EP3074624B1 - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
EP3074624B1
EP3074624B1 EP14802890.5A EP14802890A EP3074624B1 EP 3074624 B1 EP3074624 B1 EP 3074624B1 EP 14802890 A EP14802890 A EP 14802890A EP 3074624 B1 EP3074624 B1 EP 3074624B1
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
fluid
bearing
fluid outlet
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14802890.5A
Other languages
German (de)
French (fr)
Other versions
EP3074624A1 (en
Inventor
Markus Kunz
Francesco Lucarelli
Thomas Koenig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3074624A1 publication Critical patent/EP3074624A1/en
Application granted granted Critical
Publication of EP3074624B1 publication Critical patent/EP3074624B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear

Definitions

  • the invention relates to a solenoid valve, comprising an anchor bolt mounted in at least one bearing, which cooperates with a fluid valve.
  • Such a solenoid valve is out of DE 10 2010 062 455 A1 known.
  • This solenoid valve is designed for a metering unit of a high pressure pump of a fuel injection system, in particular a common rail injection system.
  • the metering unit has a fluid valve actuated by the solenoid valve, which comprises a fluid valve piston displaceably arranged in a solenoid valve housing.
  • an armature assembly for actuating the fluid valve is part of the solenoid valve.
  • the armature assembly has an armature pin mounted in a bearing, which carries an armature arranged in an armature space, and which is adjusted when energizing a surrounding coil so that the fluid valve piston is adjusted to control the flow of a fuel flow.
  • the solenoid valve has a filter element which filters the fuel flowing to the fluid valve piston and filters out any foreign substances present from the fuel.
  • This solenoid valve assembly for an injection system of an internal combustion engine is known from DE 10 2008 041 362 A1 known.
  • This solenoid valve assembly includes a pressure control valve and a metering valve. Both valves are ball valves, which are alternately opened and closed by an electromagnet via a push rod. With the pressure control valve, the fuel pressure is controlled in a high pressure accumulator and with the metering valve, the amount of fuel supplied to a high pressure pump is adjusted.
  • Another solenoid valve is out of the DE 10 2007 052 224 A1 known.
  • This solenoid valve has a fundamentally similar structure as that of the DE 10 2010 062 455 A1 known solenoid valve on.
  • the invention has for its object to provide a solenoid valve, which is improved in terms of its operational reliability.
  • the bearing is connected to a fluid-conducting region of the fluid valve via an inlet bore formed in a solenoid valve housing, such that a fluid outlet fluid-connected to the bearing is arranged in extension of the anchor bolt, that the at least one bearing between the Connection and the fluid outlet is arranged, and that the at least one bearing is at least temporarily flowed through.
  • the embodiment of the invention is based on the finding that, depending on the mounting position of the solenoid valve on an attachment venting in particular in the storage area of the solenoid valve can not take place optimally. The fact that now the at least one bearing is connected via a connection with a fluid-carrying region of the fluid valve, it is ensured that the bearing is reached by the fluid and at least temporarily flows through it.
  • connection can be represented by any configuration.
  • the connection is given by a leakage flow from the fluid-carrying region of the fluid valve to the bearing.
  • the inlet bore let into the solenoid valve housing is advantageous.
  • the inlet bore can be generated in the manufacture of the solenoid valve housing in a simple processing step.
  • the fluid outlet allows a forced flow of the bearing in a particularly advantageous manner.
  • the arrangement of the fluid outlet in extension of the anchor bolt is easy to manufacture and allows a subsequently described control of the flow rate of fluid through the at least one bearing.
  • the fluid outlet can be configured as desired and can be arranged axially or radially with respect to the anchor bolt, for example in the solenoid valve housing or a solenoid valve pot connected to the solenoid valve housing.
  • the arrangement of the bearing between the connection and the fluid outlet ensures the reliable forced flow of the at least one bearing.
  • the fluid outlet has a zero-feed throttle.
  • the zero-feed throttle By means of the zero-feed throttle, the throughput of fluid through the at least one bearing is set to a desired value.
  • the throughput in turn in another embodiment of the invention is 5 liters / hour (l / h) to 15 liters / hour, preferably 10 liters / hour.
  • the fluid outlet is dominated by the anchor bolt of the solenoid valve in the form that the anchor bolt blocks fluid entry into the fluid outlet in a blocking position and releases in an open position. It is provided that in the open state of the fluid valve, in which the solenoid valve is de-energized, the anchor bolt blocks the fluid inlet into the fluid outlet. Consequently, in the opened state of the fluid valve there is no loss of volume of the fluid through the fluid outlet. In contrast, in the closed state of the fluid valve, in which the solenoid valve is energized, the fluid inlet is released into the fluid outlet, so that in this operating condition, the at least one bearing is positively flowed through.
  • the fluid inlet into the fluid outlet can also be controlled by the anchor bolt such that in the blocking position a low throughput through the fluid outlet is made possible, while in the blocking position the full throughput through the fluid outlet is released.
  • a bearing is arranged in a solenoid valve housing and a magnetic valve pot
  • the upper bearing is a pot bearing, which is arranged in the end in the solenoid valve pot.
  • the anchor bolt is additionally mounted in the second bearing designed as a housing bearing, wherein the housing bearing is arranged adjacent to the connection. This results in a fluid flow from the connection via the housing bearing by an armature of the solenoid valve receiving armature space to the pot bearing, from which the fluid flow flows controlled in the fluid outlet.
  • the fluid outlet is connected to a return line and this is connected to a tank or a suction line from the tank to a low-pressure pump.
  • the outflowing fluid is easily removed from the solenoid valve.
  • the solenoid valve is part of a metering unit for a fuel injection system of an internal combustion engine and the fluid accordingly fuel.
  • the solenoid valve according to the invention can be used particularly advantageously and the reliability of the operation of the solenoid valve and the entire metering unit is improved by the illustrated embodiments.
