EP3075886B1 - Method for producing electrolytic aluminium using potassium cryolite as an additive system - Google Patents

Method for producing electrolytic aluminium using potassium cryolite as an additive system Download PDF

Info

Publication number
EP3075886B1
EP3075886B1 EP15248006.7A EP15248006A EP3075886B1 EP 3075886 B1 EP3075886 B1 EP 3075886B1 EP 15248006 A EP15248006 A EP 15248006A EP 3075886 B1 EP3075886 B1 EP 3075886B1
Authority
EP
European Patent Office
Prior art keywords
alf
potassium
cryolite
electrolysis
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15248006.7A
Other languages
German (de)
French (fr)
Other versions
EP3075886A1 (en
Inventor
Xuemin Chen
Fengqin Niu
Weiping Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Sunxing Light Alloy Materials Co Ltd
Original Assignee
Shenzhen Sunxing Light Alloy Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sunxing Light Alloy Materials Co Ltd filed Critical Shenzhen Sunxing Light Alloy Materials Co Ltd
Priority to EP15248006.7A priority Critical patent/EP3075886B1/en
Publication of EP3075886A1 publication Critical patent/EP3075886A1/en
Application granted granted Critical
Publication of EP3075886B1 publication Critical patent/EP3075886B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/18Electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von elektrolytischem Aluminium, und insbesondere betrifft sie ein Verfahren zur Herstellung von elektrolytischem Aluminium unter Verwendung von Kaliumkryolith mit einem niedrigeren Molekularverhältnis als Zusatzsystem.The present invention relates to a process for producing electrolytic aluminum, and more particularly relates to a process for producing electrolytic aluminum using lower molecular ratio potassium cryolite as an additive system.

HINTERGRUNDBACKGROUND

Derzeit wird noch der herkömmliche Hall-Heroult-Prozeß in der industriellen Aluminiumelektrolyse verwendet. Elektrolyt nimmt immer ein Kryolith-Aluminiumoxid als Basissystem an und das Kryolith nimmt im Allgemeinen Natriumfluoaluminat an. In der Aluminiumproduktion ist die Elektrolysetemperatur ein sehr wichtiger technischer Parameter. Die Elektrolysetemperatur bezieht sich auf die Temperatur des Elektrolyten, welche in einem Temperaturbereich liegt, der in der Regel im Bereich von 950 bis 970°C ist, und ist im Allgemeinen höher als die Liquidustemperatur des Elektrolyten von 20 bis 30°C. Der Schmelzpunkt von Aluminium ist 660°C. Um flüssiges Aluminium herzustellen, muss die Elektrolysetemperatur um 100 bis 150°C höher als der Schmelzpunkt von Aluminium eingestellt werden. In anderen Worten heißt das, dass die ideale Elektrolysetemperatur im Bereich von 750 bis 800°C liegt. Jedoch hat der derzeit verwendete Elektrolyt mit Kryolith-Aluminiumoxid als Basissystem eine hohe Liquidustemperatur. Daher ist die Elektrolysetemperatur entsprechend hoch. Im Ergebnis nimmt der Lösungsverlust im elektrolytischen Tank zu, die Stromausbeute verringert sich und in der Zwischenzeit erhöhen sich auch Verbrauch der elektrischen Energie und des Materials, was nachteilig für die Produktion ist. Daher wird in der modernen Aluminiumindustrie Elektrolyte mit einem niedrigen Schmelzpunkt bevorzugt verwendet, um die Elektrolysetemperatur abzusenken. So wird beispielsweise Magnesiumfluorid oder Lithiumfluorid oder Lithium-Hexafluoaluminat zugegeben und das Verhältnis von NaF zu AlF3 im Kryolith wird reduziert. Somit kann die Elektrolysetemperatur abgesenkt werden.At present, the conventional Hall-Heroult process is still used in industrial aluminum electrolysis. Electrolyte always takes a cryolite alumina as the base system and the cryolite generally adopts sodium fluoroaluminate. In aluminum production, the electrolysis temperature is a very important technical parameter. The electrolysis temperature refers to the temperature of the electrolyte which is in a temperature range which is usually in the range of 950 to 970 ° C, and is generally higher than the liquidus temperature of the electrolyte of 20 to 30 ° C. The melting point of aluminum is 660 ° C. To produce liquid aluminum, the electrolysis temperature must be set 100 to 150 ° C higher than the melting point of aluminum. In other words, the ideal electrolysis temperature is in the range of 750 to 800 ° C. However, the currently used electrolyte with cryolite-alumina as the base system has a high liquidus temperature. Therefore, the electrolysis temperature is correspondingly high. As a result, the loss of solution in the electrolytic tank increases, the current efficiency decreases, and in the meantime, consumption of electric power and material also increases, which is detrimental to production. Therefore, in the modern aluminum industry, electrolytes having a low melting point are preferably used to lower the electrolysis temperature. For example, magnesium fluoride or lithium fluoride or lithium hexafluoaluminate is added and the ratio of NaF to AlF 3 in the cryolite is reduced. Thus, can the electrolysis temperature can be lowered.

Mit dem Aufkommen des Hall-Heroult-Verfahrens wurde für die industrielle Aluminiumelektrolyse das Kryolith-Aluminiumoxid-Schmelzsalz als Basiselektrolytsystem eingeführt. Obwohl Experimente zum Ersatz des Kryolits durch Chlorid, Carbonat, Sulfid, Sulfat, Aluminat durchführt wurden, hat ein solcher Austausch keine Wirkung erzielt. Daher sind Verbesserungen erwünscht, um durch Hinzugeben einiger Salze in die Kryolith-Aluminiumoxid-Lösung die physikalischen und chemischen Eigenschaften derselben zu verbessern und um die wirtschaftlichen und technischen Indikatoren in der Aluminium-Elektrolyse-Produktion zu verbessern. Solche Salze werden als Additive bezeichnet.With the advent of the Hall-Heroult process, the cryolite-alumina molten salt was introduced as the base electrolyte system for industrial aluminum electrolysis. Although experiments have been carried out to replace the cryolite by chloride, carbonate, sulfide, sulfate, aluminate, such replacement has not had any effect. Therefore, improvements are desired to improve the physical and chemical properties of the same by adding some salts to the cryolite-alumina solution and to improve the economic and technical indicators in aluminum electrolysis production. Such salts are referred to as additives.

Die Salzadditive sollten die folgenden Anforderungen erfüllen: Die Additive zerfallen in der Elektrolyse nicht, wodurch die Qualität des Aluminiumprodukts gewährleistet ist; die Additive können die physikalischen und chemischen Eigenschaften der Kryolith-Aluminiumoxid-Lösung verbessern (beispielsweise die Verringerung der Schmelzpunkts, die Verbesserung der Leitfähigkeit, eine Senkung der Löslichkeit von Aluminium oder Reduzierung des Dampfdrucks oder dergleichen); die Additive beeinträchtigen nicht wesentlich die Löslichkeit des Aluminiumoxids in der Kryolith-Lösung; und die Additive können einfach aus umfangreichen Quellen gewonnen werden und sind günstig.The salt additives should meet the following requirements: The additives do not decompose in the electrolysis, which ensures the quality of the aluminum product; the additives can improve the physical and chemical properties of the cryolite-alumina solution (e.g., lowering the melting point, improving the conductivity, lowering the solubility of aluminum or reducing the vapor pressure, or the like); the additives do not significantly affect the solubility of the alumina in the cryolite solution; and the additives can be easily obtained from extensive sources and are inexpensive.

Bisher weisen die in Versuchen und in der Praxis verwendeten Additive die folgenden Komponenten auf: Calciumfluorid, Magnesiumfluorid, Lithiumfluorid oder Lithiumhexafluorophosphat. Durch Zugabe solcher Komponenten kann die Elektrolysetemperatur von Aluminium gesenkt werden. Innerhalb einem Zugabebereich von 10% wird die Liquidustemperatur des geschmolzenen Kryolith-Salzsystems um einen Durchschnittswert (°C/1% zugesetzte Menge) in der folgenden Reihenfolge gesenkt: LiF 7,8 AlF3 5,0 NaCl 4.6 MgF2 6.0 KF 4,8 CaF2 2.4 BaCl2 5,6 Al2O3 4,6 NaF 1,8 So far, the additives used in experiments and in practice have the following components: calcium fluoride, magnesium fluoride, lithium fluoride or lithium hexafluorophosphate. By adding such components, the electrolysis temperature of aluminum can be lowered. Within an addition range of 10%, the liquidus temperature of the molten cryolite salt system is lowered by an average value (° C / 1% added amount) in the following order: LiF 7,8 Alf 3 5.0 NaCl 4.6 MgF 2 6.0 KF 4.8 CaF 2 2.4 BaCl 2 5.6 Al 2 O 3 4,6 NaF 1.8

Oben Genanntes basiert auf reinem Kryolith, wobei der Schmelzpunkt des reinen Kryoliths 1010°C ist. Jedoch reduzieren die Zusatzstoffe, welche in der modernen Aluminiumindustrie häufig verwendet werden, die Löslichkeit und Lösungsgeschwindigkeit des Aluminiumoxid in der Kryolith-Lösung.The above is based on pure cryolite, the melting point of pure cryolite being 1010 ° C. However, the additives commonly used in the modern aluminum industry reduce the solubility and dissolution rate of the alumina in the cryolite solution.

