EP3059496B1 - Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz - Google Patents

Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz Download PDF

Info

Publication number
EP3059496B1
EP3059496B1 EP16150776.9A EP16150776A EP3059496B1 EP 3059496 B1 EP3059496 B1 EP 3059496B1 EP 16150776 A EP16150776 A EP 16150776A EP 3059496 B1 EP3059496 B1 EP 3059496B1
Authority
EP
European Patent Office
Prior art keywords
gas
measuring arrangement
connection terminal
air mixture
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16150776.9A
Other languages
German (de)
English (en)
Other versions
EP3059496A1 (fr
Inventor
Gerwin Langius
Erwin Kupers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garrett Motion SARL
Original Assignee
Honeywell Technologies SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Technologies SARL filed Critical Honeywell Technologies SARL
Priority to EP16150776.9A priority Critical patent/EP3059496B1/fr
Publication of EP3059496A1 publication Critical patent/EP3059496A1/fr
Application granted granted Critical
Publication of EP3059496B1 publication Critical patent/EP3059496B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Definitions

  • the present patent application relates to a measuring arrangement for a gas burner, to a gas burner and to a method for operating a gas burner.
  • EP 1 460 338 B1 discloses a measuring arrangement for a gas burner comprising a flame rod, a power supply device for applying a supply voltage to the flame rod, wherein the power supply device can be switched on and off thereby switching on and off the supply voltage to the flame rod.
  • the supply voltage can also be called measuring voltage.
  • the measuring arrangement further comprises a measuring device for measuring a flame ionization current at the flame rod with the aid of the supply voltage applied to the flame rod, wherein the flame ionization current can be measured with the supply voltage being switched on and with the supply voltage being switched off.
  • a comparison device of the measuring arrangement compares an earth potential with a frame potential of the measuring arrangement, wherein the flame ionization current is determined when the frame potential corresponds to the earth potential.
  • EP 2 667 097 A1 discloses a method for operating a gas burner.
  • a mixing ratio of gas and air of a gas/air mixture can be calibrated to different gas qualities on basis of a signal provided by a flame rod positioned downstream of the mixing device within the burner chamber.
  • the flame rod is used to measure the flame ionization current and to calibrate the gas/air mixture to different gas qualities on basis of the flame ionization current.
  • the control of the gas/air mixture over the modulation range of the gas burner is independent from the flame ionization current.
  • EP 2 549 187 A2 discloses a method to control the defined gas/air mixture over the modulation range of the gas burner on basis of a signal provided by an ignition rod and on basis of a signal provided by separate flame rod.
  • the flame rod is used to measure the flame ionization current.
  • the ignition rod is used to measure a voltage resulting from Edison-Richardson effect which is also often called thermionic effect. Both, namely the flame ionization current provided by the flame rod and the thermionic voltage provided by the ignition rod are used to control the gas/air mixture and thereby the ⁇ -value over the modulation range of the gas burner.
  • EP 2 549 187 A2 requires to make use of two different rods for the measurement of the flame ionization current and of the thermionic voltage.
  • the method of EP 2 549 187 A2 uses an absolute value of the thermionic voltage requiring a time constant of a few seconds to measure a stable absolute value of the thermionic voltage.
  • Document EP 2 549 187 A2 discloses a measuring arrangement according to the preamble of claim 1.
  • Document US 5 971 745 A discloses a method according to the preamble of claim 12.
  • a novel measuring arrangement for a gas burner according to claim 1 a novel gas burner according to claim 11 and a novel method for operating a gas burner according to claim 12 are provided.
  • the measuring arrangement for a gas burner according to the present application is defined in the claim 1.
  • the measuring arrangement comprises an input definition circuit configured to switch the measuring arrangement between a relative low impedance measuring circuit and a relative high impedance measuring circuit, wherein the measuring arrangement is adapted to measure the flame ionization current at the flame rod when the measuring arrangement is switched by the input definition circuit to a relative low measuring impedance circuit; and wherein the measuring arrangement is adapted to measure a thermionic voltage at the flame rod when the measuring arrangement is switched by the input definition circuit to a relative high impedance measuring circuit.
  • the invention provides the ability to measure the flame ionization current and the thermionic voltage making use of the same flame rod and the same measuring arrangement.
