EP3084113A2 - A casing tool - Google Patents

A casing tool

Info

Publication number
EP3084113A2
EP3084113A2 EP14821629.4A EP14821629A EP3084113A2 EP 3084113 A2 EP3084113 A2 EP 3084113A2 EP 14821629 A EP14821629 A EP 14821629A EP 3084113 A2 EP3084113 A2 EP 3084113A2
Authority
EP
European Patent Office
Prior art keywords
casing
sleeve
top cover
axial
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14821629.4A
Other languages
German (de)
French (fr)
Inventor
Per Olav Haughom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Odfjell Well Services Norway AS
Original Assignee
Odfjell Well Services Norway AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Odfjell Well Services Norway AS filed Critical Odfjell Well Services Norway AS
Publication of EP3084113A2 publication Critical patent/EP3084113A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/02Rod or cable suspensions
    • E21B19/06Elevators, i.e. rod- or tube-gripping devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/16Connecting or disconnecting pipe couplings or joints

Definitions

  • the present invention concerns a casing tool and a method for connecting casing tubulars using a top drive as disclosed in the introductory part o the main claims. More specifically the invention concerns at casing tool that may be releasably fixed to a top drive in a drilling derrick for interconnecting casing tubulars, i.e. casings inserted into drilling holes for hydrocarbon productions.
  • Background and prior art :
  • sections of casing tubulars are being interconnected and inserted into a borehole to achieve the extended length of the borehole lining.
  • the slips of a spider located on the floor of the drilling platform are often used.
  • the new section or stand of casing is then moved from a rack to the well centre ab ve the spider.
  • the treaded pin of the section of casing tubular to be connected is then located over the threaded box of the casing in the well and the connection is made up by rotation there between.
  • An elevator is then connected to the top of the new section and the whole casing string is I i fted slightly to enable the slips of the spider to be released.
  • the whole casing string is then lowered unti l the top of the section is adjacent the spider whereupon the slips of the spider are reappli ed, the elevator disconnected and the process repeated.
  • top drive In the last decades use of top drive has been common in order to perform the interconnection of casing tubulars with sufficient torque strength. This type of operati ns requires the use of a dedicated tool that may connect to the top drive in one longitudinal end and may engage with the casing tubular at the other end so that the casing tub lar can be rotated and lifted/lowered in to/out of the bore hole.
  • An example of connecting tubular sections using a top drive and a corresponding casing tool is disclosed in publication WO 00/05483.
  • This casing tool comprises a plural ity of gripping elements that are radially displaceablc by hydraulic or pneumatic fluid in order to drivingly engage the tubula section.
  • Another object of the present invention is to present a solution providing an easier and more cost effective activation of the engagement between the tool and the casing tubular, and which also fulfills the requirements of robustness and reliability.
  • Another object of the invention is to provide an engagement mechanism that may be easily released, both in normal operations and in case of certain mechanical malfunctioning.
  • the invention concerns a casing tool for connecting casing tubulars using a top drive.
  • the casing to l comprises a top cover that may be connected either releasably or non-releasably to the top drive and an elongated inner body that may be connected relea singly to the top cover.
  • the inner body displays a longitudinally directed through-going channel, preferably with a gasket near one of its longitudinal ends, and comprises a first longitudinal part sl ideably arranged with in the top cover and a second longitudinal part that may be guided into a casing tubular.
  • the casing tool further comprises a first sleeve arranged concentric and axial displaceable along at least part of the inner body at an axial distance (d) from the top cover, force transferring means for transferring a first external axial force (F 1 ) exerted on the top cover in directed towards the casing tubular at least partly to the first sleeve, at least one clamp connected radially displaceable to the first sleeve for engaging the inside wall of the casing tubular and radial displacement means extending at least partly along the second longitudinal part of the inner body for imparting radial displacement of at least one of the at least one clamp during relative axial displacement of the first sleeve and the inner body.
  • the first external axial force (Fl) is preferably exerted after an obstruction of axial displacement of the inner body relative to the casing tubular
  • the casing tool further comprising a first impact means configured to abut the end of the casing tubing during insertion therein, where an obstruction of the axial displacement of the inner body relative to the casing tubular is ensured by connecting the first impact means to the inner body via the force transferring means, for example when the at least one clamp is in an engaging position.
  • the first impact means may comprise a first impact face situated between the end of the first sleeve facing the top cover and the radial displacement means.
  • the first impact means may be connected by connection means to an outer enclosure radially enclosing at least the end of the first sleeve facing the top cover and the force inducing means.
  • the force transferring means comprises a second sleeve arranged adjacent to the end of the top cover facing the second longitudinal part and at least one locking means arranged in contact with the axial end of the first sleeve facing the top cover, wherein the force transferring means is configured so that an axial force on the second sleeve activates a mainly casing tubing directed axial displacement of the at least one locking means.
  • the at least one locking means may comprise at least one pivot arm, where an axial force on the second sleeve causes a mainly outward oriented radial displacement of a first arm of the pivot arm and a mainly casing tubing directed axial force from the second arm o the iv ot arm.
  • the second arm may be either in direct or indirect contact with the first sleeve.
  • the second sleeve may further comprise a third sleeve and an annular body connected to an axial end of the third sleeve lacing the second longitudinal part and radially abutting a contact face of the first arm of at least one pivot arm, wherein the annular body comprises a radial projection configured to impose the outward directed radial displacement of the first arm during axial displacement of the seco d sleeve.
  • the at least one locking means may comprise at least one lockable wheel and a lower sleeve, wherein an axial force on the second sleeve causes a release o the at least one lockable wheel and a mainly casing tubing directed axial force from the lower sleeve.
  • the first sleeve comprises an inner tubing extending at least across the radial displacement means situated on the inner body and a flange or collar connected to the end of the inner tubing fac ing the top cover.
  • the outer diameter of the flange is larger than the outer diameter of the inner tubing.
  • the first sleeve displays at least one clamp fitting recess, wherein each recess is configured to allow its corresponding clamp to be displaced in the radial direction only after assembly.
