EP3072217A2 - Lames de maintien des aimants - Google Patents

Lames de maintien des aimants

Info

Publication number
EP3072217A2
EP3072217A2 EP14809937.7A EP14809937A EP3072217A2 EP 3072217 A2 EP3072217 A2 EP 3072217A2 EP 14809937 A EP14809937 A EP 14809937A EP 3072217 A2 EP3072217 A2 EP 3072217A2
Authority
EP
European Patent Office
Prior art keywords
rotor
arms
magnet
core
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14809937.7A
Other languages
German (de)
English (en)
Inventor
Lilya Bouarroudj
Mamy Rakotovao
Jean-Claude Matt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Equipements Electriques Moteur SAS
Original Assignee
Valeo Equipements Electriques Moteur SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur SAS filed Critical Valeo Equipements Electriques Moteur SAS
Publication of EP3072217A2 publication Critical patent/EP3072217A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets

Definitions

  • the invention relates to a rotor for an electric machine and the spring for the radial retention of the associated permanent magnet.
  • the invention finds a particularly advantageous application, but not exclusive, with the compressors used for the refrigerant compression of a motor vehicle air conditioner.
  • the rotor made of laminated sheet has a central core, and arms extending radially relative to the core. These arms each comprise two flanges extending circumferentially on either side of the arms. Permanent magnets are positioned inside housings delimited each by two faces facing each other of two adjacent arms, an outer face of the rotor core, and the edges of the arms. [05] When the tolerances used in the realization of the rotor are large in order to reduce the manufacturing costs, it is possible that the magnets are badly plated inside the housings of the rotor. This can cause different problems: at. Mechanical unbalance if the magnets are not all at the same radial position b.
  • the invention aims to overcome these disadvantages.
  • blades are used positioned between the flanges of the rotor arms and the face of the permanent magnet facing away from the axis of the rotor. These blades close the rotor above the magnet and avoid the potential ejection of fragments of magnets.
  • the nature of the materials chosen for these blades makes it possible, by crushing the blades under the effect of the centrifugal forces, to better distribute the magnet retention forces in centrifugation on the surface of the magnet in contact with the blade. This last effect makes it possible to strongly reduce the local mechanical stresses in the magnet thus making it possible to avoid breaking or scaling at high speed.
  • the invention thus relates to a rotor for an electric machine, said rotor being provided with an axis of rotation and comprising:
  • permanent magnets positioned inside housings delimited each by two lateral faces facing each other of the two adjacent arms, an outer face of the core extending between the two adjacent arms, and the flanges of the rotor arms.
  • the rotor comprises blades made of a more flexible material than the permanent magnets positioned between the edges of the arms and the face of the permanent magnet turned away from the axis of the rotor to maintain the magnets in centrifugation and in that the permanent magnets have in the axial direction a height and in the orthoradial direction a width, said blade having in the axial direction a height close to the height of the permanent magnets.
  • the ratio between the height of the blade and that of the height of the magnets is between 0.9 and 1, 1, the value 1 being excluded.
  • the ratio between the height of the blade and that of the height of the magnets is between 0.9 and 1 (1 not being included).
  • the ratio between the height of the blade and that of the height of the magnets is between 1 and 1, 1 (1 not being included).
  • a blade of substantially equal height but larger than that of the magnet allows increased support.
  • the orthoradial direction has a width close to the width of the permanent magnets.
  • the ratio between the height of the blade and that of the height of the magnets is between 0.9 and 1, 1, the value 1 being excluded.
  • the ratio between the width of the blade and that of the height of the magnets is between 0.9 and 1, 1, the value 1 being excluded.
  • the ratio between the width of the blade and that of the height of the magnets is between 0.9 and 1 (1 not being included).
  • the ratio between the width of the blade and that of the height of the magnets is between 1 and 1, 1 (1 not being included).
  • a blade of width substantially equal to but larger than that of the magnet allows increased support.
  • the thickness of the blades is between 0.1 and 0.5 mm, preferably equal to 0.3 mm.
  • the blades contain glass fiber and / or epoxy resin or are made of plastic or magnetic or non-magnetic metal.
  • the arms extend radially relative to the core along a radius of curvature and the ratio between the width at the base of the arms and said radius of curvature is less than or equal to 1.
  • the rotor further comprises springs positioned inside the housing between the outer face of the core and a face of the magnet facing the axis of the rotor, these springs ensuring a maintaining the permanent magnet inside its housing against the edges of the rotor arms by deforming a radial force on the permanent magnet from the inside to the outside of the rotor.
  • the springs work in an elastoplastic field.
  • the springs each have at least one linear contact with one of the elements against which the spring is supported and at least one linear contact with the other element against which it bears the spring.
  • the springs each comprise a central rounded portion, and two rounded end portions located on the side and other of the central rounded portion, the central rounded portion and the rounded end portions having inverted curvatures.
  • the rotor further comprises blades made of a softer material than the permanent magnets positioned between the edges of the arms and the face of the permanent magnet turned away from the axis of the rotor.
  • the invention further relates to the spring for the radial retention of permanent magnets as such characterized in that it comprises:
  • Figures 1 and 2 show a top view of the rotor according to the invention without one of its flanges;
  • Figure 2 shows a perspective view of the spring according to the invention;
  • Figures 3a-3c show front, side and top views of the spring according to the invention.
  • Figure 4 is a perspective view of the rotor equipped with these flanges balancing weight.
  • FIG. 1 shows a rotor 100 according to the invention of X axis to be mounted on a shaft (not shown).
  • This permanent magnet rotor belongs to a rotating electrical machine, which may be a compressor used for the refrigerant compression of a motor vehicle air conditioner. Alternatively this may be an electric motor or an alternator.
  • the tree may be a driving tree or a led tree.
  • the electric machine comprises a stator, which may be polyphase, surrounding the rotor.
  • This stator is carried by a housing configured to rotate the shaft via ball bearings and or needle as visible for example in the aforementioned EP 1 865 200.
  • the rotor 100 is formed by a stack of sheets extending in a radial plane perpendicular to the X axis.
  • the sheet package forms the body of the rotor 100 and is made of ferromagnetic material.
  • This bundle of plates here comprises a central core 101 and arms 102 extending radially and axially from the core 101 with respect to the axis X. These arms 102 each comprise at their free end two flanges 105 extending circumferentially on either side of the arms 102.
  • the flanges 105 have the function of retaining in the radial direction permanent magnets 1 14 of the rotor.
  • the flanges 105 are located at the outer periphery of the rotor 100.
  • the arms 102 are in one embodiment in one piece with the core 101.
  • all or only some of the arms 102 are attached to the core 101, for example by a tenon-mortise type connection as described in the document FR2856532.
  • the sheets of the rotor 100 all have an identical contour.
  • the contour of the sheets is cut in a generally circular shape and comprises the arms 102 which are evenly distributed in a radial direction towards the outer periphery.
  • the sheets are held by means of rivets 108 positioned on the same circumference of the body of the rotor 100 and passing axially from one side to the stack of sheets via openings (not referenced) for forming a manipulable and transportable assembly.
  • the body also has openings (not referenced) to receive tie rods 109 of two flanges 200 ( Figure 4) plated on both sides of the rotor on its radial end faces. These flanges can be used to ensure a balancing of the rotor 101.
  • the flanges 200 are made of non-magnetic material, for example aluminum.
  • the rivets 108 and tie rods 109 are advantageously made of a non-magnetic material such as stainless steel.
  • the tie rods 109 have a diameter greater than that of the rivets 108 and are implanted on a circumference of diameter greater than that of the rivets. Here the number of pulling is equal to the number of rivets.
  • the rotor 100 comprises housing 1 1 1 intended to receive the permanent magnets 1 14.
  • the magnets may be rare earth or ferrite depending on the applications and the desired power of the rotating electrical machine. More specifically, the housings 1 1 1 are delimited each by two lateral faces 1 12 facing one another with two arms 102 adjacent, an outer face of the core 101 extending between the two arms 102, and faces of the flanges 105 facing the core 101 belonging to the two arms 102 adjacent. These housings 1 1 1 are therefore blind by being open at their outer periphery.
  • the housing 1 1 1 have a shape complementary to that of the magnets 1 14 which have a parallelepiped shape having two bevelled angles at their inner periphery.
  • the magnets 1 14 thus have a reduced section at one of their ends.
  • the side of the beveled angle magnets 1 14 is located on the side of the rotor shaft 100.
  • the side faces of the arms 102 are each formed by a first plane which extends generally radially with respect to the X axis intended to be facing a bevelled angle of the magnet 1 14.
  • the lateral faces of the arms 102 comprise a second plane inclined relative to the first plane so that two second planes facing each other of the same housing are parallel to each other and facing two longitudinal faces of the magnet 1 14.
  • the rotor 100 comprises ten magnets 1 14 inserted in ten housings January 1 1 of complementary shape.
  • a magnet 1 14 can for example be slid parallel to the axis X of the rotor 100.
  • one of the magnets has been removed in FIG. locate the faces of a housing 1 1 1.
  • each arm 102 has a first portion, generally of width constant, resulting from the core 101 extended by a second portion flaring away from the X axis and ended by the flanges 105 and secondly, that the magnets 1 14 occupy the maximum available space in the rotor.