  • the measuring arrangement comprises a first connection terminal, wherein the first connection terminal is connected to the microcontroller, and wherein the microcontroller switches the first connection terminal between a first terminal status and a second terminal status.
  • the measuring arrangement is switched to a relative low impedance measuring circuit so that the same is adapted to measure the flame ionization current at the flame rod when the first connection terminal is switched by the microcontroller to the first terminal status.
  • the measuring arrangement is switched to a relative high impedance measuring circuit so that the same is adapted to measure the thermionic voltage at the flame rod when the first connection terminal is switched by the microcontroller to the second input terminal status.
  • the measuring arrangement comprises a second power supply device and a ground potential
  • the input definition circuit further comprises a second connection terminal through which the input definition circuit is connected to the power supply; a third connection terminal through which the input definition circuit is connected the ground potential; a fourth connection terminal through which the input definition circuit is connected to the flame rod.
  • a first resistor of the measuring arrangement is connected between the first connection terminal and the fourth connection terminal.
  • a second resistor of the measuring arrangement is connected between the second connection terminal and the fourth connection terminal.
  • a third resistor of the measuring arrangement is connected between the third connection terminal and the fourth connection terminal.
  • the second resistor and the third resistor have both a bigger electric resistance than the first resistor. This provides a simple and reliable solution to measure the flame ionization current and the thermionic voltage making use of the same flame rod.
  • the microcontroller comprises an electronic switch, wherein the electronic switch is configured to by operated in such a way that when the electronic switch is closed the first connection terminal is connected to the second power supply device so that the same is switched to the first terminal status, and that when the electronic switch is opened the first connection terminal is disconnected from the second power supply device so that the same is switched to the second terminal status.
  • the electronic switch is configured to by operated in such a way that when the electronic switch is closed the first connection terminal is connected to the second power supply device so that the same is switched to the first terminal status, and that when the electronic switch is opened the first connection terminal is disconnected from the second power supply device so that the same is switched to the second terminal status.
  • the electronic switch may be provided by a transistor having a drain, a gate and a source, wherein the drain of the transistor and the second connection terminal of the input definition circuit are both connected to the second power supply device, wherein the source of the transistor is connected to the first connection terminal of the input definition circuit, and wherein the gate of the transistor is configured to by operated in such a way that when a first defined voltage is applied to the gate the first connection terminal is switched by the microcontroller to the first terminal status and that when a second defined voltage is applied to the gate the first connection terminal is switched by the microcontroller to the second terminal status.
  • the gas burner of the present application is defined in claim 11.
  • the gas burner comprises the measuring arrangement according to the present invention.
  • the present application further relates to a method for operating a gas burner according to claim 12.
  • the method according to the present invention provides a calibration of the gas/air mixture based on at least two calibration steps, namely a coarse calibration step and fine calibration step.
  • the flame rod is used to measure the flame ionization current and/or the thermionic voltage, wherein the gas/air mixture is made richer during the coarse calibration step by increasing the gas amount of the gas/air mixture relative to the air amount of the same until a flattening or a maximum in a dynamic behaviour of the flame ionization current and/or until a minimum in a dynamic behaviour of the thermionic voltage is detected.
  • the same flame rod is used to measure at least the thermionic voltage, wherein the gas/air mixture is made leaner during the fine calibration step after the flattening or the maximum in the dynamic behaviour of the flame ionization current is detected and/or after the minimum in the dynamic behaviour of the thermionic voltage is detected by decreasing the gas amount of the gas/air mixture relative to the air amount of the same until an increase in the dynamic behaviour of the thermionic voltage is detected.
  • the gas/air mixture for which the increase of the thermionic voltage is detected corresponds to a gas/air mixture providing combustion with a ⁇ -value equal 1.
  • Figure 1 shows a schematic view of a gas burner appliance 10.
  • the same comprises a gas burner chamber 11 with a gas burner surface 25 in which combustion of a defined gas/air mixture having a defined mixing ratio of gas and air takes place during burner-on phases of the gas burner.
  • the combustion of the gas/air mixture results into flames 12 monitored by a flame rod 13.
  • the defined gas/air mixture is provided to the burner chamber 11 of the gas burner by mixing an air flow with a gas flow.
  • a fan 14 sucks in air flowing through an air duct 15 and gas flowing though a gas duct 16.