  • the radial displacement means comprises at least one first tapered face.
  • the at least one of the at least one clamp may comprise at least one second tapered face facing the at least one first tapered face.
  • the axial end of the top cover facing the second longitudinal part and the axial end of the force transferring means facing the top cover, for example the axial end of the third sleeve are configured as interacting cam bodies al lowing interconnection by rotation.
  • This interconnection may for example be obtained by exerting an external axial force (F) that causes the contact face of the first arm to supersede the radial projection.
  • the interacting cam bodies are advantageously configured to al low a top cover directed axial displacement of the second sleeve when the interacting cam bodies are rotated into the interconnected state and a third external axial force (F3) directed towards the casing tubing is exerted on the top cover.
  • This axial displacement of the second sleeve causes the at least one clamp to release the radial force on the casing tubular set up by the radial displacement during engagement.
  • the displacement may cause the second sleeve to axially disconnect from the at least one pivot arm.
  • the casing tool further comprising at least one second sleeve connected release mechanism configured to allow a top cover directed axial displacement of the second sleeve.
  • the axial displacement may cause the second sleeve to disconnect from the at least one pivot arm.
  • the invention also concerns a method using a casing tool in accordance with the above mentioned characteristics.
  • the method comprising the following steps:
  • the method may further comprise the step:
  • Figure 1 is a perspective view of the casing tool in accordance wi h a first embodiment of the invention showing the tool in engaged position
  • Figure 2 is a radial view of the casing tool in accordance ith Figure 1 showing the engaged tool inserted into a casing tubular.
  • Figure 3 is a cross sectional view of the casing tool along section A-A of igure 2
  • F igure 4 is a radial view of the casing tool in accordance with Figure 1 with the outer enclosure removed,
  • Figure 5 is a cross sectional view of the casing tool along section A-A of Figure 4.
  • Figure 6 is a cross sectional view of the casing tool along section B-B of Figure 5,
  • Figure 7 is a cross sectional view of the casing tool along section C-C of Figure 5
  • Figure 8 is a cross sectional view of the casing tool in accordance with the invention, showing the end of the tool inserted into the casing tubular.
  • Figure 9 is a schematic view showing the principals of converting axial displacement of the dies into radial displacement using tapered faces, wherein fig. 9 (a) is showing the initial engagement due to movement of the die and fig. 9 (b) is showing the additional engagement due to opposite di ected tensioning of the inner body.
  • Figure 10 is a radial view of the casing tool in accordance with a second embodiment of the invention showing the tool in engaged position
  • Figure 1 1 is a cross sectional view of the casing tool along section A-A of figure 1 0
  • Figure 1 2 is a cross sectional view of the casing tool along a section perpendicular to section A-A of figure 1 0 relative to the tools axial axis and
  • Figure 13 is a cross section view of the casing tool along a section D-D of figure 12.
  • Figure 1 shows one embodiment of the casing tool 1 in a perspective view
  • Figures 2 and 3 show the same casing tool 1 as in Figure I in a radial view and a cross sectional view along section A-A, respectively, after completing an engaging insertion into a casing tubular 4.
  • upper and lower signify the orientation from and to the casing tubular 4, respectively.
  • outward and inward signify the radial orientation from and to the center of the tool 1, respectively.
  • the particular embodiment of the invent ive tool 1 comprises the following main components:
  • top drive part 2 having upper threads in order to connect to a top drive (not shown),
  • an inner tubular 6 comprising an upper tubular 6' situated mainly within the top drive part 2 and the upper cam body 1 8 and a lower tubula 6" situated mainly within the casing tubular 4 after complete engagement,
  • a through-going fluid channel 27 extending throughout the entire length of the inner body 6.
  • an upper impact piece 20 (figure 5) connected to the upper tubular 6" with a lock ring 21 and situated within an annular cavity formed by the top drive part 2, the up er cam body 1 8 and the upper tubular 6' ,
  • first cam springs 26 interconnecting the upper and lower cam bodies
  • annular spring 14, 14' having an outward oriented bulge or protrusion 14'
  • a lower impact piece 10 configured to abut the threaded part 5 of the casing tubular 4.5 after insertion
  • a plurality pivot arms 12 comprising a long arm 12', a short arm 12" and a pivot point in form of a bolt 13 fixed to the lower impact piece 10,
  • a sleeve 8 having a flange 1 1 at its upper end and die recesses at its lower end.
  • each die 34 comprises an elastomeric contacting face 1 9 at its outward directed radial surface and a die zigzag pattern 9" at its inward directed radial surface,
  • tubular zigzag pattern 9' at the outer wall of the lower tubular 6", wherein the tubular zigzag pattern 9' and the die zigzag pattern 9" form mirror patterns,
  • tilting levers 35 connected at one end underneath the lower cam body 16 and at the other end to sheaves 3 1 via bolt connections 22 and
  • top components comprising the top drive part 2, the upper cam body 1 8, the upper impact piece 20. the lock ring 2 1 and the upper gear teeth 42 form an assembly called a top cover 1 00.
  • mid components comprising lower cam body 16, the lower gear teeth 40, the annular spring 14, 14' and the pivot arms 12 form an assembly called a force transferring means 200.
  • the tool 1 is lowered into the casing tubular 4,5 until its threaded part 5 abuts the lower impact iece 1 0, the latter being fixed to the outer enclosure 3.
  • the abutting impact piece 10 prevents any downward axial displacement of the inner tubular 6 since the bulge 14' in the annular spring 14 is located above a contacting face 15 at the end of the long arm 12' of each pivot arm 12.
  • the end of the short arm 12" below the pivot point bolt 1 3 is contacting the upper axial face of the sleeve ' s 8 flange 1 1, the hitters being arranged concentrically around the inner tubular 6.
  • die recesses configured to allow only radial displacements of the dies 34 when installed.
  • the mirrored zigzag patterns 9,9' on the dies 34 and the lower tubular 6" force the dies 34 radially outwards.
  • the desired clamping of the dies 34 onto the inner walls of the inner tubular 6 is thereby achieved.
  • T he lower gear teeth 40 ensure that the lower cam body 16 is only displaced in the axial direction.
  • Flange springs 25 may be arranged between the flange 1 1 and the lower impact piece 10 in order to re-position the sleeve 8 and the flange 1 1 when the dies 34 are released from the inner tubular 6.
  • Release o the tool 1 from the casing tubular 4 may be achieved by lowering the top drive part 2 and the upper cam body 18 applying a downward directed force, while enforcing a counterclockwise rotation.
  • the latter rotation forms an interconnection between the upper cam body 1 and the lower cam bod 16 in contrast to simple impact 32 in absence of rotation.