  • the machine can therefore have maximum power while being compact radially.
  • a flux concentration solution is obtained, the lateral faces opposite two consecutive magnets being of the same polarity.
  • the rotor has a length of 41 mm and a diameter of 61 mm. Of course it depends on the applications.
  • the rotor shown in the figure is a rotor 100 which is provided with an axis of rotation (X) and which comprises:
  • arms 102 extending radially with respect to the core (101), these arms 102 each having two flanges (105) extending on either side of the arms 102,
  • the rotor 100 comprises for each magnet a blade 1 19 or plate made of a less hard and more flexible material than the magnets 1 14.
  • the blade 1 19 is flat rectangular.
  • the blades 1 19 are made of a softer material than the permanent magnets 1 14 and are positioned between the flanges 105 of the arms 102 and the face of the permanent magnet 1 14 turned away from the axis X of the rotor 100.
  • the blades In the case of permanent magnets 1 14 present in the axial direction a height and in the orthoradial direction a width, the blades have in said axial direction a height close to the height of the permanent magnets without being equal and in said direction orthoradial a width close to the width of the magnet without being equal.
  • the ratio between the height of the blade and that of the height of the magnets is between 0.9 and 1, 1, the value 1 being excluded.
  • Blades are made of glass fiber and / or epoxy resin.
  • the density of the blade is between 1.8 to 2 g / cm 3.
  • Blades can be made of simple or filled plastic materials, composite materials loaded with glass or carbon fibers or metal alloys
  • the volume of glass fibers may represent 50 to 60% of the volume of the blade.
  • a blade is obtained whose flexural strength at 23 ° C. is greater than 640 MPa, the coefficient of elasticity at 23 ° C. is greater than 33000 MPa and the compressive strength at 23 ° C. is higher. at 690 MPa.
  • the volume of glass fibers may represent 68 to 78% of the volume of the blade.
  • a blade is obtained whose flexural strength at 23 ° C. is greater than 600 MPa, the coefficient of elasticity at 23 ° C. is greater than 22000 MPa and the compressive strength at 23 ° C. is higher. at 300 MPa.
  • the blades 1 19 may be made of plastic material.
  • Each blade 1 19 is positioned between the inner faces of two flanges 105 facing each other and the outer face of the magnets 1 14 facing away from the axis X. If applicable, but this is not mandatory, a softer adhesive layer than the magnet 1 14 is interposed between the magnet 1 14 and the blade 1 19.
  • the blades 1 19 close the housings January 1 1 and are retaining blades of the magnets 1 14 in contact with the outer periphery thereof.
  • the blades have the function of avoiding, during the insertion of the rotor, any dust is introduced into the fluid located in the environment of the electric machine. They also allow holding of the magnets in the centrifugation. This maintenance is even more important in the case of ferrite magnets which have a same residual field for a same field than those of rare earth magnets.
  • the thickness of the blades 1 19 measured in the radial direction is between 0.1 and 0.5 mm, preferably equal to 0.3 mm.
  • the rotor of FIG. 2 differs from that of FIG. 1 in that it comprises springs 122. These springs make it possible to hold the magnets 1 14 inside their housing 1 1 1 against the flanges 105 via the blades 1 19, the rotor 100 comprises the springs 122 exerting by deformation a radial force on the magnet 1 14 from the inside to the outside of the rotor 100.
  • the springs 122 are positioned between the inner face of the magnet 1 14 turned on the X axis side and the bottom of the housing 1 1 1 1 constituted by the face of the core 101 extending between two arms 102 successive.
  • the bottom of the housing 1 January 1 has a flat shape to facilitate the support of the springs 122 against the bottom.
  • the blade 1 19 then has function in addition to the aforementioned functions that of distributing the forces applied by the springs 122.
  • each spring 122 comprises a central rounded portion 125, and two rounded end portions 126 situated on either side of the central rounded portion 125.
  • the central rounded portion 125 and the rounded end portions 126 have inverted curvatures. Indeed, there are inflection lines D1, D2 located between the central portion 125 and each end portion 126 at the location of the change of curvature between the central portion 125 and the end portions 126.
  • the spring 122 is symmetrical with respect to a vertical plane A passing through one end of the central portion where the tangent to the curve of the spring 122 is horizontal (see Figure 3a).
  • the radius of curvature R1 of the central portion 125 is greater than the radius of curvature R2 of the end portions 126.
  • the radius R1 of curvature of the central portion 125 is about three times greater than the radius R2 of curvature end portions 126.
  • the springs 122 In the free state, that is to say uncompressed, the springs 122 have a width L1 less than the distance between two arms 102 at the core 101, and a height L2 slightly greater than the distance between the core 101 and the face of the magnet 1 14 facing the axis X.
  • the length L3 of the springs 122 is substantially equal to the axial height of the rotor 100.
  • Each spring 122 preferably has a beveled end 127 in a longitudinal direction of the spring 122 to facilitate the insertion of the spring 122 between a magnet 1 14 and an inner face of a housing 1 1 1 of said magnet 1 14.
  • Each spring 122 further includes a slot 129 along the tapered end 127 to reduce the rigidity of said beveled end 127 and thus retain the effect of the spring.
  • the slot 129 of width L4, extends between two inclined plane portions forming the beveled end 127.
  • the slot 129 extends over a length slightly greater than the length along which the beveled end extends. 127.
  • the spring 122 is positioned so that the convexity of the central portion 125 is positioned on the side of the inner face of the magnet 1 14; while the convexity of the end portions 126 is on the side of the core 101 of the rotor 100.
  • the spring 122 then has a linear contact C1 with one of the elements against which it bears, in this case the face of the magnet 1 14 via the central portion 125, and two linear contacts C2 with the other element, in this case the bottom of the housing 1 1 1 via the end portions 126.
  • a linear contact C1 with one of the elements against which it bears, in this case the face of the magnet 1 14 via the central portion 125
  • two linear contacts C2 with the other element, in this case the bottom of the housing 1 1 1 via the end portions 126.
  • the width L1 of the spring 122 is a function of the width of the bottom of the associated housing 1 1 1, so that the spring under stress does not come into contact with the edges of the bottom of the housing to work in good conditions.
  • This spring 122 catches the games so that manufacturing tolerances can be wide.
  • the housing 1 1 1 are of constant width equal to the width of the bottom of the housing 1 1 1 of Figure 1. It is the same magnets 1 14 mounted in the housing 1 1 1 1; the arms being wider at the level of the soul 101. The electric machine of this other embodiment is then less powerful, the springs 122 being preserved, while the magnets 1 14 are narrower.
  • the springs 122 may be made of stainless steel, or any other material adapted to the desired maintenance function.
  • each spring 122 has a width L1 of the order of 5 millimeters, a height L2 of the order of 1.5 millimeters, and a length L3 of the order of 40 millimeters.
  • the radius of curvature R1 of the central portion 125 is of the order of 1 .8 millimeters; while the radius of curvature R2 of the end portions is of the order of 0.6 millimeter.
  • the slot 129 has a width L4 of the order of 0.4 millimeters.
  • the tapered end 127 forms an angle K of the order of 12 degrees with respect to a horizontal plane B passing through one end of the central portion 125 (see Figure 4b).
  • the spring 122 may have, instead of the rounded shapes of the central portion 125 and end portions 126, triangular shapes (V-shaped) or U-shaped shapes.
  • V-shaped triangular shapes
  • U-shaped U-shaped shapes
  • Core 101 of the sheet package may be rotatably connected to the shaft of the rotating electrical machine in different ways.
  • the shaft may comprise a knurled portion being harder than the sheets of the rotor body.
  • the shaft is forced into the interior of the central opening of the rotor delimited by the core.
  • the rotational connection may be alternatively made using a key device intervening between the outer periphery of the shaft and the inner periphery of the core.
  • the rotational connection is made via a central hub grooved internally for its connection with the shaft.
  • the aforementioned flanges can ensure a generally sealed mounting of the rotor in association with the blades 1 19.
  • These flanges may include projections with blind holes for mounting balance weights in suitable places as described in document DE 2 346 345 to which we will refer.
  • each flange 200 may carry a balance weight 330 in the form of a half ring, one of which is visible in Figure 4 without modification of the implantation of rivets 18 and tie rods 109.
  • the two rings are globally diametrically opposed and each have recesses for receiving the heads of rivets 108 and tie rods 109 as shown in Figure 5.
  • the recesses are oblong.
  • the balancing weights will be 330 brass beings. It is the same alternatively flanges 200.
  • the rotor shaft can directly drive the compressor blades.
  • the rotor and the stator can be cooled by the coolant [064]
  • the rotating electrical machine, equipped with a rotor according to the invention, may comprise a polyphase stator, for example of the three-phase type, the phase outputs of which are connected, in known manner, to a control inverter of the machine. as described for example in the application EP 0 831 580 to which reference will be made.
  • the spring 122 is compact radially and has a beveled end 127 facilitating its insertion between the magnet 1 14 and the core 101.
  • This spring 122 works in good conditions because it works in an elastoplastic field without coming into contact with the edges of the flat bottom of the housing 1 1 1 concerned.
  • This spring 122 of rounded shape, works elastically and has a reduced number of support points, here three in number.
  • the number of magnets 1 14 may be alternatively less than the number of housings depending on the desired power of the rotating electrical machine.
  • two diametrically opposed housings may be empty.
  • the magnets can be of different shade to reduce costs.
  • at least two diametrically opposed housings can be equipped with ferrite magnets and the other rare earth magnets more powerful but more expensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