  • a gas regulating valve 18 for adjusting the gas flow through the gas duct 16 and a gas safety valve 19 are assigned to the gas duct 16.
  • the defined gas/air mixture having the defined mixing ratio of gas and air is provided to the burner chamber 11 of the gas burner.
  • the defined gas/air mixture is provided by mixing the air flow provided by an air duct 15 with a gas flow provided by a gas duct 16.
  • the air flow and the gas flow become preferably mixed by a mixing device 23.
  • a mixing device can be designed as a so-called Venturi nozzle.
  • the quantity of the air flow and thereby the quantity of the gas/air mixture flow is adjusted by the fan 14, namely by the speed of the fan 14.
  • the fan speed can be adjusted by an actuator 22 of the fan 14.
  • the fan speed of the fan 14 is controlled by a controller 20 generating a control variable for the actuator 22 of the fan 14.
  • the defined mixing ratio of the defined gas/air mixture is controlled by the gas regulating valve 18, namely by a pneumatic controller 24 of the same.
  • the pneumatic controller 24 of the gas regulating valve 18 controls the opening/closing position of the gas valve 18.
  • the position of the gas valve 18 is adjusted by the pneumatic controller 24 on basis of a pressure difference between the gas pressure of the gas flow in the gas pipe 16 and a reference pressure.
  • the gas regulating valve 18 is controlled by the pneumatic controller 24 in such a way that at the outlet of the gas valve 18 the pressure is equal to the reference pressure.
  • the ambient pressure serves as reference pressure.
  • the air pressure of the air flow in the air duct 15 serves as reference pressure.
  • the pressure difference between the gas pressure and the reference pressure is determined pneumatically by pneumatic sensor of the pneumatic controller 24.
  • the gas valve 18 would be controlled by an electronic controller, e.g. by the controller 20.
  • the mixing ratio of the defined gas/air mixture is controlled is such a way that over the entire modulation range of the gas burner the defined mixing ratio of the defined gas/air mixture is kept constant.
  • a modulation of "1" means that the fan 14 is operated at maximum fan speed and thereby at full-load of the gas burner.
  • a modulation of "5" means that the fan 14 is operated at 20% of the maximum fan speed and a modulation of "10” means that the fan 14 is operated at 10% of the maximum fan speed.
  • the load of the gas burner can be adjusted. Over the entire modulation range of the gas burner the defined mixing ratio of the defined gas/air mixture is kept constant.
  • the mixing ratio of the defined gas/air mixture is controlled during burner-on phases so that over the entire modulation range of the gas burner the defined mixing ratio of the gas/air mixture is kept constant.
  • the defined mixing ratio of gas and air of the defined gas/air mixture can be calibrated to different gas qualities.
  • the calibration is performed by adjusting a position of a throttle 17.
  • the throttle position can be adjusted by an actuator 21 assigned to the throttle 17.
  • the controller 20 controls the actuator 21 and thereby the throttle position of the throttle 17.
  • the calibration can be performed at selected times, namely immediately after installation of the sensor and/or immediately after restart of the gas burner and/or immediately after a reset.
  • the calibration can be performed in a modulating range of the gas burner close to full-load operation of the same, e.g. between 50% (corresponds to a modulation of "2") and 100% (corresponds to a modulation of "1") of full full-load operation.
  • the controller 20 of the gas burner comprises a measuring arrangement 43.
  • a preferred embodiment of the measuring arrangement 43 is shown in Figure 2 .
  • the measuring arrangement 43 comprises the fame rod 13.
  • the measuring arrangement 43 comprises further a first power supply device 26 for applying a supply voltage - also often called measuring voltage - to the flame rod 13, wherein the first power supply device 26 is configured to be switched on and off thereby switching on and off the supply or measuring voltage to the flame rod 13.
  • a power supply source is connectable to connection terminals 30 of the first power supply device 26.
  • the power supply at the connection terminals 30 usually provides a supply voltage of around 200 Volt.
  • the measuring arrangement 43 comprises further a measuring device 27 for measuring a flame ionization current, preferably a dynamic behaviour of the flame ionization current, with the aid of the supply voltage applied to the flame rod 13 by the first power supply device 26.
  • the flame ionization current can be measured with the supply voltage being switched on and with the supply voltage being switched off.