  • the circuit diagram according to Fig. 1 is the most important components of a fuel injection system for an internal combustion engine, wherein the fuel injection system is formed for example as a common rail injection system for a self-igniting internal combustion engine and the fluid is in particular diesel fuel.
  • the fuel injection system has a tank 1 in which the diesel fuel is stored.
  • the tank 1 is connected via a suction line 2 with a Low-pressure pump 3 is connected, which may be formed, for example, as an electrically operated gear pump.
  • the low-pressure pump 3 is connected via a low-pressure line 4 to a metering unit 35 having a magnetic valve 5 and furthermore to an overflow valve 6.
  • the metering unit 35 with the solenoid valve 5 measures the fuel to be supplied to a high-pressure pump element 7 of a high-pressure pump 8 via a flow connection 31, for example as a function of an operating state of the internal combustion engine.
  • the high-pressure pump element 7 is integrated in the high-pressure pump 8 and has, for example, a pump plunger, which is moved by a roller plunger from a arranged in a cam space 9 of the high-pressure pump 8 cam of a camshaft during a rotational movement of the camshaft up and down.
  • fuel supplied via the flow connection 31 is introduced via an inlet valve in a pump chamber of the high-pressure pump element, which is conveyed during an upward movement of the pump piston via a check valve and a high-pressure line into a high-pressure accumulator, not shown.
  • the fuel stored there at a pressure of up to 3,000 bar can be removed from fuel injectors for injection into assigned combustion chambers of the internal combustion engine in a controlled manner.
  • the metering unit 35 like the overflow valve 6, is preferably integrated in the high-pressure pump housing of the high-pressure pump 8, so that the flow connection 31 between the metering unit 35 and the high-pressure pump element 7, as well as the connection between the overflow valve 6 and the cam space 9, as internal flow connections in the high-pressure pump 8 are formed.
  • the introduced from the spill valve 6 in the cam chamber 9 fuel cools and lubricates the camshaft bearing of the camshaft and is then passed through a discharge line 10 back into the suction line 2 or into the tank 1.
  • the low-pressure line 4 also open into the cam space 9 and from this then the metering unit 35 and the spill valve 6 is supplied with fuel.
  • the solenoid valve 5 of the metering unit 35 has an in Fig. 2 detailed illustrated fluid outlet 11, in which a in Fig. 1 for reasons of clarity separately arranged zero-feed throttle 12 is used.
  • the fluid outlet 11 or the zero-feed throttle 12 is connected via a return line 13 to the suction line 2 or the Tank 1 connected.
  • the zero-feed throttle 12 is designed, for example, such that it has a throughput of 10 liters / hour (l / h).
  • filter devices, pressure sensors and temperature sensors can also be installed, for example, in the suction line 2 and / or low-pressure line 4.
  • FIG. 2 3 shows a sectional view of the metering unit 35 with the solenoid valve 5 and a fluid valve 22 actuated by the solenoid valve 5.
  • the metering unit 35 has a solenoid valve housing 14 in which an armature assembly of the solenoid valve 5 is mounted in bearings 17a, 17b with an anchor bolt 16 carrying an armature 15 is.
  • the bearing 17a is a pot bearing and the bearing 17b is a housing bearing.
  • the armature 15 is arranged in an armature space 18 and together with the anchor bolt 16 in the armature space 18 as well as the anchor bolt 16 in the bearings 17a, 17b displaceable.
  • This shift is triggered by energizing a coil 19, which is arranged in the solenoid valve housing 14 and held by a solenoid valve 20 and sealed to the environment.
  • a solenoid valve 20 At the solenoid valve pot, an electrical interface 21 is attached, via which the electrical connections of the coil 19 can be connected to further lines.
  • the anchor bolt 16 cooperates with the fluid valve 22 which is likewise arranged in the solenoid valve housing 14 and has an axially displaceable fluid valve piston 23.
  • the fluid valve piston 23 is pressed against the anchor bolt 16 by a spring 24, which is supported on a retaining ring 25 fastened in the solenoid valve housing 14.
  • the fluid valve piston 23 has at least one slot 26 which cooperates in the drawn position with an annular space 27 in the solenoid valve housing 14.
  • the annular space 27 is in turn connected to inlet bores 28 in the solenoid valve housing 14, which in a suitable manner with the low pressure line 4 from Fig. 1 stay in contact.
  • the metering unit 35 is inserted and sealed, for example, with its lower part of the solenoid valve housing 14 receiving the fluid valve 22 into a recess of the high-pressure pump 8 which is connected to the low-pressure line 4.
  • the fluid valve piston 23 of the annular space 27 is connected via the slots 26 with the spring 24 receiving interior 29 of the fluid valve piston 23, which in turn is in direct flow communication with an output 30.
  • the outlet 30 is connected directly to the flow connection 31 to the high-pressure pump element 7. If the fluid valve piston 23 at a Energization of the coil 19 and the movement of the anchor bolt 16 caused thereby moved downward, the slots 26 are moved to a region outside of the annular space 27 and the connection between the inlet bore 28 and the output 30 is shut off. In this case, the amount of fuel delivered by the low-pressure pump 3 is discharged via the overflow valve 6.
  • an inlet bore 32 is further recessed, which is connected to the fuel-carrying space, in which the lower part of the solenoid valve housing 14 is inserted. Via the inlet bore 32, fuel is supplied to a space 33 above the fluid valve piston 23, which passes along the bearing 17b into the armature space 18 and further to the bearing 17a.
  • the fluid outlet 11 is provided, which is arranged in the solenoid valve housing 14 or connected to the solenoid valve housing 14 and the solenoid valve 20 connecting piece 36.
  • the fluid outlet 11 is connected via the zero feed throttle 12, which is embedded in the illustrated embodiment in the solenoid valve 20, with a pot chamber 35.
  • the zero-feed throttle 12 can also be used directly in the fluid outlet 11.
  • the pot chamber 35 whose volume at the illustrated upper end position of the anchor bolt 16 has its minimum value, is connected to the inlet bore 32 via the bearings 17a, 17b, for example by designing the corresponding bearing gaps.
  • the entry into the zero feed throttle 12 is closed in the illustrated position of the anchor bolt 16
  • a fuel flow only takes place when the anchor bolt 16 is moved downwards and then the flow connection shown by arrows from the inlet bore 32 to the fluid outlet 11 in the connecting piece 35 is achieved.
  • This open position of the anchor bolt 16 is thus given when the fluid valve piston 23 is moved down and the connection between the inlet bore 28 and the output 30 is shut off.
  • effective ventilation, lubrication and cooling in particular of the bearings 17a, 17b, is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Description