L'invention concerne essentiellement un rotor (100) comportant un axe de rotation (X) pour machine électrique comportant: - une âme centrale (101), - des bras (102) s'étendant radialement par rapport à l'âme (101), ces bras (102) comportant chacun deux rebords (105) s'étendant de part et d'autre des bras (102), - des aimants permanents (114) positionnés à l'intérieur de logements (111) délimités chacun par deux faces latérales en regard l'une de l'autre des deux bras adjacents (102), une face externe de l'âme (101) s'étendant entre les deux bras adjacents, et les rebords (105) des bras du rotor (100). Des lames (119) réalisées dans un matériau plus souple que les aimants permanents (114) positionnées entre les rebords (105) des bras (102) et la face de l'aimant permanent (114) tournée du côté opposé à l'axe (X) du rotor (100) pour maintenir les aimants en centrifugation et en ce que les aimants permanents présentent dans la direction axiale une hauteur et dans la direction orthoradiale une largeur, ladite lame présentant dans la direction axiale une hauteur voisine à la hauteur des aimants permanents, le ratio entre la largeur de la lame et celle de l'aimant étant de 0.9 à 1.1 sans être égal à 1.

Description

LAMES DE MAINTIEN DES AIMANTS
DOMAINE TECHNIQUE DE L'INVENTION
[01] L'invention concerne un rotor pour machine électrique ainsi que le ressort pour le maintien radial d'aimant permanent associé.
[02] L'invention trouve une application particulièrement avantageuse, mais non exclusive, avec les compresseurs utilisés pour la compression de fluide réfrigérant de climatiseur de véhicule automobile.
ETAT DE LA TECHNIQUE [03] On connaît des machines électriques comportant un stator et un rotor solidaire d'un arbre assurant la mise en mouvement d'un compresseur à spirale, également connu sous le nom de "compresseur scroll". Un tel système comporte deux spirales intercalées comme des palettes pour pomper et comprimer le fluide réfrigérant. En général, une des spires est fixe, alors que l'autre se déplace excentriquement sans tourner, de sorte à pomper puis emprisonner et enfin comprimer des poches de fluide entre les spires. Un tel système est par exemple décrit dans le document EP1 865 200.
[04] Le rotor réalisé en tôle feuilletée comporte une âme centrale, et des bras s'étendant radialement par rapport à l'âme. Ces bras comportent chacun deux rebords s'étendant circonférentiellement de part et d'autre des bras. Des aimants permanents sont positionnés à l'intérieur de logements délimités chacun par deux faces en regard l'une de l'autre de deux bras adjacents, une face externe de l'âme du rotor, et les rebords des bras. [05] Lorsque les tolérances utilisées dans la réalisation du rotor sont grandes afin de réduire les coûts de fabrication, il est possible que les aimants soient mal plaqués à l'intérieur des logements du rotor. Ceci peut engendrer différents problèmes : a. Balourd mécanique si les aimants ne sont pas tous à la même position radiale b. Contraintes plus élevées sur les parties de l'aimant en contact avec la tôle rotor en particulier sous l'effet de forces centriguges à grande vitesse. Sous l'effet de ces forces et suite à une irrégularité de la surface de contact un niveau de contrainte très élevé peut généré dans l'aimant conduisant à sa rupture ou à son écaillage. c. De petit fragments d'aimant peuvent être éjecté du rotor et venir endommager le stator sous l'effet des forces centrifuges.
[06] De plus, un des problèmes de ces machines est le maintien des aimants en centrifugation.
OBJET DE L'INVENTION
[07] L'invention a pour but de remédier à ces inconvénients. [08] A cet effet, on utilise des lames positionnées entre les rebords des bras du rotor et la face de l'aimant permanent tournée du côté opposé à l'axe du rotor. Ces lames referment le rotor au dessus de l'aimant et évitent l'éjection potentielle de fragments d'aimants. Par ailleurs, la nature du matériaux choisi pour ces lames permet par écrasement des lames sous l'effet des forces centrifuges de mieux répartir les efforts de retenue des aimants en centrifugation sur la surface de l'aimant en contact avec la lame. Ce dernier effet permet de réduire fortement les contraintes mécaniques locales dans l'aimant permettant ainsi d'éviter sa rupture ou son écaillage à grande vitesse. [09] L'invention concerne donc un rotor pour machine électrique, ledit rotor étant muni d'un axe de rotation et comportant :
- une âme centrale,
- des bras s'étendant radialement par rapport à l'âme, ces bras comportant chacun deux rebords s'étendant de part et d'autre des bras,
- des aimants permanents positionnés à l'intérieur de logements délimités chacun par deux faces latérales en regard l'une de l'autre des deux bras adjacents, une face externe de l'âme s'étendant entre les deux bras adjacents, et les rebords des bras du rotor.
[010] Selon une caractéristique générale, le rotor comporte des lames réalisées dans un matériau plus souple que les aimants permanents positionnées entre les rebords des bras et la face de l'aimant permanent tournée du côté opposé à l'axe du rotor pour maintenir les aimants en centrifugation et en ce que les aimants permanents présentent dans la direction axiale une hauteur et dans la direction orthoradiale une largeur, ladite lame présentant dans la direction axiale une hauteur voisine à la hauteur des aimants permanents. Par exemple, le ratio entre la hauteur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 ,1 , la valeur 1 étant exclue. Par exemple, le ratio entre la hauteur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 (1 n'étant pas compris). Par exemple, le ratio entre la hauteur de la lame et celle de la hauteur des aimants est compris entre 1 et 1 ,1 (1 n'étant pas compris).
[011] Une lame de hauteur sensiblement égale mais plus grande que celle de l'aimant permet un maintien accru.
[012] Selon une caractéristique, la direction orthoradiale a une largeur voisine à la largeur des aimants permanents. Par exemple, le ratio entre la hauteur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 ,1 , la valeur 1 étant exclue. Par exemple, le ratio entre la largeur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 ,1 , la valeur 1 étant exclue. Par exemple, le ratio entre la largeur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 (1 n'étant pas compris). Par exemple, le ratio entre la largeur de la lame et celle de la hauteur des aimants est compris entre 1 et 1 ,1 (1 n'étant pas compris).
[013] Une lame de largeur sensiblement égale mais plus grande que celle de l'aimant permet un maintien accru.
[014] Selon une réalisation, l'épaisseur des lames est comprise entre 0.1 et 0.5 mm, de préférence égale à 0.3 mm. [015] Selon une réalisation, les lames contiennent de la fibre de verres et/ou de la résine d'époxy ou sont réalisées en matière plastique ou en métal magnétique ou amagnétique.
[016] Selon une réalisation, les bras s'étendent radialement par rapport à l'âme en suivant un rayon de courbure et le ratio entre la largeur à la base des bras et ledit rayon de courbure est inférieur ou égal à 1 .