  • the flame rod 13 is connected to connection terminal 29 of the measuring device 27.
  • the measuring arrangement 43 comprises further a comparison device 18 comparing an earth potential 32 with a frame potential 33 of the measuring arrangement, wherein the flame ionization current is determined when the frame potential 33 corresponds to the earth potential 27.
  • the gas burner surface 25 or a different part of the gas burner is connectable to the connection terminal 31 of the comparison device 18.
  • the measuring arrangement 43 of the present invention comprises an input definition circuit 34 configured to switch the measuring arrangement 43 between a relative low impedance measuring circuit and a relative high impedance measuring circuit.
  • the input definition circuit 34 preferably is part of the measuring device 27.
  • the measuring arrangement 43 is adapted to measure the flame ionization current at the flame rod 13 when the measuring arrangement 43 is switched by the input definition circuit to a relative low measuring impedance circuit 43. So, the measuring arrangement 43 is used to measure the flame ionization current when the measuring arrangement is switched by the input definition circuit 34 to a relative low impedance measuring circuit.
  • the supply voltage provided by the first power supply device 26 is preferably switched on and off making use of a defined switching rate.
  • the measuring arrangement 43 is adapted to measure a thermionic voltage at the flame rod 13 when the measuring arrangement 43 is switched by the input definition circuit 34 to a relative high impedance measuring circuit 43. So, the measuring arrangement 43 is used to measure the thermionic voltage based on the thermionic effect when the measuring arrangement 43 is switched by the input definition circuit 34 to a relative high impedance measuring circuit.
  • the supply voltage provided by the first power supply 26 is preferably permanently switched off.
  • the thermionic voltage is a voltage resulting from the Edison-Richardson effect which is also often called thermionic effect. It is based on the effect that when two conductive metals are in the flame at different temperatures, an electrical voltage is generated depending on the temperature difference.
  • One of these metals is provided by the flame rod 13, the other one of the metals is provided by the burner surface 25 or a different metallic part within the burner chamber.
  • the measuring arrangement 43 is either adapted to measure the flame ionization current or to measure the thermionic voltage making in both statuses use of the same flame rod 13.
  • the switching of the input definition circuit 34 between a relative high impedance circuit and a relative high impedance circuit happens at another defined switching rate.
  • Said switching between the between a relative high impedance measuring circuit and a relative high impedance measuring circuit is controlled by a microcontroller 44 of the measuring arrangement 43.
  • the microcontroller 44 preferably is part of the measuring device 27.
  • the input definition circuit 34 comprises a first connection terminal 39, wherein the measuring arrangement 43 is switched to a relative low impedance measuring circuit when the first connection terminal 39 is switched to or operated in a first terminal status also often called output terminal status.
  • the measuring arrangement 43 is switched to a relative high impedance measuring circuit when the first connection terminal 39 is switched to or operated in a second terminal status also often called input terminal status.
  • the microcontroller 44 switches the first connection terminal 39 between the first (output) terminal status and the second (input) terminal status as discussed later below.
  • the input definition circuit 34 comprises further a second connection terminal 37 through which the input definition circuit 34 is connected to a second power supply device 45 of the measuring arrangement 43.
  • the second power supply device 45 at the second connection terminal 37 usually provides a supply voltage of around 5 Volt.
  • the second power supply device 45 is also connected to the microcontroller 44.
  • the input definition circuit 34 comprises further a third connection terminal 38 through which the input definition circuit 34 is connected to ground potential 46.
  • the input definition circuit 34 comprises further a fourth connection terminal 36 through which the input definition circuit 34 is connected to the flame rod 13.
  • the microcontroller 44 comprises an electronic switch, wherein the electronic switch is according to Figure 2 provided by a transistor 47.
  • the first connection terminal 39 is connected to a first port of the electronic switch and the second power supply device 45 is connected to a second port of the electronic switch.
  • the electronic switch is configured to by operated in such a way that when the electronic switch is closed, the first connection terminal 39 is connected to the second power supply device 45 so that the same is switched to the first terminal status, and that when the electronic switch is opened, the first connection terminal 39 is disconnected from the second power supply device 45 so that the same is switched to the second terminal status.
  • the transistor 47 shown in Figure 2 has a drain D, a gate G and a source S.