  • upper cams 33 with upward directed inclined planes 37 at the lower part of the upper cam body 1 8 arc meshing with corresponding inclined planes 37' on the upper part of the lower cam body 16, thereby lifting the latter axially upwards. Due to the axial displacement of the now interconnected bodies 16, 1 8 the long pivot arm 12' looses its grip with the annular spring 14, thus releasing the tool 1 from the casing tubular 4.
  • Upper gear teeth 42 arranged between the top drive part 2 and the upper cam body 18 are configured to mesh with the top drive part 2 when impact 30 exists (or about to take place) between the upper cam body 1 8 and the upper impact piece 20, i.e. when the top drive part 2 is in its upper position. Further, arrangement of the first cam springs 26 ensure that such an impact 30 prevails in the absence of downward directed axial force (F).
  • the im act piece 20 may be fixed by a locking ring 21.
  • the second cam springs 17 ensure positioning of the top drive part 2 relative to the lower cam body 16.
  • the tool 1 may be arranged with pivoting levers 35 connected underneath the lower cam bod 16 in one end and sheaves / plates 3 1 fixed by bolts 34 at the other end.
  • the plates 31 are fastened to the outer enclosure 3 by screws.
  • To manually release the tool I dedicated release or lever screws 23 are inserted so that the pivoting levers 35 pivots around the bolts 34, thereby pressing the lower arm radially inwards and the higher arm axially upwards.
  • the lower cam body 1 6 experiences thus a corresponding axial ly displacement, thereby releasing the annular spring 14 from the pre-tensioning long arm 1 2 ' .
  • Figure 8 shows the axially displaceable sleeve 8, the radiall displaceable dies 34. the engagement means 9,9',9" and the rubber gasket 7 in further details.
  • the displaced mirror configurations of the zigzag patterns constituting the engagement means is apparent. Due to the sliding action on each or some of the tapered surfaces any axial displacement of either the lower tubular 6" or the sleeve 8 results in a radial displacement of the dies 34. The same effect is achieved by any relative axial displacement between these two objects 6 " .8.
  • the principle o converting axial displacement of the dies 34 into radial displacement using tapered faces is better illustrated in figure 9 (a) and 9 (b).
  • Figures 10- 13 illustrate a second embodiment of the inventive casing tool 1 , where figure 10 shows the casing tool inserted into a casing as v iewed in a radial direction. Further, figures 1 1 and 12 shows a cross sectional view along a section A-A of figure 10 and a cross sectional view along a section perpendicular to section A-A relative to the axial axis, respectively, and figure 13 shows a cross sectional view along a section D-D of figure 12.
  • the second embodiment of the inventive tool 1 comprises the following main components:
  • top drive part 2 having threads in order to connect to a top drive (not shown),
  • an inner tubular 6 comprising an upper tubular 6' situated mainly within the top drive part 2 and the upper cam body 18 and a lower tubular 6" situated mainly within the casing tubular 4 after complete engagement
  • an upper impact piece 20 connected to the upper tubular 6' with a lock ring 21 and situated within an annular cavity formed by the top drive part 2, the upper cam body 1 8 and the upper tubular 6 ⁇
  • releasable wheels 52 situated within recesses along the radial surface of the lower cam body 16,
  • a sleeve 8 having a flange 1 1 at its u per end and die recesses at its lower end
  • each die 34 comprises an elaslomeric contacting face 19 at its outward directed radial surface and a die zigzag pattern 9" at its inward directed radial surface,
  • tubular zigzag pattern 9' at the outer wall of the lower tubular 6", wherein the tubular zigzag pattern 9' and the die zigzag pattern 9" form mirror patterns,
  • the top components comprising the top drive part 2, the upper cam body 18, the upper impact piece 20, the lock ring 21 and the upper gear teeth 42 form the assembly cal led the top cover 100.
  • the mid components comprising lower cam body 16, the lower gear teeth 40.
  • the mid sleeve 5 1 , the releasable wheels 52, the triangular brackets 53, the low er sleeve 54, the elongated brackets 55, the inner tubular flange 56 and the lower sleeve springs 56 form the assembly called the force transferring means 200.
  • the tool 1 is lowered into the casing tubular 4,5 until its threaded part 5 abuts the lower impact piece 10.
  • the abutting impact piece 10 prevents any downward axial displacement of the inner tubular 6 since the impact piece 10 is coupled to the inner tubular 6 by the screws 57 and also to the lower cam body by the l cked wheels 52.
  • Exertion of axial forces on the tool 1 in direction of the casing tubular 4,5 cause corresponding a ial displacements of the top drive part 2, the upper impact piece 20 and upper cam body 18.
  • the upper cam body 18 will impact the lower cam body 1 6 in an impact area 32, causing an axial force to be exerted also on the latter 16.
  • the force will release the wheel 52 which again causes the lower end of the lower cam body to impart downward directed pressure on the inner tubular flange 56. Further, the inner tubular flange 56 abuts the lower sleeve 54. creating the axial pressure on the flange 1 1 and thus the zigzag pattern induced radial displacement of the dies 34.
  • both the initial pre-tensioning clamping and the additional clamping are performed without any rotational movements of the tool 1 .
  • Release o the tool 1 from the casing tubular 4 may be achieved by lowering the top drive part 2 and the upper cam body 18 applying a downward directed force, and subsequently en forcing a counterclockwise (or alternati vely clockwise) rotation.
  • the latter rotation forms an interconnection between the up er cam body 1 8 and the lower cam body 16 in contrast to simple impact 32 in absence of rotation.
  • upper cams 33 with upward directed inclined planes 37 at the lower part of the upper cam body 1 8 are meshing with corresponding inclined planes 37 " on the upper part of the lower cam body 1 6, thereby lifting the latter axially upwards (see figure 4). Due to the axial displacement o the now interconnected bodies 16, 18 and the locking of the wheels 52 inside their respective recesses on the lower cam body 1 6.
  • Upper gear teeth 42 may be arranged between the top drive part 2 and the upper cam body 18 that are configured to mesh with the top drive part 2 when impact 30 exists (or about to take place) between the u er cam body 18 and the upper impact piece 20 (see figure 5), i.e. when the top drive part 2 is in its upper position. Further, arrangement of the first cam springs 26 ensure that such an impact 30 prevails in the absence of downward directed axial force (F).
  • the second cam springs 17 ensure positioning of the top drive part 2 relative to the lower cam body 16.
  • the tool 1 may be arranged with dedicated release screws 23 fastened underneath the flange 1 1, going through dedicated holes in the lower sleeve 54.
  • the release screws 23 By inserting suitable tools into aligned passages 60 into the lower impact access is gained to the release screws 23.
  • a Clockwise directed turns of these screws 23 cause the screw ends to abut underneath the inner tubular flange 56, which again causes an upwards movement of the component constituting the force transferring means 200 and the inner tubing 6.
  • the further mechanisms are identical to the regular release described above. in the preceding description, vari us aspects of the apparatus according to the invention have been described with reference to the illustrative embodiment.

