EP3080634A1 - Zero echo time mr imaging with water/fat separation - Google Patents
Zero echo time mr imaging with water/fat separationInfo
- Publication number
- EP3080634A1 EP3080634A1 EP14814790.3A EP14814790A EP3080634A1 EP 3080634 A1 EP3080634 A1 EP 3080634A1 EP 14814790 A EP14814790 A EP 14814790A EP 3080634 A1 EP3080634 A1 EP 3080634A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- readout
- magnetic field
- space
- strength
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 40
- 238000000926 separation method Methods 0.000 title claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 22
- 238000005070 sampling Methods 0.000 claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 38
- 239000013626 chemical specie Substances 0.000 claims abstract description 16
- 238000004590 computer program Methods 0.000 claims abstract description 6
- 230000010363 phase shift Effects 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 2
- 239000000126 substance Substances 0.000 description 15
- 230000005415 magnetization Effects 0.000 description 14
- 238000004422 calculation algorithm Methods 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000001646 magnetic resonance method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4828—Resolving the MR signals of different chemical species, e.g. water-fat imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4816—NMR imaging of samples with ultrashort relaxation times such as solid samples, e.g. MRI using ultrashort TE [UTE], single point imaging, constant time imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/482—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a Cartesian trajectory
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/482—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a Cartesian trajectory
- G01R33/4822—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a Cartesian trajectory in three dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/4824—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/4824—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
- G01R33/4826—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory in three dimensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
- G01R33/4831—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using B1 gradients, e.g. rotating frame techniques, use of surface coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
- G01R33/4833—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/483—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
- G01R33/4833—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
- G01R33/4835—NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices of multiple slices
Definitions
- the invention relates to the field of magnetic resonance (MR) imaging. It concerns a method of MR imaging of chemical species having at least two different resonance frequencies.
- the invention also relates to a MR device and to a computer program to be run on a MR device.
- Image-forming MR methods which utilize the interaction between magnetic fields and nuclear spins in order to form two-dimensional or three-dimensional images are widely used nowadays, notably in the field of medical diagnostics, because for the imaging of soft tissue they are superior to other imaging methods in many respects, do not require ionizing radiation and are usually not invasive.
- the body of the patient to be examined is arranged in a strong, uniform magnetic field (Bo field) whose direction at the same time defines an axis (normally the z-axis) of the co-ordinate system on which the measurement is based.
- the magnetic field produces different energy levels for the individual nuclear spins in dependence on the magnetic field strength which can be excited (spin resonance) by application of an electromagnetic alternating field (RF field, also referred to as Bi field) of defined frequency (so-called Larmor frequency, or MR frequency).
- RF field electromagnetic alternating field
- Bi field defined frequency
- the distribution of the individual nuclear spins produces an overall magnetization which can be deflected out of the state of equilibrium by application of an electromagnetic pulse of appropriate frequency (RF pulse) while the magnetic field extends perpendicular to the z-axis, so that the magnetization performs a precessional motion about the z-axis.
- the precessional motion describes a surface of a cone whose angle of aperture is referred to as flip angle.
- the magnitude of the flip angle is dependent on the strength and the duration of the applied electromagnetic pulse.
- 90° pulse the spins are deflected from the z axis to the transverse plane (flip angle 90°).
- the magnetization relaxes back to the original state of equilibrium, in which the magnetization in the z direction is built up again with a first time constant T 1 (spin lattice or longitudinal relaxation time), and the
- the variation of the magnetization can be detected by means of one or more receiving RF coils which are arranged and oriented within an examination volume of the MR device in such a manner that the variation of the magnetization is measured in the direction perpendicular to the z-axis.
- the decay of the transverse magnetization is accompanied, after application of, for example, a 90° pulse, by a transition of the nuclear spins (induced by local magnetic field inhomogeneity) from an ordered state with the same phase to a state in which all phase angles are uniformly distributed (dephasing).
- the dephasing can be compensated by means of a refocusing pulse (for example a 180° pulse). This produces an echo signal (spin echo) in the receiving coils.
