of the Bragg peak of the Bragg grating 25 when the Step 130 of inscription was carried out using a femtosecond laser with a power of 400 mW, instead of 500 mW as in Figure 4.
  • the curve C6 comprises a first point 410 giving the amplitude of the Bragg peak in the absence of annealing step.
  • the amplitude is then 16 dB and corresponds to the maximum of the curve C1 in FIG. 4. This amplitude of 16 dB is normalized to 1.0 on the graph 400 of FIG. 6.
  • curve C6 shows the progressive reduction of the normalized amplitude AN of the Bragg peak when the annealing temperature T is respectively 300 ° C., 550 ° C. and 750 ° C.
  • the curve C6 ' also shows the progressive reduction of the normalized amplitude AN of the Bragg peak when the annealing temperature T is respectively 300 ° C., 550 ° C. and 750 ° C., when the inscription step 130 is performed using a femtosecond laser with a power of 500 mW.
  • the Bragg grating 25 is considered annealing resistant if the normalized amplitude AN remains above a threshold of, for example, 0.2, ie, the attenuation of the amplitude of the Bragg peak is less than 7 dB in the example shown in FIG. 6.
  • FIG. 7 represents a graph 500 similar to graph 300 shown in FIG. 5.
  • Graph 500 comprises a curve C7 illustrating the radiation resistance of a Bragg grating obtained after an inscription step 130, wherein the laser power is 500 mW, and an annealing step 140 at a temperature below 500 ° C.
  • the phases A, B1 and C of the graph 500 are similar to the phases A, B and C of the graph 300.
  • the graph 500 comprises an additional phase B2 corresponding to a stop of the irradiation after the phase C.
  • the Bragg wavelength ⁇ of the Bragg grating 25 is much more sensitive to the two irradiation phases A and C than under the conditions of graph 300 of FIG. at the end of the third phase C corresponding to a second irradiation, the shift in the Bragg wavelength due to the irradiation is -60 pm. This corresponds to an error ET3 on the measured temperature equal to approximately 4.5 ° C.
  • the manufacturing method 1 makes it possible to obtain a treated optical fiber comprising a Bragg grating capable of better withstanding radiation doses greater than 1 MGy, and thus withstanding more radiation doses. strong as the optical fibers of the state of the art.
  • the optional feature that the inscribed fiber 135 is brought to an annealing temperature of 500 ° C or higher for at least fifteen minutes provides a Bragg grating capable of supporting a temperature of use of up to about 550 ° C.
  • the optional feature according to which, during the annealing step 140, the inscribed fiber 135 is brought to an annealing temperature makes it possible to obtain a Bragg grating 25 capable of withstanding a temperature of use equal to the annealing temperature minus a value of between 100 ° C and 200 ° C.
  • the power of the laser is expressed by a formula independent of the size of the beam and the length of the Bragg grating 25.
  • - E is laser pulse energy (in J) which is deduced from the power of the laser (in W) by dividing by the frequency of the pulses (in Hz),
  • A is a parameter related to the position of the fiber relative to the phase mask
  • p is the first order energy fraction (equal to 73%)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Procédé (110) de fabrication d'une fibre optique traitée (5) pour capteur de température, comprenant au moins les étapes suivantes : a) obtention (120) d'une fibre optique (125) de silice pure ou dopée par un ou plusieurs élément(s) pris parmi le fluor et l'azote, b) inscription (130) à l'aide d'un laser femtoseconde d'au moins un réseau de Bragg dans la fibre optique pour obtenir une fibre inscrite (135), le réseau de Bragg s'étendant longitudinalement dans une portion de la fibre inscrite et étant adapté pour réfléchir des ondes lumineuses se propageant le long de la fibre optique inscrite, le laser ayant une puissance supérieure ou égale à 450 mW, et c) recuit (140) d'au moins la portion de fibre inscrite pour obtenir la fibre optique traitée. Utilisation d'une telle fibre optique traitée dans un capteur de température.

Description

Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations
La présente invention concerne un procédé de fabrication d'une fibre optique traitée pour capteur de température, dans lequel au moins un réseau de Bragg est inscrit dans la fibre à l'aide d'un laser, le réseau de Bragg s'étendant longitudinalement dans une portion de la fibre et étant adapté pour réfléchir des ondes lumineuses se propageant le long de la fibre optique inscrite.