[017] Selon une réalisation, l'un au moins des bras présente un renfoncement entre l'extension radiale du bras et chacun de ses deux rebords. [018] Selon un mode de réalisation, le rotor comporte en outre des ressorts positionnés à l'intérieur des logements entre la face externe de l'âme et une face de l'aimant tournée vers l'axe du rotor, ces ressorts assurant un maintien de l'aimant permanent à l'intérieur de son logement contre les rebords des bras du rotor en exerçant par déformation un effort radial sur l'aimant permanent de l'intérieur vers l'extérieur du rotor.
[019] Ainsi, on utilise des ressorts positionnés à l'intérieur des logements entre la face externe de l'âme et une face de l'aimant tournée vers l'axe du rotor. Ces ressorts assurent un maintien de l'aimant à l'intérieur de son logement contre les rebords des bras du rotor en exerçant par déformation un effort radial sur l'aimant de l'intérieur vers l'extérieur du rotor. L'invention permet ainsi de garantir un bon plaquage de l'aimant à l'intérieur de son logement quelle que soit la vitesse de rotation du rotor.
[020] Selon une réalisation, les ressorts travaillent dans un domaine élasto-plastique. [021] Selon une réalisation, les ressorts présentent chacun au moins un contact linéaire avec un des éléments contre lesquels est en appui le ressort et au moins un contact linéaire avec l'autre élément contre lequel il est en appui le ressort.
[022] Selon une réalisation, les ressorts comportent chacun une portion arrondie centrale, et deux portions arrondies d'extrémité situées de part et d'autre de la portion arrondie centrale, la portion arrondie centrale et les portions arrondies d'extrémité ayant des courbures inversées.
[023] Selon une réalisation, le rotor comporte en outre des lames réalisées dans un matériau plus souple que les aimants permanents positionnées entre les rebords des bras et la face de l'aimant permanent tournée du côté opposé à l'axe du rotor.
[024] L'invention concerne en outre le ressort pour le maintien radial d'aimants permanents en tant que tel caractérisé en ce qu'il comporte:
- une portion arrondie centrale, et
- deux portions arrondies d'extrémités situées de part et d'autre de la portion arrondie centrale,
- la portion arrondie centrale et les portions arrondies d'extrémité ayant des courbures inversées.
BREVE DESCRIPTION DES FIGURES [025] L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
[026] Les Figures 1 et 2 montrent une vue de dessus du rotor selon l'invention sans l'un de ses flasques ; [027] La Figure 2 montre une vue en perspective du ressort selon l'invention;
[028] Les Figures 3a-3c montrent des vues de face, de côté et de haut du ressort selon l'invention.
[029] La figure 4 est une vue en perspective du rotor équipé de ces flasques à poids d'équilibrage.
[030] Les éléments identiques, similaires ou analogues conservent la même référence d'une figure à l'autre. DESCRIPTION D'EXEMPLES DE REALISATION DE L'INVENTION
[031] La Figure 1 montre un rotor 100 selon l'invention d'axe X destiné à être monté sur un arbre (non représenté). Ce rotor à aimants permanents appartient à une machine électrique tournante, qui pourra être un compresseur utilisé pour la compression de fluide réfrigérant de climatiseur de véhicule automobile. En variante cela pourra être un moteur électrique ou un alternateur. L'arbre pourra être un arbre menant ou un arbre mené. De manière connue la machine électrique comporte un stator, qui pourra être polyphasé, entourant le rotor. Ce stator est porté par un carter configuré pour porter à rotation l'arbre via des roulements à billes et ou à aiguilles comme visible par exemple dans le document EP 1 865 200 précité.
[032] Le rotor 100 est formé par un empilement de tôles s'étendant dans un plan radial perpendiculaire à l'axe X. Le paquet de tôle forme le corps du rotor 100 et est en matière ferromagnétique. Ce paquet de tôles comporte ici une âme centrale 101 et des bras 102 s'entendant radialement et axialement à partir de l'âme 101 par rapport à l'axe X. Ces bras 102 comportent chacun à leur extrémité libre deux rebords 105 s'étendant circonférentiellement de part et d'autre des bras 102. Les rebords 105 ont pour fonction de retenir dans la direction radiale des aimants permanents 1 14 du rotor. Les rebords 105 sont implantés à la périphérie externe du rotor 100.
[033] Les bras 102 sont dans un mode de réalisation d'un seul tenant avec l'âme 101 . En variante, tous les bras 102 ou certains d'entre eux seulement sont rapportés sur l'âme 101 , par exemple par une liaison du type tenons-mortaises comme décrit dans le document FR2856532. Dans un plan radial, les tôles du rotor 100 ont toutes un contour identique. Le contour des tôles est découpé de forme globalement circulaire et comporte les bras 102 qui sont répartis régulièrement selon une direction radiale vers la périphérie externe. Les tôles sont maintenues au moyen de rivets 108 positionnés sur une même circonférence du corps du rotor 100 et traversant axialement de part en part l'empilement des tôles via des ouvertures (non référencés) pour formation d'un ensemble manipulable et transportable. Le corps comporte également des ouvertures (non référencées) pour recevoir des tirants d'assemblage 109 de deux flasques 200 (figure 4) plaqués de part et d'autre du rotor sur ses faces d'extrémité radiales. Ces flasques peuvent être utilisés pour assurer un équilibrage du rotor 101 . Les flasques 200 sont en matière amagnétique par exemple en Aluminium. Les rivets 108 et les tirants 109 sont avantageusement en matière amagnétique telle que de l'inox. Les tirants 109 ont un diamètre supérieur à celui des rivets 108 et sont implantés sur une circonférence de diamètre supérieur à celui des rivets. Ici le nombre de tirant est égal au nombre de rivets.
[034] Le rotor 100 comporte des logements 1 1 1 destinés à recevoir les aimants permanents 1 14. Les aimants pourront être en terre rare ou en ferrite selon les applications et la puissance recherchée de la machine électrique tournante. Plus précisément, les logements 1 1 1 sont délimités chacun par deux faces latérales 1 12 en regard l'une de l'autre de deux bras 102 adjacents, une face externe de l'âme 101 s'étendant entre les deux bras 102, et des faces des rebords 105 tournées vers l'âme 101 appartenant aux deux bras 102 adjacents. Ces logements 1 1 1 sont donc borgnes en étant ouverts à leur périphérie externe.
[035] Les logements 1 1 1 présentent une forme complémentaire à celle des aimants 1 14 qui ont une forme parallélépipédique ayant deux angles biseautés à leur périphérie interne. Les aimants 1 14 présentent ainsi une section réduite à une de leurs extrémités. Le côté des aimants 1 14 à angles biseautés est situé du côté de l'arbre du rotor 100. Les faces latérales des bras 102 sont formées chacune par un premier plan qui s'étend globalement radialement par rapport à l'axe X destiné à être en regard d'un angle biseauté de l'aimant 1 14. Les faces latérales des bras 102 comportent un deuxième plan incliné par rapport au premier plan de sorte que deux deuxièmes plans en regard l'un de l'autre d'un même logement sont parallèles l'un par rapport à l'autre et en regard de deux faces longitudinales de l'aimant 1 14. En l'occurrence, le rotor 100 comporte dix aimants 1 14 insérés dans dix logements 1 1 1 de forme complémentaires. Pour introduire un aimant 1 14 dans son logement ou l'en extraire, on peut par exemple le faire coulisser parallèlement à l'axe X du rotor 100. Pour plus de clarté on a supprimé à la figure 1 l'un des aimants pour mieux repérer les faces d'un logement 1 1 1 . Il ressort de ce qui précède et de la figure 1 , d'une part, que chaque bras 102 comporte une première portion, globalement de largeur constante, issue de l'âme 101 prolongée par une deuxième portion s'évasant en direction opposée à l'axe X et terminée par les rebords 105 et d'autre part, que les aimants 1 14 occupent au maximum l'espace disponible dans le rotor. La machine pourra donc avoir la puissance maximum tout en étant compacte radialement. On obtient une solution à concentration de flux, les faces latérales en vis-à-vis de deux aimant consécutifs étant de même polarité. Dans ce mode de réalisation le rotor à une longueur de 41 mm et un diamètre de 61 mm. Bien entendu cela dépend des applications.