- the signal picked up in the receiving coils then contains components of different frequencies which can be associated with different locations in the body.
- the MR signal data obtained via the RF coils corresponds to the spatial frequency domain and is called k-space data.
- the k-space data usually includes multiple lines acquired with different phase encoding. Each line is digitized by collecting a number of samples. A set of k-space data is converted to a MR image by means of Fourier transformation or other appropriate reconstruction algorithms.
- MR imaging of tissues with very short transverse relaxation times, such as bone or lung is becoming increasingly important.
- Nearly all known methods for this purpose basically employ three-dimensional (3D) radial k-space sampling.
- ZTE zero echo time
- a readout gradient is set before excitation of magnetic resonance with a high-bandwidth and thus short, hard RF pulse.
- gradient encoding starts instantaneously upon excitation of magnetic resonance.
- the acquisition of a free induction decay (FID) signal starts immediately after radiation of the RF pulse resulting in an effectively zero 'echo time' (TE).
- FID readout only minimal time is required for setting of the next readout gradient before the next RF pulse can be applied, thus enabling very short repetition times (TR).
- the readout direction is incrementally varied from repetition to repetition until a spherical volume in k-space is sampled to the required extent. Without the need for switching off the readout gradient between TR intervals, ZTE imaging can be performed virtually silently.
- a known challenge in ZTE imaging is that the k-space data are slightly incomplete in the k-space center due to the initial dead time that is caused by the finite duration of the RF pulse, transmit-receive switching, and signal filtering.
- the k-space gap can be addressed, for example, by oversampling of the radial k-space acquisition and/or signal extrapolation.
- the gap size must be limited to approximately two to three Nyquist dwell times to avoid significant noise amplification as well as deterioration of the spatial response function (see, for example, Weiger et al, Magnetic Resonance in Medicine, 70, 328-332, 2013).
- the US-patent applicaton US2007/0188172 discloses a near- zero echo time magnetic resonance method which aims at studying objects having very fast spin-spin relaxation rates.
- water and fat images are generated by either addition or subtraction of the 'in phase' and 'out of phase' datasets, but this approach is rather sensitive to main field inhomogeneities.
- a chemical encoding based separation of different species is not restricted to water/fat species only. Other species with other chemical shifts could also be considered.
- the known Dixon-type water/fat separation techniques rely on the acquisition of two or more images by an appropriate (spin) echo sequence such that an echo time value can be attributed to each image, which echo time values in combination with the phasing of the acquired images encode the contributions from water and fat spins.
- FID signals are acquired in ZTE imaging, as mentioned above, such that the terms 'echo' and 'echo time' have no meaning.
- the known Dixon techniques are thus not applicable in combination with ZTE imaging.
- a method of MR imaging of an object positioned in the examination volume of a MR device comprises the steps of:
- imaging sequence is a zero echo time sequence comprising:
- the radial ZTE acquisition is principally applied in the conventional fashion.
- FID signals are acquired as radial k-space samples by rapidly repeating the radiation of RF pulses while the readout direction is gradually varied until a full spherical volume in k-space is sampled.
- the invention proposes that, as an additional measure, the strength of the readout magnetic field gradient is varied between at least some of the repetitions of the ZTE sequence such that each k-space region is 'visited' during the scan at least two times, each time with a different value of the readout strength.
- the application of different readout strengths implies that each k-space position is sampled at two or more different sampling times (i.e.
- the time interval between the RF pulse and the sampling of a given k-space position It is the basic insight of the invention that sampling of each region in k-space with two or more different sampling times in ZTE imaging results in a specific phasing of the acquired FID signals which is induced by the (known) precessional frequency difference of the involved chemical species (e.g. hydrogen in fat and water). This phasing encodes the signal contributions from the different chemical species.
- the separation of the signal contributions is performed by deriving the individual contributions from the phase differences of the acquired FID signals induced by the variation of the readout strength.
- the reconstruction and the separation of the signal contributions consists of two steps: (a) estimating a phase map, i.e.
