EP3078110A1 - Dispositif de charge reversible ameliore pour vehicule electrique - Google Patents

Dispositif de charge reversible ameliore pour vehicule electrique

Info

Publication number
EP3078110A1
EP3078110A1 EP14809473.3A EP14809473A EP3078110A1 EP 3078110 A1 EP3078110 A1 EP 3078110A1 EP 14809473 A EP14809473 A EP 14809473A EP 3078110 A1 EP3078110 A1 EP 3078110A1
Authority
EP
European Patent Office
Prior art keywords
battery
stage
charging
diode
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14809473.3A
Other languages
German (de)
English (en)
Inventor
Alain Gascher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP3078110A1 publication Critical patent/EP3078110A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the invention relates generally to a device for charging a battery and, more particularly, to a charging device intended to be integrated into a motor vehicle with traction that is at least partly electrical and that offers reversible operation.
  • the invention relates in particular to a device for charging a battery capable of supplying a load or of restoring electrical energy to a distribution network.
  • the electrical power of the network is brought to the battery successively through two converters, namely a buck, intended to be connected to the network, and an elevator. voltage (“boost”) to be connected to the battery.
  • the two converters respectively allow to lower and raise the voltage ratio between their output terminal and their input terminal, successively opening and closing a series of switches, at a frequency which is controlled according to the current output, and / or the desired output voltage.
  • the first stage is a controlled voltage rectifier stage, while the second stage is a voltage inverter in traction mode and used in "boost" for recharging the battery.
  • Such charging systems are for example described in the patent application FR 2 943 188, which relates to an on-board charging system for a motor vehicle, enabling a vehicle battery to be recharged from a three-phase or single-phase circuit, the charging circuit incorporating the coils of an electric machine which also provides other functions, such as the generation of power or the propulsion of the vehicle.
  • a first operation makes it possible to send the energy back to the supply network according to a regulation imposed by the operator of the electric power distribution network, thereby offering the operator the possibility, in a case where a sufficient number of vehicles are available. equipped with a reversible charging system, optimize the management of the supply network.
  • a second operation makes it possible to use the vehicle as a source of substitute energy in the event of a failure of the domestic electrical network, or to take advantage of this source as a generator in a place where electricity is not distributed.
  • Document FR 2 946 810 describes in this respect a device for reversibly charging a battery.
  • the object of the invention is therefore to overcome this drawback and to propose a charging device for a battery capable of providing reversible operation and in a simple and inexpensive arrangement.
  • the subject of the invention is therefore a device for charging a battery and / or restoring electrical energy from said battery, in particular for a traction system of an at least partly electric traction motor vehicle, comprising a first rectifier stage intended to be connected to a supply network or to a load to be supplied, a second inverter stage intended to be connected to the battery and regulating means acting on the first and second stages.
  • the device comprises a bypass branch connected between an output and an input of the inverter stage and comprising a switch that can be opened during charging and associated with a diode positioned so as to allow a return of current to the first stage. rectifier.
  • the switch and the diode constitute a means of controlling the power of the electrical energy restored.
  • the branch branch is connected between an output of the inverter stage by which electrical energy is returned by the battery and an input of the inverter stage which communicates with a terminal of the rectifying stage enabling a return of electrical energy to the network or the load to be supplied.
  • the switch consists of an IGBT transistor.
  • the invention also relates to a motor vehicle traction at least partially electric which comprises an onboard charging device as defined above.
  • the subject of the invention is also a method of charging a battery and / or restoring electrical energy from said battery, for the implementation of a charging device comprising a first stage. rectifier for connection to a supply network or a load to be supplied, a second inverter stage to be connected to the battery, and control means acting on the first and second stages, in which, during charging, a controllable switch is placed in a branch branch connected between an output and an input of the inverter stage and which is associated with a diode positioned between in order to allow a return of current to the first rectifier stage during the restitution of energy.
  • the output current of the first stage is adjusted according to the voltage of the battery.
  • transistors entering the constitution of the second stage are switched simultaneously.
  • a first operating phase is implemented in which said switch is closed and said diode is locked so that the battery supplies power to the battery.
  • energy and a second phase in which said switch is open and the diode is passing so that the battery does not provide power, to control the power output.
  • FIG. 1 is a diagram showing the architecture of a conventional non-reversible load device
  • FIG. 2 illustrates the structure of a reversible charging device according to the invention
  • FIG. 3 is an equivalent diagram of the charging device of FIG. 2;
  • FIG. 7 to 10 illustrate the operation of the charging device of Figures 2 and 3 in the return of electrical energy mode, the battery to the network; and
  • FIG. 11 is an equivalent diagram of the device of FIG. 7.
  • FIG. 1 to describe the structure of a conventional charging device for a battery for a motor vehicle with electric traction.
  • the charging device 1 visible in this figure comprises a first step-down stage 2 intended to be connected to a supply network and a second step-up step 3 coupled to the step-down stage 2 via a series-connected inductor. with an electric machine 4 constituted, in the application envisaged, by the stator coils of the motor of the electric motor vehicle.
  • the device 1 shown in FIG. 1 comprises three available phases that can be coupled to a three-phase supply network or to a single-phase supply network.
  • the first step-down stage 2 is actually a rectifier stage comprising three identical branches coupled in parallel, each comprising a series connection successively comprising a first diode 2- 1, a first transistor 2-2, a second diode 2-3 and a second transistor 2-4.
  • the step-up stage constitutes, for its part, an inverter stage which also comprises three identical branches coupled in parallel, comprising a series connection of two transistors 3- 1 and 3-2, each associated with a diode 3-3 and 3- 4 connected in parallel with the corresponding transistor.