L'invention concerne aussi l'utilisation d'une telle fibre optique traitée dans un capteur de température.
II est connu d'utiliser des fibres optiques comportant un réseau de Bragg (ou FBG en anglais, pour Fiber Bragg Grating) pour mesurer une température. Le réseau de Bragg est constitué par une perturbation périodique de l'indice de réfraction du cœur de la fibre le long de l'axe de la fibre. La lumière se propageant dans le cœur de la fibre de spectre large bande est réfléchie par le réseau autour d'une certaine longueur d'onde, dite « longueur d'onde de Bragg », qui est fonction du pas du réseau. La longueur d'onde de Bragg varie en fonction de la température à laquelle se trouve le réseau de Bragg, avec une sensibilité de par exemple 10 pm/°C environ.
Les capteurs à fibre optique à réseau de Bragg ne nécessitent pas d'alimentation locale en énergie, sont insensibles aux perturbations électromagnétiques. Ils autorisent un déport sur de grandes distances entre un point de mesure et un point de traitement de la mesure, ainsi que le multiplexage d'un grand nombre de points de mesure sur une même fibre. Ils sont en outre peu intrusifs, et présentent une dérive intrinsèque nulle.
Toutefois, malgré ces propriétés intéressantes, les capteurs à fibre optique de l'état de la technique montrent leurs limites dans des environnements sévères en températures et en radiations. Pour des températures élevées, par exemple supérieures à 300°C, et pour des doses de rayonnement allant au-delà de quelques dizaines de kGy (kilogray), il se produit une perte progressive de la mesure par effacement du réseau de Bragg, et/ou un décalage de la longueur d'onde de Bragg induisant une dérive de la mesure, et/ou une perte de transmission de la fibre optique.
Un but de l'invention est donc de fournir un procédé de fabrication d'une fibre optique traitée pour capteur de température, la fibre étant capable de résister à des températures plus hautes et à des doses de rayonnement plus fortes.
A cet effet, l'invention a pour objet un procédé de fabrication d'une fibre optique traitée pour capteur de température, comprenant au moins les étapes suivantes :
a) obtention d'une fibre optique, b) inscription à l'aide d'un laser femtoseconde d'au moins un réseau de Bragg dans la fibre optique pour obtenir une fibre inscrite, le réseau de Bragg s'étendant longitudinalement dans une portion de la fibre inscrite et étant adapté pour réfléchir des ondes lumineuses se propageant le long de la fibre optique inscrite, le laser ayant une puissance supérieure ou égale à 450 mW, et
c) recuit d'au moins la portion de fibre inscrite pour obtenir la fibre optique traitée. Selon des modes particuliers de réalisation, le procédé comprend l'une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles :
- l'étape b) d'inscription à l'aide du laser présente une durée supérieure ou égale à
30 secondes ;
- à l'étape a), la fibre optique obtenue est une fibre monomode ;
- à l'étape a), la fibre optique obtenue est une fibre optique à cœur de silice pure ou dopée par un ou plusieurs élément(s) pris parmi le fluor et l'azote ;
- à l'étape b), le laser émet des impulsions, chaque impulsion présentant une largeur inférieure ou égale à 150 femtosecondes ;
- à l'étape a), la fibre optique obtenue comporte un cœur d'un diamètre compris entre 2 micromètres et 20 micromètres ;
- à l'étape b), durant l'inscription, la fibre optique est mise en tension par un poids de 4 grammes à 300 grammes fixé sur la fibre optique ;
- pendant l'étape c) de recuit, la fibre inscrite est portée à une température de recuit supérieure ou égale à 500°C, pendant au moins 15 minutes ;
- le procédé comprend en outre une étape de détermination d'une température maximale d'utilisation de la fibre optique traitée en tant que composant d'un capteur de température, et pendant l'étape c) de recuit (140), la fibre inscrite (135) est portée à une température de recuit, la différence entre la température de recuit et la température maximale d'utilisation étant comprise entre 100°C et 200°C.
