EP3064262A1 - Filter medium, method for producing a filter medium and filter element with a filter medium - Google Patents
Filter medium, method for producing a filter medium and filter element with a filter medium Download PDFInfo
- Publication number
- EP3064262A1 EP3064262A1 EP16157576.6A EP16157576A EP3064262A1 EP 3064262 A1 EP3064262 A1 EP 3064262A1 EP 16157576 A EP16157576 A EP 16157576A EP 3064262 A1 EP3064262 A1 EP 3064262A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nanofibers
- region
- filter medium
- layer
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002121 nanofiber Substances 0.000 claims abstract description 109
- 239000000835 fiber Substances 0.000 claims abstract description 89
- 238000000034 method Methods 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 13
- 238000001523 electrospinning Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 239000004952 Polyamide Substances 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- -1 polypropylene Polymers 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000446 fuel Substances 0.000 claims description 2
- 239000003921 oil Substances 0.000 claims description 2
- 238000009760 electrical discharge machining Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 58
- 239000012530 fluid Substances 0.000 description 11
- 230000003628 erosive effect Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000002318 adhesion promoter Substances 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000012465 retentate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000239290 Araneae Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011118 depth filtration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004750 melt-blown nonwoven Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
- B01D39/163—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/0093—Making filtering elements not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/02—Types of fibres, filaments or particles, self-supporting or supported materials
- B01D2239/025—Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0631—Electro-spun
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0654—Support layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1233—Fibre diameter
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/04—Filters
Definitions
- the invention relates to a filter medium for filtering fluids, in particular for filtering liquids, as well as a filter element with such a filter medium and a method for producing such a filter medium, in particular for use as Erodierfilter.
- nanofibers on a much coarser support layer.
- the application of fine fibers to a support layer serves to stabilize the fine fiber layer in the filtration operation but also during processing, especially when folding the nanofibers.
- a layered structure is also used in the tuning of media for the requirements of depth filtration. These media are usually followed by finer fibers in the direction of flow on coarser fibers. This is intended to achieve a fractionated separation of the particles in the depth of the medium.
- the goal here is a uniform possible loading of the filter medium and thus the optimal utilization of the pore volume available for the particle storage in the filter medium.
- the EP 2 222 385 A2 discloses, for example, nanofiber layer with a gradient in fiber diameter. However, this decreases in the flow direction.
- erosion filter elements with filter media made of nonwoven fabric are already out of the EP 1 764 144 A1 to which reference is made with respect to the structure of an erosion filter in the context of the present invention.
- the structure of the filter medium used has a nanofiber layer which is applied to a cellulose support layer.
- the object of the present invention is, starting from the EP 1 764 144 A1 to provide a foldable filter medium having at least one nanofiber layer which has better resistance.
- a filter medium according to the invention comprises a first media layer and a second media layer, which second media layer is arranged behind the first media layer in a designated flow direction of the filter medium, wherein the first media layer is formed as a nanofiber layer with nanofibers and wherein the second media layer as a support layer with a average basis weight of more than 60 g / m 2 is formed.
- the first media layer of the filter medium according to the invention has a first region on the inflow side and a second region on the outflow side toward the second medium layer.
- the nanofibers of the first region have a smaller average fiber diameter than the nanofibers of the second region.
- the filter medium according to the invention has an outstanding filter effect with comparatively low pressure loss and, despite the use of very fine nanofibers, is resistant to mechanical influence and chemically aggressive substances.
- the first region For a particularly good filter effect, it is advisable to use in the first region a particularly high number of nanofibers with smaller fiber diameters. Therefore, it is advantageous if more than 75% of the nanofibers of the first region have a smaller fiber diameter than the nanofibers of the second region.
- filter media for example from the EP 2 398 633 A1 which are constructed in multiple layers and which have loosely arranged nanofibers between the layers.
- these nanofibers can increasingly mix after prolonged use, so that the gradient structure of the nanofiber layer is gradually lost. Therefore, it is advantageous if the nanofibers of the first region are deposited on the nanofibers of the second region, in particular by means of an electrospinning process.
- the nanofibers of the first region adhere predominantly to the nanofibers of the second region, predominantly through mold closure and / or surface interactions.
- an adhesion the nanofibers of the first region as well as of the second region by an adhesion promoter which is located on the second medium layer, take place. This creates a beneficial additional reinforcement of adhesion.
- the first region may consist of nanofibers having a mean fiber diameter of 50 to 400 nm, preferably 50 to 250 nm, more preferably 50 to 150 nm. These very fine nanofibers enable optimal filter behavior.
- the nanofibers of the first region are preferably produced in the electrospinning process.
- the second region may consist of nanofibers with a mean fiber diameter of 150 to 1000 nm, preferably 150 to 500 nm, particularly preferably 150 to 299 nm. These rather coarser nanofibers support the nanofibers of the first region, increase the resistance of the fibers of the first region, and aid in filtering the fluid to be filtered. Nanofibers of the second region are preferably produced in the electrospinning process. Compared to fiber composites from other manufacturing processes, for example compared to spunbonded nonwovens, the electrospinning process can have advantages in that, in particular, smaller fiber diameters, thinner design of effective layers and lower scattering within the fiber layer with respect to fiber diameter or pore sizes are made possible.
- the nanofibers of the first and / or the second region are particularly preferably one-component nanofibers. These are easier and processable with more uniform properties to a filter medium such as bicomponent and / or split fibers.
- All nanofibers of the first media layer are particularly preferably produced by the electrospinning method.
- the nanofibers of the first and / or the second region are arranged one above the other like a spider web. More preferably, the nanofibers of the first and / or second region have a substantially round cross-section. This in particular allows somewhat more uniform properties, since a change in position of a single fiber, in particular a rotation, does not lead to a significant change in the cross section of the individual fiber transversely to the flow direction.
- the nanofibers of the first material layer may preferably consist of more than 75% of polyamide nanofibers, in particular 100% of polyamide. Nanofibers made of polyamide are time efficient and inexpensive to produce.
- the first material layer preferably has a basis weight of less than 20 g / m 2 , preferably less than 10 g / m 2 , more preferably less than 1 g / m 2 .
- a high separation efficiency with the lowest possible pressure loss, sufficient overall stability and low material costs are achieved.
- nanofiber materials according to the present invention or materials which can be spun into nanofibers according to the present invention are polyolefins, polyacetals, polyesters, cellulose esters, cellulose ethers, polyalkylene sulfides, polyarylene oxides, polysulfones, modified polysulfones and / or mixtures of these polymers.
- Particularly preferred materials of the aforementioned classes of polymers which are suitable for the abovementioned nanofibers are in particular polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate (and other acrylic resins), polystyrenes and / or copolymers of the abovementioned polymers comprising block copolymers of the type ABBA, and also polyvinylidene fluoride, polyvinylidene chloride , Polyvinyl alcohol in various degrees of hydrolysis (87% to 99.5%) in crosslinked or uncrosslinked form.
- the mean fiber diameter of the nanofibers increases at least by a factor of 1.5 to 5.0 from the first to the second region; but preferably at least by a factor of 1.5 to 3.0. This refers to the total number of fibers in the first and in the second range. Of course, individual fibers in the first region may also be thinner than in the second region. However, on average over all fibers located in the first region, the fiber diameter increases by the aforementioned factor compared to all the fibers in the second region.
- the second material layer ie the support layer, can advantageously be configured as a meltblown or spunbond layer, or as a meltblown or spunbonded layer. These fiber webs have proven to filter fluids, especially liquids.
- the second material layer may consist of at least 50%, in particular at least 75% of the fibers of the second material layer of a polyester and / or a polypropylene.
- the second material layer may be formed as a cellulose-based layer.
- the second material layer ideally consists of particularly resistant fibers.
- the fibers of this material layer can therefore advantageously have an average fiber diameter of more than 3 ⁇ m.
- a filter element according to the invention has a filter medium according to the invention, wherein the filter medium of the filter element is folded.
- the filter element may particularly preferably be formed into a round body and wherein the filter element has two end disks, between which the round body formed from the filter medium is arranged, in particular edged.
- the filter element may also contain other components, e.g. have a cylindrical support body as a plastic molding or metal.
- the round body may be formed star-shaped.
- the round body in the form according to the DE 10 2009 057 438 B3 be formed, whose disclosure in terms of the shape and design of a filter element in the context of the present invention, reference is made in its entirety.
- the filter element can be designed in particular as a filter cartridge and be used for filtering liquids, such as water, oil or fuel.
- filter element is its use as an erosion filter in an EDM machine.