  • the device 1 comprises an output capacitor 5 intended to keep the voltage at the terminals of the battery (not shown) relatively stable.
  • the assembly is completed by a central control unit incorporating regulation means acting on the transistors of the first and second stages 2 and 3 to, in particular, adjust the optimum intensity of the current to be returned through the positive terminal of the battery, when charging.
  • a central control unit incorporating regulation means acting on the transistors of the first and second stages 2 and 3 to, in particular, adjust the optimum intensity of the current to be returned through the positive terminal of the battery, when charging.
  • this charging device is only suitable for charging the battery.
  • FIG. 2 shows a reversible charging device according to the invention, that is to say capable of furthermore proposing a mode of restitution of energy from the electrical energy stored in the battery to deliver it. to a load or return it to the electricity distribution network.
  • the charging device visible in this figure, designated by the general reference numeral 6, is also provided with a first step-down stage 7 constituted by a voltage rectifier intended to be connected to a power supply network. electric, as shown, or to a load to be fed in power restoration mode and a second voltage booster stage constituted by a voltage inverter intended to be connected to a battery, with the interposition of a capacitor 9 intended to ensure the stability of the voltage across the battery.
  • a first step-down stage 7 constituted by a voltage rectifier intended to be connected to a power supply network. electric, as shown, or to a load to be fed in power restoration mode
  • a second voltage booster stage constituted by a voltage inverter intended to be connected to a battery, with the interposition of a capacitor 9 intended to ensure the stability of the voltage across the battery.
  • the first stage 7 and the second stage 8 are connected via a circuit 10 comprising the three coils 10-a, 10-b, 10-c of the motor.
  • An additional 10-d coil is placed in series with the motor coils 10-a, 10-b and 10-c to ensure easier servocontrol and lower current ripple.
  • the first and second stages 7 and 8 have a structure identical to the structure described above with reference to FIG.
  • the first step 7 voltage step is formed by mounting three identical branches each comprising two diodes 7-1 and 7-2 and two transistors 7-3 and 7-4. Each phase of the supply network is connected between a diode referenced 7-2 and a corresponding transistor 7-3.
  • the second stage 8 voltage booster that is also constituted by a parallel connection of three circuits each comprising two transistors 8-1 and 8-2 and two diodes 8-3 and 8-4 each connected in parallel on a corresponding transistor.
  • the transistors forming part of the first and second stages 7 and 8 consist of insulated gate bipolar transistors (IGBTs).
  • IGBTs insulated gate bipolar transistors
  • the diodes 8-3 and 8-4 are connected between the collector and the emitter of each transistor and the emitter of a first transistor is connected to the collector of the other transistor.
  • the stator windings 10-a, 10-b and 10-c are connected between the emitter of one of the transistors and the collector of the other transistor.
  • the circuit is of course complemented by a central control unit incorporating hardware and software regulatory means connected to the gate of each of the transistors of the first and second stages.
  • the assembly is completed by a branch branch 1 1 extending, as shown in Figure 2, between an output of the second stage 8 voltage booster and an input of this stage connected to an output of the first voltage step down stage 7.
  • this branch 1 1 1 is connected to the collector of the first transistor 8-1 of the second stage voltage booster and the collector of the second transistor 7-4 of the first step 7 step down.
  • This branch branch comprises an IGBT transistor 1 1 - 1 whose collector is connected to the collector of the first transistor 8-1 of the second stage 8 voltage booster and whose transmitter is connected, on the one hand, to the collector of the second transistor 7-4 of the first step 7 step down, and, secondly, to the emitter of the second transistor 8-2 of the second stage 8, through a diode 1 1 -2.
  • the branch branch is provided with an additional diode 1 1 -3 connected in parallel to the transistor 1 1 - 1.
  • FIG. 3 is an equivalent diagram of the circuit of FIG. 2.
  • the transistor Q2 corresponds to the transistor 1 1 - 1 associated with its diode 1 1 -3
  • the transistor Q 1 corresponds to the transistors of the three branches in parallel of the second stage 8
  • the diode D 1 corresponds to to the diodes 8-3 and 8-4 of Figure 2.
  • the transistor Q2 is kept open and the transistors of the first and second stages 7 and 8 are driven at the switching frequency, in particular by continuously adjusting the output current of the first rectifier stage as a function of the voltage of the the battery so as to improve the efficiency of the first stage by reducing the losses of the transistors so that they switch a lower current.
  • the transistors forming part of the second step-up stage 8 are all switched simultaneously, justifying the equivalent diagram of FIG.
  • FIGS. 5 and 6 show the operation of the step-up stage.
  • Transistor Q1 can be controlled by the central control unit either at closing (FIG. 5) or at opening (FIG. 6) to adjust the charging power.
  • the current from the battery flows through the transistor Q2 to be subsequently delivered to the first stage 7 operating as an inverter.
  • the diode D 1 is blocked.
  • the power is controlled by the set constituted by the transistor Q1, the diode D1 and the stator winding of the motor, in energy restitution mode, the power is controlled by the set comprising transistor Q2 and diode D2.
  • the transistor Q2 can, in turn, be open ( Figure 7) or closed ( Figure 8) under the control of the central control unit (not shown).
  • FIGS. 9 and 10 The current path shown in FIGS. 9 and 10 is then obtained.
  • the current flows in the transistor Q2 and the diode D2 naturally blocks because the potential of its cathode is greater than that of the anode.
  • the battery provides power.
  • the transistor Q2 is blocked by its control and the current of the inductance M then finds the path of the diode D2 which becomes conducting.
  • the battery does not provide power.
  • the duration of each step ( Figure 9 and Figure 10) adjusts the power supplied to the power grid.
  • FIG. 11 On which a person skilled in the art will recognize a step-down formed by the set Self M, transistor Q2 and diode D2 which makes it possible to control the current.
  • a simple mode of controlling the charging device which has just been described consists in slaving the current in the inductor M by a first loop at a constant value. A cyclic ratio is then applied to each of the transistors, which is a function of the voltage measured on the electrical network.