Die Erfindung betrifft ein Magnetventil, aufweisend einen in zumindest einem Lager gelagerten Ankerbolzen, der mit einem Fluidventil zusammenwirkt.The invention relates to a solenoid valve, comprising an anchor bolt mounted in at least one bearing, which cooperates with a fluid valve.

Stand der TechnikState of the art

Ein derartiges Magnetventil ist aus der DE 10 2010 062 455 A1 bekannt. Dieses Magnetventil ist für eine Zumesseinheit einer Hochdruckpumpe eines Kraftstoffeinspritzsystems, insbesondere eines Common-Rail-Einspritzsystems, ausgelegt. Die Zumesseinheit weist ein von dem Magnetventil angesteuertes Fluidventil auf, das einen in einem Magnetventilgehäuse verschiebbar angeordneten Fluidventilkolben umfasst. Weiterhin ist eine Ankerbaugruppe zur Betätigung des Fluidventils Bestandteil des Magnetventils. Die Ankerbaugruppe weist einen in einem Lager gelagerten Ankerbolzen auf, der einen in einem Ankerraum angeordneten Anker trägt, und der bei einer Bestromung einer umgebenden Spule so verstellt wird, dass der Fluidventilkolben zur Mengenregelung eines Kraftstoffstroms verstellt wird. Weiterhin weist das Magnetventil ein Filterelement auf, das den zu dem Fluidventilkolben strömenden Kraftstoff filtert und eventuell vorhandene Fremdstoffe aus dem Kraftstoff herausfiltert.Such a solenoid valve is out of DE 10 2010 062 455 A1 known. This solenoid valve is designed for a metering unit of a high pressure pump of a fuel injection system, in particular a common rail injection system. The metering unit has a fluid valve actuated by the solenoid valve, which comprises a fluid valve piston displaceably arranged in a solenoid valve housing. Furthermore, an armature assembly for actuating the fluid valve is part of the solenoid valve. The armature assembly has an armature pin mounted in a bearing, which carries an armature arranged in an armature space, and which is adjusted when energizing a surrounding coil so that the fluid valve piston is adjusted to control the flow of a fuel flow. Furthermore, the solenoid valve has a filter element which filters the fuel flowing to the fluid valve piston and filters out any foreign substances present from the fuel.

Eine weitere Magnetventilbaugruppe für ein Einspritzsystem einer Brennkraftmaschine ist aus der DE 10 2008 041 362 A1 bekannt. Diese Magnetventilbaugruppe beinhaltet ein Druckregelventil und ein Zumessventil. Beide Ventile sind Kugelventile, die von einem Elektromagneten über eine Schubstange wechselweise geöffnet und geschlossen werden. Mit dem Druckregelventil wird der Kraftstoffdruck in einem Hochdruckspeicher geregelt und mit dem Zumessventil wird die einer Hochdruckpumpe zugeführte Kraftstoffmenge eingestellt.Another solenoid valve assembly for an injection system of an internal combustion engine is known from DE 10 2008 041 362 A1 known. This solenoid valve assembly includes a pressure control valve and a metering valve. Both valves are ball valves, which are alternately opened and closed by an electromagnet via a push rod. With the pressure control valve, the fuel pressure is controlled in a high pressure accumulator and with the metering valve, the amount of fuel supplied to a high pressure pump is adjusted.

Ein weiteres Magnetventil ist aus der DE 10 2007 052 224 A1 bekannt. Dieses Magnetventil weist einen grundsätzlich ähnlichen Aufbau wie das aus der DE 10 2010 062 455 A1 bekannte Magnetventil auf.Another solenoid valve is out of the DE 10 2007 052 224 A1 known. This solenoid valve has a fundamentally similar structure as that of the DE 10 2010 062 455 A1 known solenoid valve on.

Weitere Magnetventile sind aus der DE 10 2010 043 097 A1 , der EP 0 990 791 A1 , der DE 10 2011 002 979 A1 und der JP 2008 169 963 A bekannt.Other solenoid valves are from the DE 10 2010 043 097 A1 , the EP 0 990 791 A1 , the DE 10 2011 002 979 A1 and the JP 2008 169 963 A known.

Der Erfindung liegt die Aufgabe zugrunde, ein Magnetventil bereitzustellen, das hinsichtlich seiner Betriebszuverlässigkeit verbessert ist.The invention has for its object to provide a solenoid valve, which is improved in terms of its operational reliability.

Offenbarung der ErfindungDisclosure of the invention Vorteile der ErfindungAdvantages of the invention

Diese Aufgabe wird dadurch gelöst, dass das Lager über eine als eine in ein Magnetventilgehäuse eingelassene Einlassbohrung ausgebildete Verbindung mit einem fluidführenden Bereich des Fluidventils verbunden ist, dass in Verlängerung des Ankerbolzens ein mit dem Lager strömungsverbundener Fluidausgang angeordnet ist, dass das zumindest eine Lager zwischen der Verbindung und dem Fluidausgang angeordnet ist, und dass das zumindest eine Lager zumindest zeitweise zwangsdurchströmt ist. Der erfindungsgemäßen Ausgestaltung liegt die Erkenntnis zugrunde, dass je nach Anbaulage des Magnetventils an einem Anbauteil eine Entlüftung insbesondere im Lagerbereich des Magnetventils nicht optimal stattfinden kann. Dadurch, dass nun das zumindest eine Lager über eine Verbindung mit einem fluidführenden Bereich des Fluidventils verbunden ist, ist sichergestellt, dass das Lager von dem Fluid erreicht und zumindest zeitweise zwangsdurchströmt wird. Dadurch wird eine deutliche Verbesserung der Entlüftung, der Schmierung und auch der Kühlung in dem zumindest einem Lager erreicht. Diese Maßnahme erhöht die Betriebszuverlässigkeit des Magnetventils, da auch bei einer ungünstigen Einbaulage des Magnetventils sichergestellt ist, dass das zumindest eine kritische Lager zuverlässig geschmiert ist.This object is achieved in that the bearing is connected to a fluid-conducting region of the fluid valve via an inlet bore formed in a solenoid valve housing, such that a fluid outlet fluid-connected to the bearing is arranged in extension of the anchor bolt, that the at least one bearing between the Connection and the fluid outlet is arranged, and that the at least one bearing is at least temporarily flowed through. The embodiment of the invention is based on the finding that, depending on the mounting position of the solenoid valve on an attachment venting in particular in the storage area of the solenoid valve can not take place optimally. The fact that now the at least one bearing is connected via a connection with a fluid-carrying region of the fluid valve, it is ensured that the bearing is reached by the fluid and at least temporarily flows through it. As a result, a significant improvement in the ventilation, lubrication and cooling in the at least one camp is achieved. This measure increases the operational reliability of the solenoid valve, since it is ensured even with an unfavorable installation position of the solenoid valve that the at least one critical bearing is reliably lubricated.

Grundsätzlich kann die Verbindung durch eine beliebige Ausgestaltung dargestellt sein. So ist es beispielsweise denkbar, dass die Verbindung durch einen Leckagestrom von dem fluidführenden Bereich des Fluidventils zu dem Lager gegeben ist. Um aber sicherzustellen, dass immer eine definierte Menge von Fluid zu dem Lager gelangt, ist die in das Magnetventilgehäuse eingelassene Einlassbohrung vorteilhaft. Dabei kann die Einlassbohrung bei der Fertigung des Magnetventilgehäuses in einem einfachen Bearbeitungsschritt erzeugt werden.In principle, the connection can be represented by any configuration. For example, it is conceivable that the connection is given by a leakage flow from the fluid-carrying region of the fluid valve to the bearing. However, in order to ensure that always a defined amount of fluid reaches the bearing, the inlet bore let into the solenoid valve housing is advantageous. In this case, the inlet bore can be generated in the manufacture of the solenoid valve housing in a simple processing step.