L'invention concerne aussi une utilisation d'au moins une fibre optique traitée obtenue par un procédé tel que décrit ci-dessus dans un capteur de température.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique d'un capteur de température selon l'invention, comportant une fibre optique traitée obtenue par un procédé selon l'invention, - la figure 2 est un graphique illustrant l'évolution de la longueur d'onde de Bragg du réseau de Bragg de la fibre optique traitée représentée sur la figure 1 en fonction de révolution de la température à laquelle est soumis le réseau de Bragg,
- la figure 3 est un diagramme montrant les étapes principales d'un procédé selon l'invention adapté pour fabriquer la fibre optique traitée représentée sur la figure 1 ,
- la figure 4 est un graphique illustrant l'effet de différentes températures de recuit sur le pic de Bragg du réseau de Bragg d'une fibre optique analogue à celle représentée sur la figure 1 ,
- la figure 5 est un graphique illustrant un décalage de la longueur d'onde de Bragg du réseau de Bragg d'une fibre optique analogue à celle représentée sur la figure 1 pendant deux phases successives d'irradiation,
- la figure 6 est un graphique illustrant l'effet de l'étape de recuit du traitement illustré sur la figure 3 sur l'amplitude du pic de Bragg d'un réseau dans d'une fibre optique de référence obtenue par un procédé différent de celui de l'invention, et
- la figure 7 est un graphique illustrant l'effet de deux irradiations successives sur une fibre obtenue par un procédé analogue à celui selon l'invention, mais dont la température de recuit diffère de celle de l'invention.
En référence à la figure 1 , on décrit un capteur de température 1 selon l'invention. Le capteur de température 1 comprend une fibre optique traitée 5.
Le capteur de température 1 est par exemple destiné à être placé dans un réacteur nucléaire (non représenté). Par exemple le capteur 1 sert à mesurer la température d'un fluide caloporteur, comme l'eau du circuit primaire de refroidissement d'un réacteur à eau pressurisée, ou le sodium liquide d'un réacteur à neutrons rapides, ou encore une installation de fabrication ou de stockage de déchets nucléaires à haute activité.
Par simplicité, seule une portion 10 de la fibre optique traitée 5 s'étendant selon un axe D est représentée sur la figure 1 .
La fibre optique traitée 5 comprend un cœur 15, une partie périphérique 20, parfois appelée gaine optique, enveloppant le cœur 15 autour de l'axe D, et un réseau de Bragg 25 situé dans le cœur 15.
En variante (non représentée), la fibre optique traitée 5 comprend plusieurs réseaux de Bragg analogues au réseau de Bragg 25.
La fibre optique traitée 5 est par exemple une fibre de silice pure ou une fibre dopée, par exemple par du fluor et/ou de l'azote. La fibre optique traitée 5 est monomode à la longueur d'onde de Bragg du réseau de Bragg 25. Par « dopé par un élément », on entend que le cœur ou la gaine de la fibre dopée comprennent au moins 10 ppm de cet élément.
Le cœur 15 présente un diamètre DC par exemple compris entre 2 μηι et 20 μηι.
Le réseau de Bragg 25 comprend une alternance de portions 27 et de portions 29 selon l'axe D, les portions 29 ayant par exemple un indice de réfraction plus élevé que l'indice de réfraction des portions 27. Par simplicité, seulement deux portions 27 et deux portions 29 ont été représentées sur la figure 1 .
Comme visible sur la figure 1 , pour faire fonctionner le réseau de Bragg 25 de la fibre optique traitée 5, un signal lumineux 30 est envoyé dans la fibre optique traitée 5. Le signal lumineux 30 comprend par exemple une plage de longueurs d'onde symbolisée par la courbe 35.
Le signal lumineux 30 voyage le long de la fibre optique traitée 5 jusqu'au réseau de Bragg 25 qui transmet un signal lumineux transmis 40, et réfléchit un signal lumineux réfléchi 45.
Le signal lumineux réfléchi 45 comporte une plage de longueurs d'onde 50 présentant la forme d'un pic, appelé « pic de Bragg ». Le pic de Bragg est centré sur une longueur d'onde λ appelée « longueur d'onde de Bragg » du réseau de Bragg 25.
Le signal lumineux transmis 40 comprend une plage de longueurs d'onde 55 correspondant à la plage de longueurs d'onde 35 moins la plage de longueurs d'onde 50.