Abstract

Ce dispositif de charge d'une batterie et/ou de restitution d'énergie électrique à partir de ladite batterie, notamment pour système de traction d'un véhicule automobile à traction au moins partiellement électrique, comprend un premier étage redresseur (7) destiné à être raccordé à un réseau d'alimentation ou à une charge, un second étage onduleur (8) destiné à être raccordé à la batterie et des moyens de régulation agissant sur les premier et deuxième étages. Il comporte une branche de dérivation (11) raccordée entre une sortie et une entrée de l'étage onduleur et comprenant un interrupteur (11-1) pilotable à l'ouverture lors de la charge et associé à une diode (11-2) positionnée de manière à autoriser un retour de courant vers le premier étage redresseur.

Description

Dispositif de charge réversible amélioré pour véhicule électrique
L' invention concerne, de manière générale, un dispositif de charge d' une batterie et, plus particulièrement, un dispositif de charge destiné à être intégré à un véhicule automobile à traction au moins partiellement électrique et proposant un fonctionnement réversible.
Ainsi, l' invention se rapporte en particulier à un dispositif de charge d'une batterie capable d' alimenter une charge ou de restituer de l' énergie électrique à un réseau de distribution.
Dans des systèmes de recharge de batterie à haute tension, la puissance électrique du réseau est amenée à la batterie successivement au travers de deux convertisseurs, à savoir un abaisseur de tension (« buck ») , destiné à être raccordé au réseau, et un élévateur de tension (« boost ») destiné à être raccordé à la batterie.
Ces deux convertisseurs permettent respectivement d' abaisser et d' élever le rapport de tension entre leur borne de sortie et leur borne d' entrée, en ouvrant et en fermant successivement une série d' interrupteurs , à une fréquence qui est commandée en fonction du courant de sortie, et/ou de la tension de sortie souhaitée. Le premier étage constitue un étage redresseur de tension piloté, tandis que le deuxième étage est un onduleur de tension en mode traction et utilisé en « boost » pour la recharge de la batterie.
De tels systèmes de recharge sont par exemple décrits dans la demande de brevet FR 2 943 188, qui porte sur un système de recharge embarqué pour véhicule automobile, permettant un rechargement d' une batterie du véhicule à partir d' un circuit triphasé ou monophasé, le circuit de recharge intégrant les bobines d'une machine électrique qui assure par ailleurs d' autres fonctions, comme la génération de courant ou la propulsion du véhicule.
Un des inconvénients majeurs du véhicule électrique concerne sa disponibilité. En effet, lorsque sa batterie est déchargée, le véhicule électrique reste indisponible pendant toute la durée de recharge, qui peut atteindre plusieurs heures . Afin de diminuer la durée de recharge de la batterie, il est connu d' augmenter la puissance de charge en accroissant le courant prélevé sur le réseau. Il a également été proposé de prélever ce courant sur un réseau triphasé plutôt que sur un réseau monophasé, la puissance de charge étant supérieure lorsque le courant est prélevé à partir d'un tel réseau d' alimentation triphasé.
Lorsqu'un véhicule électrique ou hybride rechargeable dispose d'une puissance de recharge importante, permettant de ce fait une charge rapide, deux opportunités de fonctionnement peuvent se présenter dans la mesure où la topologie électronique de recharge est réversible.
Un premier fonctionnement permet de renvoyer l' énergie au réseau d' alimentation suivant une consigne imposée par l' exploitant du réseau de distribution d' énergie électrique, offrant ainsi la possibilité à l' exploitant, dans un cas où un nombre suffisant de véhicules sont dotés d' un système de recharge réversible, d' optimiser la gestion du réseau d' alimentation.
Un second fonctionnement permet d' utiliser le véhicule comme source d' énergie de substitution en cas de défaillance du réseau électrique domestique, ou pour profiter de cette source comme générateur dans un endroit où l' électricité n' est pas distribuée.
Le document FR 2 946 810 décrit à cet égard un dispositif de charge réversible d'une batterie.
Mais l' agencement décrit dans ce document est fondé sur une structure de redresseur dans lequel les composants sont doublés afin de permettre un fonctionnement en restitution d' énergie. Cet agencement complique donc fortement la structure du redresseur et augmente son coût.
