EP3066810A1 - Signal transmitting apparatus and signal transmitting method - Google Patents

Signal transmitting apparatus and signal transmitting method

Info

Publication number
EP3066810A1
EP3066810A1 EP15784548.8A EP15784548A EP3066810A1 EP 3066810 A1 EP3066810 A1 EP 3066810A1 EP 15784548 A EP15784548 A EP 15784548A EP 3066810 A1 EP3066810 A1 EP 3066810A1
Authority
EP
European Patent Office
Prior art keywords
signal
phase
quadrature
digital signal
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15784548.8A
Other languages
German (de)
French (fr)
Other versions
EP3066810B1 (en
EP3066810A4 (en
Inventor
Hsin-Hung Chen
Manel Collados Asensio
Wei-Kai Chang
Qian-zhi HUANG
Chi-Tsan Chen
Jun Hu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Singapore Pte Ltd
Original Assignee
MediaTek Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Singapore Pte Ltd filed Critical MediaTek Singapore Pte Ltd
Publication of EP3066810A1 publication Critical patent/EP3066810A1/en
Publication of EP3066810A4 publication Critical patent/EP3066810A4/en
Application granted granted Critical
Publication of EP3066810B1 publication Critical patent/EP3066810B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • the processing device is arranged to generate the first pre-distortion signal at least according to a first combination signal combined by a cube of the in-phase digital signal and a multiplication of the in-phase digital signal and a square of the quadrature digital signal, and to generate the second pre-distortion signal at least according to a second combination signal combined by a cube of the quadrature digital signal and a multiplication of the quadrature digital signal and a square of the in-phase digital signal.
  • the amplifying device 106 is arranged to generate an amplified signal Sa according to the up-converted in-phase signal Sui and the up-converted quadrature signal Suq.
  • the processing device 108 is arranged to generate the first pre-distortion signal I’ a t least according to a first combination signal combined by a cube (i.e. I 3 ) of the in-phase digital signal I and a multiplication (i.e. I ⁇ Q 2 ) of the in-phase digital signal I and a square (i.e. Q 2 ) of the quadrature digital signal Q, and to generate the second pre-distortion signal Q’ a t least according to a second combination signal combined by a cube (i.e. Q 3 ) of the quadrature digital signal Q and a multiplication (i.e. Q ⁇ I 2 ) of the quadrature digital signal Q and a square of the in-phase digital signal (i.e. I 2 ) .
  • the second digital-to-analog converting circuit (DAC) 1042 is arranged to convert the pre-distorted quadrature digital signal Q” into a pre-distorted quadrature analog signal Sq.
  • the second mixing circuit 1044 is arranged to up-convert the pre-distorted quadrature analog signal Sq into the up-converted quadrature signal Suq.
  • the signal transmitting apparatus 100 further comprises a combining circuit 110.
  • the combining circuit 110 is arranged to combine the up-converted in-phase signal Sui and the up-converted quadrature signal Suq into an up-converted signal Su.
  • the amplifying device 106 generates the amplified signal Sa according to the up-converted signal Su.
  • the first pre-distortion signal I’a nd the second pre-distortion signal Q’ a re arranged to pre-distort or calibrate the in-phase digital signal I and the quadrature digital signal Q respectively such that the power of CIM3 (Cross 3 rd order intermodulation) signal or out-of-band 3 rd order intermodulation (OB-IM3) in the amplified signal Sa can be reduced or diminished to an acceptable level.
  • CIM3 Cross-rd order intermodulation
  • OB-IM3 out-of-band 3 rd order intermodulation
  • the digital baseband data is z
  • the digital baseband data z can be expressed by the following equation (3) :
  • the second training device 218 is arranged to control the second computing circuit 2082 and the third computing circuit 2083 to sweep the compensation phase by a predetermined phase range to accordingly generate the amplified signal Sa’ , and the determining device 216 is arranged to further determine a specific phase from the predetermined phase range, and the specific phase corresponds to the specific power of the CIM3 signal in the amplified signal Sa’ .
  • the specific power is a power lower than a threshold power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Abstract

A signal transmitting apparatus includes: a first converting device arranged to generate an up-converted in-phase signal according to an in-phase digital signal and a first pre-distortion signal; a second converting device arranged to generate an up-converted quadrature signal according to a quadrature digital signal and a second pre-distortion signal; an amplifying device arranged to generate an amplified signal according to the up-converted in-phase signal and the up-converted quadrature signal; and a processing device arranged to generate the first pre-distortion signal according to a first combination signal combined by a cube of the in-phase digital signal and a multiplication of the in-phase digital signal and a square of the quadrature digital signal, and to generate the second pre-distortion signal according to a second combination signal combined by a cube of the quadrature digital signal and a multiplication of the quadrature digital signal and a square of the in-phase digital signal.