- the mean fiber diameter of the respective regions of the first material layer can be matched to the particle spectrum of the medium to be filtered. As a result, an optimal filter cake is formed, which prevents the blocking of the underlying fibers.
- the filter element When used according to the invention as an erosion filter, the filter element must also be able to withstand a higher mechanical load than with air filters.
- the first media layer can consist of more than two regions with nanofibers.
- the average fiber diameter of the nanofibers of the regions preferably increases from region to region from the upstream side to the second material layer.
- the invention further relates to a method for producing a filter medium, in particular a filter medium for liquid filtration, the medium comprising a first media layer and a second media layer, which second media layer can be arranged in an intended flow direction of the filter medium, in particular behind the first media layer, wherein the first media layer as a nanofiber layer is formed with nanofibers and wherein the second media layer is formed as a support layer with an average basis weight of more than 60 g / m 2 , wherein the support layer is provided and the nanofiber layer is applied with at least a first region and a second region on the support layer with the second region oriented toward the second media layer and the nanofibers of the first region having a smaller average fiber diameter than the nanofibers of the second region.
- the first and / or the second region of the nanofibers is preferably produced in the electrospinning process.
- FIG. 1 an embodiment of a filter medium 1 according to the invention is shown.
- this filter medium has two layers of material 2 and 3, the first of the two layers of material 2 being in an upper and a lower one Section 4, 5 divided.
- the filter medium can be used to filter a fluid.
- a preferred application is the use as a particle filter for the purification of liquids.
- filter medium refers to a structure for filtering a fluid.
- a retentate is formed on or in the filter medium and a filtrate, the purified fluid.
- particles are filtered out as a retentate from the fluid through the filter medium and thus removed from the fluid.
- particles and other substances can be completely or only partially removed from the fluid to be filtered.
- the filter medium may be provided as part of a filter element.
- the filter element may e.g. be a replaceable part in a machine or plant.
- Such an exchangeable part may e.g. be a filter cartridge. If a filter medium becomes entangled with retentate, the filter cartridge can be replaced without affecting the entire machine.
- the two layers of material 2 and 3 of the filter medium 1 are arranged one above the other in the flow direction 6.
- a further material layer on the arrival and / or downstream side 7, 8 can be, for example, a coarse-meshed network structure which additionally holds the material layers 2 and 3 together. Other material layers are conceivable.
- a first material layer 2 is a nanofiber nonwoven.
- nanofibers includes fibers having a mean fiber diameter in a range between one nanometer and 1000 nanometers.
- the fibers which form the first material layer 2 are more than 90% nanofibers. More preferably, more than 95%, especially 99%, of the fibers containing the material layer are nanofibers.
- the first material layer 2 is the material layer of the two material layers 2 and 3, which is arranged on the inflow side 7.
- the first material layer 2 has nanofibers with different mean fiber diameters. While finer nanofibers, so Nanofibers with a smaller average fiber diameter, are to be found in the region of the upstream side 7 of the material layer 2, coarser nanofibers, so nanofibers with a larger average fiber diameter on the side of the material layer 2 are found, which is connected to the second material layer 3.
- a first region 4 is arranged with fibers consisting of fine nanofibers with a mean fiber diameter of 50 to 400 nm, preferably 50 to 250 nm, more preferably 50 to 150 nm.
- a second region 5 is arranged with fibers, which consist of coarse nanofibers with a mean fiber diameter of 150 to 1000 nm, preferably 150 to 500 nm.
- the fibers of the first region 4 have a smaller average fiber diameter than the fibers of the second region 5.
- the average fiber diameter can be determined from an image section from above. In this case, the fiber diameter of all fibers located in the image section can be determined and an average of these fiber diameters can be determined. Particularly preferred is the average fiber diameter by the method according to the DE 10 2009 043 273 A1 determines which patent application is fully referenced in the context of the present invention.
- the 4 and 5 nanofibers can be made by a meltblown or electrospinning process.
- the uniformity of the fibers produced an essential quality criterion. It is intended to enable the customer to reproducibly produce fibers with a diameter that is as precisely defined as possible with little scattering.
- the first material layer 2 may also be formed in multiple layers with two or more partial layers, which are arranged, for example, loosely, that is, without cohesive connection, one above the other.
- the nanofibers of the regions 4 and / or 5 can be advantageously realized by means of a wet-laying process.
- a transition region between the partial layers can occur, in which both coarse and fine nanofibers are arranged.
- the material layers thus merge into each other between the areas 4 and 5.
- the structure of the first material layer 2 thus has a gradient structure with respect to the fiber diameter, in which the mean fiber diameter of the nanofibers in the flow direction 6 increases.
- a gradient of the fiber diameter in the sense of the present invention may mean both a uniform increase but preferably also an uneven, in particular stepwise, increase in the fiber diameter in the flow direction 6. This increase in average fiber diameter increases by a factor of 1.5-5.0 from the first to the second region, based on the total number of nanofibers in the first and second regions 4 and 5; preferably by a factor of 1.5-3.0.
- the average basis weight of the first material layer 2 is preferably less than 1 g / m 2 .
- the nanofibers of the first material layer 2 can be made of different materials in the regions 4 and 5. In a particularly preferred embodiment of the invention, however, the nanofibers of the first material layer are all made of the same material. Particularly preferably, the nanofibers may be polyamide fibers.
- the nanofibers of the first material layer 2 can all be produced in an electrospinning process, so that the entire nanofiber layer can be realized by this production process.
- the nanofibers of the first region adhere to the nanofibers of the second region by form closure and / or surface interactions.
- connection of the first and the second material layers 2 and 3 can be chosen arbitrarily.
- the first material layer 2 may be deposited in a preferred embodiment only on the second material layer 3.
- an adhesion promoter 9 is arranged between the two material layers 2 and 3.
- an additional adhesion of the nanofibers of the first region 4 in addition to the Nanofibers of the second region 5 by the bonding agent 9, which is located on the second medium layer 3, can be achieved. This creates a beneficial additional reinforcement of adhesion.
- adhesion promoter 9 is a variety of substances in question.
- Preferred adhesion promoters may be acrylic- and / or polyurethane-based and applied in particular in dispersion form. These adhesion promoters are particularly preferred since they dry at comparatively low temperatures.
- the nanofibers of the first and second regions 4 and 5 are preferably deposited on each other like spider webs and can optionally be connected to the second material layer 3 by means of a bonding agent.
- the second material layer 3 is a support layer made of a nonwoven fabric. This can e.g. be designed as a meltblown fiber fleece or a spunbond fiber fleece.
- the average basis weight of the second material layer 3 may preferably be more than 60 g / m 2 .
- the determination of the average basis weight is carried out according to DIN / EN ISO 536 for paper layers and according to DIN / EN 29073-1 for nonwovens.
- the average basis weight of the support layer is thus at least 60 times greater than the average basis weight of the nanofiber nonwoven.
- the mean fiber diameter of the fibers of the second material layer is more than 3 ⁇ m.
- the fibers of the second material layer 3 may preferably be polyester and / or polypropylene fibers. Also cellulosic fibers can be preferably used for the second material layer.
- the filter medium according to the invention can be used both for filtering gases and liquids.
- the use of the filter medium when used as a particulate filter in filtration of liquids brings particular advantages.
- liquid filtration due to the higher flow forces compared to gas filtration, special demands are placed on the stability of the filter media. Therefore, an increased mechanical stability is particularly needed here.
- Thin fine fiber overlays, such as nanofiber nets can by themselves withstand these flow forces only when they are in a sufficiently thick layer. Since the pressure loss in the flow through a fiber bed with As the specific surface area and layer thickness of the fibers increase, thick and thus stable microfibers would have an uneconomically high pressure loss. Therefore, nanofibers are stabilized in each case by a carrier structure with comparatively coarse fibers.
- the first media layer 2 can only be placed on the second media layer 3.
- the two media can also be glued together or welded to each other selectively or edge-sided. by ultrasonic welding.
- the structure of the nanofiber layer can be adapted to the requirements of the filtration application and the carrier material. If the nanofiber layer is supported, for example, by a relatively open-pore spunbonded non-woven material as a second material layer 3, then the fiber layer in the lower region 5 of the nanofiber layer can be selected to be stronger than in the case of a meltblown nonwoven carrier.
- Thick fibers are known to be mechanically and chemically more resistant than thin fibers. A major difficulty in the production of nanofiber media is to ensure sufficient stability of this fine fiber.
- the second media layer 3 can be relatively coarse-pored and therefore cost-effective.
- the coating of the carrier or support layer with a nanofiber supporting layer and the Feinstmaschineauflage can be done by means of electrospinning in one pass.