Abstract

The invention concerns a casing tool and a method for connecting casing tubulars using a top drive. The casing tool comprises a top cover that may be connected either releasably or non-releasably to the top drive and an elongated inner body that may be connected releasingly to the top cover. The inner body displays a longitudinally directed through-going channel, preferably with a gasket near one of its longitudinal ends, and comprises a first longitudinal part slideably arranged within the lop cover and a second longitudinal part that may be guided into a casing tubular. One or more radially displaceable clamps is connected to the lower part of the casing tool for engaging the inside wall of the casing tubular. The radial displacement of the clamps is achieved by use of radial displacement means.

Description

Title:
A casing tool Technical Field:
The present invention concerns a casing tool and a method for connecting casing tubulars using a top drive as disclosed in the introductory part o the main claims. More specifically the invention concerns at casing tool that may be releasably fixed to a top drive in a drilling derrick for interconnecting casing tubulars, i.e. casings inserted into drilling holes for hydrocarbon productions. Background and prior art:
Particularly in oil and gas industry, sections of casing tubulars are being interconnected and inserted into a borehole to achieve the extended length of the borehole lining. To avoid that the interconnected casing string falls into the well while adding a new section, the slips of a spider located on the floor of the drilling platform are often used. The new section or stand of casing is then moved from a rack to the well centre ab ve the spider. The treaded pin of the section of casing tubular to be connected is then located over the threaded box of the casing in the well and the connection is made up by rotation there between. An elevator is then connected to the top of the new section and the whole casing string is I i fted slightly to enable the slips of the spider to be released. The whole casing string is then lowered unti l the top of the section is adjacent the spider whereupon the slips of the spider are reappli ed, the elevator disconnected and the process repeated.
It is well known to use a power tong or similar turning means to torque the connection up to a predetermined torque in order to make the connection. These turning means located on the platform, cither on rails, or hung from a drilling derrick on a chain, constitute often large and complex machineries which require a considerable amount of space and maintenance.
In the last decades use of top drive has been common in order to perform the interconnection of casing tubulars with sufficient torque strength. This type of operati ns requires the use of a dedicated tool that may connect to the top drive in one longitudinal end and may engage with the casing tubular at the other end so that the casing tub lar can be rotated and lifted/lowered in to/out of the bore hole. An example of connecting tubular sections using a top drive and a corresponding casing tool is disclosed in publication WO 00/05483. This casing tool comprises a plural ity of gripping elements that are radially displaceablc by hydraulic or pneumatic fluid in order to drivingly engage the tubula section. This again permits a screw connection between the engaged tubular section and a further tubular section with the required torque. Another example of a top drive and a casing tool is found in publication WO 2006/1 16870 A 1 disclosing a casing tool comprising a body assembly and a gripping assembly with a grip surface adapted o move from a retracted position to an engaged position to radially engage a work piece in response to relative a ial displacement, the latter being activated by relative rotation within the tool. Further, publication US 8'454'066 B2 discloses a tool for moving rigid spokes arranged in close fitting relation with spike guides on an annular body to allow for radial movements only between a retracted position and an engaged position.
Common for the prior art casing tools o the type described above is the use of either hydraulic or pneumatic fluid or relative rotation within the tool, in order to initiate and complete the process of engaging the tool o the casing tubular. This increases the complexity of the tool, thus releasing important undesired aspects such as higher production cost and higher degree of maintenance. There is therefore a need to mitigate the disadvantages with the existing systems and to reduce the investments i extra equipment.
It is thus an object of the present invention to present a solution providing an easier and more cost effective activation of the engagement between the tool and the casing tubular, and which also fulfills the requirements of robustness and reliability. Another object of the invention is to provide an engagement mechanism that may be easily released, both in normal operations and in case of certain mechanical malfunctioning.
Summary of the invention:
The present invention is set forth and characterized in the main claims, while the dependent claims describe other characteristics of the invention.
In particular, the invention concerns a casing tool for connecting casing tubulars using a top drive. The casing to l comprises a top cover that may be connected either releasably or non-releasably to the top drive and an elongated inner body that may be connected relea singly to the top cover. The inner body displays a longitudinally directed through-going channel, preferably with a gasket near one of its longitudinal ends, and comprises a first longitudinal part sl ideably arranged with in the top cover and a second longitudinal part that may be guided into a casing tubular.
The casing tool further comprises a first sleeve arranged concentric and axial displaceable along at least part of the inner body at an axial distance (d) from the top cover, force transferring means for transferring a first external axial force (F 1 ) exerted on the top cover in directed towards the casing tubular at least partly to the first sleeve, at least one clamp connected radially displaceable to the first sleeve for engaging the inside wall of the casing tubular and radial displacement means extending at least partly along the second longitudinal part of the inner body for imparting radial displacement of at least one of the at least one clamp during relative axial displacement of the first sleeve and the inner body. The first external axial force (Fl) is preferably exerted after an obstruction of axial displacement of the inner body relative to the casing tubular In a preferred embodiment the casing tool further comprising a first impact means configured to abut the end of the casing tubing during insertion therein, where an obstruction of the axial displacement of the inner body relative to the casing tubular is ensured by connecting the first impact means to the inner body via the force transferring means, for example when the at least one clamp is in an engaging position. The first impact means may comprise a first impact face situated between the end of the first sleeve facing the top cover and the radial displacement means. Furthermore, the first impact means may be connected by connection means to an outer enclosure radially enclosing at least the end of the first sleeve facing the top cover and the force inducing means. In another preferred embodiment the force transferring means comprises a second sleeve arranged adjacent to the end of the top cover facing the second longitudinal part and at least one locking means arranged in contact with the axial end of the first sleeve facing the top cover, wherein the force transferring means is configured so that an axial force on the second sleeve activates a mainly casing tubing directed axial displacement of the at least one locking means.
The at least one locking means may comprise at least one pivot arm, where an axial force on the second sleeve causes a mainly outward oriented radial displacement of a first arm of the pivot arm and a mainly casing tubing directed axial force from the second arm o the iv ot arm. The second arm may be either in direct or indirect contact with the first sleeve. The second sleeve may further comprise a third sleeve and an annular body connected to an axial end of the third sleeve lacing the second longitudinal part and radially abutting a contact face of the first arm of at least one pivot arm, wherein the annular body comprises a radial projection configured to impose the outward directed radial displacement of the first arm during axial displacement of the seco d sleeve.
Alternatively the at least one locking means may comprise at least one lockable wheel and a lower sleeve, wherein an axial force on the second sleeve causes a release o the at least one lockable wheel and a mainly casing tubing directed axial force from the lower sleeve.