[036] En d'autres termes, le rotor représenté sur la figure est un rotor 100 qui est muni d'un axe de rotation (X) et qui comporte :
- une âme centrale 101 ,
- des bras 102 s'étendant radialement par rapport à l'âme (101 ), ces bras 102 comportant chacun deux rebords (105) s'étendant de part et d'autre des bras 102,
- des aimants permanents 1 14 positionnés à l'intérieur de logements
1 1 1 délimités chacun par deux faces latérales en regard l'une de l'autre des deux bras adjacents (102), une face externe de l'âme 101 s'étendant entre les deux bras adjacents, et les rebords 105 des bras du rotor 100.
[037] Le rotor 100 comprend pour chaque aimant une lame 1 19 ou plaquette réalisée en un matériau moins dur et plus souple que les aimants 1 14. La lame 1 19 est plate rectangulaire.
[038] Les lames 1 19 sont réalisées dans un matériau plus souple que les aimants permanents 1 14 et sont positionnées entre les rebords 105 des bras 102 et la face de l'aimant permanent 1 14 tournée du côté opposé à l'axe X du rotor 100. Dans le cas d'aimants permanents 1 14 présentent dans la direction axiale une hauteur et dans la direction orthoradiale une largeur, les lames présentent dans ladite direction axiale une hauteur voisine de la hauteur des aimants permanents sans être égale et dans ladite direction orthoradiale une largeur voisine de la largeur de l'aimant sans être égale. Par exemple, le ratio entre la hauteur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 ,1 , la valeur 1 étant exclue. Par exemple, le ratio entre la hauteur de la lame et celle de la hauteur des aimants est compris entre 0,9 et 1 ,1 , la valeur 1 étant exclue. [039] Lames sont réalisées en fibre de verres et/ou résine d'époxy. Par exemple, dans le cas d'un alliage fibre de verre et résine d'époxy, la densité de la lame est comprise entre 1 ,8 à 2 g/ cm3. Les lames peuvent être réalisées en matériaux plastiques simples ou chargés, en matériaux composites chargés de fibres de verre ou de carbone ou en alliages métalliques
[040] On peut prévoir que dans cet alliage, le volume de fibres de verre peut représenter 50 à 60% du volume de la lame. Dans ce cas, on obtient une lame dont la résistance à la flexion à 23 °C est supérieure à 640 Mpa, le coefficient d'élasticité à 23 °C est supérieur à 33000 Mpa et la résistance à la compression à 23 °C est supérieure à 690 Mpa.
[041] On peut également prévoir que dans cet alliage, le volume de fibres de verre peut représenter 68 à 78% du volume de la lame. Dans ce cas, on obtient une lame dont la résistance à la flexion à 23 °C est supérieure à 600 Mpa, le coefficient d'élasticité à 23 °C est supérieur à 22000 Mpa et la résistance à la compression à 23 °C est supérieure à 300 Mpa.
[042] Alternativement, les lames 1 19 peuvent être réalisées en matériau plastique.
[043] Chaque lame 1 19 est positionnée entre les faces internes de deux rebords 105 tournés l'un vers l'autre et la face externe des aimants 1 14 orientée en direction opposée à l'axe X. S'il y a lieu, mais ce n'est pas obligatoire, une couche de colle plus souple que l'aimant 1 14 est interposée entre l'aimant 1 14 et la lame 1 19. Pour plus de détails sur la lame, on se référera au document FR2784248. Les lames 1 19 ferment les logements 1 1 1 et constituent des lames de retenue des aimants 1 14 en contact avec la périphérie externe de ceux-ci.
[044] Les lames ont pour fonction d'éviter, lors de l'insertion du rotor, que d'éventuelles poussières ne s'introduisent dans le fluide situé dans l'environnement de la machine électrique. Elles permettent également une tenue des aimants à la centrifugation. Ce maintien est d'autant plus important dans le cas d'aimants ferrites qui présentent pour un même champ rémanent une masse supérieure à celle des aimants terres rares. [045] Par exemple, l'épaisseur des lames 1 19 mesurée suivant la direction radiale est comprise entre 0.1 et 0.5 mm, de préférence égale à 0.3 mm.
[046] Le rotor de la figure 2 se distingue de celui de la figure 1 en ce qu'il comprend des ressorts 122. Ces ressorts permettent un maintien des aimants 1 14 à l'intérieur de leur logement 1 1 1 contre les rebords 105 via les lames 1 19, le rotor 100 comporte les ressorts 122 exerçant par déformation un effort radial sur l'aimant 1 14 de l'intérieur vers l'extérieur du rotor 100. A cet effet, les ressorts 122 sont positionnés entre la face interne de l'aimant 1 14 tournée du côté de l'axe X et le fond du logement 1 1 1 constitué par la face de l'âme 101 s'étendant entre deux bras 102 successifs. Le fond du logement 1 1 1 présente une forme plate pour faciliter l'appui des ressorts 122 contre le fond.
[047] Dans le cas où le rotor comprend des ressorts, la lame 1 19 a alors pour fonction en plus des fonctions mentionnées précédemment celle de répartir les efforts appliqués par les ressorts 122.
[048] Comme bien visible sur les Figures 3 et 4, chaque ressort 122 comporte une portion 125 arrondie centrale, et deux portions 126 arrondies d'extrémité situées de part et d'autre de la portion 125 arrondie centrale. La portion 125 arrondie centrale et les portions 126 arrondies d'extrémité présentent des courbures inversées. En effet, il existe des droites d'inflexion D1 , D2 situées entre la portion centrale 125 et chaque portion d'extrémité 126 à l'endroit du changement de courbure entre la portion centrale 125 et les portions d'extrémité 126. Le ressort 122 est symétrique par rapport à un plan vertical A passant par une extrémité de la portion centrale où la tangente à la courbe du ressort 122 est horizontale (cf. Figure 3a).
[049] Le rayon de courbure R1 de la portion centrale 125 est supérieur au rayon de courbure R2 des portions d'extrémité 126. De préférence, le rayon R1 de courbure de la portion centrale 125 est environ trois fois plus grand que le rayon R2 de courbure des portions d'extrémité 126. [050] A l'état libre, c'est-à-dire non compressé, les ressorts 122 ont une largeur L1 inférieure à l'écart entre deux bras 102 au niveau de l'âme 101 , et une hauteur L2 légèrement supérieure à l'écart entre l'âme 101 et la face de l'aimant 1 14 tournée vers l'axe X. La longueur L3 des ressorts 122 est sensiblement égale à la hauteur axiale du rotor 100.
[051] Chaque ressort 122 présente de préférence une extrémité biseautée 127 suivant une direction longitudinale du ressort 122 pour faciliter l'insertion du ressort 122 entre un aimant 1 14 et une face intérieure d'un logement 1 1 1 dudit aimant 1 14.