- FIGS. 2a and 2b show different variants of a filter element 10 with a pleated filter medium 1 according to the embodiment of the Fig. 1 ,
- the filter medium 1 is pleated star-shaped folded into a round body, which is closed at both ends with a first 11 and a second end plate 12. These two end plates 11, 12 are used for receiving and fixing and for sealing the filter element 10 in a housing of a filter system.
- On the outer circumference of the round body of the filter medium 1 fold edges are to be seen, which are parallel to a longitudinal direction of the support layer of the filter medium 1, while a transverse direction the support layer is perpendicular thereto.
- the flow direction 13 of the filter element 10 with a fluid is radially inwardly into the round body of the filter medium 1 inwards, where the filtered fluid can then flow off axially through an outlet from the filter element 10 again.
- the filter element 10 can be used, for example, as an erosion filter in an erosion machine and be used to remove particles from a liquid, in particular from water or an aqueous solution.
- the mass of the polymer material used per surface section for forming the nanofibers of the first region 4 of the first material layer 2 may preferably be from 20% to 5000% of the mass of the polymer material used to form the nanofibers of the second region 5 of the first material layer 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Filtering Materials (AREA)
- Nonwoven Fabrics (AREA)
- Laminated Bodies (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Filtration Of Liquid (AREA)
Abstract
Ein Filtermedium (1), umfassend eine erste Medienlage (2) und eine zweite Medienlage (3), welche zweite Medienlage (3) in einer bestimmungsgemäßen Strömungsrichtung (6) des Filtermediums (1) hinter der ersten Medienlage (2) angeordnet ist, wobei die erste Medienlage (2) als eine Nanofaserlage mit Nanofasern ausgebildet ist und wobei die zweite Medienlage (3) als eine Stützschicht mit einem mittleren Flächengewicht von mehr als 60 g/m 2 ausgebildet ist, wobei die erste Medienlage anströmseitig einen ersten Bereich (4) aufweist und abströmseitig zur zweiten Mediumslage hin einen zweiten Bereich (5) aufweist, dadurch gekennzeichnet, dass die Nanofasern des ersten Bereichs (4) einen kleineren mittleren Faserdurchmesser aufweisen als die Nanofasern des zweiten Bereichs (5).A filter medium (1), comprising a first media layer (2) and a second media layer (3), which second media layer (3) in a direction of intended flow (6) of the filter medium (1) behind the first media layer (2) is arranged, the first media layer (2) is formed as a nanofiber layer with nanofibers and wherein the second media layer (3) is formed as a support layer with an average basis weight of more than 60 g / m 2, wherein the first media layer has a first region (4) on the inflow side and has a second region (5) downstream of the second medium layer, characterized in that the nanofibers of the first region (4) have a smaller average fiber diameter than the nanofibers of the second region ( 5).
Description
Die Erfindung betrifft ein Filtermedium zur Filterung von Fluiden, insbesondere zur Filterung von Flüssigkeiten, sowie ein Filterelement mit einem solchen Filtermedium und ein Verfahren zur Herstellung eines solchen Filtermediums, insbesondere für die Verwendung als Erodierfilter.The invention relates to a filter medium for filtering fluids, in particular for filtering liquids, as well as a filter element with such a filter medium and a method for producing such a filter medium, in particular for use as Erodierfilter.
Es ist bekannt Nanofasern auf einer deutlich gröberen Stützlage anzuordnen. Das Aufbringen feiner Fasern auf eine Stützlage dient der Stabilisierung der Feinfaserschicht im Filtrationsbetrieb aber auch bei der Verarbeitung, insbesondere beim Falten der Nanofasern.It is known to arrange nanofibers on a much coarser support layer. The application of fine fibers to a support layer serves to stabilize the fine fiber layer in the filtration operation but also during processing, especially when folding the nanofibers.
Ein geschichteter Aufbau kommt auch bei der Abstimmung von Medien für die Erfordernisse der Tiefenfiltration zum Einsatz. Bei diesen Medien folgen in der Regel in Strömungsrichtung feinere Fasern auf gröbere Fasern. Dadurch soll eine fraktionierte Abscheidung der Partikeln in der Tiefe des Mediums erreicht werden. Das Ziel ist hierbei eine möglichst gleichmäßige Beladung des Filtermediums und die somit optimale Ausnutzung des für die Partikeleinlagerung zur Verfügung stehenden Porenvolumens im Filtermedium. Die
Darüber hinaus sind Erodierfilterelemente mit Filtermedien aus Faservlies bereits aus der
Die Aufgabe der vorliegenden Erfindung ist es, ausgehend von der
Die vorgenannte Aufgabe wird durch ein erfindungsgemäßes Filtermedium mit den Merkmalen des Anspruchs 1 gelöst.The above object is achieved by a filter medium according to the invention having the features of
Ein erfindungsgemäßes Filtermedium, umfasst eine erste Medienlage und eine zweite Medienlage, welche zweite Medienlage in einer bestimmungsgemäßen Strömungsrichtung des Filtermediums hinter der ersten Medienlage angeordnet ist, wobei die erste Medienlage als eine Nanofaserlage mit Nanofasern ausgebildet ist und wobei die zweite Medienlage als eine Stützschicht mit einem mittleren Flächengewicht von mehr als 60 g/m2 ausgebildet ist.A filter medium according to the invention comprises a first media layer and a second media layer, which second media layer is arranged behind the first media layer in a designated flow direction of the filter medium, wherein the first media layer is formed as a nanofiber layer with nanofibers and wherein the second media layer as a support layer with a average basis weight of more than 60 g / m 2 is formed.
Die erste Medienlage des erfindungsgemäßen Filtermediums weist anströmseitig einen ersten Bereich und abströmseitig zur zweiten Mediumslage hin einen zweiten Bereich auf. Die Nanofasern des ersten Bereichs weisen einen kleineren mittleren Faserdurchmesser als die Nanofasern des zweiten Bereichs auf.The first media layer of the filter medium according to the invention has a first region on the inflow side and a second region on the outflow side toward the second medium layer. The nanofibers of the first region have a smaller average fiber diameter than the nanofibers of the second region.
Das erfindungsgemäße Filtermedium weist einerseits eine hervorragende Filterwirkung bei vergleichsweise geringem Druckverlust auf und ist trotz der Verwendung von sehr feinen Nanofasern widerstandsfähig gegenüber mechanischem Einfluss und chemischaggressiven Substanzen.On the one hand, the filter medium according to the invention has an outstanding filter effect with comparatively low pressure loss and, despite the use of very fine nanofibers, is resistant to mechanical influence and chemically aggressive substances.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Advantageous embodiments of the invention are the subject of the dependent claims.
Für eine besonders gute Filterwirkung bietet es sich an im ersten Bereich eine besonders hohe Anzahl von Nanofasern mit kleineren Faserdurchmessern zu nutzen. Daher ist es von Vorteil, wenn mehr als 75% der Nanofasern des ersten Bereichs einen kleineren Faserdurchmesser aufweisen als die Nanofasern des zweiten Bereichs.For a particularly good filter effect, it is advisable to use in the first region a particularly high number of nanofibers with smaller fiber diameters. Therefore, it is advantageous if more than 75% of the nanofibers of the first region have a smaller fiber diameter than the nanofibers of the second region.
Es sind Filtermedien bekannt, beispielsweise aus der
Der erste Bereich kann aus Nanofasern mit einem mittleren Faserdurchmesser von 50 bis 400 nm, vorzugsweise 50 bis 250 nm, weiter vorzugsweise 50 bis 150 nm, bestehen. Diese sehr feinen Nanofasern ermöglichen ein optimales Filterverhalten. Die Nanofasern des ersten Bereichs sind bevorzugt im Elektrospinning-Verfahren hergestellt.The first region may consist of nanofibers having a mean fiber diameter of 50 to 400 nm, preferably 50 to 250 nm, more preferably 50 to 150 nm. These very fine nanofibers enable optimal filter behavior. The nanofibers of the first region are preferably produced in the electrospinning process.