Der Fluidausgang ermöglicht in besonders vorteilhafter Weise eine Zwangsdurchströmung des Lagers. Die Anordnung des Fluidausgangs in Verlängerung des Ankerbolzens ist leicht zu fertigen und ermöglicht eine nachfolgend noch beschriebene Steuerung des Durchsatzes von Fluid durch das zumindest eine Lager. Der Fluidausgang kann beliebig ausgestaltet und axial oder radial zu dem Ankerbolzen beispielsweise in dem Magnetventilgehäuse oder einem mit dem Magnetventilgehäuse verbundenen Magnetventiltopf angeordnet sein. Die Anordnung des Lagers zwischen der Verbindung und dem Fluidausgang stellt die zuverlässige Zwangsdurchströmung des zumindest einen Lagers sicher.The fluid outlet allows a forced flow of the bearing in a particularly advantageous manner. The arrangement of the fluid outlet in extension of the anchor bolt is easy to manufacture and allows a subsequently described control of the flow rate of fluid through the at least one bearing. The fluid outlet can be configured as desired and can be arranged axially or radially with respect to the anchor bolt, for example in the solenoid valve housing or a solenoid valve pot connected to the solenoid valve housing. The arrangement of the bearing between the connection and the fluid outlet ensures the reliable forced flow of the at least one bearing.

In Weiterbildung der Erfindung weist der Fluidausgang eine Nullförderdrossel auf. Mittels der Nullförderdrossel wird der Durchsatz von Fluid durch das zumindest eine Lager auf einen gewünschten Wert eingestellt. Dabei beträgt der Durchsatz wiederum in weiterer Ausgestaltung der Erfindung 5 Liter/Stunde (l/h) bis 15 Liter/Stunde, bevorzugt 10 Liter/Stunde. Bei einem solchen Durchsatz ist eine zuverlässige Entlüftung des Lagers bei einer Verbesserung des Schmierfilms an der Lagerbuchse des Lagers und somit auch eine verbesserte Kühlung des Lagers und des gesamten Magnetventils erreicht.In a development of the invention, the fluid outlet has a zero-feed throttle. By means of the zero-feed throttle, the throughput of fluid through the at least one bearing is set to a desired value. The throughput in turn in another embodiment of the invention is 5 liters / hour (l / h) to 15 liters / hour, preferably 10 liters / hour. With such a throughput, a reliable venting of the bearing is achieved with an improvement of the lubricating film on the bearing bush of the bearing and thus also an improved cooling of the bearing and the entire solenoid valve.

Erfindungsgemäß wird der Fluidausgang von dem Ankerbolzen des Magnetventils in der Form beherrscht, als dass der Ankerbolzen einen Fluideintritt in den Fluidausgang in einer Sperrstellung sperrt und in einer Öffnungsstellung freigibt. Dabei ist vorgesehen, dass im geöffneten Zustand des Fluidventils, bei dem das Magnetventil unbestromt ist, der Ankerbolzen den Fluideintritt in den Fluidausgang sperrt. Im geöffneten Zustand des Fluidventils erfolgt folglich kein Mengenverlust des Fluids durch den Fluidausgang. Dagegen ist bei geschlossenem Zustand des Fluidventils, bei dem das Magnetventil bestromt ist, der Fluideintritt in den Fluidausgang freigegeben, so dass in diesem Betriebszustand das zumindest eine Lager zwangsdurchströmt ist. Hierbei ist davon auszugehen, dass beim Betrieb des Magnetventils die Betriebszustände der Sperrstellung und der Öffnungsstellung in etwa zueinander ausgewogen sind, so dass eine zuverlässige Durchströmung des zumindest einen Lagers zeitabschnittsweise erfolgt. Der Fluideintritt in den Fluidausgang kann von dem Ankerbolzen auch so beherrscht sein, dass in der Sperrstellung ein geringer Durchsatz durch den Fluidausgang ermöglicht ist, während bei der Sperrstellung der volle Durchsatz durch den Fluidausgang freigegeben ist.According to the fluid outlet is dominated by the anchor bolt of the solenoid valve in the form that the anchor bolt blocks fluid entry into the fluid outlet in a blocking position and releases in an open position. It is provided that in the open state of the fluid valve, in which the solenoid valve is de-energized, the anchor bolt blocks the fluid inlet into the fluid outlet. Consequently, in the opened state of the fluid valve there is no loss of volume of the fluid through the fluid outlet. In contrast, in the closed state of the fluid valve, in which the solenoid valve is energized, the fluid inlet is released into the fluid outlet, so that in this operating condition, the at least one bearing is positively flowed through. It can be assumed that during operation of the solenoid valve, the operating states of the blocking position and the open position are approximately balanced with each other, so that a reliable flow through the at least one bearing takes place in sections. The fluid inlet into the fluid outlet can also be controlled by the anchor bolt such that in the blocking position a low throughput through the fluid outlet is made possible, while in the blocking position the full throughput through the fluid outlet is released.

In Weiterbildung der Erfindung ist jeweils ein Lager in einem Magnetventilgehäuse und einem Magnetventiltopf angeordnet und wiederum in weiterer Ausgestaltung ist das obere Lager ein Topflager, das endseitig in dem Magnetventiltopf angeordnet ist. Dabei ist der Ankerbolzen zusätzlich in dem zweiten als Gehäuselager ausgebildeten Lager gelagert, wobei das Gehäuselager benachbart zu der Verbindung angeordnet ist. Es ergibt sich somit ein Fluidstrom von der Verbindung über das Gehäuselager durch einen einen Anker des Magnetventils aufnehmenden Ankerraum zu dem Topflager, aus dem der Fluidstrom gesteuert in den Fluidausgang abströmt.In a further development of the invention, in each case a bearing is arranged in a solenoid valve housing and a magnetic valve pot, and in a further embodiment, the upper bearing is a pot bearing, which is arranged in the end in the solenoid valve pot. In this case, the anchor bolt is additionally mounted in the second bearing designed as a housing bearing, wherein the housing bearing is arranged adjacent to the connection. This results in a fluid flow from the connection via the housing bearing by an armature of the solenoid valve receiving armature space to the pot bearing, from which the fluid flow flows controlled in the fluid outlet.