Le but de l' invention est donc de pallier cet inconvénient et de proposer un dispositif de charge d' une batterie capable de proposer un fonctionnement réversible et ce dans un agencement simple et peu onéreux.
L' invention a donc pour objet un dispositif de charge d' une batterie et/ou de restitution d' énergie électrique à partir de ladite batterie, notamment pour système de traction d' un véhicule automobile à traction au moins partiellement électrique, comprenant un premier étage redresseur destiné à être raccordé à un réseau d' alimentation ou à une charge à alimenter, un second étage onduleur destiné à être raccordé à la batterie et des moyens de régulation agissant sur les premier et deuxième étages.
Ce dispositif comporte une branche de dérivation raccordée entre une sortie et une entrée de l' étage onduleur et comprenant un interrupteur pilotable à l' ouverture lors de la charge et associé à une diode positionnée de manière à autoriser un retour de courant vers le premier étage redresseur.
Il a été constaté qu' en dotant le dispositif de charge d'une telle branche de dérivation dotée d'un interrupteur et d' une diode, il est possible de rendre le dispositif réversible, malgré la simplicité de cette solution.
Selon une autre caractéristique de ce dispositif de charge, l' interrupteur et la diode constituent un moyen de contrôle de la puissance de l' énergie électrique restituée.
Dans un mode de réalisation, la branche de dérivation est raccordée entre une sortie de l' étage onduleur par laquelle l' énergie électrique est restituée par la batterie et une entrée de l' étage onduleur qui communique avec une borne de l' étage redresseur autorisant une restitution d' énergie électrique vers le réseau ou la charge à alimenter.
Par exemple, l' interrupteur est constitué par un transistor IGBT.
L' invention a également pour objet un véhicule automobile à traction au moins partiellement électrique qui comporte un dispositif de charge embarqué tel que défini ci-dessus.
Selon un autre aspect, l' invention a également pour objet un procédé de charge d' une batterie et/ou de restitution d' énergie électrique à partir de ladite batterie, pour la mise en œuvre d' un dispositif de charge comprenant un premier étage redresseur destiné à être raccordé à un réseau d' alimentation ou à une charge à alimenter, un second étage onduleur destiné à être raccordé à la batterie, et des moyens de régulation agissant sur les premier et deuxième étages , dans lequel, lors de la charge, on ouvre un interrupteur pilotable placé dans une branche de dérivation raccordée entre une sortie et une entrée de l' étage onduleur et auquel est associée une diode positionnée de manière à autoriser un retour de courant vers le premier étage redresseur lors de la restitution d' énergie.
Dans un mode de mise en œuvre, en mode de charge de la batterie, on ajuste le courant de sortie du premier étage en fonction de la tension de la batterie.
On peut également prévoir que des transistors entrant dans la constitution du deuxième étage sont commutés simultanément.
Par ailleurs , selon un mode de mise en œuvre, en mode de restitution d' énergie, on met en œuvre une première phase de fonctionnement dans laquelle on ferme ledit interrupteur et l' on bloque ladite diode de sorte que la batterie fournisse de l' énergie et une deuxième phase dans laquelle ledit interrupteur est ouvert et la diode est passante de sorte que la batterie ne fournisse pas d' énergie, pour contrôler la puissance restituée.
D ' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la figure 1 est un schéma montrant l' architecture d' un dispositif de charge conventionnel, non réversible ;
- la figure 2 illustre la structure d'un dispositif de charge réversible selon l' invention ;
- la figure 3 est un schéma équivalent du dispositif de charge de la figure 2 ;
- les figures 4, 5 et 6 illustrent le fonctionnement du dispositif de charge des figures 2 et 3 en mode de charge ;
- les figures 7 à 10 illustrent le fonctionnement du dispositif de charge des figures 2 et 3 en mode de restitution d' énergie électrique, de la batterie vers le réseau ; et - la figure 1 1 est un schéma équivalent du dispositif de la figure 7.
On se référera en premier lieu à la figure 1 pour décrire la structure d' un dispositif conventionnel de charge d' une batterie pour véhicule automobile à traction électrique.
Le dispositif de charge 1 visible sur cette figure comprend un premier étage 2 abaisseur de tension destiné à être raccordé à un réseau d' alimentation et un deuxième étage 3 élévateur de tension couplé à l' étage abaisseur de tension 2 via une inductance montée en série avec une machine électrique 4 constituée, dans l' application envisagée, par les bobines du stator du moteur du véhicule automobile électrique.