Der zweite Bereich kann aus Nanofasern mit einem mittleren Faserdurchmesser von 150 bis 1000 nm, vorzugsweise 150 bis 500 nm, besonders bevorzugt 150 bis 299 nm, bestehen. Diese eher gröberen Nanofasern stützen die Nanofasern des ersten Bereichs, erhöhen die Widerstandsfähigkeit der Fasern des ersten Bereichs und tragen zur Filterung des zu filternden Fluids bei. Nanofasern des zweiten Bereichs sind bevorzugt im Elektrospinning-Verfahren hergestellt. Im Vergleich zu Faserverbünden aus anderen Herstellverfahren, beispielsweise im Vergleich zu Spinnvliesen, kann das Elektrospinningverfahren dahingehend Vorteile haben, dass insbesondere kleinere Faserdurchmesser, die dünnere Ausführung von wirksamen Schichten und geringere Streuungen innerhalb der Faserlage hinsichtlich Faserdurchmeser oder Porengrößen ermöglicht werden.The second region may consist of nanofibers with a mean fiber diameter of 150 to 1000 nm, preferably 150 to 500 nm, particularly preferably 150 to 299 nm. These rather coarser nanofibers support the nanofibers of the first region, increase the resistance of the fibers of the first region, and aid in filtering the fluid to be filtered. Nanofibers of the second region are preferably produced in the electrospinning process. Compared to fiber composites from other manufacturing processes, for example compared to spunbonded nonwovens, the electrospinning process can have advantages in that, in particular, smaller fiber diameters, thinner design of effective layers and lower scattering within the fiber layer with respect to fiber diameter or pore sizes are made possible.
Besonders bevorzugt sind die Nanofasern des ersten und/oder des zweiten Bereichs einkomponentige Nanofasern. Diese sind leichter und mit gleichmäßigeren Eigenschaften zu einem Filtermedium verarbeitbar wie beispielswiese Bikomponenten- und/oder Splitfasern.The nanofibers of the first and / or the second region are particularly preferably one-component nanofibers. These are easier and processable with more uniform properties to a filter medium such as bicomponent and / or split fibers.
Besonders bevorzugt sind sämtliche Nanofasern der ersten Medienlage im Elektrospinning-Verfahren hergestellt.All nanofibers of the first media layer are particularly preferably produced by the electrospinning method.
Besonders bevorzugt sind die Nanofasern des ersten und/oder des zweiten Bereichs spinnennetzartig übereinander angeordnet. Weiter bevorzugt weisen die Nanofasern des ersten und/oder zweiten Bereichs einen im Wesentlichen runden Querschnitt auf. Dies ermöglicht insbesondere etwas gleichmäßigere Eigenschaften, da eine Lageänderung einer Einzelfaser, insbesondere eine Rotation, nicht zu einer signifikanten Änderung des Querschnitts der Einzelfaser quer zur Strömungsrichtung führt.Particularly preferably, the nanofibers of the first and / or the second region are arranged one above the other like a spider web. More preferably, the nanofibers of the first and / or second region have a substantially round cross-section. This in particular allows somewhat more uniform properties, since a change in position of a single fiber, in particular a rotation, does not lead to a significant change in the cross section of the individual fiber transversely to the flow direction.
Die Nanofasern der ersten Materiallage können bevorzugt zu mehr als 75% Polyamid-Nanofasern, insbesondere 100% aus Polyamid, bestehen. Nanofasern aus Polyamid sind zeiteffizient und kostengünstig herstellbar.The nanofibers of the first material layer may preferably consist of more than 75% of polyamide nanofibers, in particular 100% of polyamide. Nanofibers made of polyamide are time efficient and inexpensive to produce.
Die erste Materiallage weist bevorzugt ein Flächengewicht von kleiner 20 g/m2, bevorzugt kleiner 10 g/m2, besonders bevorzugt kleiner 1 g/m2 auf. Damit werden beispielsweise eine hohe Abscheideleistung bei gleichzeitig möglichst geringem Druckverlust, ausreichender Gesamtstabilität und geringem Materialaufwand erreicht.The first material layer preferably has a basis weight of less than 20 g / m 2 , preferably less than 10 g / m 2 , more preferably less than 1 g / m 2 . Thus, for example, a high separation efficiency with the lowest possible pressure loss, sufficient overall stability and low material costs are achieved.
Weitere bevorzugte Nanofasermaterialien gemäß der vorliegenden Erfindung bzw. Materialien welche gemäß der vorliegenden Erfindung zu Nanofasern verspinnbar sind, sind Polyolefine, Polyacetale, Polyester, Zelluloseester, Zelluloseether, Polyalkylensulfide, Polyarylenoxide, Polysulfone, modifizierte Polysulfone und/oder Mischungen dieser Polymere. Besonders bevorzugte Materialien der vorgenannten Polymerklassen, welche für die vorgenannten Nanofasern in Frage kommen sind insbesondere Polyethylen, Polypropylen, Polyvinylchlorid, Polymethylmethacrylat (und weitere Acrylharze), Polystyren und /oder Copolymere der vorgenannten Polymere umfassend Block-Copolymere des Typs ABBA, sowie Polyvinylidenfluorid, Polyvinylidenchlorid, Polyvinylalkohol in verschiedenen Hydrolysegraden (87% bis 99,5%) in vernetzter oder unvernetzter Form.Further preferred nanofiber materials according to the present invention or materials which can be spun into nanofibers according to the present invention are polyolefins, polyacetals, polyesters, cellulose esters, cellulose ethers, polyalkylene sulfides, polyarylene oxides, polysulfones, modified polysulfones and / or mixtures of these polymers. Particularly preferred materials of the aforementioned classes of polymers which are suitable for the abovementioned nanofibers are in particular polyethylene, polypropylene, polyvinyl chloride, polymethyl methacrylate (and other acrylic resins), polystyrenes and / or copolymers of the abovementioned polymers comprising block copolymers of the type ABBA, and also polyvinylidene fluoride, polyvinylidene chloride , Polyvinyl alcohol in various degrees of hydrolysis (87% to 99.5%) in crosslinked or uncrosslinked form.
Der mittlere Faserdurchmesser der Nanofasern nimmt vom ersten zum zweiten Bereich zumindest um den Faktor 1,5 bis 5,0; vorzugsweise jedoch zumindest um den Faktor 1,5 bis 3,0 zu. Dies bezieht sich auf die Gesamtzahl an Fasern im ersten und im zweiten Bereich. Selbstverständlich können einzelne Fasern im ersten Bereich auch dünner sein als im zweiten Bereich. Im Durchschnitt über alle sich im ersten Bereich befindlichen Fasern nimmt der Faserdurchmesser jedoch um den vorgenannten Faktor gegenüber allen im zweiten Bereich befindlichen Fasern zu.The mean fiber diameter of the nanofibers increases at least by a factor of 1.5 to 5.0 from the first to the second region; but preferably at least by a factor of 1.5 to 3.0. This refers to the total number of fibers in the first and in the second range. Of course, individual fibers in the first region may also be thinner than in the second region. However, on average over all fibers located in the first region, the fiber diameter increases by the aforementioned factor compared to all the fibers in the second region.
Die zweite Materiallage, also die Stützlage, kann vorteilhaft als Meltblown- oder Spunbondlage, bzw. als Schmelzblas- oder Spinnvlieslage, ausgebildet ist. Diese Faservliese haben sich zur Filterung von Fluiden, insbesondere von Flüssigkeiten bewährt. Dabei kann die zweite Materiallage zumindest 50%, insbesondere zumindest 75% der Fasern der zweiten Materiallage aus einem Polyester und/oder aus einem Polypropylen bestehen. Alternativ kann die zweite Materiallage als zellulosebasierte Lage ausgebildet sein.The second material layer, ie the support layer, can advantageously be configured as a meltblown or spunbond layer, or as a meltblown or spunbonded layer. These fiber webs have proven to filter fluids, especially liquids. In this case, the second material layer may consist of at least 50%, in particular at least 75% of the fibers of the second material layer of a polyester and / or a polypropylene. Alternatively, the second material layer may be formed as a cellulose-based layer.
Die zweite Materiallage besteht idealerweise aus besonders widerstandsfähigen Fasern. Die Fasern dieser Materiallage können daher vorteilhaft einen mittleren Faserdurchmesser von mehr 3 µm aufweisen.The second material layer ideally consists of particularly resistant fibers. The fibers of this material layer can therefore advantageously have an average fiber diameter of more than 3 μm.
Ein erfindungsgemäßes Filterelement weist ein erfindungsgemäßes Filtermedium auf, wobei das Filtermedium des Filterelements gefaltet ist.A filter element according to the invention has a filter medium according to the invention, wherein the filter medium of the filter element is folded.
Dies kann besonders bevorzugt zu einem Rundkörper ausgebildet sein und wobei das Filterelement zwei Endscheiben aufweist, zwischen welchen der aus dem Filtermedium gebildete Rundkörper angeordnet, insbesondere eingefasst, ist. Selbstverständlich kann das Filterelement auch weitere Bestandteile, z.B. einen zylindrischen Stützkörper als Kunststoff-Formkörper oder aus Metall aufweisen.This may particularly preferably be formed into a round body and wherein the filter element has two end disks, between which the round body formed from the filter medium is arranged, in particular edged. Of course, the filter element may also contain other components, e.g. have a cylindrical support body as a plastic molding or metal.