In Weiterbildung der Erfindung ist der Fluidausgang mit einer Rücklaufleitung und diese mit einem Tank oder einer Saugleitung von dem Tank zu einer Niederdruckpumpe verbunden. Somit wird das abströmende Fluid problemlos von dem Magnetventil abgeführt.In a development of the invention, the fluid outlet is connected to a return line and this is connected to a tank or a suction line from the tank to a low-pressure pump. Thus, the outflowing fluid is easily removed from the solenoid valve.

In Weiterbildung der Erfindung ist das Magnetventil Teil einer Zumesseinheit für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine und das Fluid dementsprechend Kraftstoff. Bei einer solchen Zumesseinheit kann das erfindungsgemäße Magnetventil besonders vorteilhaft eingesetzt werden und die Betriebszuverlässigkeit des Magnetventils und der ganzen Zumesseinheit wird durch die dargestellten Ausführungen verbessert.In a further development of the invention, the solenoid valve is part of a metering unit for a fuel injection system of an internal combustion engine and the fluid accordingly fuel. In such a metering unit, the solenoid valve according to the invention can be used particularly advantageously and the reliability of the operation of the solenoid valve and the entire metering unit is improved by the illustrated embodiments.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind der Zeichnungsbeschreibung zu entnehmen, in der ein in den Figuren dargestelltes Ausführungsbeispiel der Erfindung näher beschrieben ist.Further advantageous embodiments of the invention are described in the drawings, in which an illustrated in the figures embodiment of the invention is described in detail.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigen:

Figur 1
ein vereinfachtes Schaltschema eines Kraftstoffeinspritzsystems einer Brennkraftmaschine mit einer ein Magnetventil aufweisenden Zumesseinheit und
Figur 2
eine Schnittansicht einer Ausführungsform eines Magnetventils als Teil einer Zumesseinheit für ein Kraftstoffeinspritzsystem.
Show it:
FIG. 1
a simplified circuit diagram of a fuel injection system of an internal combustion engine with a solenoid valve having metering unit and
FIG. 2
a sectional view of an embodiment of a solenoid valve as part of a metering unit for a fuel injection system.

Ausführungsform der ErfindungEmbodiment of the invention

Das Schaltschema gemäß Fig. 1 gibt die wichtigsten Komponenten eines Kraftstoffeinspritzsystems für eine Brennkraftmaschine wieder, wobei das Kraftstoffeinspritzsystem beispielsweise als Common-Rail-Einspritzsystem für eine selbstzündende Brennkraftmaschine ausgebildet ist und das Fluid insbesondere Dieselkraftstoff ist. Das Kraftstoffeinspritzsystem weist einen Tank 1 auf, in dem der Dieselkraftstoff bevorratet wird. Der Tank 1 ist über eine Saugleitung 2 mit einer Niederdruckpumpe 3 verbunden, die beispielsweise als elektrisch betätigte Zahnradpumpe ausgebildet sein kann. Die Niederdruckpumpe 3 ist über eine Niederdruckleitung 4 mit einer ein Magnetventil 5 aufweisenden Zumesseinheit 35 und weiterhin mit einem Überströmventil 6 verbunden. Die Zumesseinheit 35 mit dem Magnetventil 5 misst den einem Hochdruckpumpenelement 7 einer Hochdruckpumpe 8 über eine Strömungsverbindung 31 zuzuführenden Kraftstoff beispielsweise in Abhängigkeit von einem Betriebszustand der Brennkraftmaschine zu. Das Hochdruckpumpenelement 7 ist in die Hochdruckpumpe 8 integriert und weist beispielsweise einen Pumpenstößel auf, der über einen Rollenstößel von einer in einem Nockenraum 9 der Hochdruckpumpe 8 angeordneten Nocken einer Nockenwelle bei einer Drehbewegung der Nockenwelle auf und ab bewegt wird. Bei einer Abwärtsbewegung des Pumpenkolbens wird in einem Pumpenraum des Hochdruckpumpenelements über die Strömungsverbindung 31 zugeführter Kraftstoff über ein Einlassventil eingebracht, der bei einer Aufwärtsbewegung des Pumpenkolbens über ein Rückschlagventil und eine Hochdruckleitung in einen nicht dargestellten Hochdruckspeicher gefördert wird. Aus dem Hochdruckspeicher kann der dort unter einem Druck von bis zu 3000 bar gespeicherte Kraftstoff von Kraftstoffinjektoren zur Einspritzung in zugeordnete Brennräume der Brennkraftmaschine gesteuert entnommen werden. Die Zumesseinheit 35 ist ebenso wie das Überströmventil 6 bevorzugt in das Hochdruckpumpengehäuse der Hochdruckpumpe 8 integriert, so dass die Strömungsverbindung 31 zwischen der Zumesseinheit 35 und dem Hochdruckpumpenelement 7 ebenso wie die Verbindung zwischen dem Überströmventil 6 und dem Nockenraum 9 als interne Strömungsverbindungen in der Hochdruckpumpe 8 ausgebildet sind. Der von dem Überströmventil 6 in den Nockenraum 9 eingeleitete Kraftstoff kühlt und schmiert die Nockenwellenlager der Nockenwelle und wird anschließend über eine Abströmleitung 10 zurück in die Saugleitung 2 oder in den Tank 1 geführt. Im Unterschied zu der Darstellung in Figur 1 kann die Niederdruckleitung 4 auch in den Nockenraum 9 einmünden und von diesem aus wird dann die Zumesseinheit 35 und das Überströmventil 6 mit Kraftstoff versorgt.The circuit diagram according to Fig. 1 is the most important components of a fuel injection system for an internal combustion engine, wherein the fuel injection system is formed for example as a common rail injection system for a self-igniting internal combustion engine and the fluid is in particular diesel fuel. The fuel injection system has a tank 1 in which the diesel fuel is stored. The tank 1 is connected via a suction line 2 with a Low-pressure pump 3 is connected, which may be formed, for example, as an electrically operated gear pump. The low-pressure pump 3 is connected via a low-pressure line 4 to a metering unit 35 having a magnetic valve 5 and furthermore to an overflow valve 6. The metering unit 35 with the solenoid valve 5 measures the fuel to be supplied to a high-pressure pump element 7 of a high-pressure pump 8 via a flow connection 31, for example as a function of an operating state of the internal combustion engine. The high-pressure pump element 7 is integrated in the high-pressure pump 8 and has, for example, a pump plunger, which is moved by a roller plunger from a arranged in a cam space 9 of the high-pressure pump 8 cam of a camshaft during a rotational movement of the camshaft up and down. During a downward movement of the pump piston, fuel supplied via the flow connection 31 is introduced via an inlet valve in a pump chamber of the high-pressure pump element, which is conveyed during an upward movement of the pump piston via a check valve and a high-pressure line into a high-pressure accumulator, not shown. From the high-pressure accumulator, the fuel stored there at a pressure of up to 3,000 bar can be removed from fuel injectors for injection into assigned combustion chambers of the internal combustion engine in a controlled manner. The metering unit 35, like the overflow valve 6, is preferably integrated in the high-pressure pump housing of the high-pressure pump 8, so that the flow connection 31 between the metering unit 35 and the high-pressure pump element 7, as well as the connection between the overflow valve 6 and the cam space 9, as internal flow connections in the high-pressure pump 8 are formed. The introduced from the spill valve 6 in the cam chamber 9 fuel cools and lubricates the camshaft bearing of the camshaft and is then passed through a discharge line 10 back into the suction line 2 or into the tank 1. In contrast to the representation in FIG. 1 can the low-pressure line 4 also open into the cam space 9 and from this then the metering unit 35 and the spill valve 6 is supplied with fuel.