- Step (b) includes the well-known 'phase unwrapping' problem of Dixon water/fat imaging. Suitable algorithms are well-known and available in existing MR environments. A technique for water/fat separation from MR signals sampled at arbitrary acquisition times, which is principally applicable for the method of invention, is for example described by Eggers et al. (Magnetic Resonance in Medicine, 65, 96-107, 2011).
- the spherical k-space volume is sampled by randomly varying the readout direction and the readout strength.
- Compressed sensing may be employed for reconstructing the MR image and/or for separating the signal contributions of the two or more chemical species.
- the theory of compressed sensing (CS) is known to have a great potential for MR image reconstruction from irregularly sampled k- space data.
- CS theory a signal data set which has a sparse representation in a transform domain can be recovered from under-sampled measurements by application of a suitable regularisation algorithm. The possibility of under-sampling leads to a significantly reduced acquisition time.
- CS prescribes the conditions under which a signal data set can be reconstructed exactly or at least with high image quality even in cases in which the k-space sampling density is far below the Nyquist criterion, and it also provides the methods for such reconstruction (see, for example, M. Lustig et al, Magnetic Resonance in Medicine, 58, 1182-1195, 2007).
- the separation of the signal contributions is performed on the basis of a signal model including at least the MR spectrum of each of the chemical species.
- a signal model is employed that theoretically describes the acquired FID signals as a function of the respective sampling time (as determined by the applied readout strength).
- the signal model includes at least the (a-priori known) spectrum of each of the chemical species and the (unknown) spin density.
- the model may further include the (unknown) spatial variation of the main magnetic field in the examination volume, since the spatial inhomogeneity of the main magnetic field also causes phase shifts of the acquired FID signals which need to be distinguished from the phasing caused by the chemical shift. In the process of MR image reconstruction and separation of the contributions of the different chemical species values of all unknown parameters of the signal model may be sought that best fit the acquired FID signals.
- a phase map is derived from the acquired FID signals, wherein the inhomogeneity of the main magnetic field is derived from the phase map by exploiting that the phase shift induced by the inhomogeneity of the main magnetic field varies smoothly over space.
- an ambiguity in the phasing of the FID signals caused by chemical shift and by the inhomogeneity of the main magnetic field may be resolved according to the invention by using prior information.
- Such prior information may be, for example, that the main magnetic field varies slowly as a function of the spatial coordinates.
- the readout strength is varied by switching it between two or more pre-selected values between repetitions of the ZTE sequence.
- This may advantageously be combined with segmented k- space sampling, wherein each segment has the shape of a hollow sphere of a given wall thickness, wherein a different combination of the two or more pre-selected values is applied in sampling of each segment.
- each k-space position within each segment is sampled at least two times, each time with a different value of the readout strength.
- a sufficient sampling close to the k-space centre can be accomplished by applying readout magnetic field gradients of low strength for acquisition of the central k-space segments. Higher readout strengths may be applied for the more peripheral segments in order to obtain the desired image resolution.
- the method of the invention described thus far can be carried out by means of a MR device including at least one main magnet coil for generating a uniform steady magnetic field within an examination volume, a number of gradient coils for generating switched magnetic field gradients in different spatial directions within the examination volume, at least one RF coil for generating RF pulses within the examination volume and/or for receiving MR signals from a body of a patient positioned in the examination volume, a control unit for controlling the temporal succession of RF pulses and switched magnetic field gradients, and a reconstruction unit.
- the method of the invention is preferably implemented by a corresponding programming of the reconstruction unit and/or the control unit of the MR device.
- the method of the invention can be advantageously carried out in most MR devices in clinical use at present. To this end it is merely necessary to utilize a computer program by which the MR device is controlled such that it performs the above-explained method steps of the invention.
- the computer program may be present either on a data carrier or be present in a data network so as to be downloaded for installation in the control unit of the MR device.