Besonders bevorzugt kann der Rundkörper sternförmig ausgebildet sein. Alternativ kann der Rundkörper in der Form gemäß der
Das Filterelement kann insbesondere als Filterkartusche ausgebildet sein und zur Filterung von Flüssigkeiten, beispielsweise Wasser, Öl oder Kraftstoff, verwandt werden.The filter element can be designed in particular as a filter cartridge and be used for filtering liquids, such as water, oil or fuel.
Eine besondere Verwendung des Filterelements ist die Verwendung als Erodierfilter in einer Erodiermaschine.One particular use of the filter element is its use as an erosion filter in an EDM machine.
Im Rahmen der Verwendung als Erodierfilter kann der mittlere Faserdurchmesser der jeweiligen Bereiche der ersten Materiallage auf das Partikelspektrum des zu filternden Mediums abgestimmt werden. Dadurch wird ein optimaler Filterkuchen gebildet, welcher das Verblocken der unterliegenden Fasern verhindert. Dabei muss das Filterelement bei erfindungsgemäßer Verwendung als Erodierfilter auch einer höheren mechanischen Belastung standhalten als bei Luftfiltern.When used as erosion filter, the mean fiber diameter of the respective regions of the first material layer can be matched to the particle spectrum of the medium to be filtered. As a result, an optimal filter cake is formed, which prevents the blocking of the underlying fibers. When used according to the invention as an erosion filter, the filter element must also be able to withstand a higher mechanical load than with air filters.
Im Übrigen kann die erste Medienlage aus mehr als zwei Bereiche mit Nanofasern bestehen. Dabei nimmt vorzugsweise der mittlere Faserdurchmesser der Nanofasern der Bereiche von der Anströmseite zur zweiten Materiallage hin von Bereich zu Bereich zu.Incidentally, the first media layer can consist of more than two regions with nanofibers. In this case, the average fiber diameter of the nanofibers of the regions preferably increases from region to region from the upstream side to the second material layer.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines Filtermediums, insbesondere eines Filtermediums zur Flüssigkeitsfiltration, das Medium umfassend eine erste Medienlage und eine zweite Medienlage, welche zweite Medienlage in einer bestimmungsgemäßen Strömungsrichtung des Filtermediums insbesondere hinter der ersten Medienlage anordenbar ist, wobei die erste Medienlage als eine Nanofaserlage mit Nanofasern ausgebildet ist und wobei die zweite Medienlage als eine Stützschicht mit einem mittleren Flächengewicht von mehr als 60 g/m2 ausgebildet ist, wobei die Stützschicht bereitgestellt wird und die Nanofaserlage mit mindestens einem ersten Bereich und einem zweiten Bereich auf die Stützschicht aufgebracht wird, wobei der zweite Bereich zur zweiten Mediumslage hin orientiert ist und die Nanofasern des ersten Bereichs einen kleineren mittleren Faserdurchmesser als die Nanofasern des zweiten Bereichs aufweisen. Dabei wird der erste und/oder der zweite Bereich der Nanofasern bevorzugt im Elektrospinningverfahren hergestellt.The invention further relates to a method for producing a filter medium, in particular a filter medium for liquid filtration, the medium comprising a first media layer and a second media layer, which second media layer can be arranged in an intended flow direction of the filter medium, in particular behind the first media layer, wherein the first media layer as a nanofiber layer is formed with nanofibers and wherein the second media layer is formed as a support layer with an average basis weight of more than 60 g / m 2 , wherein the support layer is provided and the nanofiber layer is applied with at least a first region and a second region on the support layer with the second region oriented toward the second media layer and the nanofibers of the first region having a smaller average fiber diameter than the nanofibers of the second region. In this case, the first and / or the second region of the nanofibers is preferably produced in the electrospinning process.
Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnungen, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages emerge from the following description of the drawing. In the drawings, embodiments of the invention are shown. The drawings, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations.
- Fig. 1Fig. 1
- eine schematische Darstellung eines Filtermediums mit zwei Materiallagen nach einem Ausführungsbeispiel der Erfindung; unda schematic representation of a filter medium with two layers of material according to an embodiment of the invention; and
- Fig. 2a, 2bFig. 2a, 2b
- schematische Darstellung einer bevorzugten Ausgestaltung eines Filterelements als Erodierfilter.schematic representation of a preferred embodiment of a filter element as erosion filter.
Die Figuren zeigen lediglich Beispiele und sind nicht beschränkend zu verstehen.The figures are merely examples and are not intended to be limiting.
In
Der Begriff "Filtermedium" bezieht sich auf eine Struktur zur Filterung eines Fluids. Dabei wird ein Retentat auf oder in dem Filtermedium gebildet und ein Filtrat, das gereinigte Fluid. Besonders bevorzugt werden Partikel als Retentat aus dem Fluid durch das Filtermedium herausgefiltert und damit aus dem Fluid entfernt. Je nach Ausbildung des Filtermediums können Partikel und andere Substanzen vollständig oder nur teilweise aus dem zu filternden Fluid entfernt werden.The term "filter medium" refers to a structure for filtering a fluid. In this case, a retentate is formed on or in the filter medium and a filtrate, the purified fluid. Particularly preferably, particles are filtered out as a retentate from the fluid through the filter medium and thus removed from the fluid. Depending on the design of the filter medium particles and other substances can be completely or only partially removed from the fluid to be filtered.
Das Filtermedium kann als Teil eines Filterelements vorgesehen sein. Das Filterelement kann z.B. ein austauschbares Teil in einer Maschine oder einer Anlage sein. Ein solches austauschbares Teil kann z.B. eine Filterkartusche sein. Sofern sich ein Filtermedium mit Retentat zusetzt, kann die Filterkartusche ersetzt werden, ohne dass die gesamte Maschine von einem Austausch betroffen ist.The filter medium may be provided as part of a filter element. The filter element may e.g. be a replaceable part in a machine or plant. Such an exchangeable part may e.g. be a filter cartridge. If a filter medium becomes entangled with retentate, the filter cartridge can be replaced without affecting the entire machine.
Die zwei Materiallagen 2 und 3 des Filtermediums 1 sind in Strömungsrichtung 6 übereinander angeordnet. Auf der Anströmseite 7 und/oder Abströmseite 8 der zwei Materiallagen 2 und 3 des Filtermediums 1 können weitere Materiallagen vorgesehen sein.The two layers of
Eine weitere Materiallage auf der An- und/oder Abströmseite 7, 8 kann beispielsweise eine grobmaschige Netzstruktur sein, welche die Materiallagen 2 und 3 zusätzlich zusammenhält. Auch andere Materiallagen sind denkbar.A further material layer on the arrival and / or
Eine erste Materiallage 2 ist ein Nanofaservlies. Der Begriff "Nanofasern" umfasst Fasern mit einem mittleren Faserdurchmesser in einem Bereich zwischen einem Nanometer und 1000 Nanometern.A
In einer bevorzugten Ausführungsvariante sind die Fasern, welche die erste Materiallage 2 bilden zu mehr 90% Nanofasern. Besonders bevorzugt sind mehr als 95%, insbesondere 99%, der Fasern, welche die Materiallage enthält, Nanofasern.In a preferred embodiment, the fibers which form the
Die erste Materiallage 2 ist die Materiallage der beiden Materiallagen 2 und 3, welche auf der Anströmseite 7 angeordnet ist. Die erste Materiallage 2 weist Nanofasern mit unterschiedlichen mittleren Faserdurchmessern auf. Während feinere Nanofasern, also Nanofasern mit einem geringeren mittleren Faserdurchmesser, im Bereich der Anströmseite 7 der Materiallage 2 vorzufinden sind, sind gröbere Nanofasern, also Nanofasern mit einem größeren mittleren Faserdurchmesser auf der Seite der Materiallage 2 vorzufinden, welche mit der zweiten Materiallage 3 verbunden ist.The
Zumindest in den oberen 10% der Gesamthöhe der ersten Materiallage 2 ist ein erster Bereich 4 mit Fasern angeordnet, welche aus feinen Nanofasern mit einem mittleren Faserdurchmesser von 50 bis 400 nm, vorzugsweise 50 bis 250 nm, weiter vorzugsweise 50 bis 150 nm, bestehen.At least in the upper 10% of the total height of the
Zumindest in den unteren 10% der Gesamthöhe der ersten Materiallage 2 ist ein zweiter Bereich 5 mit Fasern angeordnet, welche aus groben Nanofasern mit einem mittleren Faserdurchmesser von 150 bis 1000 nm, vorzugsweise 150 bis 500 nm, bestehen.At least in the lower 10% of the total height of the
Die Fasern des ersten Bereichs 4 weisen einen kleineren mittleren Faserdurchmesser als die Fasern des zweiten Bereichs 5 auf. Der mittlere Faserdurchmesser kann dabei anhand eines Bildabschnitts von oben bestimmt werden. Dabei können die Faserdurchmesser aller im Bildabschnitt befindlichen Fasern ermittelt und ein Mittelwert dieser Faserdurchmesser bestimmt werden. Besonders bevorzugt wird der mittlere Faserdurchmesser durch das Verfahren gemäß der
Die Nanofasern der Bereiche 4 und 5 können durch ein Meltblown- oder Elektro-Spinnverfahren hergestellt werden. Für Produzenten von Anlagen zur Herstellung feinster Fasern mittels Meltblown- bzw. Elektrospinnverfahren ist die Gleichmäßigkeit der hergestellten Fasern ein wesentliches Qualitätskriterium. Es soll dem Kunden ermöglicht werden Fasern mit einem möglichst exakt definierten Durchmesser mit geringer Streuung reproduzierbar herzustellen. So ist es beispielsweise möglich Nanofasern mit den vorgenannten mittleren Faserdurchmessern definiert herzustellen und lagenweise übereinander anzuordnen. Somit kann die erste Materiallage 2 ebenfalls mehrlagig mit zwei oder mehr Teillagen ausgebildet sein, welche beispielsweise lose, also ohne stoffschlüssige Verbindung, übereinander angeordnet sind.The 4 and 5 nanofibers can be made by a meltblown or electrospinning process. For producers of equipment for the production of very fine fibers by meltblown or electrospinning process is the uniformity of the fibers produced an essential quality criterion. It is intended to enable the customer to reproducibly produce fibers with a diameter that is as precisely defined as possible with little scattering. For example, it is possible to produce nanofibers in a defined manner with the aforementioned average fiber diameters and to arrange them one above the other in layers. Thus, the
Alternativ können die Nanofasern der Bereiche 4 und/oder 5 vorteilhaft mittels eines Nasslegeverfahrens realisiert werden.Alternatively, the nanofibers of the regions 4 and / or 5 can be advantageously realized by means of a wet-laying process.