Description

    SIGNAL TRANSMITTING APPARATUS AND SIGNAL TRANSMITTING METHOD TECHNICAL FIELD
  • The present invention relates to a signal transmitting apparatus and method thereof, and more particularly to a pre-distortion method to reduce the power of CIM3 signal of a signal transmitting apparatus.
  • BACKGROUND
  • In a wireless communications system, the transmitter is used to transmit a wireless signal to the target receiver. When the power of wireless signal is larger, the transmission range is longer. Meanwhile, when the bandwidth of wireless signal is wider, the transmission rate is higher. However, the non-linear characteristic of the transmitter may cause some problems to the wireless system when the power and bandwidth of wireless signal are higher. For the example of LTE (Long Term Evolution) wireless system, a passive mixer is normally used to un-convert the wireless signal into an RF (Radio Frequency) signal, and a programmable gain amplifier or a power amplifier is used to power-up the RF signal for transmission. However, the non-linear characteristic of the passive mixer may introduce distortion around the frequency of the carrier frequency, i.e. the so called in-band distortion. Meanwhile, the passive mixer also generates harmonic signals at the 3rd harmonic frequency of the carrier frequency. Then, the non-linearity of the amplifier may fold the higher order harmonic signals back to the 1st order frequency (i.e. the carrier frequency) of the wireless signal, i.e. the so called CIM3 (Counter 3rd order intermodulation) folding back distortion. As a result, the power-up RF signal is distorted. Moreover, when the data rate of the wireless signal is reduced, e.g. only a partial RB (Resource Block) are used to transmit data, the CIM3 effect is more severe, and the CIM3 signal may affect the adjacent channels nearby the channel of the LTE wireless system. Therefore, how to reduce the effects caused by the non-linear characteristic of a wireless transmitter is an urgent problem in this field.
  • SUMMARY
  • One of the objectives of the present invention is to provide a pre-distortion method to reduce the power of CIM3 signal of a signal transmitting apparatus.
  • According to a first embodiment of the present invention, a signal transmitting apparatus is disclosed. The signal transmitting apparatus comprises a first converting device, a second converting device, an amplifying device, and a processing device. The first converting device is arranged to generate an up-converted in-phase signal according to an in-phase digital signal and a first pre-distortion signal. The second converting device is arranged to generate an up-converted quadrature signal according to a quadrature digital signal and a second pre-distortion signal. The amplifying device is arranged to generate an amplified signal according to the up-converted in-phase signal and the up-converted quadrature signal. The processing device is arranged to generate the first pre-distortion signal at least according to a first combination signal combined by a cube of the in-phase digital signal and a multiplication of the in-phase digital signal and a square of the quadrature digital signal, and to generate the second pre-distortion signal at least according to a second combination signal combined by a cube of the quadrature digital signal and a multiplication of the quadrature digital signal and a square of the in-phase digital signal.
  • According to a second embodiment of the present invention, a signal transmitting method is disclosed. The signal transmitting method comprises the steps of: generating an up-converted in-phase signal according to an in-phase digital signal and a first pre-distortion signal; generating an up-converted quadrature signal according to a quadrature digital signal and a second pre-distortion signal; generating an amplified signal according to the up-converted in-phase signal and the up-converted quadrature signal; generating the first pre-distortion signal at least according to a first combination signal combined by a cube of the in-phase digital signal and a multiplication of the in-phase digital signal and a square of the quadrature digital signal; and generating the second pre-distortion signal at least according to a second combination signal combined by a cube of the quadrature digital signal and a multiplication of the quadrature digital signal and a square of the in-phase digital signal.
  • These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a diagram illustrating a first signal transmitting apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a signal transmitting apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a calibration process performed by a signal transmitting apparatus to determine a target compensation coefficient and a target compensation phase according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the power of CIM3 signal versus the predetermined coefficient range and the predetermined phase range according to an embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Certain terms are used throughout the description and following claims to refer to particular components. As one skilled in the art will appreciate, electronic equipment manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following description and in the claims, the terms "include" and "comprise" are used in an open-ended fashion, and thus should be interpreted to mean "include, but not limited to ... " . Also, the term "couple" is intended to mean either an indirect or direct electrical connection. Accordingly, if one device is coupled to another device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