[052] Chaque ressort 122 comporte en outre une fente 129 le long de l'extrémité biseautée 127 pour réduire la rigidité de ladite extrémité biseautée 127 et conserver ainsi l'effet du ressort. La fente 129, de largeur L4, s'étend entre deux parties planes inclinées formant l'extrémité biseautée 127. De préférence, la fente 129 s'étend sur une longueur légèrement plus grande que la longueur suivant laquelle s'étend l'extrémité biseautée 127.
[053] Lors du montage, les aimants permanents 1 14 avec les lames 1 19 ayant été préalablement introduits à l'intérieur des logements 1 1 1 . Les ressorts 122 sont insérés entre deux bras 102 adjacents par leur extrémité biseautée 127 entre la face des aimants 1 14 et l'âme 101 du rotor.
[054] De préférence, comme montré sur la figure 2, le ressort 122 est positionné de sorte que la convexité de la portion centrale 125 est positionnée du côté de la face interne de l'aimant 1 14; tandis que la convexité des portions d'extrémité 126 se trouve du côté de l'âme 101 du rotor 100.
[055] Le ressort 122 présente alors un contact linéaire C1 avec un des éléments contre lesquels il est en appui, en l'occurrence la face de l'aimant 1 14 via la portion centrale 125, et deux contacts linéaires C2 avec l'autre élément, en l'occurrence le fond du logement 1 1 1 via les portions d'extrémité 126. Alternativement, il serait possible de retourner les ressorts 122 de sorte qu'ils présentent un contact linéaire avec le fond du logement 1 1 1 et deux contacts linéaires avec la face de l'aimant 1 14.
[056] La hauteur de l'espace entre l'aimant 1 14 et l'âme 101 étant inférieure à la hauteur L2 du ressort, cette insertion du ressort 122 entre l'âme 101 et l'aimant 1 14 a tendance à comprimer le ressort 122 suivant sa hauteur, ce qui a pour effet d'écarter les extrémités du ressort 122 l'une de l'autre. Par réaction, le ressort 122 ainsi déformé a alors tendance à exercer un effort radial F1 de l'intérieur vers l'extérieur du rotor sur l'aimant 1 14 de manière à le maintenir en appui contre les rebords 105 (cf. Figure 1 ). Les ressorts 122 travaillent de préférence dans un domaine élasto-plastique afin de limiter les contraintes subies par les ressorts 122. En outre la largeur L1 du ressort 122 est fonction de la largeur du fond du logement 1 1 1 associé de sorte que le ressort sous contrainte ne vienne en contact avec les bords du fond du logement pour travailler dans de bonnes conditions. Ce ressort 122 rattrape les jeux de sorte que les tolérances de fabrication peuvent être larges. Dans une autre réalisation les logements 1 1 1 sont de largeur constante égale à la largeur du fond du logement 1 1 1 de la figure 1 . Il en est de même des aimants 1 14 montés dans les logements 1 1 1 ; les bras étant plus larges au niveau de l'âme 101 . La machine électrique de cette autre réalisation étant alors moins puissante, les ressorts 122 étant conservés, tandis que les aimants 1 14 sont moins larges.
[057] Dans une réalisation, les ressorts 122 peuvent être réalisés en acier inoxydable, ou en tout autre matériau adapté à la fonction de maintien recherchée. Dans un exemple de réalisation non limitatif, chaque ressort 122 présente une largeur L1 de l'ordre de 5 millimètres, une hauteur L2 de l'ordre de 1 , 5 millimètre, et une longueur L3 de l'ordre de 40 millimètres. Le rayon de courbure R1 de la portion centrale 125 est de l'ordre de 1 .8 millimètres; tandis que le rayon de courbure R2 des portions d'extrémité est de l'ordre de 0.6 millimètre. La fente 129 présente une largeur L4 de l'ordre de 0.4 millimètre. L'extrémité biseautée 127 forme un angle K de l'ordre de 12 degrés par rapport à un plan B horizontal passant par une extrémité de la portion centrale 125 (cf. Figure 4b).
[058] Bien évidemment, l'homme du métier peut modifier les dimensions et la configuration du rotor 100 ou du ressort 122 décrit dans les figures sans sortir du cadre de l'invention. Ainsi notamment, le ressort 122 pourra présenter de manière équivalente, à la place des formes arrondies de la portion centrale 125 et des portions d'extrémité 126, des formes en triangle (formes en V) ou des formes en U. [059] Les termes "horizontal" et "vertical" sont entendus par rapport à un ressort 122 ayant ses deux portions d'extrémité 126 reposant sur une surface plane, la portion centrale 125 étant tournée vers le haut.
[060] Bien entendu la présente invention n'est pas limitée aux exemples de réalisations décrits. Ainsi le nombre d'aimants et de logements pourra être inférieur ou supérieur à dix selon les applications. L'âme 101 du paquet de tôle peut être liée en rotation à l'arbre de la machine électrique tournante de différentes manières. Par exemple l'arbre pourra comporter une portion moletée en étant plus dure que les tôles du corps du rotor. Dans ce cas, de manière connue, on emmanche à force l'arbre à l'intérieur de l'ouverture centrale du rotor délimité par l'âme. La liaison en rotation pourra être en variante réalisée à l'aide d'un dispositif à clavette intervenant entre la périphérie externe de l'arbre et la périphérie interne de l'âme. En variante la liaison en rotation est réalisée via un moyeu central cannelé intérieurement pour sa liaison avec l'arbre.
[061] Les flasques précités pourront assurer un montage globalement étanche du rotor en association avec les lames 1 19. Ces flasques pourront comporter des saillies dotées de trous borgnes pour montage de masses d'équilibrage aux endroits adéquates comme décrit dans le document DE 2 346 345 auquel on se reportera.
[062] En variante chaque flasque 200 peut porter un poids d'équilibrage 330 en forme de demi anneau, dont l'un est visible à la figure 4 sans modification de l'implantation des rivets 18 et des tirants 109. Les deux anneaux sont globalement diamétralement opposés et présentent chacun des creusures de réception des têtes des rivets 108 et des tirants 109 comme visible à la figure 5. Les creusures sont de forme oblongue. Les poids d'équilibrage pourront 330 êtres en laiton. Il en est de même en variante des flasques 200.
[063] L'arbre du rotor pourra entraîner directement les palettes du compresseur. Le rotor et le stator pourront être refroidis par le liquide réfrigérant [064] La machine électrique tournante, dotée d'un rotor selon l'invention, pourra comporter un stator polyphasé, par exemple du type triphasé, dont les sorties des phases sont reliées, de manière connue, à un onduleur de pilotage de la machine comme décrit par exemple dans la demande EP 0 831 580 auquel on se reportera.
[065] Il ressort de la description et des dessins que le ressort 122 est compact radialement et présente une extrémité biseautée 127 facilitant son insertion entre l'aimant 1 14 et l'âme 101 . Ce ressort 122 travaille dans de bonnes conditions du fait qu'il travaille dans un domaine élasto- plastique sans venir en contact avec les bords du fond plat du logement 1 1 1 concerné. Ce ressort 122, de forme arrondie, travaille de manière élastique et présente un nombre de points d'appui réduit, ici au nombre de trois.
[066] Le nombre d'aimants 1 14 pourra être en variante inférieur au nombre de logements en fonction de la puissance désirée de la machine électrique tournante. Par exemple deux logements diamétralement opposés peuvent être vides. En variantes les aimants peuvent être de nuance différente pour réduire les coûts. Par exemple au moins deux logements diamétralement opposés peuvent être équipés d'aimants en ferrite et les autres d'aimants en terre rare plus puissant mais plus coûteux.