Wenn die Konzentration der Additive 5% (Gewicht) beträgt, kann beispielsweise die Löslichkeit des Aluminiumoxids im Kryolith von 13,5% auf 11,6% (mit LiF als Zusatz), auf 11% (mit CaF2 als Zusatz) und auf 10,2% (mit MgF2 als Zusatz) reduziert werden. Die Wirkung durch die Additive auf die Lösungsgeschwindigkeit des Aluminiumoxids ist ähnlich. Jedoch hat der Erfinder überraschenderweise festgestellt, dass, wenn Kaliumkryolith mit niedrigem Molekularverhältnis als Zusatz verwendet wird, um die oben genannte Substanz zu ersetzen, werden die Löslichkeit und Lösungsgeschwindigkeit des Aluminiumoxids in der Kryolith-Lösung erheblich verbessert (wenn der Gehalt des Kaliums im Elektrolyt 5% beträgt, wird die Löslichkeit des Aluminiumoxids im Kryolith von 13,5% auf 17% verbessert, und die Erhöhung der Lösungsgeschwindigkeit ist ähnlich).For example, if the concentration of the additives is 5% (weight), the solubility of the alumina in the cryolite can be increased from 13.5% to 11.6% (with LiF as additive), to 11% (with CaF 2 as additive) and to 10 , 2% (with MgF 2 as an additive). The effect of the additives on the dissolution rate of the alumina is similar. However, the inventor has surprisingly found that when low molecular weight potassium cryolite is used as an additive to replace the above substance, the solubility and dissolution rate of the alumina in the cryolite solution are significantly improved (when the content of the potassium in the electrolyte is 5) %, the solubility of the alumina in the cryolite is improved from 13.5% to 17%, and the increase in dissolution rate is similar).

Bei der Anwendung des Kaliumkryolith in der industriellen Aluminiumelektrolyse ist ein anderes Thema, womit man sich befasst, die Durchlässigkeit des Kathodenkohlenstoffmaterials oder - unter allgemeiner Bezeichnung - die Korrosivität. Es wird traditionell angenommen, dass die korrodierende Wirkung des Kaliumelements größer als die des Natriumelements. Jedoch hängt die Korrosion des Kaliumelements auf das Kohlenstoffmaterial nicht nur von dem Element selbst ab, sondern ist eng mit dem Status, den Eigenschaften und der Temperatur der koexistierenden Anionen verbunden. Beispielsweise hat Natrium- Fluoaluminat mit einem hohem Molekularverhältnis (NaF/AlF3 = 3,0) eine Korrosivität größer als die von Natrium-Fluoaluminat mit niedrigem Molekularverhältnis (NaF/AlF3 = 2,0-2,5). Wenn jedoch das Additiv eine größere Korrosivität hat, kann die Lebensdauer der Elektrolysebehälter verkürzt sein, und somit können sich die umfassende Kosten der Aluminiumelektrolyse erhöhen. Jedoch hat der Erfinder weiterhin überraschenderweise herausgefunden, dass Kaliumkryolith weniger Korrosion an Kohlenstoffen versursacht, als es von Natriumkryolith verursacht wird, wenn Kaliumkryolith mit niedrigem Molekularverhältnis als Zusatzstoff verwendet wird. Die Versuchsergebnisse haben gezeigt, dass unter den gleichen Bedingungen die korrodierende Wirkung der Komponenten am Kohlenstoffmaterial wie folgt sequenziert wird:

        KF > K3AlF6 (3.0KF • AlF3) > Na3AlF6 (3.0NaF • AlF3) > mKF • AIF (m = 1,0 bis 1,5) > nNaF • AIF (n = 1,0 bis 1,5)

In the application of potassium cryolite in industrial aluminum electrolysis, another topic of concern is the permeability of the cathode carbon material or, generally, the corrosivity. It is traditionally believed that the corrosive effect of the potassium element is greater than that of the sodium element. However, corrosion of the potassium element on the carbon material not only depends on the element itself, but is closely related to the state, properties and temperature of the coexisting anions. For example, high molecular ratio sodium fluoaluminate (NaF / AlF 3 = 3.0) has a corrosivity greater than that of low molecular ratio sodium fluoaluminate (NaF / AlF 3 = 2.0-2.5). However, if the additive has greater corrosivity, the life of the electrolysis tanks may be shortened, and thus the overall cost of aluminum electrolysis may increase. However, the inventor has further surprisingly found that potassium cryolite is less corrosive Caused by sodium cryolite when low molecular weight potassium cryolite is used as an additive. The experimental results have shown that under the same conditions, the corrosive effect of the components on the carbon material is sequenced as follows:

KF> K 3 AlF 6 (3.0KF • AlF 3 )> Na 3 AlF 6 (3.0NaF • AlF 3 )> mKF • AIF (m = 1.0 to 1.5)> nNaF • AIF (n = 1.0 to 1.5)

Das Verfahren zur industriellen Herstellung des Kaliumkryolith verwendet im Allgemeinen ein Syntheseverfahren, bei dem eine wasserfreie Fluorwasserstoffsäure mit einem Aluminiumhydroxid reagiert, um ein Fluoaluminsäure zu bilden; dann reagiert die Fluoaluminsäure bei einer hohen Temperatur mit einem Kaliumhydroxid; nach Filtrieren, Trocknen, Schmelzen und Zerkleinern ist der Kaliumkryolith hergestellt. Das Kaliumkryolith, welches mittels dieses Verfahrens synthetisiert wird, hat jedoch ein Molekularverhältnis m in einem Bereich von 2,0 bis 3,0, und der Schmelzpunkt ist hoch. Der Kryolith (unabhängig von Natriumkryolith oder Kaliumkryolith), welche gemäß herkömmlichen industriellen Syntheseverfahren synthetisiert wird, hat ein Molekularverhältnis m in einem Bereich von 2,0 bis 3,0, und es ist schwierig, die relativ reine Kryolith mit niedrigem Molekularverhältnis mit einem molekularen Verhältnis m im Bereich von 1,0 bis 1,5 zu erhalten.The method for industrially producing the potassium cryolite generally uses a synthesis method in which anhydrous hydrofluoric acid reacts with an aluminum hydroxide to form a fluoaluminic acid; then the fluoalumic acid reacts with a potassium hydroxide at a high temperature; After filtration, drying, melting and grinding, the potassium cryolite is prepared. However, the potassium cryolite synthesized by this method has a molecular ratio m in a range of 2.0 to 3.0, and the melting point is high. The cryolite (independent of sodium cryolite or potassium cryolite) synthesized according to conventional industrial synthesis methods has a molecular ratio m in a range of 2.0 to 3.0, and it is difficult to obtain the relatively pure low molecular ratio cryolite having a molecular ratio m in the range of 1.0 to 1.5.

ZUSAMMENFASSUNGSUMMARY

Um die technischen Probleme des Standes der Technik zu lösen, hat der Erfinder einen Großteil der Forschung in der Auswahl und Herstellung eines Elektrolytenzusatzsystems erledigt und hat - unerwartet - festgestellt, dass durch Ersetzen des herkömmlichen Elektrolytzusatzsystems durch ein Kryolithelektrolytenzusatzsystem mit einem niedrigem Molekularverhältnis für die Aluminiumelektrolyse die Elektrolysetemperatur während der Aluminiumelektrolyse, insbesondere ohne die Notwendigkeit, das herkömmliche Elektrolyseverfahren zu modifizieren, wesentlich gesenkt wird, wodurch der elektrische Energieverbrauch gesenkt und die Stromausbeute verbessert sowie die umfassenden Produktionskosten reduziert werden.In order to solve the technical problems of the prior art, the inventor has done much of the research in the selection and manufacture of an electrolyte supplement system and has unexpectedly found that by replacing the conventional electrolyte additive system with a low molecular weight cryolite electrolyte additive system for aluminum electrolysis Electrolysis temperature during aluminum electrolysis, especially without the need to modify the conventional electrolysis process, is significantly reduced, thereby reducing electrical energy consumption reduced and the electricity yield can be improved and the overall production costs are reduced.