Das Magnetventil 5 der Zumesseinheit 35 weist einen in Fig. 2 detailliert dargestellten Fluidausgang 11 auf, in den eine in Fig. 1 aus Übersichtsgründen separat angeordnete Nullförderdrossel 12 eingesetzt ist. Der Fluidausgang 11 beziehungsweise die Nullförderdrossel 12 ist über eine Rücklaufleitung 13 mit der Saugleitung 2 oder den Tank 1 verbunden. Die Nullförderdrossel 12 ist beispielsweise so ausgelegt, dass diese einen Durchsatz von 10 Liter/Stunde (l/h) aufweist. Neben den beschriebenen Komponenten können beispielsweise in die Saugleitung 2 und/oder Niederdruckleitung 4 noch Filtereinrichtungen, Drucksensoren und Temperatursensoren eingebaut sein.The solenoid valve 5 of the metering unit 35 has an in Fig. 2 detailed illustrated fluid outlet 11, in which a in Fig. 1 for reasons of clarity separately arranged zero-feed throttle 12 is used. The fluid outlet 11 or the zero-feed throttle 12 is connected via a return line 13 to the suction line 2 or the Tank 1 connected. The zero-feed throttle 12 is designed, for example, such that it has a throughput of 10 liters / hour (l / h). In addition to the described components, filter devices, pressure sensors and temperature sensors can also be installed, for example, in the suction line 2 and / or low-pressure line 4.

Figur 2 zeigt eine Schnittdarstellung der Zumesseinheit 35 mit dem Magnetventil 5 und einem von dem Magnetventil 5 betätigten Fluidventil 22. Die Zumesseinheit 35 weist ein Magnetventilgehäuse 14 auf, in dem eine Ankerbaugruppe des Magnetventils 5 mit einem einen Anker 15 tragenden Ankerbolzen 16 in Lagern 17a, 17b gelagert ist. Dabei ist das Lager 17a ein Topflager und das Lager 17b ein Gehäuselager. Der Anker 15 ist in einem Ankerraum 18 angeordnet und mitsamt dem Ankerbolzen 16 in dem Ankerraum 18 ebenso wie der Ankerbolzen 16 in den Lagern 17a, 17b verschiebbar. Diese Verschiebung wird durch eine Bestromung einer Spule 19 ausgelöst, die in dem Magnetventilgehäuse 14 angeordnet ist und von einem Magnetventiltopf 20 gehalten und zur Umgebung abgedichtet ist. An dem Magnetventiltopf ist eine elektrische Schnittstelle 21 angebracht, über die die elektrischen Anschlüsse der Spule 19 mit weiterführenden Leitungen verbunden werden können. FIG. 2 3 shows a sectional view of the metering unit 35 with the solenoid valve 5 and a fluid valve 22 actuated by the solenoid valve 5. The metering unit 35 has a solenoid valve housing 14 in which an armature assembly of the solenoid valve 5 is mounted in bearings 17a, 17b with an anchor bolt 16 carrying an armature 15 is. The bearing 17a is a pot bearing and the bearing 17b is a housing bearing. The armature 15 is arranged in an armature space 18 and together with the anchor bolt 16 in the armature space 18 as well as the anchor bolt 16 in the bearings 17a, 17b displaceable. This shift is triggered by energizing a coil 19, which is arranged in the solenoid valve housing 14 and held by a solenoid valve 20 and sealed to the environment. At the solenoid valve pot, an electrical interface 21 is attached, via which the electrical connections of the coil 19 can be connected to further lines.

Der Ankerbolzen 16 wirkt mit dem ebenfalls in dem Magnetventilgehäuse 14 angeordneten Fluidventil 22 zusammen, das einen axial verschiebbaren Fluidventilkolben 23 aufweist. Der Fluidventilkolben 23 wird von einer Feder 24, die sich an einem in dem Magnetventilgehäuse 14 befestigten Haltering 25 abstützt, gegen den Ankerbolzen 16 gedrückt. Der Fluidventilkolben 23 weist zumindest einen Schlitz 26 auf, der in der gezeichneten Stellung mit einem Ringraum 27 in dem Magnetventilgehäuse 14 zusammenwirkt. Der Ringraum 27 ist seinerseits mit Zulaufbohrungen 28 in dem Magnetventilgehäuse 14 verbunden, die in geeigneter Weise mit der Niederdruckleitung 4 aus Fig. 1 in Verbindung stehen. Dazu ist die Zumesseinheit 35 beispielsweise mit seinem unteren das Fluidventil 22 aufnehmenden Teil des Magnetventilgehäuses 14 in eine Ausnehmung der Hochdruckpumpe 8, die mit der Niederdruckleitung 4 verbunden ist, eingesetzt und abgedichtet. In der dargestellten Öffnungsstellung des Fluidventilkolbens 23 ist der Ringraum 27 über die Schlitze 26 mit dem die Feder 24 aufnehmenden Innenraum 29 des Fluidventilkolbens 23 verbunden, der seinerseits mit einem Ausgang 30 in direkter Strömungsverbindung steht. Der Ausgang 30 ist direkt mit der Strömungsverbindung 31 zu dem Hochdruckpumpenelement 7 verbunden. Wird der Fluidventilkolben 23 bei einer Bestromung der Spule 19 und der dadurch hervorgerufenen Bewegung des Ankerbolzens 16 nach unten bewegt, werden die Schlitze 26 in einen Bereich außerhalb des Ringraums 27 bewegt und die Verbindung zwischen der Zulaufbohrung 28 und dem Ausgang 30 ist abgesperrt. In diesem Fall wird die von der Niederdruckpumpe 3 geförderte Kraftstoffmenge über das Überströmventil 6 abgeführt.The anchor bolt 16 cooperates with the fluid valve 22 which is likewise arranged in the solenoid valve housing 14 and has an axially displaceable fluid valve piston 23. The fluid valve piston 23 is pressed against the anchor bolt 16 by a spring 24, which is supported on a retaining ring 25 fastened in the solenoid valve housing 14. The fluid valve piston 23 has at least one slot 26 which cooperates in the drawn position with an annular space 27 in the solenoid valve housing 14. The annular space 27 is in turn connected to inlet bores 28 in the solenoid valve housing 14, which in a suitable manner with the low pressure line 4 from Fig. 1 stay in contact. For this purpose, the metering unit 35 is inserted and sealed, for example, with its lower part of the solenoid valve housing 14 receiving the fluid valve 22 into a recess of the high-pressure pump 8 which is connected to the low-pressure line 4. In the illustrated open position of the fluid valve piston 23 of the annular space 27 is connected via the slots 26 with the spring 24 receiving interior 29 of the fluid valve piston 23, which in turn is in direct flow communication with an output 30. The outlet 30 is connected directly to the flow connection 31 to the high-pressure pump element 7. If the fluid valve piston 23 at a Energization of the coil 19 and the movement of the anchor bolt 16 caused thereby moved downward, the slots 26 are moved to a region outside of the annular space 27 and the connection between the inlet bore 28 and the output 30 is shut off. In this case, the amount of fuel delivered by the low-pressure pump 3 is discharged via the overflow valve 6.