Claims

REVENDICATIONS
1 . Rotor (100) pour machine électrique, ledit rotor étant muni d'un axe de rotation (X) et comportant :
- une âme centrale (101 ),
- des bras (102) s'étendant radialement par rapport à l'âme (101 ), ces bras (102) comportant chacun deux rebords (105) s'étendant de part et d'autre des bras (102),
- des aimants permanents (1 14) positionnés à l'intérieur de logements (1 1 1 ) délimités chacun par deux faces latérales en regard l'une de l'autre des deux bras adjacents (102), une face externe de l'âme (101 ) s'étendant entre les deux bras adjacents, et les rebords (105) des bras du rotor (100),
caractérisé en ce qu'il comporte des lames (1 19) réalisées dans un matériau plus souple que les aimants permanents (1 14) positionnées entre les rebords (105) des bras (102) et la face de l'aimant permanent (1 14) tournée du côté opposé à l'axe (X) du rotor (100) pour maintenir les aimants en centrifugation et en ce que les aimants permanents présentent dans la direction axiale une hauteur et dans la direction orthoradiale une largeur, ladite lame présentant dans la direction axiale une hauteur voisine de la hauteur des aimants permanents, le ratio entre la largeur de la lame et celle de l'aimant étant compris entre 0.9 à 1 .1 sans être égal à 1 .
2. Rotor selon la revendication précédente, caractérisé en ce que ladite lame (1 19) présente dans la direction orthoradiale une largeur voisine à la largeur des aimants permanents (1 14), le ratio entre la largeur de la lame et celle de l'aimant étant compris entre 0.9 à 1 .1 sans être égal à 1 .
3. Rotor selon la revendication 1 ou 2, caractérisé en ce que l'épaisseur des lames est comprise entre 0.1 et 0.5 mm, de préférence égale à 0.3 mm.
4. Rotor selon l'une des revendications précédentes, caractérisé en ce que les lames sont réalisées en matériaux plastiques simples ou chargés, en matériaux composites chargés de fibres de verre ou de carbone ou en métal ou alliages de métaux.
5. Rotor selon l'une des revendications précédentes, caractérisé en ce que les bras (102) s'étendent radialement par rapport à l'âme (101 ) en suivant un rayon de courbure et le ratio entre la largeur à la base des bras et ledit rayon de courbure est inférieur ou égal à 1 .
6. Rotor selon l'une des revendications précédentes, caractérisé en ce qu'il comporte en outre des ressorts (122) positionnés à l'intérieur des logements (1 1 1 ) entre la face externe de l'âme (101 ) et une face de l'aimant (1 14) tournée vers l'axe (X) du rotor (100), ces ressorts (122) assurant un maintien de l'aimant permanent (1 14) à l'intérieur de son logement (1 1 1 ) contre les rebords (105) des bras du rotor en exerçant par déformation un effort radial (F1 ) sur l'aimant permanent (1 14) de l'intérieur vers l'extérieur du rotor (100).
7. Rotor selon la revendication 6, caractérisé en ce que les ressorts (122) travaillent dans un domaine élasto-plastique.
8. Rotor selon la revendication 6 ou 7, caractérisé en ce que les ressorts (122) présentent chacun au moins un contact linéaire (C1 ) avec un des éléments contre lesquels est en appui le ressort (122) et au moins un contact linéaire (C2 C3) avec l'autre élément contre lequel est en appui le ressort.
9. Rotor selon l'une des revendications 6 à 8, caractérisé en ce que les ressorts (122) comportent chacun une portion (125) arrondie centrale, et deux portions (126) arrondies d'extrémité situées de part et d'autre de la portion (125) arrondie centrale, la portion (125) arrondie centrale et les portions (126) arrondies d'extrémité ayant des courbures inversées.
EP14809937.7A 2013-11-20 2014-11-17 Lames de maintien des aimants Withdrawn EP3072217A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361402A FR3013529B1 (fr) 2013-11-20 2013-11-20 Lames de maintien des aimants
PCT/FR2014/052938 WO2015075364A2 (fr) 2013-11-20 2014-11-17 Lames de maintien des aimants

Publications (1)

Publication Number Publication Date
EP3072217A2 true EP3072217A2 (fr) 2016-09-28

Family

ID=50179709

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809937.7A Withdrawn EP3072217A2 (fr) 2013-11-20 2014-11-17 Lames de maintien des aimants

Country Status (6)