La figure 2 est un graphique 100 comportant une courbe C0 donnant l'évolution de la longueur d'onde de Bragg λ, en nanomètre, en fonction de la température T, en degrés Celsius, vue par le réseau de Bragg 25 de la fibre optique traitée 5 représentée sur la figure 1 .
Ainsi, à partir de la plage de longueurs d'onde 50, il est possible de déterminer la longueur d'onde de Bragg λ (figure 1 ), puis de déterminer la température T à l'aide de la courbe C0 (figure 2). La sensibilité est d'environ 10 pm/°C.
En référence à la figure 3, un procédé 1 10 selon l'invention va maintenant être décrit.
Le procédé 1 10 permet de fabriquer la fibre optique traitée 5 représentée sur la figure 1 , adaptée pour le capteur de température 1 .
Le procédé 1 10 comprend une étape 120 d'obtention d'une fibre optique 125, une étape 130 d'inscription d'un réseau de Bragg dans la fibre optique 125 pour obtenir une fibre inscrite 135 comportant le réseau de Bragg 25, et une étape 140 de recuit d'au moins une portion de la fibre inscrite 135, pour obtenir la fibre optique traitée 5.
En variante, à l'étape 130, plusieurs réseaux de Bragg sont inscrits dans la fibre optique 125. A l'étape 120, la fibre optique 125 obtenue est par exemple une fibre monomode, de silice pure ou avantageusement dopée par un ou plusieurs éléments pris parmi le fluor et/ou l'azote.
Optionnellement, le procédé 1 10 comprend en outre une étape 150 de détermination d'une température maximale d'utilisation de la fibre optique traitée 5 en tant que composant du capteur de température 1 .
A l'étape 130, on dénude la portion longitudinale de la fibre 125 obtenue dans laquelle est inscrit le réseau de Bragg 25. L'inscription est réalisée à l'aide d'un laser femtoseconde, par exemple grâce à la technique classique du masque de phase. La focalisation du laser femtoseconde se fait avec une lentille cylindrique de courte focale, par exemple de douze à dix-neuf millimètres.
Par « laser femtoseconde », on entend un laser qui produit des impulsions dont la durée est de l'ordre de quelques femtosecondes à quelques centaines de femtosecondes.
Le laser a avantageusement une puissance moyenne supérieure ou égale à 450 mW. Le laser émet des impulsions, chaque impulsion présentant une largeur inférieure ou égale à 150 femtosecondes. Le laser a par exemple une longueur d'onde de 800 nm.
Durant l'étape 130 d'inscription, la fibre optique 125 est avantageusement mise en tension par un poids de 6 à 8 grammes (non représenté) fixé sur la fibre optique.
A l'étape 140, selon un premier mode de réalisation, la fibre inscrite 135 est par exemple portée à une température de recuit supérieure ou égale à 500°C, pendant au moins quinze minutes.
Selon un autre mode de réalisation, à l'étape 140, la fibre inscrite 135 est portée à une température de recuit, la différence entre la température de recuit et la température maximale d'utilisation déterminée à l'étape 150 étant comprise entre 100°C et 200°C . Par exemple, la température maximale d'utilisation est 600°C et la température de recuit est 750°C.
En fonction des paramètres d'exposition utilisés (durée des impulsions, puissance du laser femtoseconde), le réseau de Bragg 25 de la fibre optique inscrite 135 est ensuite plus ou moins effacé par l'étape 140 de recuit. Les paramètres d'exposition sont déterminés pour avoir des réseaux de Bragg stables à la température d'utilisation de la fibre optique traitée 5 et présentant des performances intéressantes en termes de tenue aux radiations.
Les essais d'irradiation ont montré que la tenue du réseau de Bragg 25 aux radiations augmente avec la température de recuit. Par exemple, lorsque la température de recuit est de 750°C, le réseau de Bragg 25 présente un décalage (BWS) de sa longueur d'onde de Bragg sous irradiation inférieur au décalage obtenu lorsque la température de recuit est de 350°C. En outre, lorsque la température de recuit est de 750°C, aucun phénomène d'effacement du réseau de Bragg 25 n'est observé sous irradiation.