  • Please refer to FIG. 1, which is a diagram illustrating a first signal transmitting apparatus 100 according to an embodiment of the present invention. The signal  transmitting apparatus 100 comprises a first converting device 102, a second converting device 104, an amplifying device 106, and a processing device 108. The first converting device 102 is arranged to generate an up-converted in-phase signal Sui according to an in-phase digital signal I and a first pre-distortion signal I’ . The second converting device 104 is arranged to generate an up-converted quadrature signal Suq according to a quadrature digital signal Q and a second pre-distortion signal Q’ . The amplifying device 106 may be a programmable gain amplifier or a power amplifier. The amplifying device 106 is arranged to generate an amplified signal Sa according to the up-converted in-phase signal Sui and the up-converted quadrature signal Suq. The processing device 108 is arranged to generate the first pre-distortion signal I’ a t least according to a first combination signal combined by a cube (i.e. I3) of the in-phase digital signal I and a multiplication (i.e. I·Q2) of the in-phase digital signal I and a square (i.e. Q2) of the quadrature digital signal Q, and to generate the second pre-distortion signal Q’ a t least according to a second combination signal combined by a cube (i.e. Q3) of the quadrature digital signal Q and a multiplication (i.e. Q·I2) of the quadrature digital signal Q and a square of the in-phase digital signal (i.e. I2) .
  • More specifically, the processing device 108 generates the first combination signal (i.e. I3-3I·Q2) by subtracting a triple (i.e. 3I·Q2) of the multiplication of the in-phase digital signal I and the square of the quadrature digital signal Q from the cube of the in-phase digital signal I, and generates the second combination signal (i.e. Q3-3Q·I2) by subtracting a triple (i.e. 3Q·I2) of the multiplication of the quadrature digital signal Q and the square of the in-phase digital signal I from the cube of the quadrature digital signal Q. According to the embodiment of the present invention, the processing device 108 further multiplies the first combination signal by a compensation coefficient α to generate the first pre-distortion signal I’ , and multiplies the second combination signal by the compensation coefficient α to generate the second pre-distortion signal Q’ . Then, the processing device 108 further shifts the first combination signal by a compensation phaseto generate the first pre-distortion signal I’ , and shifts the second combination signal by the compensation phaseto generate the second pre-distortion signal Q’ .
  • Accordingly, the pre-distorted in-phase digital signal I” and the pre-distorted quadrature digital signal Q” outputted by the processing device 108 can be expressed by the following equations (1) and (2) respectively:
  • I”=I+I’ ,    (1)
  • Q”=Q+Q’ . (2)
  • According to the above embodiment, to generate the first pre-distortion signal I’ and the second pre-distortion signal Q’ , the processing device 108 comprises a first computing circuit 1081, a second computing circuit 1082, a third computing circuit 1083, a first combining circuit 1084, and a second combining circuit 1085. The first computing circuit 1081 is arranged to generate a first signal term (i.e. α (I3-3I·Q2) ) and a second signal term (i.e. α (Q3-3Q·I2) ) according to the in-phase digital signal I, the quadrature digital signal Q, and the compensation coefficient α. The second computing circuit 1082 is arranged to shift the first signal term by the compensation phaseto generate the first pre-distortion signal I’ . The third computing circuit 1083 is arranged to generate shift the second signal term by the compensation phaseto generate the second pre-distortion signal Q’ . The first combining circuit 1084 is arranged to combine the in-phase digital signal I and the first pre-distortion signal I’ to generate the pre-distorted in-phase digital signal I” . The second combining circuit 1085 is arranged to combine the quadrature digital signal Q and the second pre-distortion signal Q’ to generate the pre-distorted quadrature digital signal Q” .
  • In addition, the first converting device 102 comprises a first digital-to-analog converting circuit (DAC) 1022 and a first mixing circuit 1024. The first mixing circuit 1024 may be a passive mixer. The first digital-to-analog converting circuit 1022 is arranged to convert the pre-distorted in-phase digital signal I” into a pre-distorted in-phase analog signal Si. The first mixing circuit 1022 arranged to up-convert the pre-distorted in-phase analog signal Si into the up-converted in-phase signal Sui. The second converting device 104 comprises a second digital-to-analog converting circuit 1042 and a second mixing circuit 1044. The second mixing circuit 1044 may be a passive mixer. The second digital-to-analog converting circuit (DAC) 1042 is arranged to convert the pre-distorted quadrature digital signal Q” into a pre-distorted quadrature analog signal Sq. The second mixing circuit 1044 is arranged to up-convert the pre-distorted quadrature analog signal Sq into the up-converted quadrature signal Suq. According to the embodiment, the signal transmitting apparatus 100 further comprises a combining circuit 110. The combining circuit 110 is arranged to combine the up-converted in-phase signal Sui and the up-converted quadrature signal Suq into an up-converted signal Su. The amplifying device 106 generates the amplified signal Sa according to the up-converted signal Su.
  • It should be noted that the compensation coefficient α and the compensation phasemay be stored in the first computing circuit 1081 or stored in another storing circuit (not shown) in the signal transmitting apparatus 100.
  • According to embodiment, the first pre-distortion signal I’a nd the second pre-distortion signal Q’ a re arranged to pre-distort or calibrate the in-phase digital signal I and the quadrature digital signal Q respectively such that the power of CIM3 (Cross 3rd order intermodulation) signal or out-of-band 3rd order intermodulation (OB-IM3) in the amplified signal Sa can be reduced or diminished to an acceptable level. It is noted that the CIM3 or OB-IM3 signal is emerged due to the non-linear characteristic of the first mixing circuit 1024, the second mixing circuit 1044, and the amplifying device 106. More specifically, according to the embodiment, the digital baseband data is z, and the digital baseband data z can be expressed by the following equation (3) :
  • I is the in-phase digital signal, and Q is the quadrature digital signal. Then, the modulating output signal of the first mixing circuit 1024 and the second mixing circuit 1044 (i.e. the up-converted signal Su) can be expressed by the following equation (4) :
  • ω is the oscillating frequency of the oscillation signal inputting to the first mixing circuit 1024 and the second mixing circuit 1044 for up-converting the pre-distorted in-phase analog signal Si and the pre-distorted quadrature analog signal Sq respectively. The amplified output signal y of the amplifying device 106 (i.e. the amplified signal Sa) can be expressed by the following equation (5) :