Erfindungsgemäß wird ein Verfahren zur Herstellung von elektrolytischem Aluminium zur Verfügung gestellt, welches die folgenden Schritte umfasst:
Schritt A: Start der Elektrolyse in einem elektrolytischen Tank mit einem Na3AlF6-Al2O3-System oder einem gemischten System aus Natrium-Kryolith Na3AlF6, Kaliumkryolith mKF • AlF3 und Al2O3, kontinuierliche Durchführung der Elektrolyse und Hinzufügen voin Na3AlF6-AlF3 bis ein Ofen regelgerecht läuft.
According to the invention, a process for the production of electrolytic aluminum is provided which comprises the following steps:
Step A: Start the electrolysis in an electrolytic tank with a Na 3 AlF 6 -Al 2 O 3 system or a mixed system of sodium cryolite Na 3 AlF 6 , potassium cryolite mKF • AlF 3 and Al 2 O 3 , continuously carrying out the Electrolysis and addition of Na 3 AlF 6 -AlF 3 until a furnace runs properly.

Das oben genannte Verfahren umfasst weiterhin: Vermischen des Kaliumkryolith mKF • AlF3 und des Natriumkryolith Na3AlF6 nach einem bestimmten Verhältnis und Schaffen eines Systems mit Al2O3, und anschließend direktes Einsetzen des Systems in den elektrolytischen Tank, um die Elektrolyse darin zu starten.The above method further comprises: mixing the potassium cryolite mKF • AlF 3 and the sodium cryolite Na 3 AlF 6 at a certain ratio and providing a system with Al 2 O 3 , and then placing the system directly in the electrolytic tank to electrolysis therein to start.

Schritt B: Hinzufügen eines Elektrolytzusatzsystems umfassend den Kaliumkryolith mKF • AlF3, AlF3 und Na3AlF6 und Vor-Ort-Überwachung eines Masseprozentgehalts eines Kaliumelements im Elektrolyten im Elektrolysebehälter, so dass der Masseprozentgehalt des Kaliumelements im Bereich von 5% bis 10% liegt.Step B: Addition of an electrolyte supplement system comprising the potassium cryolite mKF • AlF 3 , AlF 3 and Na 3 AlF 6 and on-site monitoring of a mass percentage of a potassium element in the electrolyte in the electrolytic tank so that the mass percentage of the potassium element is in the range of 5% to 10%. lies.

Der Kaliumkryolith mit einem niedrigem Molekularverhältnis ist mKF • AlF3 und m reicht von 1,0 bis 3,0.The low molecular ratio potassium cryolite is mKF • AlF 3 and m ranges from 1.0 to 3.0.

In Schritt A wird, nachdem die Elektrolyse in dem Elektrolysebehälter unter Verwendung eines Na3AlF6-Al2O3-Systems gestartet wurde, die Elektrolyse kontinuierlich durchgeführt, wobei Na3AlF6 -AlF3 als Elektrolytzusatzsystem zugegeben wird, bis der Ofen regelrecht läuft. Allerdings kann die Elektrolyse im Elektrolysebehälter auch unter Verwendung eines Na3AlF6 - mKF • AlF3-Al2O3-Systems gestartet werden, wobei m von 1,0 bis 3,0 reicht. Bezüglich der Inbetriebnahme der Elektrolyse unter Verwendung des Na3AlF6 - mKF • AlF3-Al2O3-Systems reicht m vorzugsweise von 1,0 bis 1,5.In step A, after electrolysis is started in the electrolytic tank using a Na 3 AlF 6 -Al 2 O 3 system, the electrolysis is carried out continuously, adding Na 3 AlF 6 -AlF 3 as an electrolyte addition system until the furnace is downright running. However, the electrolysis in the electrolysis tank can also be started using a Na 3 AlF 6 -mKF • AlF 3 -Al 2 O 3 system, where m ranges from 1.0 to 3.0. With regard to the start-up of electrolysis using the Na 3 AlF 6 -mKF • AlF 3 -Al 2 O 3 system, m ranges preferably from 1.0 to 1.5.

Die Zugabe eines Elektrolysezusatzsystems, umfassend den Kaliumkryolith mKF • AlF3, AlF3 und Na3AlF6, umfasst weiterhin: Hinzufügen einer Mischung aus Kaliumkryolith mKF • AlF3, AlF3 und Na3AlF6, oder Hinzufügen eines Elektrolytzusatzsystems, welches eine Mischung aus Kaliumkryolith AlF3, Na3AlF6 und Kaliumkryolith mKF • AlF3 umfasst.The addition of an electrolysis additive system comprising the potassium cryolite mKF • AlF 3 , AlF 3 and Na 3 AlF 6 further comprises: adding a mixture of potassium cryolite mKF • AlF 3 , AlF 3 and Na 3 AlF 6 , or adding an electrolyte addition system comprising a mixture of potassium cryolite AlF 3 , Na 3 AlF 6 and potassium cryolite mKF • AlF 3 .

Die Zugabe des Zusatzsystem umfasst auch eine Erhöhung des Kaliumgehalts in dem Elektrolyten im Elektrolysebehälter von einem Anteil von 3% bis 5% bis zu einem Anteil von 5% bis 10%. Eine Erhöhung des Gehalts an Kalium kann zu einer weiteren Verringerung der Elektrolysetemperatur führen, jedoch sollte die Elektrolysetemperatur nicht unter 750°C gesenkt werden. Andernfalls kann die normale Produktion fehlschlagen, da der Schmelzpunkt des flüssigen Aluminiums bei 660°C liegt.The addition of the additive system also includes increasing the potassium content in the electrolyte in the electrolytic tank from 3% to 5% to 5% to 10%. Increasing the potassium level may further reduce the electrolysis temperature, but the electrolysis temperature should not be lowered below 750 ° C. Otherwise, normal production may fail because the melting point of liquid aluminum is 660 ° C.

Wenn das Elektrolytenzusatzsystem gemäß der vorliegenden Offenbarung mit der obigen technischen Lösung in der industriellen Aluminiumelektrolyse angewandt wird, verbessert sich die Löslichkeitseigenschaft des Aluminiumoxids, so dass die Elektrolysetemperatur abgesenkt wird, der elektrische Energieverbrauch reduziert wird, die Effizienz der Elektrolyse verbessert wird und die umfassenden Produktionskosten reduziert werden.When the electrolyte supplement system according to the present disclosure is applied to the above technical solution in industrial aluminum electrolysis, the solubility property of the alumina is improved, so that the electrolysis temperature is lowered, the electric power consumption is reduced, the efficiency of electrolysis is improved, and the overall production cost is reduced become.

Der Komponentenbestandteil des Kaliumkryolith mit einem niedrigem Molekularverhältnis bezieht sich auf die folgenden Kategorien: Der K-Gehalt ist von 28 bis 38%, der Al-Gehalt ist von 13 bis 21%, und der F-Gehalt ist von 38 bis 52%.The component component of the low molecular ratio potassium cryolite refers to the following categories: the K content is from 28 to 38%, the Al content is from 13 to 21%, and the F content is from 38 to 52%.

Vorzugsweise wird die Elektrolyse in Schritt A im Elektrolysetank unter Verwendung eines Systems mit einer Mischung von Natriumkryolith Na3AlF6 und Kaliumkryolith mKF • AlF3 und Al2O3 begonnen, wobei das Massenverhältnis des Natriumkryolith Na3AlF6 zum Kaliumkryolith mKF • AlF3 zwischen 1,5 und 5 liegt.Preferably, the electrolysis in step A is started in the electrolytic tank using a system comprising a mixture of sodium cryolite Na 3 AlF 6 and potassium cryolite mKF • AlF 3 and Al 2 O 3 , the mass ratio of the sodium cryolite Na 3 AlF 6 to the potassium cryolite mKF • AlF 3 between 1.5 and 5 lies.

Die Elektrolyse kann im Elektrolysetank unter Verwendung des Na3AlF6 - mKF • AlF3-Al2O3-Systems begonnen werden. In einem solchen Startmodus, ist das Massenverhältnis von Na3AlF6 zu mKF • AlF3 anzumerken, wobei bevorzugte Mengenverhältnisse bei 7:3, 9:1 und 10,5:0,5 liegen.The electrolysis can be started in the electrolysis tank using the Na 3 AlF 6 -mKF • AlF 3 -Al 2 O 3 system. In such a start-up mode, the mass ratio of Na 3 AlF 6 to mKF • AlF 3 is to be noted, with preferred proportions being 7: 3, 9: 1 and 10.5: 0.5.