La figure 4 est un graphique 200 illustrant l'effet de la température de recuit sur le pic de Bragg. Le graphique 200 comprend quatre courbes C1 , C2, C3 et C4.
La courbe C1 représente le pic de Bragg du réseau de Bragg 25 en l'absence de l'étape 140 de recuit.
Les courbes C2, C3 et C4 représentent respectivement le pic de Bragg du réseau de Bragg 25 obtenu pour des températures de recuit respectivement égales à 300°C, 550°C et 750°C. Le réseau de Bragg est obtenu à partir d'une fibre à cœur de silice dopée par du fluor, inscrite à l'aide d'un laser femtoseconde d'une puissance moyenne de 500 mW et d'une longueur d'onde égale à 800 nm.
Chaque courbe C1 à C4 donne l'évolution de l'intensité du signal lumineux réfléchi 45, en décibels, en fonction de la longueur d'onde en nanomètres. Chaque courbe C1 à C4 est analogue à la plage de longueurs d'onde 50 représentée sur la figure 1 .
On constate que l'élévation progressive de la température de recuit provoque une atténuation du pic de Bragg, ainsi qu'un décalage de la longueur d'onde de Bragg λ vers les longueurs d'onde plus courtes
La figure 5 est un graphique 300 illustrant la tenue aux radiations du réseau de Bragg 25 d'une fibre optique traitée 5 obtenue par le même procédé que pour le graphique 200, avec une température de recuit de 750°C.
Le graphique 300 comprend une courbe C5 illustrant l'évolution, en fonction du temps t en secondes, d'une part du décalage Δλ de la longueur d'onde de Bragg en nanomètres, et d'autre part de l'erreur ET, en degré Celsius, commise sur la température mesurée.
Le décalage Δλ se lit sur l'axe des ordonnées de gauche du graphique 300, tandis que l'erreur ET se lit sur l'axe des ordonnées de droite du graphique 300.
Pendant une première phase A, d'une durée d'environ 30 000 secondes, le réseau de Bragg 25 de la fibre optique traitée 5 est irradié à débit de dose constant. La dose reçue à la fin de la première phase A est de 1 ,5 MGy (mégagray).
Dans une deuxième phase B d'une durée d'environ 60 000 secondes, l'irradiation du réseau de Bragg 25 est arrêtée.
Dans une troisième phase C d'une durée d'environ 30 000 secondes à nouveau, le réseau de Bragg 25 est irradié dans les mêmes conditions que dans la première phase A, c'est-à-dire qu'il reçoit à nouveau une dose égale à 1 ,5 MGy. Dans la première phase A, la longueur d'onde de Bragg commence par décroître de quatre pm (picomètres), puis remonte d'environ douze pm progressivement pendant la première phase A. Cette dérive de la longueur d'onde de Bragg correspond à une erreur ET1 (figure 5) sur la température mesurée par le capteur 1 d'environ 0,4°C.
Lors de la deuxième phase B, la longueur d'onde de Bragg diminue brutalement pour se stabiliser à environ douze pm sous la valeur initiale.
Durant la troisième phase C, la longueur d'onde de Bragg remonte brutalement sensiblement à la valeur qu'elle avait à la fin de la première phase A et reste relativement stable pendant toute la troisième phase C. La dérive de la longueur d'onde de Bragg pendant la troisième phase C correspond à une erreur ET2 sur la température mesurée de l'ordre de 0,4°C. Ainsi, on constate que le réseau de Bragg 25 de la fibre optique traitée 5 présente une très bonne tenue aux radiations, même après deux irradiations correspondant à une dose de 3 MGy.
Les figures 6 et 7 illustrent le résultat d'études paramétriques menées pour déterminer l'impact du non respect d'une des étapes du procédé 1 10.
La figure 6 est un graphique 400 comportant une courbe C6 illustrant l'effet de la température de recuit T en degré Celsius (en abscisse) sur l'amplitude normalisée AN (en ordonnée) du pic de Bragg du réseau de Bragg 25 lorsque l'étape 130 d'inscription a été réalisée à l'aide d'un laser femtoseconde d'une puissance de 400 mW, au lieu de 500 mW comme sur la figure 4.