  • y=α1x+α3x3.     (5)
  • If the equation (4) is substituted into equation (5) , then the signal term at the frequency ω produced by x3 can be expressed by the following equation (6) :
  • x3@ω:(2|z|2+6|m|2)z+3mz*2+(z2+2|m|2)z*.  (6)
  • If m=βz*, then the above equation (6) can be expressed by the following equation (7) :
  • m=βz*:(3+6|β|2)|z|2z+3βz*3.     (7)
  • Ifthen the above equation (7) can be expressed by the following equation (8) :
  • If z*= (I-jQ) , then the term 3βz*3 in equation (7) can be expressed by the following equation (9) :
  • 3βz*3=3β(I-jQ)3=3β(I3-3IQ2+j(Q3-3I2Q)).   (9)
  • According to the above equation (9) , it can be seen that the term 3β(I3-3IQ2)can be regarded as the in-phase CIM3 signal appearing in the in-band of the amplified signal Sa, and the term 3β(Q3-3I2Q) can be regarded as the quadrature CIM3 signal appearing in the in-band of the amplified signal Sa. Therefore, to reduce the CMI3 signal of the amplified signal Sa, the present first computing circuit 1081 is arranged to pre-distort the in-phase digital signal I by the first pre-distort signal (i.e. α(I3-3I·Q2) ) , and to pre-distort quadrature digital signal Q by the second pre-distort signal (i.e. α (Q3-3Q·I2) ) as shown in FIG. 1.
  • In addition, when the mixer (i.e. the first mixing circuit 1024 and the second mixing circuit 1044) up-converts the pre-distorted in-phase analog signal Si and the pre-distorted quadrature analog signal Sq by the local oscillation signal, the phase of the 3rd order harmonic signal induced by the mixer is not exactly triple of the phase of the 1st order local oscillation signal. The phase of the 3rd order harmonic signal may be shifted by a phase difference, i.e. phase shift. If the 3rd order harmonic signal has phase shift, the above-mentioned CIM3 signal may also be shifted by the same phase shift. In other words, the first pre-distort signal α (I3-3I·Q2) ) and the second pre-distort signal α (Q3-3Q·I2) should be phase-shifted by an appropriate phase (i.e.) by the second computing circuit 1082 and the third computing circuit 1083 before combining with the in-phase digital signal I and the quadrature digital signal Q respectively.
  • More specifically, if the digital baseband data BB is expressed by the following equation (10) :
  • and the local oscillation signal, which controls the mixer (i.e. the first mixing circuit 1024 and the second mixing circuit 1044) , having a phase shift Φ is expressed by the following equation (11) :
  • then the modulating output signal of the first mixing circuit 1024 and the second mixing circuit 1044 (i.e. the up-converted signal Su) can be expressed by the following equation (12) :
  • The amplified output signal y of the amplifying device 106 (i.e. the amplified signal Sa) can be expressed by the following equation (13) :
  • It can be seen that, in the above equation (13) , the same phase shift Φ will appear in the frequency (ωc-3ωm) , which is the frequency of the CIM3 signal of the amplified signal Sa. Therefore, to precisely reduce the power of the CMI3 signal of the amplified signal Sa, the present second computing circuit 1082 is arranged to shift the first pre-distort signal (i.e. α (I3-3I·Q2) ) by an appropriate phase (i.e. ) before inputting to the first combining circuit 1084, and the third computing circuit 1083 is arranged to shift the second pre-distort signal (i.e. α (Q3-3Q·I2) ) by the appropriate phase (i.e. ) before inputting to the second combining circuit 1085 as shown in FIG. 1.
  • According to the above description, the compensation coefficient α and the compensation phaseare the two critical values need to be determined before the signal transmitting apparatus 100 transmits the real data to the receiver. FIG. 2 is a diagram illustrating a signal transmitting apparatus 200 according to a second embodiment of the present invention. The signal transmitting apparatus 200 comprises a calibration mechanism to determine the compensation coefficient α and the compensation phaseThe signal transmitting apparatus 200 comprises a first converting device 202, a second converting device 204, an amplifying device 206, a processing device 208, a combining circuit 210, a first training device 212, a detecting device 214, a determining device 216, and a second training device 218. The first converting device 202 comprises a first digital-to-analog converting circuit 2022 and a first mixing circuit 2024. The second converting device 204 comprises a second digital-to-analog converting circuit 2042 and a second mixing circuit 2044. The processing device 208 comprises a first computing circuit 2081, a second computing circuit 2082, a third computing circuit 2083, a first combining circuit 2084, and a second combining circuit 2085. The first training device 212, the detecting device 214, the determining device 216, and the second training device 218 are configured as the calibration device for determining the compensation coefficient α and the  compensation phaseIt should be noted that the first converting device 202, the second converting device 204, the amplifying device 206, the processing device 208, and the combining circuit 210 are similar to the first converting device 102, the second converting device 104, the amplifying device 106, the processing device 108, and the combining circuit 110 respectively, thus the detailed description of the above deices is omitted here for brevity.
  • According to the second embodiment, the first training device 212 is arranged to control the first computing circuit 2081 to sweep the compensation coefficient α by a predetermined coefficient range to accordingly generate the amplified signal Sa’ . The detecting device 214 is arranged to detect a power of a CIM3 (Counter inter-modulation signal) in the amplified signal Sa’ . The determining device 216 is arranged to determine a specific coefficient from the predetermined coefficient range, wherein the specific coefficient corresponds to a specific power of the CIM3 signal in the amplified signal Sa’ . The second training device 218 is arranged to control the second computing circuit 2082 and the third computing circuit 2083 to sweep the compensation phaseby a predetermined phase range to accordingly generate the amplified signal Sa’ , and the determining device 216 is arranged to further determine a specific phase from the predetermined phase range, and the specific phase corresponds to the specific power of the CIM3 signal in the amplified signal Sa’ . According to the embodiment, the specific power is a power lower than a threshold power. When the specific coefficient and the specific phase are determined, the specific coefficient and the specific phase can be set to be the compensation coefficient α and the compensation phaserespectively.