- Figure 1 schematically shows a MR device for carrying out the method of the invention
- Figure 2 shows a diagram illustrating the ZTE sequence applied according to the invention
- Figure 3 illustrates the radial sampling of k-space according to an embodiment of the invention using two different readout strengths
- Figure 4 illustrates the segmented k-space sampling approach of the invention
- Figures 5 and 6 illustrate an iterative scheme for separating chemical shift from spatial inhomogeneity of the main magnetic field in the image reconstruction step of the method of the invention
- Figure 7 illustrates random k-space sampling according to a further embodiment of the invention.
- a MR device 1 which can be used for carrying out the method of the invention is shown.
- the device comprises superconducting or resistive main magnet coils 2 such that a substantially uniform, temporally constant main magnetic field Bo is created along a z-axis through an examination volume.
- the device further comprises a set of (1 st , 2 nd , and - where applicable - 3 rd order) shimming coils 2', wherein the current flow through the individual shimming coils of the set 2' is controllable for the purpose of minimizing Bo deviations within the examination volume.
- a magnetic resonance generation and manipulation system applies a series of RF pulses and switched magnetic field gradients to invert or excite nuclear magnetic spins, induce magnetic resonance, refocus magnetic resonance, manipulate magnetic resonance, spatially and otherwise encode the magnetic resonance, saturate spins, and the like to perform MR imaging.
- a gradient pulse amplifier 3 applies current pulses to selected ones of whole-body gradient coils 4, 5 and 6 along x, y and z-axes of the
- a digital RF frequency transmitter 7 transmits RF pulses or pulse packets, via a send-/receive switch 8, to a -body RF coil 9 to transmit RF pulses into the examination volume.
- a typical MR imaging sequence is composed of a packet of RF pulse segments of short duration which taken together with each other and any applied magnetic field gradients achieve a selected manipulation of nuclear magnetic resonance.
- the RF pulses are used to saturate, excite resonance, invert magnetization, refocus resonance, or manipulate resonance and select a portion of a body 10 positioned in the examination volume.
- the MR signals are also picked up by the body RF coil 9.
- a set of local array RF coils 11, 12, 13 are placed contiguous to the region selected for imaging.
- the array coils 11, 12, 13 can be used to receive MR signals induced by body-coil RF transmissions.
- the resultant MR signals are picked up by the body RF coil 9 and/or by the array RF coils 11, 12, 13 and demodulated by a receiver 14 preferably including a preamplifier (not shown).
- the receiver 14 is connected to the RF coils 9, 11, 12 and 13 via send-/receive switch 8.
- a host computer 15 controls the current flow through the shimming coils 2' as well as the gradient pulse amplifier 3 and the transmitter 7 to generate a ZTE imaging sequence according to the invention.
- the receiver 14 receives a plurality of MR data lines in rapid succession following each RF excitation pulse.
- a data acquisition system 16 performs analog-to-digital conversion of the received signals and converts each MR data line to a digital format suitable for further processing. In modern MR devices the data acquisition system 16 is a separate computer which is specialized in acquisition of raw image data.
- the digital raw image data is reconstructed into an image representation by a reconstruction processor 17 which applies an appropriate reconstruction algorithm.
- the MR image represents a a three-dimensional volume.
- the image is then stored in an image memory where it may be accessed for converting projections or other portions of the image representation into appropriate format for visualization, for example via a video monitor 18 which provides a human-readable display of the resultant MR image.
- Figure 2 shows a diagram illustrating the ZTE sequence applied according to the invention.
- the essence of the 'silent' ZTE technique is that excitation RF pulses 20 are transmitted simultaneously with 'frequency-encoding' readout magnetic field gradients G being switched on.
- the readout magnetic field gradient G is not intended as a slice-selection gradient which implies that the RF pulses 20 have to be extremely short (typically 1 ⁇ s to 8 ⁇ s) in order to achieve sufficient excitation bandwidth.
- the readout of FID signals takes place during intervals 21 in the presence of the readout magnetic field gradients G
- the readout magnetic field gradient G has a readout strength and a readout direction both staying substantially constant over each excitation/readout cycle. After each cycle the readout direction is varied only very gradually. The readout direction changes only slightly, e.g. by a few degrees (e.g. 2°). In a practical example, the magnetic field gradient in one spatial direction ramps up from zero to 'full' in about 45 ms. For a full sampling of k-space the readout direction is varied until a spherical volume is covered with sufficient density.