Vorzugsweise reicht m von 1,0 bis 1,5. Wenn das Kaliumkryolith mit einem niedrigem Molekularverhältnis, wobei m von 1,0 bis 1,5 reicht, mit dieser technischen Lösung bei der industriellen Aluminiumelektrolyse angewendet wird, kann die Löslichkeit des Aluminiumoxids verbessert werden, wobei die Elektrolysetemperatur deutlich gesenkt wird, der elektrische Energieverbrauch reduziert wird, die Elektrolyseeffizienz verbessert wird und die umfassenden Produktionskosten reduziert werden.Preferably, m ranges from 1.0 to 1.5. When the low molecular ratio potassium cryolite, where m is from 1.0 to 1.5, is used in this industrial solution in industrial aluminum electrolysis, the solubility of the alumina can be improved, significantly lowering the electrolysis temperature, reducing the electric power consumption will improve the electrolysis efficiency and reduce the overall production costs.

Im Vergleich zum Stand der Technik erzielt die vorliegende Erfindung die folgenden vorteilhaften Wirkungen:
Durch Anwendung des Kaliumkryolith mit niedrigem Molekularverhältnis als Elektrolytergänzungssystem für den Einsatz in der industriellen Aluminiumelektrolyse gemß der vorliegenden Erfindung kann die Elektrolysetemperatur während der Aluminiumelektrolyse, insbesondere ohne die Notwendigkeit, das herkömmliche Elektrolyseverfahren zu modifizieren, erheblich reduziert werden, wodurch der elektrische Energieverbrauch gesenkt, die Stromausbeute in der Produktion verbessert und die umfassenden Produktionskosten verringert werden können.
Compared with the prior art, the present invention achieves the following advantageous effects:
By employing the low molecular ratio potassium cryolite as an electrolyte replenishment system for use in industrial aluminum electrolysis according to the present invention, the electrolysis temperature during aluminum electrolysis, especially without the need to modify the conventional electrolysis process, can be significantly reduced, thereby reducing electrical energy consumption, current efficiency be improved in production and the overall production costs can be reduced.

Entsprechend der vorliegenden Offenbarung hat die Anwendung des Kaliumkryolith mit niedrigem Molekularverhältnis als Elektrolytergänzungssystem für den Einsatz in der industriellen Aluminiumelektrolyse die folgenden Vorteile: (1) Die herkömmliche Struktur des elektrolytischen Tanks, das Elektrolyseverfahren und verschiedene Materialausführungen müssen nicht verändert werden und die Elektrolysetemperatur kann während der Aluminiumelektrolyse erheblich gesenkt werden (durchschnittlich um 10 ° C); verglichen mit der herkömmlichen Aluminiumelektrolyse wird die Stromausbeute um 1% verbessert, d.h, 500 bis 700 kWh elektrische Energie wird während der Erzeugung jeder Tonne Aluminium gespart; (2) die Zugabe von Kaliumkryolith mit niedrigem Molekularverhältnis kann insbesondere die Löslichkeit und die Lösungsgeschwindigkeit von Al2O3 im Elektrolyten verbessern, wobei üblicherweise gefundene oder verschiedene verwendete Komponenten zur Senkung der Elektrolysetemperatur von Aluminium umfassen: CaF2, MgF2, LiF2, Li3AlF6 und dergleichen, die alle in der Lage sind, die Löslichkeit von Al2O3 im Elektrolyten zu reduzieren; die Verbesserung der Löslichkeit von Al2O3 im Elektrolyten kann die Ausbeute des Aluminiumelektrolytentanks deutlich erhöhen, wobei die Ausbeute im Vergleich zur herkömmlichen Ausbeute um 5% bis 30% verbessert wird; (3) das Kaliumkryolith als Zusatzsystem der Aluminiumelektrolyse wird in den Elektrolysebehälter gegeben und die Elektrolyse wird für eine lange Zeit durchgeführt, was im Vergleich zum Natriumkryolith zu einer verarmten Korrosivität am Kohlenstoffkathodenmaterial führt oder derart dargestellt werden kann, dass keine Änderungen in der Durchlässigkeit des Kohlenstoffkathodenmaterials im Vergleich zur herkömmlichen Natriumkryolith auftreten.According to the present disclosure, the use of the low molecular ratio potassium cryolite as an electrolyte replenishment system for use in industrial aluminum electrolysis has the following advantages: (1) The conventional structure of the electrolytic tank, the electrolytic process, and various material designs need not be changed, and the electrolysis temperature may be lowered during the Aluminum electrolysis are significantly reduced (on average by 10 ° C); Compared with the conventional aluminum electrolysis, the current efficiency is improved by 1%, that is, 500 to 700 kWh of electric energy saved each ton of aluminum during the production; (2) In particular, the addition of low molecular ratio potassium cryolite can improve the solubility and rate of dissolution of Al 2 O 3 in the electrolyte, with commonly found or various components used to lower the electrolysis temperature of aluminum: CaF 2 , MgF 2 , LiF 2 , Li 3 AlF 6 and the like, all of which are capable of reducing the solubility of Al 2 O 3 in the electrolyte; the improvement of the solubility of Al 2 O 3 in the electrolyte can markedly increase the yield of the aluminum electrolyte tank, improving the yield by 5% to 30% compared to the conventional yield; (3) The potassium cryolite as an additive system of aluminum electrolysis is placed in the electrolytic tank and the electrolysis is carried out for a long time, resulting in impoverished corrosivity on the carbon cathode material as compared with the sodium cryolite, or can be represented as having no changes in the permeability of the carbon cathode material Compared to conventional sodium cryolite occur.

DETAILLIERTE BESCHREIBUNGDETAILED DESCRIPTION

Die vorliegende Erfindung wird im Detail unter Bezugnahme auf die beigefügten Zeichnungen und Ausführungsbeispiele beschrieben.The present invention will be described in detail with reference to the accompanying drawings and embodiments.

Ausführungsbeispiel 1Embodiment 1

1 Tonne Aluminium wurde gewogen und in einen Reaktor gegeben, nach der Vakuumisierung wurde Argon in den Reaktor zum Schutz injiziert, der Reaktor wurde auf eine Temperatur von 780°C erhitzt, trockenes Kaliumtetrafluoroborat wurde langsam in den Reaktor gegeben, und zwar, entsprechend einem für die Reaktion spezifizierten Verhältnis, und schnell für 5 Stunden umgerührt, Bor und Kaliumkryolith KF • AlF3 wurden zugegeben, der Deckel des Reaktors wurde geöffnet, und eine aufliegende Schicht geschmolzener Flüssigkeit Kaliumkryolith KF • AlF3 wurde mit einer Hebepumpe gepumpt.1 ton of aluminum was weighed and placed in a reactor, after vacuuming argon was injected into the reactor for protection, the reactor was heated to a temperature of 780 ° C, dry potassium tetrafluoroborate was added slowly to the reactor, corresponding to a Reaction specified ratio and stirred rapidly for 5 hours, boron and potassium cryolite KF • AlF 3 were added, the lid of the reactor was opened, and a resting layer of molten liquid potassium cryolite KF • AlF 3 was pumped by a lift pump.

Die Elektrolyse besteht aus folgenden Schritten:

  • Schritt A: Beginn der Elektrolyse in einem Elektrolysebehälter unter Verwendung eines Systems von Na3AlF6, AlF3 und Al2O3, Durchführung der Elektrolyse für 3 Monate oder mehr als 3 Monate bis ein Ofen regelrecht läuft; und
  • Schritt B: Zugabe eines Elektrolytzusatzsystems während der Aluminiumelektrolyse gemäß einer zusätzlichen Regel, dass der Kaliumelementgehalt, der in jeden Stapel zugegeben wurde, um 0,2% bis 0,3% gegenüber einem früheren Stapel erhöht wurde, Zugabe von Aluminiumfluorid, Na3AlF6 und Kaliumkryolith KF AlF3 und Vor-Ort-Überwachung des Masseprozentgehalts des Kaliumelements im Elektrolyten im Elektrolysebehälter, wobei sich mit der Erhöhung der Konzentration von Kalium auch die Löslichkeit von Al2O3 im Elektrolyten erhöht und wobei der Masseprozentgehalt des Kaliumelements innerhalb eines Bereichs von 5% bis 10% geregelt wird.
The electrolysis consists of the following steps:
  • Step A: start the electrolysis in an electrolytic tank using a system of Na 3 AlF 6 , AlF 3 and Al 2 O 3 , carry out the electrolysis for 3 months or more than 3 months until a furnace runs properly; and
  • Step B: Addition of an electrolyte addition system during the aluminum electrolysis according to an additional rule that the potassium element content added to each stack was increased by 0.2% to 0.3% over a previous stack, adding aluminum fluoride, Na 3 AlF 6 and potassium cryolite KF AlF 3 and on-site monitoring of the percentage by mass of the potassium element in the electrolyte in the electrolysis tank, with increasing the concentration of potassium also increases the solubility of Al 2 O 3 in the electrolyte and wherein the mass percentage of the potassium element within a range of 5% to 10% is regulated.