  • More specifically, to determine the target compensation coefficient α and the target compensation phaseatesting signals Sti’ , Stq’ is arranged to input to the processing device 208, and the calibration device sweeps the coefficient and the phase to find the appropriate coefficient and phase such that the power of the CIM3 signal in the amplified signal Sa’ is low enough (i.e. lower than a predetermined threshold power) for the system. According to the embodiment, the testing signals Sti’ , Stq’ may be a one-tone signal or a modulation signal. For example, the testing signals Sti’ , Stq’ may be a LTE modulation signal with one RB.
  • Please refer to FIG. 3, which is a flowchart illustrating a calibration process 300 performed by the signal transmitting apparatus 200 to determine the target compensation coefficient α and the target compensation phaseaccording to an  embodiment of the present invention. Provided that substantially the same result is achieved, the steps of the flowchart shown in FIG. 3 need not be in the exact order shown and need not be contiguous; that is, other steps can be intermediate. The calibration process 300 comprises:
  • Step 302: Input the testing signals Sti’ , Stq’ to the processing device 208;
  • Step 304: Use the second training device 212 to control the first computing circuit 2081 to sweep the compensation coefficient by a predetermined coefficient range, use the detecting device 214 to detect the power of the CIM3 signal in the amplified signal Sa’ , and use the determining device 216 to determine an initial compensation coefficient from the predetermined coefficient range in which the initial compensation coefficient corresponds to the minimum power of the CIM3 signal in the amplified signal Sa’ ;
  • Step 306: Use the second training device 218 to control the second computing circuit 2082 and the third computing circuit 2083 to sweep the compensation phase by a predetermined phase range, use the detecting device 214 to detect the power of the CIM3 signal in the amplified signal Sa’ , and use the determining device 216 to determine an initial compensation phase from the predetermined phase range in which the initial compensation phase corresponds to the minimum power of the CIM3 signal in the amplified signal Sa’ ;
  • Step 308: Use the initial compensation coefficient and the initial compensation phase to pre-distort the testing signals Sti’ , Stq’ to generate the amplified signal Sa’ ;
  • Step 310: Determine if the power of the CIM3 signal in the amplified signal Sa’ lower than a predetermined power level, if yes, go to step 312, if no, go to step 314;
  • Step 312: Set the initial compensation coefficient and the initial compensation phase to be the target compensation coefficient α and the target compensation phaserespectively;
  • Step 314: Use the second training device 212 to control the first computing circuit 2081 to sweep again the compensation coefficient by the predetermined coefficient range, use the detecting device 214 to detect the power of the CIM3 signal in the amplified signal Sa’ , and use the  determining device 216 to determine the initial compensation coefficient from the predetermined coefficient range in which the initial compensation coefficient corresponds to the minimum power of the CIM3 signal in the amplified signal Sa’ ; or use the second training device 218 to control the second computing circuit 2082 and the third computing circuit 2083 to sweep gain the compensation phase by the predetermined phase range, use the detecting device 214 to detect the power of the CIM3 signal in the amplified signal Sa’ , and use the determining device 216 to determine the initial compensation phase from the predetermined phase range in which the initial compensation phase corresponds to the minimum power of the CIM3 signal in the amplified signal Sa’ , go to step 312.
  • Please refer to FIG. 4, which is a diagram illustrating the power of the CIM3 signal in the amplified signal Sa’ versus the predetermined coefficient range (i.e. the upper diagram) and the predetermined phase range (i.e. the lower diagram) according to an embodiment of the present invention. It can be seen that when the compensation coefficient is αm (i.e. the initial compensation coefficient) , the CIM3 signal has the minimum power Pm1. When the compensation phase is(i.e. the initial compensation phase) , the CIM3 signal has the minimum power Pm2. Pm1 may different from Pm2. Therefore, when using the compensation coefficient αm and the compensation phaseto pre-distort the testing signals Sti’ , Stq’ in step 308, if the power of the CIM3 signal is not lower than the predetermined power level, the compensation coefficient (or the compensation phase) may need to be sweep again to find another compensation coefficient such that the power of the CIM3 signal can be lower than the predetermined power level (step 314) . It is noted that, in step 314, the present invention is not limited to sweep the compensation coefficient, sweeping the compensation phase also belongs to the scope of the present invention.
  • According to the embodiment, when the target compensation coefficient α and the target compensation phaseare determined by the calibration process 300, the target compensation coefficient α and the target compensation phasemay be stored in a storing circuit or a look-up table. Then, the processing device 208 may directly load the target compensation coefficient α and the target compensation phaseto pre-distort the real data such that the power of the CIM3 signal in the transmitting signal is lower than the predetermined power level.
  • Briefly, the present invention pre-distorts the in-phase digital signal I and the quadrature digital signal Q by the signals derived from the above equations in the baseband process such that the power of the CIM3 signal in the transmitting signal can be diminished or at least lower than a predetermined power level.
  • Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims (34)