In another preferred embodiment the first sleeve comprises an inner tubing extending at least across the radial displacement means situated on the inner body and a flange or collar connected to the end of the inner tubing fac ing the top cover. The outer diameter of the flange is larger than the outer diameter of the inner tubing.
In another preferred embodiment the first sleeve displays at least one clamp fitting recess, wherein each recess is configured to allow its corresponding clamp to be displaced in the radial direction only after assembly.
In another preferred embodiment the radial displacement means comprises at least one first tapered face. Furthermore, the at least one of the at least one clamp may comprise at least one second tapered face facing the at least one first tapered face.
In another preferred embodiment the axial end of the top cover facing the second longitudinal part and the axial end of the force transferring means facing the top cover, for example the axial end of the third sleeve, are configured as interacting cam bodies al lowing interconnection by rotation. This interconnection may for example be obtained by exerting an external axial force (F) that causes the contact face of the first arm to supersede the radial projection. The interacting cam bodies are advantageously configured to al low a top cover directed axial displacement of the second sleeve when the interacting cam bodies are rotated into the interconnected state and a third external axial force (F3) directed towards the casing tubing is exerted on the top cover. This axial displacement of the second sleeve causes the at least one clamp to release the radial force on the casing tubular set up by the radial displacement during engagement. For example, the displacement may cause the second sleeve to axially disconnect from the at least one pivot arm. In another preferred embodiment the casing tool further comprising at least one second sleeve connected release mechanism configured to allow a top cover directed axial displacement of the second sleeve. For example, the axial displacement may cause the second sleeve to disconnect from the at least one pivot arm.
The invention also concerns a method using a casing tool in accordance with the above mentioned characteristics. The method comprising the following steps:
- inserting the second longitudinal part o the inner body a predetermined length into the casing tubular, the length being set by a first impact means connected to the inner body to hinder axial displacement of the inner body relative to the casing tubular and
- exerting a first casing tubular directed external axial force (Fl) on the top cover causing equally directed axial displacements o the top cover, the first sleeve and the at least one clamp,
whereby engagement of the casing tool with the casing tubular is achieved by interaction with the radial displacement means imparting radial displacement of at least one of the at least one clamp during said axial displacements. In other to achieve an additional engagement o the at least one of the at least on clamp the method may further comprise the step:
- releasing the first casing tubular directed external axial force (Fl) on the top cover,
- exerting a second external a ial force (F2) directed opposite to the first external axial force (Fl),
thereby exerting a second external axial force directed tension on the inner body, creating an increase in the relative axial force between the dies and the inner b dy.
To release the engagement between the casing tool and the casing tubular the following steps may be performed:
- exerting a third external axial force (F3) on the top cover in direction of the casing tubular causing equally directed axial displacements,
- rotating the top cover (either subsequent t the axial displacement or simultaneously), thereby achieving an interconnected assembly comprising the top cover, the second sleeve and the inner body and - raising the assembly, causing a top cover directed axial displacement of the first sleeve and the at least one clamp. The latter step releases the engagement of the clamp( s) by interaction with the radial displacement means.
An alternative or additional way f releasing the engagement between the casing tool and the casing tubular is obtained by performing the following step:
- activating at least one second sleeve connected release mechanism causing a top cover directed axial displacement of the first sleeve and at least one of the at least one clamp, thereby releasing the engagement between the casing tool and the casing tubular through interaction with the radial displacement means.
In the following description, numerous specific details are introduced to provide a thorough understanding f embodiments of the claimed tool and method. One skilled in the relevant art, however, will recognize that these embodiments can be practiced without one or more of the specific details, or with other components, systems, etc. In other instances, well-known structures or operations are not shown, or are not described in detai l, to avoid obscuring aspects of the disclosed embodiments.
Brief description of the drawings:
Figure 1 is a perspective view of the casing tool in accordance wi h a first embodiment of the invention showing the tool in engaged position,
Figure 2 is a radial view of the casing tool in accordance ith Figure 1 showing the engaged tool inserted into a casing tubular.
Figure 3 is a cross sectional view of the casing tool along section A-A of igure 2, F igure 4 is a radial view of the casing tool in accordance with Figure 1 with the outer enclosure removed,
Figure 5 is a cross sectional view of the casing tool along section A-A of Figure 4.
Figure 6 is a cross sectional view of the casing tool along section B-B of Figure 5,
Figure 7 is a cross sectional view of the casing tool along section C-C of Figure 5 , Figure 8 is a cross sectional view of the casing tool in accordance with the invention, showing the end of the tool inserted into the casing tubular.
Figure 9 is a schematic view showing the principals of converting axial displacement of the dies into radial displacement using tapered faces, wherein fig. 9 (a) is showing the initial engagement due to movement of the die and fig. 9 (b) is showing the additional engagement due to opposite di ected tensioning of the inner body.
Figure 10 is a radial view of the casing tool in accordance with a second embodiment of the invention showing the tool in engaged position, Figure 1 1 is a cross sectional view of the casing tool along section A-A of figure 1 0,
Figure 1 2 is a cross sectional view of the casing tool along a section perpendicular to section A-A of figure 1 0 relative to the tools axial axis and
Figure 13 is a cross section view of the casing tool along a section D-D of figure 12.
Detailed description of the invention
In the following to different embodiments wil l be disclosed, where both embodiments are based on the following general concept (see for example figures 1-4 and figures 10- 12): After inserting a tool 1 into the casing tubular 4,5 the dies 34 on the sleeve 8 engage the inner wall of the lower tubular 6" by relative (non-rotational ) axial displacements of the zigzag patterns 9,9' in response to a downward directed axial force. The through-going fluid channel 27 and the rubber gasket 7 allows leak free circulation of fluid, rendering fluid flow into the casing tubular 4,5 possible. A subsequent upward directed force strengthens this die engagement. Release of the tool 1 from the casing 4,5 may be performed by a combination of axial force and rotational force.
First embodiment:
Figure 1 shows one embodiment of the casing tool 1 in a perspective view, while Figures 2 and 3 show the same casing tool 1 as in Figure I in a radial view and a cross sectional view along section A-A, respectively, after completing an engaging insertion into a casing tubular 4. In the following the terms upper and lower signify the orientation from and to the casing tubular 4, respectively. Furthermore, the terms outward and inward signify the radial orientation from and to the center of the tool 1, respectively.
With reference to figures 2-7 the particular embodiment of the invent ive tool 1 comprises the following main components:
a top drive part 2 having upper threads in order to connect to a top drive (not shown),
an upper cam body 18 and a lower cam body 16. which bodies 16, 18 may be connected and disconnected by simple rotations clockwise and counterclockwise,
low er threads 29 for connecting the top drive part 2 and the upper cam body 18,
an inner tubular 6 comprising an upper tubular 6' situated mainly within the top drive part 2 and the upper cam body 1 8 and a lower tubula 6" situated mainly within the casing tubular 4 after complete engagement,
a through-going fluid channel 27 extending throughout the entire length of the inner body 6.