In das Magnetventilgehäuse 14 ist weiterhin eine Einlassbohrung 32 eingelassen, die mit dem kraftstoffführenden Raum, in den der untere Teil des Magnetventilgehäuses 14 eingesetzt ist, verbunden ist. Über die Einlassbohrung 32 wird in einen Raum 33 oberhalb des Fluidventilkolbens 23 Kraftstoff zugeführt, der entlang des Lagers 17b in den Ankerraum 18 und weiter zu dem Lager 17a gelangt. In axialer Verlängerung des Ankerbolzens 16 ist der Fluidausgang 11 vorgesehen, der in das Magnetventilgehäuse 14 oder einem mit dem Magnetventilgehäuse 14 beziehungsweise dem Magnetventiltopf 20 verbundenen Anschlussstutzen 36 angeordnet ist. Der Fluidausgang 11 ist über die Nullförderdrossel 12, die in dem dargestellten Ausführungsbeispiel in dem Magnetventiltopf 20 eingelassen ist, mit einem Topfraum 35 verbunden. Die Nullförderdrossel 12 kann aber auch direkt in den Fluidausgang 11 eingesetzt sein. Der Topfraum 35, dessen Volumen bei der dargestellten oberen Endlage des Ankerbolzens 16 seinen Minimalwert aufweist, ist über die Lager 17a, 17b beispielsweise durch Ausgestaltung der entsprechenden Lagerspalte mit der Einlassbohrung 32 verbunden. Da aber in der dargestellten Stellung des Ankerbolzens 16 der Eintritt in die Nullförderdrossel 12 verschlossen ist, fließt in der dargestellten Schaltstellung kein Kraftstoff von der Einlassbohrung 32 in den Fluidausgang 11. Ein Kraftstofffluss findet erst dann statt, wenn der Ankerbolzen 16 abwärts bewegt wird und dann kommt die durch Pfeile dargestellte Strömungsverbindung von der Einlassbohrung 32 zu dem Fluidausgang 11 in dem Anschlussstutzen 35 zustande. Diese Öffnungsstellung des Ankerbolzens 16 ist also dann gegeben, wenn der Fluidventilkolben 23 nach unten bewegt ist und die Verbindung zwischen der Zulaufbohrung 28 und dem Ausgang 30 abgesperrt ist. Dadurch ist dann, wenn kein Kraftstoff von der Zumesseinheit zu dem Hochdruckpumpenelement 7 weitergeleitet wird, eine wirkungsvolle Entlüftung, Schmierung und Kühlung insbesondere der Lager 17a, 17b sichergestellt.In the solenoid valve housing 14, an inlet bore 32 is further recessed, which is connected to the fuel-carrying space, in which the lower part of the solenoid valve housing 14 is inserted. Via the inlet bore 32, fuel is supplied to a space 33 above the fluid valve piston 23, which passes along the bearing 17b into the armature space 18 and further to the bearing 17a. In the axial extension of the anchor bolt 16, the fluid outlet 11 is provided, which is arranged in the solenoid valve housing 14 or connected to the solenoid valve housing 14 and the solenoid valve 20 connecting piece 36. The fluid outlet 11 is connected via the zero feed throttle 12, which is embedded in the illustrated embodiment in the solenoid valve 20, with a pot chamber 35. The zero-feed throttle 12 can also be used directly in the fluid outlet 11. The pot chamber 35, whose volume at the illustrated upper end position of the anchor bolt 16 has its minimum value, is connected to the inlet bore 32 via the bearings 17a, 17b, for example by designing the corresponding bearing gaps. However, since the entry into the zero feed throttle 12 is closed in the illustrated position of the anchor bolt 16, no fuel flows from the inlet bore 32 into the fluid outlet 11 in the switching position shown. A fuel flow only takes place when the anchor bolt 16 is moved downwards and then the flow connection shown by arrows from the inlet bore 32 to the fluid outlet 11 in the connecting piece 35 is achieved. This open position of the anchor bolt 16 is thus given when the fluid valve piston 23 is moved down and the connection between the inlet bore 28 and the output 30 is shut off. As a result, when no fuel is forwarded from the metering unit to the high-pressure pump element 7, effective ventilation, lubrication and cooling, in particular of the bearings 17a, 17b, is ensured.