Vergleichsbeispiel 1Comparative Example 1

Die Elektrolyse wurde in einem Elektrolysetank unter Verwendung des Systems von Na3AlF6, AlF3 und Al2O3 gestartet und die Elektrolyse wurde für 3 Monate oder mehr als 3 Monate durchgeführt, bis ein Ofen regelmäßig läuft; wobei das Zusatzsystem Na3AlF6 und AlF3 umfasst und andere Bedingungen denjenigen im Ausführungsbeispiel 1 gleichen.The electrolysis was started in an electrolytic tank using the system of Na 3 AlF 6 , AlF 3 and Al 2 O 3 and the electrolysis was carried out for 3 months or more than 3 months until an oven runs regularly; wherein the additive system comprises Na 3 AlF 6 and AlF 3 , and other conditions are similar to those in Embodiment 1.

Ausführungsbeispiel 2Embodiment 2

1 Tonne Aluminium wurde gewogen und in einen Reaktor gegeben, nach der Vakuumisierung wurde Argon in den Reaktor zum Schutz injiziert, der Reaktor wurde auf eine Temperatur von 800°C erhitzt, trockenes Kaliumfluotitanat wurde langsam dem Reaktor entsprechend einem für die Reaktion spezifischen Verhältnis zugegeben und für 5 Stunden schnell umgerührt, Titanschwamm und Kaliumkryolith KF • AlF3 wurden zugegeben, der Deckel des Reaktors wurde geöffnet, und eine aufliegende Schicht geschmolzener Flüssigkeit Kaliumkryolith KF • AlF3 wurde mit einer Hebepumpe gepumpt.1 ton of aluminum was weighed and placed in a reactor, after vacuuming argon was injected into the reactor for protection, the reactor was heated to a temperature of 800 ° C, dry potassium fluorotitanate was added slowly to the reactor according to a reaction specific ratio and stirred rapidly for 5 hours, titanium sponge and potassium cryolite KF • AlF 3 were added, the lid of the reactor was opened, and a resting layer of molten liquid potassium cryolite KF • AlF 3 was pumped by a lift pump.

Ein Elektrolytzusatzsystem KF • AlF3 wurde während der Aluminiumelektrolyse in den regulären Ofen entsprechend der zusätzlichen Regel zugegeben, dass der Kaliumelementgehalt, welcher in jeden Stapel zugegeben wurde, um 0,2% bis 0,3% gegenüber einem vorherigen Stapel erhöht wurde, und Aluminiumfluorid, Na3AlF6 und Kaliumkryolith KF AlF3 zugegeben wurden. Die Zugabe wurde jeden Tag durchgeführt und ein Masseprozentgehalt des Kaliumelements im Elektrolyten im Elektrolysebehälter wurde vor Ort überwacht, so dass der Masseprozentgehalt des Kaliumelements innerhalb eines Bereichs von 5% bis 10% geregelt wurde.An additional electrolyte system KF • AlF 3 was added during the aluminum electrolysis in the regular furnace according to the additional rule that the Potassium element content added to each stack was increased by 0.2% to 0.3% over a previous stack and aluminum fluoride, Na 3 AlF 6 and potassium cryolite KF AlF 3 were added. The addition was made every day, and a mass percentage of the potassium element in the electrolyte in the electrolytic tank was monitored on-site, so that the mass percentage of the potassium element was controlled within a range of 5% to 10%.

Vergleichsbeispiel 2Comparative Example 2

Die Elektrolyse wurde in einem Elektrolysetank begonnen unter Verwendung eines Systems von Na3AlF6, AlF3 und Al2O3 und die Elektrolyse wurde für 3 Monate oder mehr als 3 Monate durchgeführt bis ein Ofen regelmäßigen läuft; wobei das Zusatzsystem Na3AlF6 und AlF3 umfasst und andere Bedingungen denjenigen im Ausführungsbeispiel 2 gleichen.The electrolysis was started in an electrolytic tank using a system of Na 3 AlF 6 , AlF 3 and Al 2 O 3, and the electrolysis was carried out for 3 months or more than 3 months until an oven runs regularly; wherein the additive system comprises Na 3 AlF 6 and AlF 3 , and other conditions are similar to those in Embodiment 2.

Ausführungsbeispiel 3Embodiment 3

1 Tonne Aluminium wurde gewogen und in einen Reaktor gegeben, nach der Vakuumisierung wurde Argon in den Reaktor zum Schutz injiziert, der Reaktor wurde auf eine Temperatur von 780°C erhitzt, trockenes Kaliumtetrafluoroborat wurde langsam dem Reaktor entsprechend einem für die Reaktion spezifischen Verhältnis zugegeben und für 5 Stunden schnell umgerührt, Bor und Kaliumkryolith KF • AlF3 wurden zugegeben, der Deckel des Reaktors wurde geöffnet, und eine aufliegende Schicht geschmolzener Flüssigkeit Kaliumkryolith KF • AlF3 wurde mit einer Hebepumpe gepumpt.1 ton of aluminum was weighed and placed in a reactor, after vacuuming argon was injected into the reactor for protection, the reactor was heated to a temperature of 780 ° C, dry potassium tetrafluoroborate was added slowly to the reactor according to a reaction specific ratio and stirred rapidly for 5 hours, boron and potassium cryolite KF • AlF 3 were added, the lid of the reactor was opened, and a resting layer of molten liquid potassium cryolite KF • AlF 3 was pumped with a lift pump.

Aluminiumfluorid, Na3AlF6 und Kaliumkryolith KF • AlF3 wurden gemäß einer zusätzlichen Regel zugegeben, dass der Kaliumelementegehalt, welcher in jeden Stapel zugegeben wurde, um 0,2% bis 0,3% gegenüber einem vorherigen Stapel erhöht wurde. Die Zugabe wurde jeden Tag durchgeführt wird und ein Masseprozentgehalt des Kaliumelements im Elektrolyten im Elektrolysebehälter wurde vor Ort überwacht, so dass der Masseprozentgehalt des Kaliumelements innerhalb eines Bereichs von 5% bis 10% geregelt wurde.Aluminum fluoride, Na 3 AlF 6 and potassium cryolite KF • AlF 3 were added according to an additional rule that the potassium element content added to each stack was increased by 0.2% to 0.3% over a previous stack. The addition was made every day, and a mass percentage of the potassium element in the electrolyte in the electrolytic tank was monitored on-site, so that the mass percentage of the potassium element was controlled within a range of 5% to 10%.

Vergleichsbeispiel 3Comparative Example 3

Die Elektrolyse wurde in einem Elektrolysetank unter Verwendung eines Systems von Na3AlF6, AlF3 und Al2O3 begonnen und die Elektrolyse wurde für 3 Monate oder mehr als 3 Monate fortgeführt, bis ein Ofen regelmäßigen läuft; wobei das Zusatzsystem Na3AlF6 und AlF3 umfasst und andere Bedingungen denjenigen im Ausführungsbeispiel 3 gleichen.The electrolysis was started in an electrolytic tank using a system of Na 3 AlF 6 , AlF 3 and Al 2 O 3 , and the electrolysis was continued for 3 months or more than 3 months until a furnace runs regularly; wherein the additive system comprises Na 3 AlF 6 and AlF 3 , and other conditions are similar to those in Embodiment 3 .