an upper impact piece 20 (figure 5) connected to the upper tubular 6" with a lock ring 21 and situated within an annular cavity formed by the top drive part 2, the up er cam body 1 8 and the upper tubular 6' ,
upper gear teeth 42 (figure 6) surrounding the upper tubular 6' and situated within a cavity formed by the top drive part 2 and the upper tubular 6',
lower gear teeth 40 (figure 7) surrounding the inner tubular 6 and situated within the lower cam body 1 6,
first cam springs 26 interconnecting the upper and lower cam bodies
1 , 1 6,
second cam springs 1 7 interconnecting the lower cam bodies 1 6 and the top drive part 2,
an annular spring 14, 14' having an outward oriented bulge or protrusion 14',
a lower impact piece 10 configured to abut the threaded part 5 of the casing tubular 4.5 after insertion,
a plurality pivot arms 12 comprising a long arm 12', a short arm 12" and a pivot point in form of a bolt 13 fixed to the lower impact piece 10,
a sleeve 8 having a flange 1 1 at its upper end and die recesses at its lower end.
flange springs 25 interconnecting the lower impact piece 1 0 and the flange 1 1 , an outer enclosure 3 fixed to the lower impact piece 10 by screws 24 and surrounding the above mentioned components up to the top drive part 2, a plurality of dies 34 arranged within the die recesses, where each die 34 comprises an elastomeric contacting face 1 9 at its outward directed radial surface and a die zigzag pattern 9" at its inward directed radial surface,
tubular zigzag pattern 9' at the outer wall of the lower tubular 6", wherein the tubular zigzag pattern 9' and the die zigzag pattern 9" form mirror patterns,
rubber gasket 7 arranged below the dies 34 ensuring a fluid tight seal between the inner wall of the casing tubular 4 and the lower tubular 6",
tilting levers 35 connected at one end underneath the lower cam body 16 and at the other end to sheaves 3 1 via bolt connections 22 and
lever screws 23 situated in the sheaves 3 1.
The top components comprising the top drive part 2, the upper cam body 1 8, the upper impact piece 20. the lock ring 2 1 and the upper gear teeth 42 form an assembly called a top cover 1 00. Further, the mid components comprising lower cam body 16, the lower gear teeth 40, the annular spring 14, 14' and the pivot arms 12 form an assembly called a force transferring means 200.
Initially the tool 1 is lowered into the casing tubular 4,5 until its threaded part 5 abuts the lower impact iece 1 0, the latter being fixed to the outer enclosure 3. In this starting position the abutting impact piece 10 prevents any downward axial displacement of the inner tubular 6 since the bulge 14' in the annular spring 14 is located above a contacting face 15 at the end of the long arm 12' of each pivot arm 12. Further, the end of the short arm 12" below the pivot point bolt 1 3 is contacting the upper axial face of the sleeve's 8 flange 1 1, the hitters being arranged concentrically around the inner tubular 6. In the lower half of the sleeve 8 there are arranged die recesses configured to allow only radial displacements of the dies 34 when installed.
In this particular starting position exertion of axial forces on the tool 1 cause corresponding axial displacements of the top drive part 2, the upper impact piece 20 and upper cam body 18. In absence of any rotation the upper cam body 1 8 will impact the lower cam body 16 in an impact point 32 (figure 4), causing an axial force to be exerted also on the lower cam body 16 and the connected annular spring 14. If this latter force is sufficient to overcome the radial spring force exerted by the long arm 12' on the annular spring 14, the bulge 14' will move the arm 12" radially outwards. An axial pressure is thus imparted on the flange 1 1 by the short arm 12" causing the sleeve 8 and the attached dies 34 to be axial ly displaced. Finally, the mirrored zigzag patterns 9,9' on the dies 34 and the lower tubular 6" force the dies 34 radially outwards. The desired clamping of the dies 34 onto the inner walls of the inner tubular 6 is thereby achieved. T he lower gear teeth 40 ensure that the lower cam body 16 is only displaced in the axial direction. Flange springs 25 may be arranged between the flange 1 1 and the lower impact piece 10 in order to re-position the sleeve 8 and the flange 1 1 when the dies 34 are released from the inner tubular 6. When the contacting surface 1 5 of the long arm 1 2' has passed the center of the bulge 14' the pivot arms 12 are in a locked position relative to the annular spring 14, the lower cam body 16 and the inner tubular 6. In absence of any rotation the upper cam body 18 and the top drive part 2 may in this prc- tensioning situation be li ted up until i mpact occurs between the upper cam body 1 8 and the upper impact piece 20. Exertion of any further upwards directed force would thus be transferred to the lower tubular 6", causing a larger axial force and thus an additional clamping / tensioning force onto the inner walls of the casing tubular 4 from the dies 34.
It is emphasized that both the initial clamping and the additional clamping are performed without any rotational movements of the tool 1.
Release o the tool 1 from the casing tubular 4 may be achieved by lowering the top drive part 2 and the upper cam body 18 applying a downward directed force, while enforcing a counterclockwise rotation. The latter rotation forms an interconnection between the upper cam body 1 and the lower cam bod 16 in contrast to simple impact 32 in absence of rotation. During rotation upper cams 33 with upward directed inclined planes 37 at the lower part of the upper cam body 1 8 arc meshing with corresponding inclined planes 37' on the upper part of the lower cam body 16, thereby lifting the latter axially upwards. Due to the axial displacement of the now interconnected bodies 16, 1 8 the long pivot arm 12' looses its grip with the annular spring 14, thus releasing the tool 1 from the casing tubular 4. Upper gear teeth 42 arranged between the top drive part 2 and the upper cam body 18 are configured to mesh with the top drive part 2 when impact 30 exists (or about to take place) between the upper cam body 1 8 and the upper impact piece 20, i.e. when the top drive part 2 is in its upper position. Further, arrangement of the first cam springs 26 ensure that such an impact 30 prevails in the absence of downward directed axial force (F). The im act piece 20 may be fixed by a locking ring 21. The second cam springs 17 ensure positioning of the top drive part 2 relative to the lower cam body 16.
To be able to release the tool 1 manual ly, e.g. in case of any loss of rotational freedom between the two cam bodies 16, 18, the tool 1 may be arranged with pivoting levers 35 connected underneath the lower cam bod 16 in one end and sheaves / plates 3 1 fixed by bolts 34 at the other end. The plates 31 are fastened to the outer enclosure 3 by screws. To manually release the tool I dedicated release or lever screws 23 are inserted so that the pivoting levers 35 pivots around the bolts 34, thereby pressing the lower arm radially inwards and the higher arm axially upwards. The lower cam body 1 6 experiences thus a corresponding axial ly displacement, thereby releasing the annular spring 14 from the pre-tensioning long arm 1 2 ' . The further mechanisms are identical to the regular release described above. Figure 8 shows the axially displaceable sleeve 8, the radiall displaceable dies 34. the engagement means 9,9',9" and the rubber gasket 7 in further details. The displaced mirror configurations of the zigzag patterns constituting the engagement means is apparent. Due to the sliding action on each or some of the tapered surfaces any axial displacement of either the lower tubular 6" or the sleeve 8 results in a radial displacement of the dies 34. The same effect is achieved by any relative axial displacement between these two objects 6 " .8. The principle o converting axial displacement of the dies 34 into radial displacement using tapered faces is better illustrated in figure 9 (a) and 9 (b). For the sake of clarity only one tapered surface 9" on the lower tubular 6" and only one contacting tapered surface 9" on the die 34 is shown. When the sleeve 8 is displaced downward (in direction towards the casing tubular), the tapered surface 9" glides on the mirrored tapered surface 9\ thereby pressing the contacting layer 19 of the die 34 towards the inside wall of the casing tubular 4 (see figure 9 (a)). Likewise, when the inner tubular 6 experiences a force directed towards the top drive, the tapered surface 9' glides on the tapered surface 9", causing an equal ly directed pressing of the contacting layer 19 towards the inner wal l of the casing tubular 4 (see figure 9 (b)). The situation shown in figure 9 (a) and (b) corresponds to the pre-tensioning force and the additional tensioning force described above.