  1. A signal transmitting apparatus, comprising:
    a first converting device, arranged to generate an up-converted in-phase signal according to an in-phase digital signal and a first pre-distortion signal;
    a second converting device, arranged to generate an up-converted quadrature signal according to a quadrature digital signal and a second pre-distortion signal;
    an amplifying device, arranged to generate an amplified signal according to the up-converted in-phase signal and the up-converted quadrature signal; and
    a processing device, arranged to generate the first pre-distortion signal at least according to a first combination signal combined by a cube of the in-phase digital signal and a multiplication of the in-phase digital signal and a square of the quadrature digital signal, and to generate the second pre-distortion signal at least according to a second combination signal combined by a cube of the quadrature digital signal and a multiplication of the quadrature digital signal and a square of the in-phase digital signal.
  2. The signal transmitting apparatus of claim 1, wherein the processing device generates the first combination signal by subtracting a triple of the multiplication of the in-phase digital signal and the square of the quadrature digital signal from the cube of the in-phase digital signal, and generates the second combination signal by subtracting a triple of the multiplication of the quadrature digital signal and the square of the in-phase digital signal from the cube of the quadrature digital signal.
  3. The signal transmitting apparatus of claim 2, wherein the processing device further multiplies the first combination signal by a compensation coefficient to generate the first pre-distortion signal, and multiplies the second combination signal by the compensation coefficient to generate the second pre-distortion signal.
  4. The signal transmitting apparatus of claim 3, wherein the processing device further shifts the first combination signal by a compensation phase to generate the first pre-distortion signal, and shifts the second combination signal by the compensation phase to generate the second pre-distortion signal.
  5. The signal transmitting apparatus of claim 1, wherein the processing device comprises:
    a first computing circuit, arranged to generate a first signal term and a second  signal term according to the in-phase digital signal, the quadrature digital signal, and a compensation coefficient;
    a second computing circuit, arranged to shift the first signal term by a compensation phase to generate the first pre-distortion signal;
    a third computing circuit, arranged to generate shift the second signal term by the compensation phase to generate the second pre-distortion signal;
    a first combining circuit, arranged to combine the in-phase digital signal and the first pre-distortion signal to generate a pre-distorted in-phase digital signal; and
    a second combining circuit, arranged to combine the quadrature digital signal and the second pre-distortion signal to generate a pre-distorted quadrature digital signal;
    wherein the first signal term is expressed by α (I3-3I·Q2) , the second signal term is expressed by α (Q3-3Q·I2) , wherein I is the in-phase digital signal, Q is the quadrature digital signal, and α is the compensation coefficient.
  6. The signal transmitting apparatus of claim 5, wherein the first converting device comprises:
    a first digital-to-analog converting circuit, arranged to convert the pre-distorted in-phase digital signal into a pre-distorted in-phase analog signal; and
    a first mixing circuit, arranged to up-convert the pre-distorted in-phase analog signal into the up-converted in-phase signal; and
    the second converting device comprises:
    a second digital-to-analog converting circuit, arranged to convert the pre-distorted quadrature digital signal into a pre-distorted quadrature analog signal; and
    a second mixing circuit, arranged to up-convert the pre-distorted quadrature analog signal into the up-converted quadrature signal; and
    the signal transmitting apparatus further comprises:
    a third combining circuit, arranged to combine the up-converted in-phase signal and the up-converted quadrature signal into an up-converted signal;
    wherein the amplifying device generates the amplified signal according to the up-converted signal.
  7. The signal transmitting apparatus of claim 5, wherein the processing device further comprises:
    a storing circuit, arranged to store the compensation coefficient and the compensation phase.
  8. The signal transmitting apparatus of claim 5, further comprising:
    a first training device, arranged to control the first computing circuit to sweep the compensation coefficient by a predetermined coefficient range to accordingly generate the amplified signal;
    a detecting device, arranged to detect a power of a counter inter-modulation signal in the amplified signal;
    a determining device, arranged to determine a specific coefficient from the predetermined coefficient range, wherein the specific coefficient corresponds to a specific power of the counter inter-modulation signal in the amplified signal.
  9. The signal transmitting apparatus of claim 8, wherein the specific power is a power lower than a threshold power.
  10. The signal transmitting apparatus of claim 8, wherein the determining device further sets the specific coefficient to be the compensation coefficient.
  11. The signal transmitting apparatus of claim 8, further comprising:
    a second training device, arranged to control the second computing circuit to sweep the compensation phase by a predetermined phase range to accordingly generate the amplified signal;
    wherein the determining device is arranged to further determine a specific phase from the predetermined phase range, and the specific phase corresponds to the specific power of the counter inter-modulation signal in the amplified signal.
  12. The signal transmitting apparatus of claim 11, wherein the determining device further sets the specific phase to be the compensation phase.
  13. The signal transmitting apparatus of claim 5, further comprising:
    a training device, arranged to control the second computing circuit to sweep the compensation phase by a predetermined phase range to accordingly generate the amplified signal;
    a detecting device, arranged to detect a power of a counter inter-modulation signal in the amplified signal;
    a determining device, arranged to determine a specific phase from the predetermined phase range, wherein the specific phase corresponds to a specific power of the counter inter-modulation signal in the amplified signal.
  14. The signal transmitting apparatus of claim 13, wherein the specific power is a power lower than a threshold power.
  15. The signal transmitting apparatus of claim 13, wherein the determining  device further sets the specific phase to be the compensation phase.
  16. The signal transmitting apparatus of claim 5, further comprising:
    a training device, arranged to generate the in-phase digital signal and the quadrature digital signal.
  17. The signal transmitting apparatus of claim 16, wherein the in-phase digital signal and the quadrature digital signal are one-tone signal or a modulation signal.