Le dispositif 1 représenté sur la figure 1 comprend trois phases disponibles qui peuvent être couplées à un réseau d' alimentation triphasé ou à un réseau d' alimentation monophasé.
Le premier étage 2 abaisseur de tension constitue en réalité un étage redresseur comprenant trois branches identiques couplées en parallèle comprenant chacune un montage en série comprenant successivement une première diode 2- 1 , un premier transistor 2-2, une deuxième diode 2-3 et un deuxième transistor 2-4.
L' étage élévateur de tension constitue, quant à lui, un étage onduleur qui comporte également trois branches identiques couplées en parallèle comprenant un montage en série de deux transistors 3- 1 et 3 - 2 associés chacun à une diode 3 -3 et 3-4 montée en parallèle sur le transistor correspondant.
On voit qu' en sortie, le dispositif 1 comporte un condensateur 5 de sortie destiné à maintenir relativement stable la tension aux bornes de la batterie (non représentée) .
L' ensemble est complété par une unité centrale de commande incorporant des moyens de régulation agissant sur les transistors des premier et deuxième étages 2 et 3 pour, notamment, régler l' intensité optimale du courant à faire rentrer par la borne positive de la batterie, lors de la charge. On pourra se référer aux documents FR2943188 , FR29645 10 et FR2974253 pour la régulation de la charge d' une batterie par un réseau monophasé ou triphasé utilisant le dispositif de charge 1.
Comme indiqué précédemment, ce dispositif de charge n' est adapté que pour réaliser la charge de la batterie.
On a représenté sur la figure 2 un dispositif de charge réversible selon l' invention, c' est-à-dire capable en outre de proposer un mode de restitution d' énergie à partir de l' énergie électrique stockée dans la batterie pour la délivrer à une charge ou la restituer au réseau de distribution électrique.
Comme on le voit, le dispositif de charge visible sur cette figure, désigné par la référence numérique générale 6, est également doté d'un premier étage 7 abaisseur de tension constitué par un redresseur de tension destiné à être raccordé à un réseau d' alimentation électrique, comme représenté, ou à une charge à alimenter en mode de restitution d' énergie et un deuxième étage 8 élévateur de tension constitué par un onduleur de tension destiné à être raccordé à une batterie, avec interposition d'un condensateur 9 destiné à assurer la stabilité de la tension aux bornes de la batterie.
Le premier étage 7 et le deuxième étage 8 sont raccordés par l' intermédiaire d' un circuit 10 comprenant les trois bobines 10-a, 10 - b, 10-c du moteur. Une bobine additionnelle 10-d est placée en série avec les bobines 10-a, 10-b et 10-c du moteur pour garantir un asservissement plus aisé et une ondulation de courant moindre.
Les premier et deuxième étages 7 et 8 ont une structure identique à la structure décrite précédemment en référence à la figure 1.
En effet, le premier étage 7 abaisseur de tension est formé par un montage de trois branches identiques comprenant chacune deux diodes 7- 1 et 7-2 et deux transistors 7-3 et 7-4. Chaque phase du réseau d' alimentation vient se brancher entre une diode référencée 7-2 et un transistor 7-3 correspondant.
En ce qui concerne le deuxième étage 8 élévateur de tension, celui est également constitué par un montage en parallèle de trois circuits comprenant chacun deux transistors 8- 1 et 8-2 et deux diodes 8-3 et 8-4 connectées chacune en parallèle sur un transistor correspondant.
On notera que les transistors entrant dans la constitution des premier et deuxième étages 7 et 8 sont constitués par des transistors bipolaires à grille isolée (IGBT). Dans le premier étage, l' émetteur d'un premier transistor 7-3 est raccordé à la première diode 7- 1 , tandis que le collecteur de ce transistor 7-3 est raccordé à la deuxième diode 7-2 à laquelle est raccordé l' émetteur de l' autre transistor 7-4.
Dans le deuxième étage, les diodes 8-3 et 8-4 sont raccordées entre le collecteur et l' émetteur de chaque transistor et l' émetteur d' un premier transistor est raccordé au collecteur de l' autre transistor. Les bobinages 10-a, 10-b et 10-c statoriques sont raccordés entre l' émetteur de l' un des transistors et le collecteur de l' autre transistor.
Le circuit est bien entendu complété par une unité centrale de commande incorporant des moyens matériels et logiciels de régulation raccordés à la grille de chacun des transistors des premier et deuxième étages.