Bei der Anordnung der Teillagen kann ein Übergangsbereich zwischen den Teillagen auftreten, in welchem sowohl grobe als auch feine Nanofasern angeordnet sind. Die Materiallagen gehen somit ineinander zwischen den Bereichen 4 und 5 über.In the arrangement of the partial layers, a transition region between the partial layers can occur, in which both coarse and fine nanofibers are arranged. The material layers thus merge into each other between the
Der Aufbau der ersten Materiallage 2 weist somit einen Gradientenaufbau bezüglich des Faserdurchmessers auf, bei welchem der mittlere Faserdurchmesser der Nanofasern in Strömungsrichtung 6 zunimmt. Ein Gradient des Faserdurchmessers im Sinne der vorliegenden Erfindung kann sowohl ein gleichmäßiger Anstieg vorzugsweise jedoch auch ein ungleichmäßiger, insbesondere stufenweiser, Anstieg des Faserdurchmessers in Strömungsrichtung 6 bedeuten. Diese Zunahme des mittleren Faserdurchmessers erhöht sich, bezogen auf die Gesamtzahl der Nanofasern in dem ersten und dem zweiten Bereich 4 und 5, vom ersten zum zweiten Bereich um den Faktor 1,5-5,0; vorzugsweise um den Faktor 1,5-3,0.The structure of the
Das mittlere Flächengewicht der ersten Materiallage 2 beträgt dabei vorzugsweise weniger als 1 g/m2.The average basis weight of the
Die Nanofasern der ersten Materiallage 2 können in den Bereichen 4 und 5 aus unterschiedlichen Materialien hergestellt sein. In einer besonders bevorzugten Ausführungsvariante der Erfindung sind die Nanofasern der ersten Materiallage jedoch alle aus dem gleichen Material hergestellt. Besonders bevorzugt kann es sich bei den Nanofasern um Polyamidfasern handeln.The nanofibers of the
Bevorzugt können die Nanofasern der ersten Materiallage 2 alle in einem ElektrospinnVerfahren hergestellt werden, so dass die gesamte Nanofaserlage durch diesen Herstellungsprozess realisiert werden kann.Preferably, the nanofibers of the
Beim Ablegen haften die Nanofasern des ersten Bereichs durch Formenschluss und/oder Oberflächenwechselwirkungen auf den Nanofasern des zweiten Bereichs.During deposition, the nanofibers of the first region adhere to the nanofibers of the second region by form closure and / or surface interactions.
Die Verbindung der ersten und der zweiten Materialage 2 und 3 kann beliebig gewählt werden. So kann die erste Materiallage 2 in einer bevorzugten Ausführungsvariante lediglich auf der zweiten Materiallage 3 abgelegt sein.The connection of the first and the second material layers 2 and 3 can be chosen arbitrarily. Thus, the
In einer alternativen bevorzugten Ausführungsvariante ist zwischen den beiden Materiallagen 2 und 3 ein Haftvermittler 9 angeordnet. Bei dieser Variante kann auch eine zusätzliche Anhaftung der Nanofasern des ersten Bereichs 4 zusätzlich zu den Nanofasern des zweiten Bereichs 5 durch den Haftvermittler 9, der sich auf der zweiten Mediumslage 3 befindet, erreicht werden. Dadurch entsteht eine vorteilhafte zusätzliche Verstärkung der Haftung. Als Haftvermittler 9 kommt eine Vielzahl von Substanzen in Frage. Bevorzugte Haftvermittler können acryl- und/oder polyurethanbasiert sein und insbesondere in Dispersionsform aufgebracht werden. Diese Haftvermittler sind besonders bevorzugt, da sie bei vergleichsweise geringen Temperaturen trocknen.In an alternative preferred embodiment, an adhesion promoter 9 is arranged between the two
Die Nanofasern des ersten und des zweiten Bereichs 4 und 5 sind dabei vorzugsweise spinnennetzartig aufeinander abgelegt und können optional mittels des eines Haftvermittlers an die zweite Materiallage 3 verbunden sein.The nanofibers of the first and
Die zweite Materiallage 3 ist eine Stützlage aus einem Faservlies. Diese kann z.B. als ein Meltblown-Faservlies oder ein Spunbond-Faservlies ausgebildet sein.The
Das mittlere Flächengewicht der zweiten Materiallage 3 kann vorzugsweise mehr als 60 g/m2 betragen. Die Bestimmung des mittleren Flächengewichts erfolgt gemäß DIN/EN ISO 536 für Papierlagen und gemäß DIN/EN 29073-1 für Vliese.The average basis weight of the
Das mittlere Flächengewicht der Stützlage ist somit zumindest um das 60-fache größer als das mittlere Flächengewicht des Nanofaservlieses.The average basis weight of the support layer is thus at least 60 times greater than the average basis weight of the nanofiber nonwoven.
Der mittlere Faserdurchmesser der Fasern der zweiten Materiallage beträgt mehr als 3 µm.The mean fiber diameter of the fibers of the second material layer is more than 3 μm.
Die Fasern der zweiten Materiallage 3 können vorzugsweise Polyester- und/oder Polypropylenfasern sein. Auch zellulosebasierte Fasern können für die zweite Materiallage vorzugsweise genutzt werden.The fibers of the
Das erfindungsgemäße Filtermedium kann sowohl für die Filterung von Gasen als auch von Flüssigkeiten eingesetzt werden. Allerdings bringt die Verwendung des Filtermediums bei der Verwendung als Partikelfilter bei Filtration von Flüssigkeiten besondere Vorteile mit sich. In der Flüssigfiltration werden aufgrund der im Vergleich zur Gasfiltration höheren Strömungskräfte besondere Anforderungen an die Stabilität der Filtermedien gestellt. Daher wird hier eine erhöhte mechanische Stabilität besonders benötigt. Dünne Feinfaserauflagen, wie z.B. Nanofasernetze, können für sich genommen diesen Strömungskräften nur Stand halten, wenn sie in einer ausreichend dicken Schicht vorliegen. Da der Druckverlust bei der Durchströmung einer Faserschüttung mit der spezifischen Oberfläche und der Schichtdicke der Fasern ansteigt, würden dicke und somit stabile Feinstfaserauflagen einen unwirtschaftlich hohen Druckverlust aufweisen. Daher werden Nanofasern in jedem Fall durch eine Trägerstruktur mit vergleichsweise groben Fasern stabilisiert.The filter medium according to the invention can be used both for filtering gases and liquids. However, the use of the filter medium when used as a particulate filter in filtration of liquids brings particular advantages. In liquid filtration, due to the higher flow forces compared to gas filtration, special demands are placed on the stability of the filter media. Therefore, an increased mechanical stability is particularly needed here. Thin fine fiber overlays, such as nanofiber nets, can by themselves withstand these flow forces only when they are in a sufficiently thick layer. Since the pressure loss in the flow through a fiber bed with As the specific surface area and layer thickness of the fibers increase, thick and thus stable microfibers would have an uneconomically high pressure loss. Therefore, nanofibers are stabilized in each case by a carrier structure with comparatively coarse fibers.