Second embodiment: Figures 10- 13 illustrate a second embodiment of the inventive casing tool 1 , where figure 10 shows the casing tool inserted into a casing as v iewed in a radial direction. Further, figures 1 1 and 12 shows a cross sectional view along a section A-A of figure 10 and a cross sectional view along a section perpendicular to section A-A relative to the axial axis, respectively, and figure 13 shows a cross sectional view along a section D-D of figure 12.
The second embodiment of the inventive tool 1 comprises the following main components:
a top drive part 2 having threads in order to connect to a top drive (not shown),
an upper cam body 18 and a lower cam body 16, which bodies 16, 18 may be connected and disconnected by simple rotations clockwise and counterclockwise,
an inner tubular 6 comprising an upper tubular 6' situated mainly within the top drive part 2 and the upper cam body 18 and a lower tubular 6" situated mainly within the casing tubular 4 after complete engagement,
a through-going fluid channel 27 extending throughout the entire length of the inner body 6,
an upper impact piece 20 connected to the upper tubular 6' with a lock ring 21 and situated within an annular cavity formed by the top drive part 2, the upper cam body 1 8 and the upper tubular 6\
upper gear teeth 42 surrounding the upper tubular 6' and situated ithin a cavity formed by the top drive part 2 and the upper tubular 6" ,
lower gear teeth 40 (corresponding to figure 7 of embodiment 1) surrounding the inner tubular 6 and situated within the lower cam body 16, first cam springs 26 interconnecting the upper and lower cam bodies
18, 16,
a mid sleeve 5 1 surrounding the inner tubular 6 and the lower cam body 16,
a lower impact piece 1 0 fixed by screws 59 to the mid sleeve 51 and configured to abut the threaded part 5 of the casing tubular 4,5 after insertion, second cam springs 1 7 interconnecting the mid sleeve 5 1 and the top drive part 2,
releasable wheels 52 situated within recesses along the radial surface of the lower cam body 16,
triangular brackets 53 fixed to the releasable wheels,
a lower sleeve 54 surrounding the inner tubular 6 underneath the lower cam body 16, elongated brackets 55 fi ed to the triangular brackets 3 in a first longitudinal end and to the lower sleeve 54 in a second longitudinal end,
a sleeve 8 having a flange 1 1 at its u per end and die recesses at its lower end,
an inner tubular flange 56 radia l ly extending from the inner tubular 6 between the lower cam body 16 and the flange 1 1, wherein the inner tubular flange 56 is fixed to the mid sleeve 5 1 by screws 57.
lower sleeve springs 58 interconnecting the flange 1 1 and the lower sleeve 54.
flange springs 25 interconnecting the lower impact piece 10 and the flange 1 1,
a plurality of dies 34 arranged within the die recesses, where each die 34 comprises an elaslomeric contacting face 19 at its outward directed radial surface and a die zigzag pattern 9" at its inward directed radial surface,
tubular zigzag pattern 9' at the outer wall of the lower tubular 6", wherein the tubular zigzag pattern 9' and the die zigzag pattern 9" form mirror patterns,
rubber gasket 7 arranged below the dies 34 ensuring a fluid tight seal between the inner wall of the casing tubular 4 and the lower tubular 6", and lever screws 23 having one end fixed with their screw head situated underneath the flange 1 1 and the other end arranged underneath the inner tubular flange 56.
As for the first embodiment the top components comprising the top drive part 2, the upper cam body 18, the upper impact piece 20, the lock ring 21 and the upper gear teeth 42 form the assembly cal led the top cover 100. Further, the mid components comprising lower cam body 16, the lower gear teeth 40. the mid sleeve 5 1 , the releasable wheels 52, the triangular brackets 53, the low er sleeve 54, the elongated brackets 55, the inner tubular flange 56 and the lower sleeve springs 56 form the assembly called the force transferring means 200.
Initially the tool 1 is lowered into the casing tubular 4,5 until its threaded part 5 abuts the lower impact piece 10. In this starting position the abutting impact piece 10 prevents any downward axial displacement of the inner tubular 6 since the impact piece 10 is coupled to the inner tubular 6 by the screws 57 and also to the lower cam body by the l cked wheels 52. Exertion of axial forces on the tool 1 in direction of the casing tubular 4,5 cause corresponding a ial displacements of the top drive part 2, the upper impact piece 20 and upper cam body 18. In absence of any rotation the upper cam body 18 will impact the lower cam body 1 6 in an impact area 32, causing an axial force to be exerted also on the latter 16. The force will release the wheel 52 which again causes the lower end of the lower cam body to impart downward directed pressure on the inner tubular flange 56. Further, the inner tubular flange 56 abuts the lower sleeve 54. creating the axial pressure on the flange 1 1 and thus the zigzag pattern induced radial displacement of the dies 34. The flange springs 25 and the lower sleeve springs 56 arranged between the flange 1 1 and the lower impact piece 10 and between the flange 1 1 and the lower sleeve 54, respectively, ensure re-posilioning of the sleeve 8 and the flange 1 1 when the dies 34 are released from the inner tubular 6 (see below).
In absence of any rotation the upper cam body 18 and the lop drive part 2 may in this pre-tensioning situation be lifted up until impact occurs between the upper cam body 1 8 and the upper impact piece 20. Exertion of any further upwards directed force would thus be transferred to the lower tubular 6, causing a larger axial force and thus an additional clamping force onto the inner walls of the casing tubular 4 from the dies 34 in the same way as for the first embodiment.
Note that both the initial pre-tensioning clamping and the additional clamping are performed without any rotational movements of the tool 1 .
Release o the tool 1 from the casing tubular 4 may be achieved by lowering the top drive part 2 and the upper cam body 18 applying a downward directed force, and subsequently en forcing a counterclockwise (or alternati vely clockwise) rotation. The latter rotation forms an interconnection between the up er cam body 1 8 and the lower cam body 16 in contrast to simple impact 32 in absence of rotation. During rotation upper cams 33 with upward directed inclined planes 37 at the lower part of the upper cam body 1 8 are meshing with corresponding inclined planes 37" on the upper part of the lower cam body 1 6, thereby lifting the latter axially upwards (see figure 4). Due to the axial displacement o the now interconnected bodies 16, 18 and the locking of the wheels 52 inside their respective recesses on the lower cam body 1 6. the component constituting the force transferring means 200 releases the pressure on the flange 1 1 causing a further spring induced 25,58 release of the dies 34 from the casing tubular 4,5. Upper gear teeth 42 may be arranged between the top drive part 2 and the upper cam body 18 that are configured to mesh with the top drive part 2 when impact 30 exists (or about to take place) between the u er cam body 18 and the upper impact piece 20 (see figure 5), i.e. when the top drive part 2 is in its upper position. Further, arrangement of the first cam springs 26 ensure that such an impact 30 prevails in the absence of downward directed axial force (F).
The second cam springs 17 ensure positioning of the top drive part 2 relative to the lower cam body 16.
To be able to release the tool 1 manually, e.g. in case of any loss of rotational freedom between the two cam bodies 16, 18, the tool 1 may be arranged with dedicated release screws 23 fastened underneath the flange 1 1, going through dedicated holes in the lower sleeve 54. By inserting suitable tools into aligned passages 60 into the lower impact access is gained to the release screws 23. A Clockwise directed turns of these screws 23 cause the screw ends to abut underneath the inner tubular flange 56, which again causes an upwards movement of the component constituting the force transferring means 200 and the inner tubing 6. The further mechanisms are identical to the regular release described above. in the preceding description, vari us aspects of the apparatus according to the invention have been described with reference to the illustrative embodiment. For purposes of explanation, specific numbers, systems and configurations were set forth in order to provide a thorough understanding of the apparatus and its workings. However, this description is not intended to be construed in a limiting sense. Various modifications and variations of the illustrative embodiment, as well as other embodiments of the apparatus, which are apparent to persons skilled in the art to which the disclosed subject matter pertains, are deemed to lie within the scope of the present invention.