Dans le but de rendre le dispositif de charge 6 réversible, le montage est complété par une branche de dérivation 1 1 s ' étendant, comme visible sur la figure 2, entre une sortie du deuxième étage 8 élévateur de tension et une entrée de cet étage raccordée à une sortie du premier étage abaisseur de tension 7.
Plus particulièrement, cette branche de dérivation 1 1 est raccordée au collecteur du premier transistor 8- 1 du deuxième étage élévateur de tension et au collecteur du deuxième transistor 7-4 du premier étage 7 abaisseur de tension.
Cette branche de dérivation comporte un transistor IGBT 1 1 - 1 dont le collecteur est raccordé au collecteur du premier transistor 8- 1 du deuxième étage 8 élévateur de tension et dont l' émetteur est raccordé, d'une part, au collecteur du deuxième transistor 7-4 du premier étage 7 abaisseur de tension, et, d' autre part, à l' émetteur du deuxième transistor 8-2 du deuxième étage 8, par l' intermédiaire de d'une diode 1 1 -2. La branche de dérivation est dotée d'une diode additionnelle 1 1 -3 branchée en parallèle sur le transistor 1 1 - 1. La figure 3 est un schéma équivalent du circuit de la figure 2.
Sur le schéma équivalent de cette figure 3 , le transistor Q2 correspond au transistor 1 1 - 1 associé à sa diode 1 1 -3 , le transistor Q l correspond aux transistors des trois branches en parallèle du deuxième étage 8 et la diode D l correspond aux diodes 8-3 et 8-4 de la figure 2.
Enfin, le moteur et l' inductance 10-d ont été modélisés par une unique self M.
On va maintenant décrire, en référence aux figures 4 à 6, le fonctionnement du dispositif de charge 6 qui vient d' être décrit, lors de la charge.
Lors du fonctionnement en charge, le transistor Q2 est maintenu ouvert et les transistors des premier et deuxième étages 7 et 8 sont pilotés à la fréquence de découpage, notamment en ajustant en permanence le courant de sortie du premier étage redresseur en fonction de la tension de la batterie de manière à améliorer le rendement du premier étage en réduisant les pertes des transistors de manière qu' ils commutent un courant plus faible. En particulier, les transistors entrant dans la constitution du deuxième étage élévateur 8 sont tous commutés simultanément, justifiant le schéma équivalent de la figure 3.
On a représenté sur les figures 5 et 6 le fonctionnement de l' étage élévateur de tension. Le transistor Q l peut être piloté par l' unité centrale de commande soit à la fermeture (figure 5) , soit à l' ouverture (figure 6) pour régler la puissance de charge.
En se référant maintenant aux figures 7 à 10, dans le mode de restitution d' énergie, le courant issu de la batterie circule à travers le transistor Q2 pour être par la suite délivré au premier étage 7 fonctionnant en onduleur. Pendant toute la durée du mode de restitution d' énergie, la diode D l est bloquée.
Alors que dans le mode de fonctionnement en charge, la puissance est contrôlée par l' ensemble constitué par le transistor Q l , la diode D l et le bobinage statorique du moteur, en mode de restitution d' énergie, la puissance est contrôlée par l' ensemble comprenant le transistor Q2 et la diode D2. Le transistor Q2 peut, quant à lui, être ouvert (figure 7) ou fermé (figure 8) sous le contrôle de l' unité centrale de commande (non représentée).
On obtient alors le trajet de courant visible sur les figures 9 et 10. Sur la figure 9 , le courant passe dans le transistor Q2 et la diode D2 se bloque naturellement car le potentiel de sa cathode est supérieur à celui de l' anode. Durant la phase de fonctionnement de la figure 9 , la batterie fournie de l' énergie. Sur la figure 10, le transistor Q2 est bloqué par sa commande et le courant de l' inductance M trouve alors le chemin de la diode D2 qui devient passante. Durant la phase de fonctionnement de la figure 10, la batterie ne fournie pas d' énergie. La durée de chaque étape (figure 9 et figure 10) permet de régler la puissance fournie vers le réseau électrique.
On pourra enfin se référer à la figure 1 1 sur laquelle un homme du métier reconnaîtra un abaisseur formé par l' ensemble Self M, transistor Q2 et diode D2 qui permet de contrôler le courant. Un mode simple de commande du dispositif de charge qui vient d' être décrit consiste à asservir le courant dans l' inductance M par une première boucle à une valeur constante. On applique ensuite un rapport cyclique sur chacun des transistors qui est fonction de la tension mesurée sur le réseau électrique. Bien entendu, on ne sort pas du cadre de l' invention lorsque l' on utilise d' autres modes de contrôle, sans charger la topologie du dispositif.