Ausführungsbeispiel 4Embodiment 4

5 Tonnen Aluminium wurden gewogen und in einen Reaktor gegeben, der Reaktor wurde auf einer Temperatur von 750°C erhitzt, 2 Tonnen trockene Mischung aus Kaliumfluorborat und Kaliumfluotitanat wurden langsam dem Reaktor gemäß einem für die Reaktion bestimmten Verhältnis zugegeben, wobei das Molekularverhältnis von Kaliumtetrafluoroborat zu Kaliumfluozirconat 2:1 ist, und die Reaktanten wurden für 4 Stunden schnell umgerührt wurden, um eine Legierung aus Aluminium, Titan und Bor sowie Kaliumkryolith KF • AlF3 aufgrund übermäßigen Aluminium zu erhalten, wobei der Deckel des Reaktors geöffnet wurde, und eine aufliegende Schicht geschmolzener Flüssigkeit Kaliumkryolith KF • AlF3 mit einer Hebepumpe gepumpt wurde.5 tons of aluminum were weighed and placed in a reactor, the reactor was heated to a temperature of 750 ° C, 2 tons of dry mixture of potassium fluoroborate and potassium fluorotitanate were slowly added to the reactor according to a ratio determined for the reaction, the molecular ratio of potassium tetrafluoroborate increasing Potassium fluorozirconate is 2: 1, and the reactants were stirred rapidly for 4 hours to obtain an alloy of aluminum, titanium, and boron and potassium cryolite KF • AlF 3 due to excessive aluminum, with the lid of the reactor opened, and an overlying layer molten liquid Potassium Cryolite KF • AlF 3 was pumped with a lifting pump.

Das erhaltene Kaliumkryolith KF • AlF3 wurde während der Aluminiumelektrolyse als Elektrolytergänzungssystem verwendet, wobei ein Elektrolytergänzungssystem, welches Aluminiumfluorid, Na3AlF6 und Kaliumkryolith KF • AlF3 umfasst, entsprechend einer zusätzliches Regel zugegeben wurde, dass sich der Kaliumelementegehalt, welcher in jeden Stapel zugegeben wurde, um 0,2% bis 0,3% gegenüber einem früheren Stapel erhöht. Ein Masseprozentgehalt des Kaliumelements im Elektrolyten im Elektrolysebehälter wurde vor Ort überwacht, so dass der Masseprozentgehalt des Kaliumelements innerhalb eines Bereichs von 5% bis 10% gehalten wurde.The potassium cryolite KF • AlF 3 obtained was used as an electrolyte supplement during the aluminum electrolysis, with an electrolyte supplement comprising aluminum fluoride, Na 3 AlF 6 and potassium cryolite KF • AlF 3 added according to an additional rule that the potassium element content entering each stack was increased by 0.2% to 0.3% over a previous stack. A mass percentage of the potassium element in the electrolyte in the electrolytic tank was monitored on-site so that the mass percentage of the potassium element was maintained within a range of 5% to 10%.

Mit der konstanten Zugabe des Elektrolytenzusatzsystems zum ständig verbrauchte Elektrolytenbasissystem kann die Elektrolysetemperatur erheblich gesenkt, schließlich bis einem Bereich von 850 bis 880°C gesenkt werden. Da das Kaliumkryolith KF • AlF3 eine starke Korrosivität hat, müssen zur Verlängerung der Lebensdauer des Elektrolytentanks die Anode und die Kathode des Elektrolytentanks einer Oberflächenbehandlung mit sowohl einem Inertgas oder als auch einem Element unterzogen werden.With the constant addition of the electrolyte additive system to the continuously consumed electrolyte base system, the electrolysis temperature can be lowered significantly, eventually decreasing to a range of 850 to 880 ° C. Since that Potassium Cryolite KF • AlF 3 has a strong corrosivity, to prolong the life of the electrolyte tank, the anode and the cathode of the electrolyte tank must be subjected to a surface treatment with both an inert gas or as an element.

Vergleichsbeispiel 4Comparative Example 4

Die Elektrolyse wurde unter Verwendung des Systems von Na3AlF6, AlF3 und Al2O3 in einem Elektrolysetank begonnen und die Elektrolyse wurde für 3 Monate oder mehr als 3 Monate fortgeführt, bis ein Ofen regelmäßigen läuft; wobei das Zusatzsystem Na3AlF6 und AlF3 umfasst und andere Bedingungen denjenigen in Ausführungsbeispiel 4 gleichen.The electrolysis was started by using the system of Na 3 AlF 6 , AlF 3 and Al 2 O 3 in an electrolytic tank, and the electrolysis was continued for 3 months or more than 3 months until a furnace runs regularly; wherein the additive system comprises Na 3 AlF 6 and AlF 3 and other conditions are similar to those in Embodiment 4.

Ausführungsbeispiel 5Embodiment 5

1 Tonne Aluminium wurde gewogen und in einen Reaktor gegeben, nach der Vakuumisierung wurde Argon in den Reaktor zum Schutz injiziert, der Reaktor wurde auf eine Temperatur von 750°C erhitzt, eine Trockenmischung umfassend Kaliumfluorborat und Kaliumfluotitanat langsam zum Reaktor gemäß einem für die Reaktion bestimmten Verhältnis zugegeben, wobei ein Molekularverhältnis von Kaliumtetrafluoroborat zu Kaliumfluozirconat 2:1 ist, und die Reaktanten wurden für 5 Stunden schnell umgerührt wurden, um Titanborid und Kaliumkryolith KF • AlF3 zu erhalten, wobei die Abdeckung des Reaktors geöffnet wurde und eine aufliegende Schicht geschmolzener Flüssigkeit Kaliumkryolith KF • AlF3 mit einer Hebepumpe gepumpt wurde.1 ton of aluminum was weighed and placed in a reactor, after vacuuming, argon was injected into the reactor for protection, the reactor was heated to a temperature of 750 ° C, a dry mix comprising potassium fluoroborate and potassium fluotitanate was slowly added to the reactor according to one of the reactions Added ratio, wherein a molecular ratio of potassium tetrafluoroborate to potassium fluorozirconate 2: 1, and the reactants were stirred rapidly for 5 hours to obtain titanium boride and potassium Kry • AlF 3 , wherein the cover of the reactor was opened and a layer of molten liquid Potassium Cryolite KF • AlF 3 was pumped with a lifting pump.

Das erhaltene Kaliumkryolith KF • AlF3 wurde während der Aluminiumelektrolyse als Elektrolytzusatzsystem verwendet; Aluminiumfluorid, Na3AlF6 und Kaliumkryolith KF • AlF3 wurden nach einer zusätzlichen Regel zugegeben, dass der Kaliumelementegehalt, welcher in jeden Stapel zugegeben wurde, um 0,2% bis 0,3% gegenüber einem vorherigen Stapel erhöht wurde. Ein Masseprozentgehalt des Kaliumelements im Elektrolyten im Elektrolysebehälter wurde vor Ort überwacht, so dass der Masseprozentgehalt des Kaliumelements innerhalb eines Bereichs von 5% bis 10% gehalten wurde.The obtained potassium cryolite KF • AlF 3 was used during the aluminum electrolysis as electrolyte addition system; Aluminum fluoride, Na 3 AlF 6 and potassium cryolite KF • AlF 3 were added as an additional rule that the potassium element content added to each stack was increased by 0.2% to 0.3% over a previous stack. A mass percentage of the potassium element in the electrolyte in the electrolytic tank was monitored on-site so that the mass percentage of the potassium element was maintained within a range of 5% to 10%.

Mit der konstanten Zugabe des Elektrolytenzusatzsystems zum ständig verbrauchte Elektrolytenbasissystem kann die Elektrolysetemperatur erheblich gesenkt, schließlich bis einem Bereich von 870 bis 890°C gesenkt werden. Da das Kaliumkryolith KF • AlF3 eine starke Korrosivität hat, müssen zur Verlängerung der Lebensdauer des Elektrolytentanks die Anode und die Kathode des Elektrolytentanks einer Oberflächenbehandlung mit sowohl einem Inertgas oder als auch einem Element unterzogen werden.With the constant addition of the electrolyte additive system to the continuously consumed electrolyte base system, the electrolysis temperature can be lowered significantly, eventually decreasing to a range of 870 to 890 ° C. Since the potassium cryolite KF · AlF 3 has high corrosivity, to prolong the life of the electrolyte tank, the anode and the cathode of the electrolyte tank must be subjected to surface treatment with both an inert gas or an element.

Vergleichsbeispiel 5Comparative Example 5

Die Elektrolyse wurde in einem Elektrolytentank unter Verwendung eines Systems von Na3AlF6, AlF3 und Al2O3 begonnen uns die Elektrolyse wurde für 3 Monate oder mehr als 3 Monaten durchgeführt, bis ein Ofen regulär läuft.The electrolysis was started in an electrolyte tank using a system of Na 3 AlF 6 , AlF 3 and Al 2 O 3 and the electrolysis was carried out for 3 months or more than 3 months until a furnace runs regularly.