La courbe C6 comprend un premier point 410 donnant l'amplitude du pic de Bragg en l'absence d'étape de recuit. L'amplitude est alors de 16 dB et correspond au maximum de la courbe C1 sur la figure 4. Cette amplitude de 16 dB est normalisée à 1 ,0 sur le graphique 400 de la figure 6.
Puis la courbe C6 montre la réduction progressive de l'amplitude normalisée AN du pic de Bragg lorsque la température de recuit T est respectivement de 300°C, 550°C et 750°C.
La courbe C6' montre également la réduction progressive de l'amplitude normalisée AN du pic de Bragg lorsque la température de recuit T est respectivement de 300°C, 550°C et 750°C, lorsque que l'étape 130 d'inscription est réalisée à l'aide d'un laser femtoseconde d'une puissance de 500 mW.
On observe sur la courbe C6 que, à 750°C, l'amplitude du pic de Bragg devient quasiment nulle, car le réseau de Bragg 25 est effacé.
Au contraire, comme visible sur la figure 4 et sur la courbe C6', de manière surprenante, lorsque la puissance du laser est de 500 mW, l'amplitude du pic de Bragg passe de seize décibels en l'absence d'étape de recuit à 8 décibels en présence d'une étape 140 de recuit à une température de recuit de 750°C. Ceci démontre l'existence d'un seuil de puissance du laser, situé à 450 mW, à partir duquel le réseau de Bragg 25 obtenu résiste à un recuit à 750°C.
On considère que le réseau de Bragg 25 résiste au recuit si l'amplitude normalisée AN reste au-dessus d'un seuil de, par exemple, 0,2, c'est-à-dire si l'atténuation de l'amplitude du pic de Bragg est inférieure à 7 dB dans l'exemple représenté sur la figure 6.
La figure 7 représente un graphique 500 analogue au graphique 300 représenté sur la figure 5. Le graphique 500 comporte une courbe C7 illustrant la tenue aux radiations d'un réseau de Bragg 25 obtenu à l'issue d'une étape d'inscription 130, dans laquelle la puissance du laser est de 500 mW, et d'une étape de recuit 140 à une température inférieure à 500°C.
Les phases A, B1 et C du graphique 500 sont analogues aux phases A, B et C du graphique 300.
Le graphique 500 comporte une phase supplémentaire B2 correspondant à un arrêt de l'irradiation après la phase C.
Comme on peut le constater sur le graphique 500, la longueur d'onde de Bragg λ du réseau de Bragg 25 est beaucoup plus sensible aux deux phases d'irradiation A et C que dans les conditions du graphique 300 de la figure 5. En particulier, à la fin de la troisième phase C correspondant à une deuxième irradiation, le décalage de la longueur d'onde de Bragg dû à l'irradiation est de -60 pm. Ceci correspond à une erreur ET3 sur la température mesurée égale à environ 4,5°C.
Grâce aux caractéristiques décrites, le procédé 1 10 de fabrication permet d'obtenir une fibre optique traitée 5 comportant un réseau de Bragg 25 capable de mieux résister à des doses de rayonnement supérieures à 1 MGy, et donc de résister à des doses de rayonnement plus fortes que les fibres optiques de l'état de la technique.
En outre, la caractéristique optionnelle selon laquelle la fibre inscrite 135 est portée à une température de recuit supérieure ou égale à 500°C pendant au moins quinze minutes permet d'obtenir un réseau de Bragg 25 capable de supporter ultérieurement une température d'utilisation allant jusqu'à environ 550°C.
De même, la caractéristique optionnelle selon laquelle, pendant l'étape 140 de recuit, la fibre inscrite 135 est portée à une température de recuit, permet d'obtenir un réseau de Bragg 25 capable de résister à une température d'utilisation égale à la température de recuit moins une valeur comprise entre 100°C et 200°C. La puissance du laser s'exprime par une formule indépendante de la taille du faisceau et de la longueur du réseau de Bragg 25.