  18. A signal transmitting method, comprising:
    generating an up-converted in-phase signal according to an in-phase digital signal and a first pre-distortion signal;
    generating an up-converted quadrature signal according to a quadrature digital signal and a second pre-distortion signal;
    generating an amplified signal according to the up-converted in-phase signal and the up-converted quadrature signal;
    generating the first pre-distortion signal at least according to a first combination signal combined by a cube of the in-phase digital signal and a multiplication of the in-phase digital signal and a square of the quadrature digital signal; and
    generating the second pre-distortion signal at least according to a second combination signal combined by a cube of the quadrature digital signal and a multiplication of the quadrature digital signal and a square of the in-phase digital signal.
  19. The signal transmitting method of claim 18, wherein the step of generating the first pre-distortion signal at least according to the first combination signal further comprises:
    generating the first combination signal by subtracting a triple of the multiplication of the in-phase digital signal and the square of the quadrature digital signal from the cube of the in-phase digital signal; and
    the step of generating the second pre-distortion signal at least according to the second combination signal further comprises:
    generating the second pre-distortion signal by subtracting a triple of the multiplication of the quadrature digital signal and the square of the in-phase digital signal from the cube of the quadrature digital signal.
  20. The signal transmitting method of claim 19, wherein the step of generating the first pre-distortion signal at least according to the first combination signal further comprises:
    multiplying the first combination signal by a compensation coefficient to generate the first pre-distortion signal; and
    the step of generating the second pre-distortion signal at least according to the second combination signal further comprises:
    multiplying the second combination signal by the compensation coefficient to generate the second pre-distortion signal.
  21. The signal transmitting method of claim 20, wherein the step of generating the first pre-distortion signal at least according to the first combination signal further comprises:
    shifting the first combination signal by a compensation phase to generate the first pre-distortion signal; and
    the step of generating the second pre-distortion signal at least according to the second combination signal further comprises:
    shifting the second combination signal by the compensation phase to generate the second pre-distortion signal.
  22. The signal transmitting method of claim 18, wherein the step of generating the first pre-distortion signal and the second pre-distortion signal comprises:
    generating a first signal term and a second signal term according to the in-phase digital signal, the quadrature digital signal, and a compensation coefficient;
    shifting the first signal term by a compensation phase to generate the first pre-distortion signal;
    shifting the second signal term by the compensation phase to generate the second pre-distortion signal;
    combining the in-phase digital signal and the first pre-distortion signal to generate a pre-distorted in-phase digital signal; and
    combining the quadrature digital signal and the second pre-distortion signal to generate a pre-distorted quadrature digital signal;
    wherein the first signal term is expressed by α (I3-3I·Q2) , the second signal term is expressed by α (Q3-3Q·I2) , wherein I is the in-phase digital signal, Q is the quadrature digital signal, and α is the compensation coefficient.
  23. The signal transmitting method of claim 22, wherein the step of generating the up-converted in-phase signal comprises:
    converting the pre-distorted in-phase digital signal into a pre-distorted in-phase analog signal; and
    up-converting the pre-distorted in-phase analog signal into the up-converted in-phase signal; and
    the step of generating the up-converted quadrature signal comprises:
    converting the pre-distorted quadrature digital signal into a pre-distorted quadrature analog signal; and
    up-converting the pre-distorted quadrature analog signal into the up-converted quadrature signal; and
    the signal transmitting method further comprises:
    combining the up-converted in-phase signal and the up-converted quadrature signal into an up-converted signal;
    wherein the amplified signal is generated by amplifying the up-converted signal.
  24. The signal transmitting method of claim 22, further comprising:
    storing the compensation coefficient and the compensation phase.
  25. The signal transmitting method of claim 22, further comprising:
    sweeping the compensation coefficient by a predetermined coefficient range to accordingly generate the amplified signal;
    detecting a power of a counter inter-modulation signal in the amplified signal;
    determining a specific coefficient from the predetermined coefficient range, wherein the specific coefficient corresponds to a specific power of the counter inter-modulation signal in the amplified signal.
  26. The signal transmitting method of claim 25, wherein the specific power is a power lower than a threshold power.
  27. The signal transmitting method of claim 25, further comprising:
    setting the specific coefficient to be the compensation coefficient.
  28. The signal transmitting method of claim 25, further comprising:
    sweeping the compensation phase by a predetermined phase range to accordingly generate the amplified signal; and
    determining a specific phase from the predetermined phase range, and the specific phase corresponds to the specific power of the counter inter-modulation signal in the amplified signal.
  29. The signal transmitting method of claim 28, further comprising:
    setting the specific phase to be the compensation phase.
  30. The signal transmitting method of claim 22, further comprising:
    sweeping the compensation phase by a predetermined phase range to accordingly  generate the amplified signal;
    detecting a power of a counter inter-modulation signal in the amplified signal;
    determining a specific phase from the predetermined phase range, wherein the specific phase corresponds to a specific power of the counter inter-modulation signal in the amplified signal.
  31. The signal transmitting method of claim 30, wherein the specific power is a power lower than a threshold power.
  32. The signal transmitting method of claim 30, further comprising:
    setting the specific phase to be the compensation phase.
  33. The signal transmitting method of claim 22, further comprising:
    generating the in-phase digital signal and the quadrature digital signal.
  34. The signal transmitting method of claim 33, wherein the in-phase digital signal and the quadrature digital signal are one-tone signal or a modulation signal.
EP15784548.8A 2015-01-16 2015-01-16 Signal transmitting apparatus and signal transmitting method Not-in-force EP3066810B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070871 WO2016112532A1 (en) 2015-01-16 2015-01-16 Signal transmitting apparatus and signal transmitting method