Claims

1 . A casing tool (1) for connecting casing tubulars (4,5) using a top drive, the casing tool (1) comprising
- a top cover (100) conncctable to the top drive and
- an elongated inner body (6) connected releasingly to the top cover (100), said inner body (6) comprising a first longitudinal part (6') slideably arranged within the top cover (100) and a second longitudinal part (6") guidable into a casing tubular (4,5),
characterized in that
the casing tool (1) further comprising
- a first sleeve (8,11) arranged concentric and axial displaceable along at least part of the inner body (6) at an axial distance (d) from the top cover (100),
- force transferring means (200) for transferring axial ly a first external axial force
(F l) exerted on the top cover (100) at least partly to the first sleeve (8, 1 1 ),
- at least one clamp (34) connected radially displaceable to the first sleeve ( 8, 1 1 ) for engaging the inside wall of the casing tubular (4,5 ) and
- radial displacement means (9) extending at least partly along the second longitudinal part (6") of the inner body (6) for imparting radial displacement on at least one of the at least one clamp (34) during relative axial displacement of the first sleeve ( 8, 1 1 ) and the inner body (6).
2. The casing tool ( 1 ) in accordance with claim 1,
characterized in that the first external axial force (Fl) being exerted after an obstruction of axial displacement of the inner body (6) relative to the casing tubular (4) during use.
3. The casing tool ( 1 ) in accordance with claim 1 or 2,
characterized in that the casing tool ( 1) further comprising
a first impact means (10) configured to abut the end of the casing tubing (4,5) during insertion therein,
where an obstruction o the axial displacement of the inner body (6) relative to the casing tubular (4) during use is ensured by connecting the first impact means ( 10 ) to the inner body (6) v ia the force transferring means ( 200 ).
4. The casing tool ( 1 ) in accordance with claim 3. characterized in that the first impact means (10) comprising a first impact face (10') situated between the end of the first sleeve (8, 1 1) facing the top cover (100) and the radial displacement means (9).
5. The casing tool ( 1 ) in accordance with one of the preceding claims, characterized in that the force transferring means (200) comprising
- a second sleeve ( 14- 17; 16,5 1 ) adjacent to the end of the top cover (100) facing the second longitudinal part (6") and
- at least one locking means (12:52-58) arranged in contact with the axial end of the first sleeve (8.1 1 ) facing the top cover (100),
wherein the force transferring means (200) is configured to activate a mainly casing tubing directed axial displacement of the at least one locking means ( 1 2:52-58) when an axial force is exerted on the second sleeve ( 1 4- 1 7; 1 6,5 1 ).
6. The casing tool (1) in accordance with one o the preceding claims, characterized in that the first sleeve (8, 1 1) comprising
- an inner tubing (8) extending at least across the radial displacement means (9') situated on the inner body ( 6) and
- a flange (1 1) connected to the end of the inner tubing (8) facing the top cover ( 100), the outer diameter of the flange (1 1) being larger than the outer diameter of the inner tubing (8).
7. The casing t ol (1) in accordance with one o the preceding claims, characterized in that the radial displacement means (9) comprising at least one first tapered face (9').
8. Casing tool ( 1 ) in accordance with claim 7,
characterized in that the at least one of the at least one clamp (34) comprising at least one second tapered face (9") facing the at least one first tapered face (9').
9. Ca ing tool ( 1 ) in accordance with one of the preceding claims,
characterized in that the axial end ( 18 ) of the top cover (100) facing the second longitudinal part (6") and the axial end of the force transferring means (200) facing the lop cover ( 100) are configured as interacting cam bodies (18, 16') allowing interconnection by rotation.
10. Casing tool ( 1 ) in accordance with claim 9,
characterized in that the interacting cam bodies (18, 16') are configured to allow a top cover directed axial displacement of the second sleeve ( 14- 1 7; 1 6,51 ) when the interacting cam bodies (18, 16') are rotated into the interconnected state and a third external axial force (F3) is exerted on the top cover (100), wherein said axial displacement of the second sleeve ( 14- 17; 16,51) causes the at least one clamp ( 34 ) to release the radial force on the casing tubula (4,5) set up by any radial displacement.
1 1. Casing tool (1) in accordance with one of claims 5- 10,
characterized in that the casing tool (1) further comprising at least one second sleeve connected release mechanism (23,3 1,34,35 ;23, 60) configured to allow a top cover directed axial displacement o the second sleeve ( 14- 1 7: 1 6, 1 ).
12. Method using a casing tool (1) in accordance with one of claims 1- 1 1 , the method comprising the following steps:
- inserting the second longitudinal part (6") o the inner body (6) a predetermined length into the casing tubular (4,5), the length being set by a first impact means (10) connected to the inner body (6) to hinder axial displacement of the inner body (6) relative to the casing tubular (4.5) and
- exerting a first casing tubular directed external axial force (Fl) on the top cover (100) causing equally directed axial displacements o the top cover ( 100), the first sleeve (8, 1 1) and the at least one clamp (34). ,
whereby engagement of the casing tool (1) with the casing tubular (4,5) is achieved by interaction with the radial displacement means (9) imparting radial displacement of at least one of the at least one clamp (34) during said axial displacements.
13. Method in accordance with claim 12, characterized in that the method further comprising the step:
- releasing the first casing tubular directed external axial force (Fl) on the top cover ( 100 ),
- exerting a second external axial force (F2) directed opposite to the first external axial force (Fl), thereby exerting a second external axial force directed tension on the inner body (6) increasing the relative axial force between the clamp (34) and the inner body (6).
14. Method in accordance with claim 12 or 13, characterized in that the method further comprising the step:
- exerting a third external axial force (F3) on the top cover (100) in direction of the casing tubular (4,5 ) causing equally directed axial displacements of top cover (100) and rotating the top cover ( 100). thereby achieving an interconnected assembly comprising the top cover ( 100), the second sleeve ( 14- 1 7: 16,51 ) and the inner body (6) and - raising the assembly, causing a top cover directed axial displacement of the first sleeve (8, 1 1) and the at least one clamp (34), thereby releasing the engagement between the casing tool (1 ) and the casing tubular (4,5) through interaction with the radial displacement means (9).
15. Method in accordance with one of claims 12- 14, characterized in that the method further comprising the step:
- activating at least one second sleeve connected release mechanism ( 23 ,3 1 ,34.35:23, 60 ) causing a top cover directed axial displacement of the first sleeve ( 8, 1 1 ) and at least one of the at least one clamp (34 ), thereby releasing the engagement between the casing tool (1) and the casing tubular (4,5 ) through interaction with the radial displacement means (9).
EP14821629.4A 2013-12-20 2014-12-19 A casing tool Withdrawn EP3084113A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20131716A NO339203B1 (en) 2013-12-20 2013-12-20 Foringsrørverktøy
PCT/EP2014/078846 WO2015092007A2 (en) 2013-12-20 2014-12-19 A casing tool

Publications (1)

Publication Number Publication Date
EP3084113A2 true EP3084113A2 (en) 2016-10-26

Family

ID=52278633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14821629.4A Withdrawn EP3084113A2 (en) 2013-12-20 2014-12-19 A casing tool

Country Status (5)

Country Link
US (1) US20160319613A1 (en)
EP (1) EP3084113A2 (en)
CA (1) CA2934143A1 (en)
NO (1) NO339203B1 (en)
WO (1) WO2015092007A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287830B2 (en) * 2016-11-14 2019-05-14 Frank's International, Llc Combined casing and drill-pipe fill-up, flow-back and circulation tool
US11313183B2 (en) * 2019-01-19 2022-04-26 Noetic Technologies Inc. Axial-load-actuated rotary latch release mechanisms for casing running tools
CN110130831B (en) * 2019-06-24 2024-03-01 重庆科技学院 Top drive casing running device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9815809D0 (en) 1998-07-22 1998-09-16 Appleton Robert P Casing running tool
CA2512800C (en) * 2001-03-22 2010-10-26 Noetic Engineering Inc. Method and apparatus for handling tubular goods
US8424939B2 (en) * 2005-05-03 2013-04-23 Noetic Technologies Inc. Tri-cam axial extension to provide gripping tool with improved operational range and capacity
MX2007013761A (en) * 2005-05-03 2008-01-28 Noetic Eng Inc Gripping tool.
CA2768010C (en) * 2005-12-12 2016-09-20 Weatherford/Lamb, Inc. Apparatus for gripping a tubular on a drilling rig
CA2646929C (en) * 2007-12-10 2014-01-21 Noetic Technologies Inc. Gripping tool with fluid grip activation
US8454066B2 (en) 2008-07-18 2013-06-04 Noetic Technologies Inc. Grip extension linkage to provide gripping tool with improved operational range, and method of use of the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015092007A2 *

Also Published As

Publication number Publication date
WO2015092007A2 (en) 2015-06-25
CA2934143A1 (en) 2015-06-25
NO339203B1 (en) 2016-11-14
WO2015092007A3 (en) 2015-12-17
NO20131716A1 (en) 2015-06-22
US20160319613A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
US7775572B2 (en) Gripping tool with fluid grip activation
EP2313600B1 (en) Tricam axial extension to provide gripping tool with improved operational range and capacity
CA2729205C (en) Tubular handling device
CA2301963C (en) Method and apparatus for handling tubular goods
US6622796B1 (en) Apparatus and method for facilitating the connection of tubulars using a top drive
AU2009270397B2 (en) Grip extension linkage to provide gripping tool with improved operational range, and method of use of the same
US8739888B2 (en) Mechanically actuated casing drive system tool
GB2414207A (en) Methods and apparatus for rotating and connecting tubulars
CA2525637A1 (en) Internal running elevator
WO2015092007A2 (en) A casing tool
US8167050B2 (en) Method and apparatus for making up and breaking out threaded tubular connections
CA2891341A1 (en) Casing manipulation assembly with hydraulic torque locking mechanism
CN112483028A (en) Quick control device for releasing clamping of under-pressure reversing in well
WO2014100426A1 (en) Hydrostatic tubular lifting system
CN116490671A (en) Variable length axial linkage for a down tube tool
WO2010002992A1 (en) Method and apparatus for making up and breaking out threaded tubular connections

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160708

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAUGHOM, PER OLAV

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190730

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191210