Country Link
US (1) US10033235B2 (fr)
EP (1) EP3072217A2 (fr)
JP (1) JP2016537950A (fr)
CN (1) CN105745821B (fr)
FR (1) FR3013529B1 (fr)
WO (1) WO2015075364A2 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016204238A1 (ja) * 2015-06-17 2018-05-24 株式会社ヴァレオジャパン 電動機
US10566864B2 (en) * 2015-11-06 2020-02-18 Arcelik Anonim Sirketi Magnet retainer for use in an electric motor
CN106685114A (zh) * 2015-11-09 2017-05-17 南车株洲电力机车研究所有限公司 一种用于永磁电机的转子
DE102016209174A1 (de) * 2016-05-25 2017-11-30 Continental Automotive Gmbh Rotor und Verfahren zur Herstellung eines Rotors
FR3055484B1 (fr) * 2016-08-31 2018-08-10 Valeo Equipements Electriques Moteur Rotor de machine electrique tournante muni d'au moins une portion incurvee de reception d'un ressort
US10374477B2 (en) * 2017-03-17 2019-08-06 General Electric Company Electric machine with separable magnet carrier
JP6940965B2 (ja) * 2017-03-23 2021-09-29 本田技研工業株式会社 Ipmロータおよび回転電機
DE102017111955A1 (de) * 2017-05-31 2018-12-06 Schaeffler Technologies AG & Co. KG Kostenoptimierter Rotor einer elektrischen Maschine
JP7037970B2 (ja) * 2018-03-16 2022-03-17 本田技研工業株式会社 ロータ、回転電機及びロータの磁石取付方法
US20190386551A1 (en) * 2018-06-13 2019-12-19 Mitsubishi Heavy Industries, Ltd. Coil, rotating electrical machine, rotating electrical machine system, and method of manufacturing permanent magnet
IT201800010897A1 (it) * 2018-12-07 2020-06-07 Nidec Sole Motor Corp S R L Rotore di un motore elettrico a magneti permanenti e relativo procedimento di assemblaggio
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2346345A1 (de) 1973-09-14 1975-03-27 Bosch Gmbh Robert Elektrische maschine, insbesondere kleinmaschine
US4700096A (en) * 1985-02-28 1987-10-13 Auxilec High speed synchronous machine having a rotor provided with magnets arranged for orthoradial magnetic induction
ES2193305T3 (es) 1996-09-21 2003-11-01 Diehl Ako Stiftung Gmbh & Co Instalacion para el control de la corriente de accionamiento de un motor de iman permanente conmutado electricamente.
FR2784248B1 (fr) 1998-10-02 2000-12-22 Valeo Equip Electr Moteur Alternateur pour vehicule avec rattrapage de jeu sur les aimants interpolaires
IT1320322B1 (it) * 2000-04-28 2003-11-26 Filippis Pietro De Motore brushless a magneti permanenti.
FR2856532A1 (fr) 2003-05-27 2004-12-24 Valeo Equip Electr Moteur Machine electrique tournante perfectionnee, notamment pour vehicules automobiles
JP2006283683A (ja) 2005-04-01 2006-10-19 Sanden Corp ハイブリッド圧縮機
US8138649B2 (en) * 2007-08-02 2012-03-20 Remy Technologies, L.L.C. Magnet support and retention system for hybrid rotors
EP2201663B1 (fr) * 2007-10-11 2016-08-31 ThyssenKrupp Presta AG Rotor pour moteur électrique
DE102008043144B4 (de) * 2008-10-24 2017-08-17 Robert Bosch Gmbh Vorrichtung zur Fixierung von Magneten
FR2958467B1 (fr) * 2010-03-31 2014-10-31 Valeo Equip Electr Moteur Machine electrique tournante synchrone a aimants permanents et concentration de flux
FR2958465B1 (fr) * 2010-03-31 2013-02-15 Valeo Equip Electr Moteur Machine electrique tournante synchrone a aimants permanents et concentration de flux
CN102377257B (zh) * 2010-08-10 2016-03-30 德昌电机(深圳)有限公司 无刷电机
DE202010017376U1 (de) * 2010-08-16 2014-01-08 Robert Bosch Gmbh Befestigung von Magneten an einem Rotor
CN102931795B (zh) * 2011-08-11 2014-11-12 中山大洋电机制造有限公司 一种电机结构
CN202221930U (zh) * 2011-08-11 2012-05-16 中山大洋电机制造有限公司 一种电机永磁转子结构
DE102011080948A1 (de) * 2011-08-15 2013-02-21 Robert Bosch Gmbh Federelement zur mechanischen Fixierung von Magneten in einem Rotor
DE102011085118A1 (de) * 2011-10-24 2013-04-25 Robert Bosch Gmbh Halterung für elektrische Maschinen
KR101310489B1 (ko) * 2012-02-10 2013-09-24 삼성전기주식회사 전동기용 로터 조립체 및 이의 제작방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAOHAN WANG ET AL: "Optimization of Magnetic Pole Shifting to Reduce Cogging Torque in Solid-Rotor Permanent-Magnet Synchronous Motors", IEEE TRANSACTIONS ON MAGNETICS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 46, no. 5, 1 May 2010 (2010-05-01), pages 1228 - 1234, XP011304359, ISSN: 0018-9464, DOI: 10.1109/TMAG.2010.2044044 *

Also Published As

Publication number Publication date
WO2015075364A3 (fr) 2015-11-05
FR3013529B1 (fr) 2017-04-14
US10033235B2 (en) 2018-07-24
US20160294237A1 (en) 2016-10-06
JP2016537950A (ja) 2016-12-01
CN105745821A (zh) 2016-07-06
CN105745821B (zh) 2018-12-28
WO2015075364A2 (fr) 2015-05-28
FR3013529A1 (fr) 2015-05-22

Similar Documents

Publication Publication Date Title
EP3072217A2 (fr) Lames de maintien des aimants
EP2896114B2 (fr) Rotor de machine électrique tournante, comportant une masse rotorique dans laquelle sont ménagés des logements
EP3212960B1 (fr) Volant d'inertie dedie au stockage d'energie
WO2013175117A1 (fr) Rotor de machine electrique et dispositif de maintien d'aimants permanents associe
EP2856613B1 (fr) Rotor de machine électrique et ressort pour le maintien radial d'aimant permanent associe
FR3036006B1 (fr) Rotor de machine electrique tournante muni d'au moins un element de plaquage d'un aimant a l'interieur d'une cavite correspondante
WO2015015084A2 (fr) Rotor a aimants permanents
EP2879275A1 (fr) Procédé d'assemblage par rivetage d'un rotor de machine électrique tournante, rotor et compresseur correspondants
EP3229348B1 (fr) Rotor pour machine électrique tournante
FR3033094B1 (fr) Rotor de machine electrique tournante a aimants permanents segmentes
WO2019011760A1 (fr) Rotor de machine électrique tournante muni de languettes de maintien d'aimants permanents
EP4189812A1 (fr) Procédé d'assemblage d'un élément à pôle magnétique pour un rotor pour machine électrique à flux axial
EP3347977A1 (fr) Machine electrique tournante a inertie reduite
FR3041182A1 (fr) Machine electrique tournante a entrefer optimise
FR3036007B1 (fr) Rotor ameliore de machine electrique tournante comportant au moins un element de plaquage d'aimant
WO2018042124A1 (fr) Rotor de machine electrique tournante muni d'au moins une portion deformable pour le remplissage d'une cavité
WO2017042487A9 (fr) Stator de machine electrique muni d'un isolant d'encoche surmoule
WO2017042485A1 (fr) Stator de machine électrique tournante a épaisseur de culasse optimisée
FR3033959A1 (fr) Rotor de machine electrique tournante a configuration d'aimants permanents optimisee
EP4115498A1 (fr) Rotor pour machine electromagnetique a flux axial
WO2016177969A1 (fr) Rotor de machine électrique tournante muni d'un élément de plaquage d'aimant
WO2018146391A1 (fr) Rotor de machine électrique tournante muni de trous d'équilibrage
FR2893459A1 (fr) Machine electrique tournante.
WO2017042516A1 (fr) Stator de machine electrique tournante a ouvertures d'encoches optimisees
FR3060891A1 (fr) Machine electrique tournante comportant des elements de maintien d'aimants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200423

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20201022