Claims (7)

  1. Solenoid valve (5) having an armature pin (16) which is mounted in at least one bearing (17a, 17b) and which interacts with a fluid valve (22), wherein the bearing (17a, 17b) is connected to a fluid-conducting region of the fluid valve (22) via a connection which is embodied as an inlet bore (32) made in a solenoid valve housing (14), wherein a fluid outlet (11) which is connected in terms of flow to the bearing (17a, 17b) is arranged in an extension of the armature pin (16), and wherein the at least one bearing (17a, 17b) is arranged between the connection and the fluid outlet (11) and is forcibly flowed through at least intermittently, characterized in that the fluid outlet (11) is controlled by the armature pin (16) in such a way that, in a blocking position, the armature pin (16) blocks entry of fluid into the fluid outlet (11) and, in an open position, enables entry of fluid into said fluid outlet, wherein, in the open state of the fluid valve, in which the solenoid valve is in an electrically deenergized state, the armature pin blocks the entry of fluid into the fluid outlet.
  2. Solenoid valve (5) according to Claim 1,
    characterized in that the fluid outlet (11) has a zero-delivery throttle (12).
  3. Solenoid valve (5) according to Claim 2,
    characterized in that the throughput through the zero-delivery throttle (12) is 5 litres/hour to 15 litres/hour, preferably 10 litres/hour.
  4. Solenoid valve according to one of the preceding claims,
    characterized in that in each case one bearing (17a, 17b) is arranged in a solenoid valve housing (14) and in a solenoid valve pot (20).
  5. Solenoid valve (5) according to Claim 4,
    characterized in that the upper bearing (17a) is a pot bearing which is arranged in the solenoid valve pot (20) at one end.
  6. Solenoid valve (5) according to one of Claims 1 to 4,
    characterized in that the fluid outlet (11) is connected to a return line (13), and the latter is connected to a tank (1) or to a suction line (2).
  7. Solenoid valve (5) according to one of the preceding claims,
    characterized in that the solenoid valve (5) is part of a metering unit (35) for a fuel injection system of an internal combustion engine.
EP14802890.5A 2013-11-28 2014-11-25 Solenoid valve Not-in-force EP3074624B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013224395.2A DE102013224395A1 (en) 2013-11-28 2013-11-28 magnetic valve
PCT/EP2014/075575 WO2015078876A1 (en) 2013-11-28 2014-11-25 Solenoid valve

Publications (2)

Publication Number Publication Date
EP3074624A1 EP3074624A1 (en) 2016-10-05
EP3074624B1 true EP3074624B1 (en) 2019-05-01

Family

ID=51982567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14802890.5A Not-in-force EP3074624B1 (en) 2013-11-28 2014-11-25 Solenoid valve

Country Status (4)

Country Link
EP (1) EP3074624B1 (en)
CN (1) CN105793552B (en)
DE (1) DE102013224395A1 (en)
WO (1) WO2015078876A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016119063A1 (en) * 2016-10-07 2018-04-12 Eto Magnetic Gmbh Electromagnetic valve device and use of such
CN108730085A (en) * 2017-04-14 2018-11-02 康明斯公司 Inexpensive common rail fuel system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443047A (en) * 1993-04-09 1995-08-22 Zexel Corporation Fuel injection system
FR2783890B1 (en) * 1998-09-29 2000-12-01 Eaton Corp PRESSURE REGULATING SOLENOID VALVE
DE19860468A1 (en) * 1998-12-28 2000-07-06 Bosch Gmbh Robert Fuel injection system
US6247450B1 (en) * 1999-12-27 2001-06-19 Detroit Diesel Corporation Electronic controlled diesel fuel injection system
DE10225148B4 (en) * 2002-06-06 2014-02-20 Robert Bosch Gmbh Injection device and method for its operation
JP2008169963A (en) * 2007-01-15 2008-07-24 Denso Corp Flow control valve
DE102007052224A1 (en) * 2007-10-31 2009-05-07 Robert Bosch Gmbh Volume control valve device for use in high pressure fuel pump, has pot-shaped magnetic flux housing including frame-like bracket element that encloses coil arrangement at opposite front sides, where bracket element is formed from plate
DE102008041362A1 (en) * 2008-08-20 2010-02-25 Robert Bosch Gmbh Fuel supplying device for internal combustion engine in motor vehicle, has dosing valve and pressure control valve comprising closing members, which are connected together in rigid manner and are movable on corresponding movement axis
DE102010043097A1 (en) * 2010-10-29 2012-05-03 Robert Bosch Gmbh Pressure control valve
DE102010062455A1 (en) 2010-12-06 2012-06-06 Robert Bosch Gmbh Metering unit and filter element
DE102011002979A1 (en) * 2011-01-21 2012-07-26 Robert Bosch Gmbh Method for monitoring hydraulic pressure in inlet path of high pressure pump for high pressure fuel delivery in fuel injection system of internal combustion engine, involves interrupting fuel metering so that pressure deviation is produced

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013224395A1 (en) 2015-05-28
CN105793552A (en) 2016-07-20
EP3074624A1 (en) 2016-10-05
WO2015078876A1 (en) 2015-06-04
CN105793552B (en) 2019-07-09

Similar Documents

Publication Publication Date Title
DE102011055964B4 (en) fuel feed pump
DE102005022661A1 (en) Fluid pump e.g. fuel-high pressure pump, for use in fuel system of internal combustion engine, has volume control valve that includes valve mechanism arranged parallel to another valve mechanism in fluidic manner
WO2013083517A1 (en) Low-pressure unit for a pump, in particular a fuel high-pressure pump of a fuel injection device
DE102012208812B4 (en) Control valve of a camshaft adjuster
DE102012107764A1 (en) Common Rail System
DE102009000835A1 (en) Modular low pressure unit and modular pump arrangement
EP3074624B1 (en) Solenoid valve
EP2807365A1 (en) High-pressure fuel pump for an injection system
DE102013101038B3 (en) Valve device for a hydraulic circuit and oil pump control arrangement
DE102008013441B4 (en) metering
EP3014119B1 (en) Pump
DE102013211147B4 (en) Low pressure circuit of a fuel delivery device of a fuel injection system
DE102008001331A1 (en) Compact injection device with flat anchor air actuator
DE102010042587A1 (en) Fuel pump for a fuel injection system of an internal combustion engine
DE102013209760A1 (en) pump
DE102012203549A1 (en) Fuel injection system
DE102007026834A1 (en) Electromagnetic control valve e.g. for internal combustion engine, has valve unit, full valve casing, inlet port, consumer connection and piston valve which is relocatable compared with valve casing
DE102018204004A1 (en) Filter element for liquid medium and pump with filter element
DE102012212243A1 (en) Switching valve e.g. poppet valve for use with internal combustion engine, has position-dependent non-return valve that is provided between ports and cavity
DE102007030224A1 (en) Fuel pump, particularly for fuel system of internal combustion engine, has two valve units, which are coupled with each other that movement of former valve unit in opening direction produces closing movement of latter valve unit
DE102016219486A1 (en) Throttling element, in particular for a high pressure pump, in particular a low pressure circuit of a fuel injection system
DE102012218415A1 (en) High pressure pump and method for conveying a fluid
DE102021208052A1 (en) high-pressure fuel pump
DE102013212231A1 (en) Fuel injector for a high-pressure injection system
DE112020001266T5 (en) High pressure fuel pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1127259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011612

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011612

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1127259

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014011612

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601