Das Zusatzsystem umfasst Na3AlF6, AlF3 und KF • AlF3 und das Zusatzsystem wurde jeden Tag nach einer zusätzlichen Regel, dass der Kaliumelementgehalt, welcher in jeden Stapel zugegeben wurde, um 3% bis 5% gegenüber einem früheren Stapel erhöht wird, bis der Kaliumelementgehalt 5% erreicht und andere Bedingungen denjenigen in Ausführungsbeispiel 5 gleichen.The adjunct system includes Na 3 AlF 6 , AlF 3 and KF • AlF 3 and the adjunct system was increased every day by an additional rule that the potassium element content added to each stack is increased by 3% to 5% over a previous stack, until the potassium element content reaches 5% and other conditions are similar to those in Embodiment 5.

Ausführungsbeispiel 6Embodiment 6

1 Tonne Aluminium wurde gewogen und in einen Reaktor gegeben, nach der Vakuumisierung wurde Argon in den Reaktor zum Schutz injiziert, der Reaktor wurde auf eine Temperatur von 850°C erhitzt, trockenes Kaliumfluotitanat wurde dem Reaktor langsam gemäß einem für die Reaktion bestimmten Verhältnis zugegeben und schnell für 6 Stunden umgerührt, die Abdeckung des Reaktors wurde geöffnet und eine aufliegende Schicht geschmolzener Flüssigkeit Kaliumkryolith 1,5 KF • AlF3 wurde mit einer Hebepumpe gepumpt.1 ton of aluminum was weighed and placed in a reactor, after vacuuming argon was injected into the reactor for protection, the reactor was heated to a temperature of 850 ° C, dry potassium fluorotitanate was slowly added to the reactor according to a ratio determined for the reaction and stirred rapidly for 6 hours, the reactor cover was opened and a layer of molten liquid was placed. Potassium Cryolite 1.5 KF • AlF 3 was pumped by a lift pump.

Die Elektrolyse besteht aus folgenden Schritten:

  • Schritt A: Start der Elektrolyse in einem Elektrolysebehälter unter Verwendung eines Mischsystems aus Natriumkryolith Na3AlF6, Kaliumkryolith 1.5KF • AlF3 und Al2O3, Durchführung der Elektrolyse für 3 Monate oder mehr als 3 Monate bis ein Ofen regelmäßig ist; und
  • Schritt B: Zugabe eines Elektrolytenzusatzsystems während der Aluminiumelektrolyse, umfassend Aluminiumfluorid, Na3AlF6 und Kaliumkryolith 1,5 KF AlF3 gemäß einer zusätzlichen Regel, dass sich Kaliumelementgehalt, welcher in jeden Stapel zugegeben wurde, um 0,2% auf 0,3% gegenüber einem früheren Stapel erhöht, wobei das Masseverhältnis von Na3AlF6 zu AlF3 129:42 ist; und Vor-Ort-Überwachung des Masseprozentgehalts des Kaliumelements im Elektrolyten im Elektrolysebehälter, so dass der Masseprozentgehalt des Kaliumelements in einem Bereich von 5% bis 10% gehalten wird.
The electrolysis consists of the following steps:
  • Step A: Start the electrolysis in an electrolytic tank using a mixed system of sodium cryolite Na 3 AlF 6 , potassium cryolite 1.5KF • AlF 3 and Al 2 O 3 , carry out the electrolysis for 3 months or more than 3 months until a furnace is regular; and
  • Step B: Addition of an electrolyte additive system during the aluminum electrolysis comprising aluminum fluoride, Na 3 AlF 6 and potassium cryolite 1.5 KF AlF 3 according to an additional rule that potassium element content added to each stack increased by 0.2% to 0.3 % compared to an earlier stack, wherein the mass ratio of Na 3 AlF 6 to AlF 3 is 129:42; and monitoring the percentage by mass of the potassium element in the electrolyte in the electrolytic tank so as to maintain the mass percentage of the potassium element within a range of 5% to 10%.

Vergleichsbeispiel 6Comparative Example 6

Die Elektrolyse wurde in einem Elektrolysetank unter Verwendung eines Systems von Na3AlF6, AlF3 und Al2O3 begonnen, die Elektrolyse wurde für 3 Monate oder mehr als 3 Monate fortgeführt, bis ein Ofen regelmäßig läuft; wobei das Zusatzsystem Na3AlF6, AlF3 und Kaliumkryolith 1,5 KF • AlF3 umfasst; das Zusatzsystem wurde täglich nach einer zusätzlichen Regel, dass sich der Kaliumelementegehalt, welcher in jeden Stapel zugegeben wurde, um 3% bis 5% gegenüber einem vorherigen Stapel erhöht, bis der Kaliumelementegehalt 5% erreichte; und andere Bedingungen denjenigen des Ausführungsbeispiels 6 glichen. Tabelle 1: Vergleich der wirtschaftlichen und technischen Indikatoren der Ausführungsbeispiele 1 bis 3 und der Vergleichsbeispiele 1 bis 3: Indikator Vergleichsbeispiel 1 Ausführungsbeispiel 1 Vergleichsbeispiel 2 Ausführungsbeispiel 2 Vergleichsbeispiel 3 Ausführungsbeispiel 3 Durchschnittliche Stromaufnahme (A) 96.26 96.26 96.242 96.242 96.23 96.23 Mittlere Spannung 4.324 4.19 4.307 4.144 4. 28 4.03 Tagesertrag des Tanks 703.382 714.313 702.630 713.388 700.567 710.36 Stromausbeute des Aluminiumblocks (%) 90.73 92.14 90.65 92.038 90.54 92.12 DC Stromverbrauch (kWh / t.Al) 14204 13854 14161 13417 14134 13406 AC-Stromverbrauch (kWh / t.Al) 14749 13854 14701 13957 14687 13943 Fluoridsalz / Kaliumsalz (kg) * 40/0 20/9 35/0 18/3 36/0 23/4 Anodenblock Verlust (kg) 536 536 531 531 531 531 Tabelle 2 Vergleich der wirtschaftlichen und technischen Indikatoren in den Beispielen 4 bis 6 und Vergleichsbeispiele 4 bis 6 Indikator Vergleichsbeispiel 4 Ausführungsbeispiel 4 Vergleichsbeispiel 5 Ausführungsbeispiel 5 Vergleichsbeispiel 6 Ausführungsbeispiel 6 Durchschnittliche Stromaufnahme (A) 96.38 96.38 96.25 96.25 96.35 96.35 Mittlere Spannung 4.45 4.23 4.35 4.13 4.42 4.18 Tagesertrag des Tanks 702.23 714.313 701.35 712.34 702.38 712.76 Stromausbeute des Aluminiumblocks (%) 90.32 91.98 90.23 92.13 90.34 92.18 DC Stromverbrauch (kWh / t.Al) 14187 13834 14136 13409 14130 13401 AC-Stromverbrauch (kWh / t.Al) 14723 13845 14689 13945 14680 13940 Fluoridsalz / Kaliumsalz (kg)* 36/0 20/9 36/0 19/8 38/0 20/3 Anodenblock Verlust (kg) 532 532 533 533 534 534 * indiziert das Fluoridsalz oder Kaliumsalz, welches von einer Tonne Aluminiumwasser aufgenommen wird, wobei das Fluoridsalz ein Gemisch aus Na3AlF6 und AlF3 ist und das Kaliumsalz der Kaliumkryolith mit einem niedrigen molekularen Verhältnis ist, welches gemäß der vorliegenden Offenbarung zur Verfügung gestellt wurde. The electrolysis was started in an electrolytic tank using a system of Na 3 AlF 6 , AlF 3 and Al 2 O 3 , the electrolysis was continued for 3 months or more than 3 months until a furnace runs regularly; wherein the additive system comprises Na 3 AlF 6 , AlF 3 and potassium cryolite 1.5 KF • AlF 3 ; the adjunct system was increased daily by an additional rule that the potassium element content added to each stack increased by 3% to 5% over a previous stack until the potassium element content reached 5%; and other conditions are the same as those of Embodiment 6. Table 1: Comparison of Economic and Technical Indicators of Working Examples 1 to 3 and Comparative Examples 1 to 3: indicator Comparative Example 1 Embodiment 1 Comparative Example 2 Embodiment 2 Comparative Example 3 Embodiment 3 Average power consumption (A) 96.26 96.26 96242 96242 96.23 96.23 Medium voltage 4324 4.19 4307 4144 4. 28 4:03 Daily yield of the tank 703382 714313 702630 713388 700567 710.36 Current efficiency of the aluminum block (%) 90.73 92.14 90.65 92038 90.54 92.12 DC power consumption (kWh / t.Al) 14204 13854 14161 13417 14134 13406 AC power consumption (kWh / t.Al) 14749 13854 14701 13957 14687 13943 Fluoride salt / potassium salt (kg) * 40/0 9.20 35/0 3.18 36/0 23.4 Anode block loss (kg) 536 536 531 531 531 531 indicator Comparative Example 4 Embodiment 4 Comparative Example 5 Embodiment 5 Comparative Example 6 Embodiment 6 Average power consumption (A) 96.38 96.38 96.25 96.25 96.35 96.35 Medium voltage 4:45 4.23 4:35 4.13 4:42 4.18 Daily yield of the tank 702.23 714313 701.35 712.34 702.38 712.76 Current efficiency of the aluminum block (%) 90.32 91.98 90.23 92.13 90.34 92.18 DC power consumption (kWh / t.Al) 14187 13834 14136 13409 14130 13401 AC power consumption (kWh / t.Al) 14723 13845 14689 13945 14680 13940 Fluoride salt / potassium salt (kg) * 36/0 9.20 36/0 8.19 38/0 3.20 Anode block loss (kg) 532 532 533 533 534 534 * indicates the fluoride salt or potassium salt taken up by one ton of aluminum water, where the fluoride salt is a mixture of Na 3 AlF 6 and AlF 3 and the potassium salt is the low molecular weight potassium cryolite provided in accordance with the present disclosure ,