L'ensemble des éléments pour calcul de la densité de puissance se résume par la formule suivante :
_ 2πΕχΑ p
4x f x Àxt
où :
- D est la densité de puissance (en W/cm2) déposée par le laser,
- E est énergie d'impulsion du laser (en J) qui se déduit de la puissance du laser (en W) en divisant par la fréquence des impulsions (en Hz),
- A est un paramètre lié à la position de la fibre relative au masque de phase
(A=1 ),
- p est la fraction d'énergie au premier ordre (égale à 73%),
- λ la longueur d'onde du laser femtoseconde (en cm),
- f la focale de la lentille de focalisation (cm), et
- 1 la durée de l'impulsion (en s).
Le seuil de puissance du laser de 450 mW correspond donc à une densité de puissance minimale de 2,3.1013 W/cm2, avec A = 1 , f = 19 mm, λ = 800 nm et f = 150 fs.

Claims

REVENDICATIONS
1 .- Procédé (1 10) de fabrication d'une fibre optique traitée (5) pour capteur de température (1 ), caractérisé en ce qu'il comprend au moins les étapes suivantes :
a) obtention (120) d'une fibre optique (125), la fibre optique (125) obtenue étant une fibre optique de silice pure ou dopée par un ou plusieurs élément(s) pris parmi le fluor et l'azote,
b) inscription (130) à l'aide d'un laser femtoseconde d'au moins un réseau de Bragg (25) dans la fibre optique (125) pour obtenir une fibre inscrite (135), le réseau de Bragg (25) s'étendant longitudinalement dans une portion de la fibre inscrite (135) et étant adapté pour réfléchir des ondes lumineuses (30) se propageant le long de la fibre optique inscrite (135), le laser ayant une puissance supérieure ou égale à 450 mW, et
c) recuit (140) d'au moins la portion de fibre inscrite (135) pour obtenir la fibre optique traitée (5).
2.- Procédé (1 10) selon la revendication 1 , caractérisé en ce que l'étape b) d'inscription (130) à l'aide du laser présente une durée supérieure ou égale à 30 secondes.
3.- Procédé (1 10) selon la revendication 1 ou 2, caractérisé en ce que, à l'étape a), la fibre optique (125) obtenue est une fibre monomode.
4.- Procédé (1 10) selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, à l'étape b), le laser femtoseconde est focalisé avec une lentille cylindrique de courte focale, de douze à dix-neuf millimètres.
5. - Procédé (1 10) selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, à l'étape b), le laser émet des impulsions, chaque impulsion présentant une largeur inférieure ou égale à 150 femtosecondes.
6. - Procédé (1 10) selon l'une quelconque des revendications 1 à 5, caractérisé en ce que, à l'étape a), la fibre optique (125) obtenue comporte un cœur (15) d'un diamètre (DC) compris entre 2 micromètres et 20 micromètres.
7. - Procédé (1 10) selon l'une quelconque des revendications 1 à 6, caractérisé en ce que, à l'étape b), durant l'inscription (130), la fibre optique (125) est mise en tension par un poids de 4 grammes à 300 grammes fixé sur la fibre optique (125).
8. - Procédé (1 10) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que pendant l'étape c) de recuit (140), la fibre inscrite (135) est portée à une température de recuit supérieure ou égale à 500°C, pendant au moins 15 minutes.
9.- Procédé (1 10) selon l'une quelconque des revendications 1 à 7, caractérisé en ce que : - le procédé (1 10) comprend en outre une étape (150) de détermination d'une température maximale d'utilisation de la fibre optique traitée (5) en tant que composant d'un capteur de température (1 ), et
- pendant l'étape c) de recuit (140), la fibre inscrite (135) est portée à une température de recuit, la différence entre la température de recuit et la température maximale d'utilisation étant comprise entre 100°C et 200°C.