- a known constraint of the ZTE technique is that there is a finite time between the center of each RF pulse 20 and the start of the sampling interval 21. Depending on the equipment used, this 'dead time' may be anything between 2 ⁇ s and 20 ⁇ s. This means that the center of k-space cannot be scanned. However, it has to be taken into account that the size of the central k-space volume that cannot be sampled depends on the readout strength. The lower the strength of the magnetic field gradient, the smaller is the central k-space region that will not be sampled during the dead time. On the other hand, it is not feasible to apply as weak as possible readout gradients.
- the strength of the readout magnetic field gradient G is varied between repetitions of the ZTE sequence.
- This is illustrated in the diagram of Figure 3 showing the interdependence of the k-space position k and the sampling time t (k actually represents three dimensions from which only one is drawn for the purpose of illustration).
- the application of different readout strengths 'low G' and 'high G' implies that each k-space position is sampled at two or more different sampling times (i.e. the time interval between the RF pulse and the sampling of a given k-space position).
- the k-space position is 'visited' two times during the scan, namely at
- Figure 4 illustrates an embodiment of the invention employing a segmented k- space sampling approach, wherein each segment has the shape of a hollow sphere of a given wall thickness, k-space is to be sampled up to The required gradient strength would be (approximately) :
- ⁇ is the gyro-magnetic ratio and is the repetition time of the ZTE sequence.
- FID signals are acquired with the following set of gradient strengths:
- each segment 1-4 is sampled with a different combination of two different readout strengths. Simultaneously, an optimal coverage of central k-space (segment 4) is achieved.
- the reconstruction and the water/fat separation consists of two steps: (a) estimating a phase map, i.e. a map reflecting both main magnetic field inhomogeneity and chemical shift effects (and maybe further phase shift-inducing effects), and (b) separating chemical shift from main magnetic field inhomogeneity by the assumption that the latter varies smoothly over space.
- Step (b) constitutes the well-known 'phase unwrapping' problem of Dixon water/fat imaging. Since suitable algorithms are well-known and available in existing MR environments this does not need to be further elaborated here.
- Step (a) is performed iteratively.
- the reconstruction step comprises calculating two sets of information over space: (i) the magnetization density (i.e. the 'water and fat' MR image), and (ii) an estimate of the phase map. At each iteration step, these sets are calculated up to a given resolution (i.e. within a full sphere in k-space).
- the dashed line in Figure 5 represents the 'average' sampling time for the set of k-space samples of region 2.
- the phase map is known for the sphere enclosed by region 2 (i.e., regions 4 and 3 in this embodiment). This knowledge is applied in reconstructing region
- both the magnetization density and the phase map are known, as mentioned before.
- the signal data can be 'simulated' at any sampling time.
- simulated data 60 is added in the central k-space region as indicated by the bold dotted lines in Figure 6.
- the average and the difference are calculated.
- Transforming the average and the difference to the spatial domain enables calculation of high-resolution (i.e. including region 2) estimates of the magnetization density and the phase map.
- this process is performed including region 1, and the reconstruction step (a) is accomplished.
- step (b) the separation of chemical shift from main magnetic field inhomogeneity can be performed in step (b), as mentioned above, by the assumption that the latter varies smoothly over space.
- Algorithms known in the art for Dixon water/fat imaging may be employed for reconstructing separate water and fat images from the magnetization density and the (inhomogeneity-corrected) phase map.
- the gradient coils along the x, y and z-axes are controlled such that the readout strengths in the respective directions assume mutually independent random values between repetitions of the ZTE sequence, with the 'noise' being frequency- restricted to about 15 Hz or less, in order not to be audible.
- FID signals are acquired, with a typical duration of each cycle of one millisecond. After, e.g., 200 seconds of scan time, 200.000 FID signals are available, acquired with a distribution of readout directions and readout strengths.