Die erste Medienlage 2 kann auf der zweiten Medienlage 3 lediglich aufgelegt werden. Die beiden Medien können allerdings auch miteinander verklebt oder miteinander punktuell oder randseitig verschweißt sein z.B. durch Ultraschallschweißen.The
Abgesehen von dem Gradientenaufbau bezüglich des Faserdurchmessers kann der Aufbau der Nanofaserlage auf die Erfordernisse der Filtrationsanwendung und des Trägermaterials abgestimmt werden. Wird die Nanofaserlage beispielsweise von einem relativ offenporigen Spinnvlies als zweite Materiallage 3 gestützt, so kann die Faserschicht im unteren Bereich 5 der Nanofaserlage stärker gewählt werden als bei einem Meltblown-Vlies als Träger.Apart from the gradient construction with respect to the fiber diameter, the structure of the nanofiber layer can be adapted to the requirements of the filtration application and the carrier material. If the nanofiber layer is supported, for example, by a relatively open-pore spunbonded non-woven material as a
Dicke Fasern sind erfahrungsgemäß mechanisch und chemisch widerstandsfähiger als dünne Fasern. Eine wesentliche Schwierigkeit bei der Herstellung von Nanofasermedien besteht in der Sicherstellung einer ausreichenden Stabilität dieser Feinfaser.Thick fibers are known to be mechanically and chemically more resistant than thin fibers. A major difficulty in the production of nanofiber media is to ensure sufficient stability of this fine fiber.
Durch die Anordnung von dickeren Nanofasern im unteren Bereich 5 der Nanofaserlage kann eine erhöhte Widerstandsfähigkeit dieser Medienlage 2 durch eine erhöhte Anzahl an Stützstellen realisiert werden.The arrangement of thicker nanofibers in the
Durch den Gradientenaufbau in der Nanofaserlage kann die zweite Medienlage 3 verhältnismäßg grobporig und somit kostengünstig gewählt werden. Die Beschichtung der Träger bzw. Stützlage mit einer Nanofaser-Stützschicht und der Feinstfaserauflage kann mittels Elektrospinnen in einem Durchlauf erfolgen.Due to the gradient buildup in the nanofiber layer, the
Die eingesetzte Masse des eingesetzten Polymermaterials pro Flächenabschnitt zur Ausbildung der Nanofasern des ersten Bereichs 4 der ersten Materiallage 2 kann vorzugsweise von 20% bis zu 5000% der Masse des eingesetzten Polymermaterials zur Ausbildung der Nanofasern des zweiten Bereichs 5 der ersten Materiallage 2 betragen.The mass of the polymer material used per surface section for forming the nanofibers of the first region 4 of the
Claims (15)
wobei die erste Medienlage anströmseitig einen ersten Bereich (4) aufweist und abströmseitig zur zweiten Mediumslage hin einen zweiten Bereich (5) aufweist, dadurch gekennzeichnet, dass die Nanofasern des ersten Bereichs (4) einen kleineren mittleren Faserdurchmesser aufweisen als die Nanofasern des zweiten Bereichs (5).Filter medium (1), comprising a first media layer (2) and a second media layer (3), which second media layer (3) in a direction of intended flow (6) of the filter medium (1) behind the first media layer (2) is arranged, wherein the first media layer (2) is formed as a nanofiber layer with nanofibers and wherein the second media layer (3) is formed as a support layer with an average basis weight of more than 60 g / m 2 ,
wherein the first media layer has a first region (4) on the inflow side and has a second region (5) downstream of the second medium layer, characterized in that the nanofibers of the first region (4) have a smaller average fiber diameter than the nanofibers of the second region ( 5).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015002672.0A DE102015002672A1 (en) | 2015-03-03 | 2015-03-03 | Filter medium and filter element with a filter medium |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3064262A1 true EP3064262A1 (en) | 2016-09-07 |
EP3064262B1 EP3064262B1 (en) | 2017-10-18 |
Family
ID=55521469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16157576.6A Active EP3064262B1 (en) | 2015-03-03 | 2016-02-26 | Filter medium, method for producing a filter medium and filter element with a filter medium |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160256805A1 (en) |
EP (1) | EP3064262B1 (en) |
JP (1) | JP2016182595A (en) |
DE (1) | DE102015002672A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110273226A (en) * | 2019-07-18 | 2019-09-24 | 上海泰坦科技股份有限公司 | A kind of medical bionic film and its preparation method and application |
EP3445470A4 (en) * | 2016-04-22 | 2019-11-27 | Clarcor, Inc. | Multi-layered or multiple polymer fine fiber webs |
US10676614B2 (en) | 2016-04-20 | 2020-06-09 | Clarcor Inc. | High molecular and low molecular weight fine fibers and TPU fine fibers |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10653824B2 (en) | 2012-05-25 | 2020-05-19 | Lockheed Martin Corporation | Two-dimensional materials and uses thereof |
WO2014164621A1 (en) | 2013-03-12 | 2014-10-09 | Lockheed Martin Corporation | Method for forming filter with uniform aperture size |
US9572918B2 (en) | 2013-06-21 | 2017-02-21 | Lockheed Martin Corporation | Graphene-based filter for isolating a substance from blood |
AU2015210875A1 (en) * | 2014-01-31 | 2016-09-15 | Lockheed Martin Corporation | Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer |
AU2015311978A1 (en) | 2014-09-02 | 2017-05-11 | Lockheed Martin Corporation | Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same |
AU2016303048A1 (en) | 2015-08-05 | 2018-03-01 | Lockheed Martin Corporation | Perforatable sheets of graphene-based material |
WO2017023377A1 (en) | 2015-08-06 | 2017-02-09 | Lockheed Martin Corporation | Nanoparticle modification and perforation of graphene |
JP2019519756A (en) | 2016-04-14 | 2019-07-11 | ロッキード・マーチン・コーポレーション | In-situ monitoring and control of defect formation or defect repair |
WO2017180141A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Selective interfacial mitigation of graphene defects |
WO2017180134A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Methods for in vivo and in vitro use of graphene and other two-dimensional materials |
SG11201809015WA (en) | 2016-04-14 | 2018-11-29 | Lockheed Corp | Two-dimensional membrane structures having flow passages |
SG11201808962RA (en) | 2016-04-14 | 2018-11-29 | Lockheed Corp | Method for treating graphene sheets for large-scale transfer using free-float method |
WO2017180135A1 (en) | 2016-04-14 | 2017-10-19 | Lockheed Martin Corporation | Membranes with tunable selectivity |
DE102019129776B3 (en) * | 2019-11-05 | 2021-01-21 | Mann+Hummel Gmbh | Filter medium, method for its production and use of the filter medium in a filter element |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1764144A1 (en) | 2005-09-16 | 2007-03-21 | Mann+Hummel Gmbh | Filter element for liquids |
DE102009043273A1 (en) | 2008-09-29 | 2010-04-29 | Mann + Hummel Gmbh | Fibrous medium i.e. filter medium, diameter distribution determining method for predicting main performance characteristics of medium during manufacturing medium, involves calculating diameter of fibrous medium from measuring loops |
EP2222385A2 (en) | 2007-11-20 | 2010-09-01 | Clarcor INC. | Filtration medias, fine fibers under 100 nanofibers, and methods |
DE102009057438B3 (en) | 2009-12-09 | 2011-05-12 | Mann + Hummel Gmbh | Filter element for use in filter housing for filtering fluid e.g. cooling fluid of eroding machine, has bellows exhibiting overlapping area at tapered ends and fixed with each other, and fleece attached at inner side of supporting body |
EP2398633A1 (en) | 2009-02-17 | 2011-12-28 | Filtrona Porous Technologies Corp. | Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures |
EP2589422A2 (en) * | 2010-06-30 | 2013-05-08 | Amogreentech Co., Ltd. | Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same |
US20140020350A1 (en) * | 2012-07-18 | 2014-01-23 | K.J.Filtration Technologies LTD. | Air filter media |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29907699U1 (en) * | 1999-04-30 | 1999-08-05 | FiberMark Gessner GmbH & Co., 83052 Bruckmühl | Dust filter bag containing nanofiber fleece |
US6743273B2 (en) * | 2000-09-05 | 2004-06-01 | Donaldson Company, Inc. | Polymer, polymer microfiber, polymer nanofiber and applications including filter structures |