10.- Utilisation d'au moins une fibre optique traitée (5) obtenue par un procédé selon l'une quelconque des revendications précédentes dans un capteur de température (1 )-
EP14823950.2A 2013-12-16 2014-12-16 Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations Withdrawn EP3084489A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362691A FR3014866A1 (fr) 2013-12-16 2013-12-16 Procede de fabrication d'une fibre optique traitee pour capteur de temperature resistant aux radiations
PCT/EP2014/077987 WO2015091502A1 (fr) 2013-12-16 2014-12-16 Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations

Publications (1)

Publication Number Publication Date
EP3084489A1 true EP3084489A1 (fr) 2016-10-26

Family

ID=50639641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14823950.2A Withdrawn EP3084489A1 (fr) 2013-12-16 2014-12-16 Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations

Country Status (6)

Country Link
US (1) US20160320558A1 (fr)
EP (1) EP3084489A1 (fr)
JP (1) JP2017507345A (fr)
CN (1) CN106062598A (fr)
FR (1) FR3014866A1 (fr)
WO (1) WO2015091502A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108332878B (zh) * 2018-01-31 2020-09-18 北京航天控制仪器研究所 一种光纤光栅温度传感器及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665483B2 (en) * 2001-03-13 2003-12-16 3M Innovative Properties Company Apparatus and method for filament tensioning
US7336862B1 (en) * 2007-03-22 2008-02-26 General Electric Company Fiber optic sensor for detecting multiple parameters in a harsh environment
US7835605B1 (en) * 2009-05-21 2010-11-16 Hong Kong Polytechnic University High temperature sustainable fiber bragg gratings
WO2011011890A1 (fr) * 2009-07-29 2011-02-03 Universite Laval Procédé d'écriture de réseaux de bragg à haute résistance électrique au moyen d'impulsions ultrarapides en longueurs d'ondes courtes
CN102073095A (zh) * 2010-12-15 2011-05-25 华中科技大学 一种窄线宽光纤布拉格光栅的制作方法

Also Published As

Publication number Publication date
US20160320558A1 (en) 2016-11-03
WO2015091502A1 (fr) 2015-06-25
CN106062598A (zh) 2016-10-26
FR3014866A1 (fr) 2015-06-19
JP2017507345A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
Guo et al. On-line writing identical and weak fiber Bragg grating arrays
Yang et al. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings
EP2591387B1 (fr) Fibre optique dopee terre rare resistante aux radiations et procede de durcissement aux radiations d'une fibre optique dopee terre rare
US8478092B2 (en) In-line single fiber Mach-Zehnder interferometer
US20140313513A1 (en) Power monitor for optical fiber using background scattering
KR20160145049A (ko) 비접촉 광 전력 측정을 위한 시스템 및 방법
Lu et al. Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser
NL1015835C2 (nl) Inrichting voor het vervaardigen van vezelroosters met een lange periode en een lage polarisatie-afhankelijkheid en vezelroosters met een lange periode vervaardigd met een dergelijke inrichting.
EP3433575B1 (fr) Capteur de courbure a fibre optique et dispositif de mesure comprenant ledit capteur
EP3087358B1 (fr) Dispositif de caractérisation d'un phénomène physique par ablation de fibre optique à réseaux de bragg
Cheng et al. High-sensitivity temperature sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber
Duval et al. Correlation between ultraviolet‐induced refractive index change and photoluminescence in Ge‐doped fiber
EP3864378A1 (fr) Capteur à fibre optique à réseau de bragg à haute tenue en température et son procédé de fabrication
EP2798334A1 (fr) Dispositif de detection et/ou de dosage d'hydrogene et procede de detection et/ou de dosage d'hydrogene
Gao et al. Multi-Wavelength ultra-weak fiber bragg grating arrays for long-distance quasi-distributed sensing
Donko et al. Low-loss micro-machined fiber with Rayleigh backscattering enhanced by two orders of magnitude
WO2015091502A1 (fr) Procédé de fabrication d'une fibre optique traitée pour capteur de température résistant aux radiations
Min et al. Bragg gratings inscription in TS-doped PMMA POF by using 248-nm KrF pulses
CA2579828C (fr) Procede de changement d'indice de refraction au niveau du noyau d'une fibre a cristal photonique par rayonnement laser
Scully UV laser photo-induced refractive index changes in poly-methyl-meth-acrylate and plastic optical fibres for application as sensors and devices
Su et al. CO/sub 2/-laser-induced long-period gratings in graded-index multimode fibers for sensor applications
Cho et al. Ultraviolet light sensor based on an azobenzene-polymer-capped optical-fiber end
Mihailov Ultrafast laser inscribed fiber Bragg gratings for sensing applications
JP2011180133A (ja) 光ファイバセンサ及びその製造方法
EP3844466B1 (fr) Capteur de température à réseau de bragg insensible aux déformations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180703