- the diagram of Figure 7 shows the sampling time t in relation to the tangential component in k-space for a given radius
- the central dashed line represents the 'average sampling time' or 'reference sample time'
- Each of the dots in the diagram represents a FID signal having its characteristic sampling time t at the moment of reaching The
- resulting data can be considered as comprising a few million points, each with its
- the component (a) of estimating the phase map is focused on in the following.
- a region size in k-space is defined such that it can be made sure that it includes, in most cases, at least two points with substantially different values of t.
- This reconstruction may be performed using a compressed sensing approach.
- a further three- dimensional image is reconstructed from the data points As a next step
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14814790.3A EP3080634B1 (en) | 2013-12-12 | 2014-12-08 | Zero echo time mr imaging with water/fat separation |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13196868 | 2013-12-12 | ||
PCT/EP2014/076802 WO2015086476A1 (en) | 2013-12-12 | 2014-12-08 | Zero echo time mr imaging with water/fat separation |
EP14814790.3A EP3080634B1 (en) | 2013-12-12 | 2014-12-08 | Zero echo time mr imaging with water/fat separation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3080634A1 true EP3080634A1 (en) | 2016-10-19 |
EP3080634B1 EP3080634B1 (en) | 2021-04-21 |
Family
ID=49759134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14814790.3A Active EP3080634B1 (en) | 2013-12-12 | 2014-12-08 | Zero echo time mr imaging with water/fat separation |
Country Status (5)
Country | Link |
---|---|
US (1) | US10094898B2 (en) |
EP (1) | EP3080634B1 (en) |
JP (1) | JP6356809B2 (en) |
CN (1) | CN105814449B (en) |
WO (1) | WO2015086476A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9664761B2 (en) * | 2013-06-26 | 2017-05-30 | Medimagemetric LLC | Joint estimation of chemical shift and quantitative susceptibility map using MRI signal |
EP3191862B1 (en) * | 2014-09-12 | 2021-05-12 | Koninklijke Philips N.V. | Zero echo time mr imaging |
DE102015202062A1 (en) * | 2015-02-05 | 2016-08-11 | Siemens Healthcare Gmbh | Reconstruction of magnetic resonance image data for multiple chemical species in multi-echo imaging |
EP3236277B1 (en) | 2016-04-18 | 2021-12-01 | Centre Hospitalier Universitaire Vaudois (CHUV) | Differentiated tissue excitation by mri using binomial off-resonance 1-1 rf pulses |
US10088539B2 (en) | 2016-04-22 | 2018-10-02 | General Electric Company | Silent multi-gradient echo magnetic resonance imaging |
EP3413070A1 (en) | 2017-06-09 | 2018-12-12 | Koninklijke Philips N.V. | Dual-echo dixon-type water/fat separation mr imaging |
CN107167752B (en) * | 2017-07-04 | 2020-11-24 | 南京拓谱医疗科技有限公司 | Ultra-fast magnetic resonance water-fat separation imaging method |
EP3579009A1 (en) * | 2018-06-05 | 2019-12-11 | Koninklijke Philips N.V. | Zero echo time mr imaging with water-fat separation |
US10969451B1 (en) * | 2019-09-23 | 2021-04-06 | GE Precision Healthcare LLC | Systems and methods for in-phase zero echo time magnetic resonance imaging |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037772A (en) | 1998-01-06 | 2000-03-14 | Arch Development Corp. | Fast spectroscopic imaging system |
US6332088B1 (en) * | 1998-11-12 | 2001-12-18 | Toshiba America Mri, Inc. | Method and apparatus for imaging instruments during interventional MRI using asymmetric spin echo sequences |
US20010054898A1 (en) * | 1999-03-10 | 2001-12-27 | Andrew Li | Magnetic resonance imaging compensated for very rapid variations in static magnetic field |
JP4251763B2 (en) * | 2000-08-11 | 2009-04-08 | 株式会社日立メディコ | Magnetic resonance imaging system |
US6879156B1 (en) | 2002-05-17 | 2005-04-12 | The General Hospital Corporation | Reducing dead-time effect in MRI projection |
US7425828B2 (en) * | 2005-10-11 | 2008-09-16 | Regents Of The University Of Minnesota | Frequency swept excitation for magnetic resonance |
EP1946137A1 (en) * | 2005-10-11 | 2008-07-23 | Steady State Imaging Advanced MRI Technologies | Frequency swept excitation for magnetic resonance |
US7602184B2 (en) | 2007-04-30 | 2009-10-13 | The Regents Of The University Of California | Magnetic resonance spectroscopic imaging with short echo times |