Claims

REVENDICATIONS
1. Dispositif de charge d'une batterie et/ou de restitution d'énergie électrique à partir de ladite batterie, notamment pour système de traction d'un véhicule automobile à traction au moins partiellement électrique, comprenant un premier étage redresseur (7) destiné à être raccordé à un réseau d'alimentation ou à une charge à alimenter, un second étage onduleur (8) destiné à être raccordé à la batterie et des moyens de régulation agissant sur les premier et deuxième étages, caractérisé en ce qu'il comporte une branche de dérivation (11) raccordée entre une sortie et une entrée de l'étage onduleur (8) et comprenant un interrupteur (11-1) pilotable à l'ouverture lors de la charge et associé à une diode (11-2) positionnée de manière à autoriser un retour de courant vers le premier étage redresseur.
2. Dispositif selon la revendication 1, caractérisé en ce que l'interrupteur (11-1) et la diode (11-2) constituent un moyen de contrôle de la puissance de l'énergie restituée.
3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que la branche de dérivation (11) est raccordée entre une sortie de l'étage onduleur (8) par laquelle l'énergie électrique est restituée par la batterie et une entrée de l'étage onduleur (8) qui communique avec une borne de l'étage redresseur (7) autorisant une restitution d'énergie électrique vers le réseau ou la charge à alimenter.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'interrupteur (11-1) est constitué par un transistor IGBT.
5. Véhicule automobile à traction au moins partiellement électrique, caractérisé en ce qu'il comporte un dispositif de charge embarqué selon l'une quelconque des revendications 1 à 4.
6. Procédé de charge d'une batterie et/ou de restitution d'énergie électrique à partir de ladite batterie, pour la mise en œuvre d'un dispositif de charge comprenant un premier étage redresseur (7) destiné à être raccordé à un réseau d'alimentation ou à une charge à alimenter, un second étage onduleur (8) destiné à être raccordé à la batterie et des moyens de régulation agissant sur les premier et deuxième étages, caractérisé en ce que, lors de la charge, on ouvre un interrupteur ( 1 1 - 1 ) pilotable placé dans une branche de dérivation ( 1 1) raccordée entre une sortie et une entrée de l' étage onduleur et auquel est associée une diode ( 1 1 -2) positionnée de manière à autoriser un retour de courant vers le premier étage redresseur lors de la restitution d' énergie.
7. Procédé selon la revendication 6, dans lequel, en mode de charge de la batterie, on ajuste le courant de sortie du premier étage en fonction de la tension de la batterie.
8. Procédé selon la revendication 7, dans lequel des transistors entrant dans la constitution du deuxième étage sont commutés simultanément.
9. Procédé selon l' une quelconque des revendications 6 à 8, dans lequel en mode de restitution d' énergie, on met en œuvre une première phase de fonctionnement dans laquelle on ferme ledit interrupteur ( 1 1 - 1) et l' on bloque ladite diode ( 1 1 -2) de sorte que la batterie fournisse de l' énergie et une deuxième phase dans laquelle ledit interrupteur est ouvert et la diode ( 1 1 -2) est passante de sorte que la batterie ne fournisse pas d' énergie, pour contrôler la puissance restituée.
EP14809473.3A 2013-12-05 2014-11-06 Dispositif de charge reversible ameliore pour vehicule electrique Withdrawn EP3078110A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362163A FR3014615B1 (fr) 2013-12-05 2013-12-05 Dispositif de charge reversible ameliore pour vehicule electrique
PCT/FR2014/052831 WO2015082786A1 (fr) 2013-12-05 2014-11-06 Dispositif de charge reversible ameliore pour vehicule electrique