Wie aus Tabelle 1 und Tabelle 2 ersichtlich ist, werden mit dem Verfahren und Zusatzsystem gemäß der vorliegenden Offenbarung bei der Herstellung und bezogen auf die gleiche Menge an verbrauchtem Anodenmaterial weniger Fluoridsalz/Kaliumsalz verbraucht und die Stromausbeute verbessert. Als solche werden Energie gespart und damit die Wirkungen der Energieeinsparung und Emissionsminderung erreicht.As is apparent from Table 1 and Table 2, with the method and additive system according to the present disclosure, less fluoride salt / potassium salt is consumed in the production and based on the same amount of consumed anode material, and the current efficiency is improved. As such, energy is saved and thus the effects of energy saving and emission reduction are achieved.

Obige Beschreibung der vorliegenden Erfindung unter Bezugnahme auf einige bevorzugte Ausführungsformen dient nicht dazu, den Umfang der vorliegenden Erfindung in Bezug auf die Umsetzung in den Ausführungsbeispielen zu begrenzen. Der Fachmann wird verstehen, dass andere einfache Änderungen und Ersatz möglich sind, ohne von dem erfinderischen Konzept der vorliegenden Erfindung abzuweichen, solange diese Änderungen und Ersatz vom Schutzumfang der vorliegenden Ansprüche umfasst sind.The above description of the present invention with reference to some preferred embodiments is not intended to limit the scope of the present invention in terms of implementation in the embodiments. Those skilled in the art will understand that other simple changes and substitutions are possible without departing from the inventive concept of the present invention, as long as these changes and substitutions are within the scope of the present claims.

Claims (3)

  1. A process for producing electrolytic aluminum with potassium cryolite as a supplemental system, comprising the following steps:
    Step A: Start electrolysis in an electrolytic tank using a Na3AlF6-Al2O3-system or a mixed system of sodium cryolite Na3AlF6, potassium cryolite mKF • AlF3 and Al2O3, continuously performing the electrolysis and adding Na3AlF6-AlF3 until a furnace runs regularly; and
    Step B: adding an electrolyte supplement system comprising the potassium cryolite mKF • AlF3, AlF3 and Na3AlF6 and monitoring the percentage by mass of the potassium element in the electrolyte in the electrolysis vessel so that the mass percentage of the potassium element is in the range of 5% to 10%;
    wherein m in the potassium cryolite mKF • AlF3 is 1.0 to 3.0.
  2. The method of claim 1, wherein in step A, during the start of electrolysis in the electrolysis vessel using the mixed system of sodium cryolite Na3AlF6, potassium cryolite mKF • AlF3 and Al2O3, the mass ratio of sodium cryolite Na3AlF6 and potassium cryolite mKF • AlF3 at 1.5 to 5.
  3. The method of claim 1 or 2, wherein m is 1.0 to 1.5.
EP15248006.7A 2015-04-02 2015-04-02 Method for producing electrolytic aluminium using potassium cryolite as an additive system Active EP3075886B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15248006.7A EP3075886B1 (en) 2015-04-02 2015-04-02 Method for producing electrolytic aluminium using potassium cryolite as an additive system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15248006.7A EP3075886B1 (en) 2015-04-02 2015-04-02 Method for producing electrolytic aluminium using potassium cryolite as an additive system

Publications (2)

Publication Number Publication Date
EP3075886A1 EP3075886A1 (en) 2016-10-05
EP3075886B1 true EP3075886B1 (en) 2019-02-27

Family

ID=52824176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15248006.7A Active EP3075886B1 (en) 2015-04-02 2015-04-02 Method for producing electrolytic aluminium using potassium cryolite as an additive system

Country Status (1)

Country Link
EP (1) EP3075886B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191927B (en) * 2016-09-30 2017-11-24 河南科技大学 A kind of low-temperature molten salt system used for aluminium electrolysis and its application method
CN109949873B (en) * 2019-03-29 2023-03-31 中南大学 Aluminum electrolysis full-flow fluorine material flow calculation method
CN110424027B (en) * 2019-08-28 2021-07-13 云南云铝润鑫铝业有限公司 Control method for reducing aluminum fluoride consumption in aluminum electrolysis production process
CN115849419B (en) * 2022-11-22 2024-03-29 贵州大学 Production method of fluorine-carrying alumina and application of fluorine-carrying alumina produced by production method
CN116835971B (en) * 2023-07-12 2024-02-27 华东师范大学 Method for preparing high saturation magnetic induction density manganese-zinc ferrite material by using manganese waste residues and zinc waste residues

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915442A (en) * 1955-11-28 1959-12-01 Kaiser Aluminium Chem Corp Production of aluminum
US6258247B1 (en) * 1998-02-11 2001-07-10 Northwest Aluminum Technology Bath for electrolytic reduction of alumina and method therefor
CN101709487A (en) * 2009-12-18 2010-05-19 中国铝业股份有限公司 Aluminum electrolytic electrolyte
GB2502392B (en) * 2012-05-23 2017-11-15 Shenzhen Sunxing Light Alloys Mat Co Ltd Method for preparing an electrolyte supplement system in aluminium electrolysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3075886A1 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
EP3075886B1 (en) Method for producing electrolytic aluminium using potassium cryolite as an additive system
CN103097587B (en) The electrolysate of lithium metal
JPS6328893A (en) Enhancement of purity of quaternary ammonium hydroxide
US2468766A (en) Recovery of chlorine from hydrogen chloride
WO2018131493A1 (en) Method of producing ammonium persulfate
CN103603014B (en) Electrolytic aluminum production method taking elpasolite as supplemental system
US9611151B2 (en) Electrolyte supplement system in aluminium electrolysis process and method for preparing the same
CN102634817A (en) Ionic liquid low-temperature aluminum electrolysis method with glassy carbon as inert anode
CN101265588B (en) Method for low-temperature electrolysis of aluminum oxide for producing aluminum adopting ion liquid
JP7163841B2 (en) Method for producing ammonium persulfate
DE1965359A1 (en) Carbon electrode, its manufacture and use
DE2251262C2 (en) Process for the continuous production of aluminum by the electrolysis of aluminum chloride
US10309021B2 (en) Method for preparing an electrolyte and an electrolyte replenishment system during aluminum electrolysis process
US2660555A (en) Process of and electrolyte for refining copper
CN112779564A (en) Acid method alumina aluminum electrolysis system and application thereof
US1780944A (en) Method for refining antimony by electrolysis of acid electrolytes
DE1174751B (en) Process for the production of water-soluble, basic aluminum halides
CN109338408A (en) A kind of electrolyte and a kind of electrorefining method of useless electronic solder
US5114545A (en) Electrolyte chemistry for improved performance in modern industrial alumina reduction cells
DE1244749B (en) Method and device for the immediate and simultaneous production of inorganic alkali salts and chlorine gas
JPH11293484A (en) Production of ammonium persulfate
DE2721038C3 (en) Process for the electrolytic production of aluminum
DE3001191C2 (en) Process for the electrolytic production of sodium chlorate with improved Faraday yield
DE1125190B (en) Process for the production of aluminum by electrolysis in a molten electrolyte
DD146966A5 (en) ELECTROLYTIC MANUFACTURE OF ALKALICHLORATES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101459

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008112

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015008112

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190427

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1101459

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240325

Year of fee payment: 10