US9341691B2 (en) | 2008-11-12 | 2016-05-17 | Regents Of The University Of Minnesota | Short TE 3D radial sampling sequence for MRI |
US8427147B2 (en) * | 2009-04-10 | 2013-04-23 | Wisconsin Alumni Research Foundation | Magnetic resonance imaging with fat suppression by combining phase rotating data with phase shifted data in K-space |
US9880243B2 (en) * | 2011-06-20 | 2018-01-30 | Regents Of The University Of Minnesota | Sideband processing for magnetic resonance |
US9504851B2 (en) * | 2011-06-27 | 2016-11-29 | Koninklijke Philips N.V. | Magnetic resonance imaging of bone tissue |
EP2610632A1 (en) * | 2011-12-29 | 2013-07-03 | Koninklijke Philips Electronics N.V. | MRI with Dixon-type water/fat separation and prior knowledge about inhomogeneity of the main magnetic field |
EP2648014A1 (en) * | 2012-04-03 | 2013-10-09 | Koninklijke Philips N.V. | MR imaging using APT contrast enhancement and sampling at multiple echo times |
US10156625B2 (en) * | 2013-08-12 | 2018-12-18 | Koninklijke Philips N.V. | MR imaging with B1 mapping |
US10222437B2 (en) * | 2013-10-21 | 2019-03-05 | Koninklijke Philips N.V. | MR imaging with temperature mapping |
-
2014
- 2014-12-08 JP JP2016538107A patent/JP6356809B2/en not_active Expired - Fee Related
- 2014-12-08 CN CN201480067548.6A patent/CN105814449B/en not_active Expired - Fee Related
- 2014-12-08 EP EP14814790.3A patent/EP3080634B1/en active Active
- 2014-12-08 WO PCT/EP2014/076802 patent/WO2015086476A1/en active Application Filing
- 2014-12-08 US US15/102,544 patent/US10094898B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105814449B (en) | 2019-04-30 |
EP3080634B1 (en) | 2021-04-21 |
US20160313421A1 (en) | 2016-10-27 |
CN105814449A (en) | 2016-07-27 |
US10094898B2 (en) | 2018-10-09 |
JP6356809B2 (en) | 2018-07-11 |
JP2016539735A (en) | 2016-12-22 |
WO2015086476A1 (en) | 2015-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3080634B1 (en) | Zero echo time mr imaging with water/fat separation | |
US9733328B2 (en) | Compressed sensing MR image reconstruction using constraint from prior acquisition | |
JP5547800B2 (en) | MR imaging using parallel signal acquisition | |
EP3191862B1 (en) | Zero echo time mr imaging | |
JP6416413B2 (en) | MR imaging method, MR device, and computer program | |
US10175322B2 (en) | Zero echo time MR imaging with sampling of K-space center | |
CN107810425B (en) | Eliminating non-T2Weighting the T of the signal contribution2Weighted MR imaging | |
US11360172B2 (en) | Zero echo time MR imaging with water-fat separation | |
WO2012140543A1 (en) | Mri of chemical species having different resonance frequencies using an ultra-short echo time sequence | |
EP2581756A1 (en) | MR imaging using parallel signal acquisition | |
US20220229139A1 (en) | Multi-echo mr imaging with spiral acquisition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160712 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KONINKLIJKE PHILIPS N.V. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014076846 Country of ref document: DE Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1385190 Country of ref document: AT Kind code of ref document: T Effective date: 20210515 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20210602 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602014076846 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1385190 Country of ref document: AT Kind code of ref document: T Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210821 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210722 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210721 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210823 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014076846 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210821 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014076846 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211208 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211208 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211208 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211208 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20141208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210421 |