US6746517B2 (en) * | 2000-09-05 | 2004-06-08 | Donaldson Company, Inc. | Filter structure with two or more layers of fine fiber having extended useful service life |
US7699767B2 (en) * | 2002-07-31 | 2010-04-20 | Arryx, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
US8092566B2 (en) * | 2004-12-28 | 2012-01-10 | E.I. Du Pont De Nemours And Company | Filtration media for filtering particulate material from gas streams |
US20070074628A1 (en) * | 2005-09-30 | 2007-04-05 | Jones David C | Coalescing filtration medium and process |
JP4915102B2 (en) * | 2006-02-09 | 2012-04-11 | パナソニック株式会社 | Laminate sheet manufacturing method and manufacturing apparatus thereof |
US20080105626A1 (en) * | 2006-11-02 | 2008-05-08 | David Charles Jones | Fuel filter |
WO2008142023A2 (en) * | 2007-05-18 | 2008-11-27 | Universiteit Gent | Production and use of laminated nanofibrous structures |
DE102007023806A1 (en) * | 2007-05-21 | 2008-11-27 | Carl Freudenberg Kg | Layer composite for use in an air filter |
US8679216B2 (en) * | 2007-06-07 | 2014-03-25 | E I Du Pont De Nemours And Company | Process for forming a laminate of a nanoweb and a substrate and filters using the laminate |
JP3134943U (en) * | 2007-06-15 | 2007-08-30 | 呉羽テック株式会社 | The present invention relates to a fuel filter used as a filter medium in the course of supplying fuel from a fuel tank provided in an internal combustion engine or the like to a nano fuel injection device. |
JP2009028617A (en) * | 2007-07-26 | 2009-02-12 | Kureha Ltd | Filter nonwoven fabric |
TWI365102B (en) * | 2008-05-05 | 2012-06-01 | Ind Tech Res Inst | Nanofiber filter and method for manufacturing the same |
US8172092B2 (en) * | 2009-01-22 | 2012-05-08 | Clarcor Inc. | Filter having melt-blown and electrospun fibers |
US20120145632A1 (en) * | 2009-07-15 | 2012-06-14 | Konraad Albert Louise Hector Dullaert | Electrospinning of polyamide nanofibers |
DE102009050447A1 (en) * | 2009-10-23 | 2011-04-28 | Mahle International Gmbh | filter material |
US20110210081A1 (en) * | 2010-02-26 | 2011-09-01 | Clarcor Inc. | Fine fiber liquid particulate filter media |
US8544657B2 (en) * | 2010-04-22 | 2013-10-01 | Kaydon Custom Filtration Corporation | Apparatus and method for removing contaminants from industrial fluids |
JP5857231B2 (en) * | 2012-04-25 | 2016-02-10 | パナソニックIpマネジメント株式会社 | Integrated laminated sheet manufacturing system and integrated laminated sheet manufacturing method |
JP2014124578A (en) * | 2012-12-26 | 2014-07-07 | Nippon Valqua Ind Ltd | Filtration material for filter and production method of the same |
KR101479753B1 (en) * | 2013-08-01 | 2015-01-07 | (주)에프티이앤이 | Polyamide nanofiber filter and its manufacturing method |
-
2015
- 2015-03-03 DE DE102015002672.0A patent/DE102015002672A1/en not_active Ceased
-
2016
- 2016-02-26 EP EP16157576.6A patent/EP3064262B1/en active Active
- 2016-03-02 US US15/058,463 patent/US20160256805A1/en not_active Abandoned
- 2016-03-03 JP JP2016040616A patent/JP2016182595A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1764144A1 (en) | 2005-09-16 | 2007-03-21 | Mann+Hummel Gmbh | Filter element for liquids |
EP2222385A2 (en) | 2007-11-20 | 2010-09-01 | Clarcor INC. | Filtration medias, fine fibers under 100 nanofibers, and methods |
DE102009043273A1 (en) | 2008-09-29 | 2010-04-29 | Mann + Hummel Gmbh | Fibrous medium i.e. filter medium, diameter distribution determining method for predicting main performance characteristics of medium during manufacturing medium, involves calculating diameter of fibrous medium from measuring loops |
EP2398633A1 (en) | 2009-02-17 | 2011-12-28 | Filtrona Porous Technologies Corp. | Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures |
DE102009057438B3 (en) | 2009-12-09 | 2011-05-12 | Mann + Hummel Gmbh | Filter element for use in filter housing for filtering fluid e.g. cooling fluid of eroding machine, has bellows exhibiting overlapping area at tapered ends and fixed with each other, and fleece attached at inner side of supporting body |
EP2589422A2 (en) * | 2010-06-30 | 2013-05-08 | Amogreentech Co., Ltd. | Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same |
US20140020350A1 (en) * | 2012-07-18 | 2014-01-23 | K.J.Filtration Technologies LTD. | Air filter media |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10676614B2 (en) | 2016-04-20 | 2020-06-09 | Clarcor Inc. | High molecular and low molecular weight fine fibers and TPU fine fibers |
EP3445470A4 (en) * | 2016-04-22 | 2019-11-27 | Clarcor, Inc. | Multi-layered or multiple polymer fine fiber webs |
CN110273226A (en) * | 2019-07-18 | 2019-09-24 | 上海泰坦科技股份有限公司 | A kind of medical bionic film and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP2016182595A (en) | 2016-10-20 |
US20160256805A1 (en) | 2016-09-08 |
DE102015002672A1 (en) | 2016-09-08 |
EP3064262B1 (en) | 2017-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3064262B1 (en) | Filter medium, method for producing a filter medium and filter element with a filter medium | |
EP2544791B1 (en) | Filter medium of a filter element and a filter element | |
EP1133342B1 (en) | Multi-layer filter element | |
EP2477718B1 (en) | Filter element and filter for the filtration of fluids | |
DE69723714T2 (en) | coalescing | |
DE19920983C2 (en) | Two-layer or multi-layer filter medium for air filtration and filter element made from it | |
EP2340098B1 (en) | Filter medium for particulate filtration | |
WO1999026710A1 (en) | Filter element | |
EP2758149B1 (en) | Filter material | |
DE112006002921T5 (en) | Variable coalescer | |
EP3423169B1 (en) | Filter insert and fuel filter | |
WO2011029568A1 (en) | Method for producing a filter element having a filter medium | |
DE102015015777A1 (en) | Filter medium and filter element with a filter medium | |
WO2015091011A1 (en) | Filter medium and filter element with a filter medium | |
EP2510992B1 (en) | Filter material for cleaning a fluid | |
EP3185983B1 (en) | Final separator, use and method of manufacturing | |
EP2892629B1 (en) | Filter element | |
WO2005113113A1 (en) | Filter device, particularly for an exhaust gas system of an internal combustion engine | |
DE102015010843A1 (en) | Method for producing a filter medium and a filter medium | |
WO2007014602A2 (en) | Filter element and a device | |
DE102011016689A1 (en) | Filtering medium for use in filter for cleaning e.g. liquid in swimming pool, has non-woven fabric that consists of density in specific range and is formed from multiple synthetic fibers, which are made from polyester | |
DE102014011443B4 (en) | Filter medium, filter element and replaceable filter for filtering particulate contaminants from a liquid | |
EP1764144A1 (en) | Filter element for liquids | |
EP3969147A1 (en) | Filter element for a filter unit | |
EP4442348A1 (en) | Filter material comprising a nanofiber layer and filter element made of such filter material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20170216 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170405 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20170531 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MANN + HUMMEL GMBH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 937449 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016000209 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180218 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180118 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502016000209 Country of ref document: DE Owner name: MANN+HUMMEL GMBH, DE Free format text: FORMER OWNER: MANN + HUMMEL GMBH, 71638 LUDWIGSBURG, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502016000209 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
26N | No opposition filed |
Effective date: 20180719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180226 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160226 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171018 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200226 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 937449 Country of ref document: AT Kind code of ref document: T Effective date: 20210226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240219 Year of fee payment: 9 Ref country code: CH Payment date: 20240301 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240228 Year of fee payment: 9 |