Publications (1)

Publication Number Publication Date
EP3078110A1 true EP3078110A1 (fr) 2016-10-12

Family

ID=50639618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809473.3A Withdrawn EP3078110A1 (fr) 2013-12-05 2014-11-06 Dispositif de charge reversible ameliore pour vehicule electrique

Country Status (3)

Country Link
EP (1) EP3078110A1 (fr)
FR (1) FR3014615B1 (fr)
WO (1) WO2015082786A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201008129Y (zh) * 2006-12-05 2008-01-16 哈尔滨航空工业(集团)有限公司 静止电力双向可逆升降压变频装置
CN102969932A (zh) * 2012-12-20 2013-03-13 中南大学 一种多功能电流型双向ac/dc变流器及其控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4347983B2 (ja) * 2000-02-28 2009-10-21 三菱電機株式会社 エレベーターの制御装置
FR2946810B1 (fr) * 2009-06-16 2012-12-14 Renault Sas Dispositif de charge rapide reversible pour vehicule electrique
KR101273736B1 (ko) * 2011-03-18 2013-06-12 엘에스산전 주식회사 인버터-충전기 통합형 장치 및 그것의 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201008129Y (zh) * 2006-12-05 2008-01-16 哈尔滨航空工业(集团)有限公司 静止电力双向可逆升降压变频装置
CN102969932A (zh) * 2012-12-20 2013-03-13 中南大学 一种多功能电流型双向ac/dc变流器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015082786A1 *

Also Published As

Publication number Publication date
WO2015082786A1 (fr) 2015-06-11
FR3014615A1 (fr) 2015-06-12
FR3014615B1 (fr) 2015-12-18

Similar Documents

Publication Publication Date Title
EP2887527B1 (fr) Bloc d'alimentation électrique compact et modulaire, multi-convertisseurs, notamment pour bornes de recharge rapide de véhicules électriques
FR2946810A1 (fr) Dispositif de charge rapide reversible pour vehicule electrique
FR2943188A1 (fr) Dispositif de charge rapide pour un vehicule electrique.
EP2032383B1 (fr) Dispositif micro-hybride pour vehicule automobile
EP2781001B1 (fr) Source de tension continue incluant des cellules electrochimiques a niveau de tension adaptatif
FR2738411A1 (fr) Systeme d'alimentation electrique mixte onduleur et convertisseur alternatif-continu
EP3607644B1 (fr) Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride
FR2974253A1 (fr) Dispositif de charge d'une batterie d'un vehicule automobile a partir d'un reseau d'alimentation monophase, et procede de commande du dispositif
EP3227137B1 (fr) Dispositif d'alimentation et convertisseur de tension continue ameliore
EP3389175B1 (fr) Dispositif de conversion, procédé de commande et véhicule associés
FR2985104A1 (fr) Procede de charge par un reseau electrique delivrant un courant continu d'une unite de stockage d'energie electrique
EP3053247B1 (fr) Système et procédé de charge d'une batterie de traction limitant l'appel de courant de capacités parasites
WO2015082786A1 (fr) Dispositif de charge reversible ameliore pour vehicule electrique
EP3681756A1 (fr) Chargeur de vehicule comprenant un convertisseur dc/dc
FR3018244A1 (fr) Vehicule automobile electrique ou hybride muni d'un convertisseur dc-dc pour la charge et la traction, et procede correspondant
EP2965398B1 (fr) Dispositif d'alimentation commute pour le réseau de bord d'un véhicule automobile
FR3039934A1 (fr) Procede de gestion de l’alimentation electrique d’un vehicule automobile
FR2973601A1 (fr) Circuit electrique destine a equiper un vehicule automobile et permettant d'alimenter un reseau de bord sensible
FR3074984A1 (fr) Convertisseur continu-continu avec pre-charge d’un premier reseau electrique a partir d’un deuxieme reseau electrique
EP2297840A1 (fr) Poste de soudage a l'arc a onduleur a commutation douce quasi resonant optimise
FR2970094A1 (fr) Dispositif electronique et vehicule comprenant un tel dispositif
EP3047562A1 (fr) Dispositif de charge d'une batterie de vehicule automobile permettant de compenser les harmoniques, vehicule automobile dote d'un tel dispositif de charge et procede de charge correspondant
WO2022214745A1 (fr) Dispositif de creation d'un bus de tension continue pour un systeme electrique polyphase, vehicule automobile et generateur a energie renouvelable comprenant un tel dispositif
FR2983365A1 (fr) Systeme de transfert d'energie electrique
FR3008257A1 (fr) Systeme de commande d'un onduleur et procede correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180219

17Q First examination report despatched

Effective date: 20180301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190806