Publications (3)

Publication Number Publication Date
EP3066810A1 true EP3066810A1 (en) 2016-09-14
EP3066810A4 EP3066810A4 (en) 2017-03-08
EP3066810B1 EP3066810B1 (en) 2018-05-16

Family

ID=56405132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15784548.8A Not-in-force EP3066810B1 (en) 2015-01-16 2015-01-16 Signal transmitting apparatus and signal transmitting method

Country Status (4)

Country Link
US (1) US9794105B2 (en)
EP (1) EP3066810B1 (en)
CN (1) CN107005527B (en)
WO (1) WO2016112532A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10171034B2 (en) 2016-04-08 2019-01-01 Mediatek Inc. Phase-rotated harmonic-rejection mixer apparatus
US10419046B2 (en) * 2016-05-26 2019-09-17 Mediatek Singapore Pte. Ltd Quadrature transmitter, wireless communication unit, and method for spur suppression
US10009050B2 (en) * 2016-05-26 2018-06-26 Mediatek Singapore Pte. Ltd. Quadrature transmitter, wireless communication unit, and method for spur suppression
WO2019103747A1 (en) * 2017-11-23 2019-05-31 Intel Corporation Apparatus and method for driving a digital-to-analog converter, and apparatuses and methods for generating a radio frequency signal
EP3917038A4 (en) * 2019-03-29 2022-03-02 Huawei Technologies Co., Ltd. Terminal device, transmitter, baseband chip, and radiofrequency signal generating method
US20240340030A1 (en) * 2023-04-10 2024-10-10 Avago Technologies International Sales Pte. Limited Digital cancellation of cim3 distortion for digital transmitters

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2339657B (en) * 1998-07-16 2003-04-16 Ifr Ltd Method and apparatus for compensating for distorsion in IQ modulators
DE60306619T2 (en) * 2002-01-18 2007-06-28 Siemens Ag IMPROVEMENT IN OR FOR PERFORMANCE AMPLIFIERS
JP4091047B2 (en) * 2002-10-31 2008-05-28 深▲川▼市中▲興▼通▲訊▼股▲分▼有限公司 Broadband predistortion linearization method and system
US7310387B2 (en) * 2003-12-26 2007-12-18 Electronics And Telecommunications Research Institute Apparatus for compensating DC offsets, gain and phase imbalances between I-channel and Q-channel in quadrature transceiving system
US8204456B2 (en) 2010-09-15 2012-06-19 Fujitsu Semiconductor Limited Systems and methods for spurious emission cancellation
JP5282172B2 (en) * 2010-12-23 2013-09-04 華為技術有限公司 Signal processing apparatus and signal processing method
US9379742B2 (en) * 2011-04-21 2016-06-28 Mediatek Singapore Pte. Ltd. RF transmitter, integrated circuit device, wireless communication unit and method therefor
US8995571B2 (en) 2013-03-14 2015-03-31 Analog Devices Global Baseband digital pre-distortion architecture
TWI536731B (en) * 2013-08-20 2016-06-01 瑞昱半導體股份有限公司 Pre-distortion method, pre-distortion apparatus and machine readable medium
EP2876852A1 (en) * 2013-11-22 2015-05-27 Sequans Communications Limited Transmitter Linearisation
CN104267385B (en) * 2014-10-16 2016-09-21 中国科学院电子学研究所 There is the LFM waveforms generator of predistortion function

Also Published As

Publication number Publication date
WO2016112532A1 (en) 2016-07-21
US9794105B2 (en) 2017-10-17
CN107005527B (en) 2019-12-20
US20170180181A1 (en) 2017-06-22
CN107005527A (en) 2017-08-01
EP3066810B1 (en) 2018-05-16
EP3066810A4 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2016112532A1 (en) Signal transmitting apparatus and signal transmitting method
US8594232B2 (en) System for predistortion and post-distortion correction of both a receiver and transmitter during calibration
JP6583096B2 (en) Distortion compensation apparatus and distortion compensation method
CN101167325B (en) Polar modulation transmitter circuit and communications device
US20060034356A1 (en) Transmission/reception arrangement and method for reducing nonlinearities in output signals from a transmission/reception arrangement
US11012105B2 (en) Digital predistortion of signals
US8238838B2 (en) Calibration of transmit signals in FDD-transceivers
US9450544B2 (en) Pre-distortion method, associated apparatus and non-transitory machine readable medium
US9596120B2 (en) Signal transmission apparatus, distortion compensation apparatus, and signal transmission method
US11973472B2 (en) Digitally assisted radio frequency transmitter
KR20130126889A (en) Semiconductor device
US9900016B1 (en) Compensation of non-linearity at digital to analog converters
US11516054B2 (en) Polar transmitter with feedthrough compensation
EP2654216A2 (en) Saw-less receiver with notch at transmitter frequency
US8792583B2 (en) Linearization in the presence of phase variations
US7599669B2 (en) Transmitting arrangement, transreceiver with a transmitting arrangement and method for signal processing
US9438177B2 (en) Pre-distortion method and associated apparatus and non-transitory machine readable medium
WO2022000529A1 (en) Amplitude offset calibration method, device and storage medium
EP3306817B1 (en) Predistortion system and method
US9692462B2 (en) Transmitter and method for lowering signal distortion
KR20100039255A (en) Apparatus and method for compensating iq mismatch in portable communication system
US9344143B2 (en) Signal transmitting device and signal transmitting method
KR101901753B1 (en) Radio Frequency Systems and Methods for Polar Phase Distortion Calibration
JP2017098711A (en) Distortion compensation device and distortion compensation method
JP2006135612A (en) Transmission apparatus and distortion compensating method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20170203

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 27/36 20060101AFI20170130BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHEN, HSIN-HUNG

Inventor name: HU, JUN

Inventor name: CHANG, WEI-KAI

Inventor name: COLLADOS ASENSIO, MANEL

Inventor name: HUANG, QIAN-ZHI

Inventor name: CHEN, CHI-TSAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04B 1/04 20060101ALI20180104BHEP

Ipc: H04L 27/36 20060101AFI20180104BHEP

INTG Intention to grant announced

Effective date: 20180207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015011298

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1000545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1000545

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015011298

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015011298

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516