  • the drain D of the transistor 47 and the second connection terminal 37 of the input definition circuit 34 are both connected to the second power supply device 45.
  • the source S of the transistor 47 is connected to the first connection terminal 39 of the input definition circuit 34.
  • the gate G of the transistor 47 is configured to by operated in such a way that when a first defined voltage is applied to the gate G the first connection terminal 39 is switched by the microcontroller 44 to the first terminal status and that when a second defined voltage is applied to the gate G the first connection terminal 39 is switched by the microcontroller 44 to the second terminal status.
  • the electronic switch when the electronic switch is closed, especially when gate G of the transistor 47 is operated by other components of the microcontroller 44 in such a way that the transistor 47 is conductive by applying the first defined voltage to the gate G, the supply voltage provided by the second connection terminal 37 is present at the first connection terminal 39.
  • the first connection terminal 39 is switched by the microcontroller 44 to the first terminal status and the input definition circuit 34 switches the measuring arrangement 43 is to a relative low impedance measuring circuit in which the same is adapted to measure the flame ionization current at the flame rod 13.
  • the electronic switch When the electronic switch is opened, especially when the gate G of the transistor 47 is in operated by other components of the microcontroller 44 in such a way that the transistor 47 is non-conductive by applying the second defined voltage to the gate G, the supply voltage provided by the second connection terminal 37 is not present at the first connection terminal 39 but the first connection terminal 39 is floating. In this status the first connection terminal 39 is switched by the microcontroller 44 to the second terminal status and the input definition circuit 34 switches the measuring arrangement 43 is to a relative high impedance measuring circuit in which the same is adapted to measure the thermionic voltage at the flame rod 13.
  • microcontroller 44 controls the status of the electronic switch to be opened or closed, especially how the transistor 47 can be made conductive or non-conductive by applying the defined voltages to the gate G, are well known to the person skilled in the art and a part of a typical push-pull stage of a microcontrollers input/output port.
  • the transistor 47 is provided by a MOSFET transistor.
  • the flame rod 13 is also connected to the microcontroller 44, preferably through the fourth connection terminal 36.
  • the fourth connection terminal 36 is preferably connected to an analog/digital converter input of the microcontroller 44.
  • a first electrical resistor 42 of the measuring arrangement 43 is connected between the first connection terminal 39 and the fourth connection terminal 36.
  • a second electrical resistor 40 of the measuring arrangement 43 is connected between the second connection terminal 37 and the fourth connection terminal 36.
  • a third resistor 41 of the measuring arrangement 43 is connected between the third connection terminal 38 and the fourth connection terminal 36.
  • the second resistor 40 and the third resistor 41 have both a bigger electric resistance than the first resistor 42.
  • the electric resistance of second resistor 40 and the third resistor 41 is at least 10 times higher than the electric resistance of the first resistor 42.
  • the second resistor 40 and the third resistor 41 preferably have an electric resistance of in the magnitude of Mega Ohms (e.g. of 1M ⁇ ).
  • the first resistor 42 has preferably an electric resistance of in the magnitude of Kilo Ohms (e.g. 56k ⁇ ).
  • the supply voltage of e.g. +5V provided by the second power supply device 45 is present at connection terminal 39.
  • resistor 42 is connected to said supply voltage of e.g. 5V, where also resistor 40 is connected to.
  • Resistor 40 e.g. having a magnitude of 56 k ⁇
  • resistor 42 e.g. having a magnitude of 1M ⁇
  • the input definition circuit 34 has an impedance of 50k ⁇ (1M ⁇ in parallel to 53k ⁇ ).
  • +5V provided by the second power supply device 45 is not present at connection terminal 39.
  • resistor 42 is not effective, meaning that resistor 42 does not have a function.
  • resistors 40 and 41 are effective, both having a magnitude of e.g. 1 M ⁇ .
  • the input definition circuit 34 has an impedance of 500k ⁇ (1M ⁇ in parallel to 1M ⁇ ).
  • the measuring arrangement of the present invention comprising the input definition circuit 34 can switch between a low impedance flame ionization measurement circuit to a high impedance thermionic voltage measurement circuit.
  • the same arrangement with the same flame rod can be used for both measurements.
  • the measuring arrangement of the present invention allows a very accurate calibration of the defined gas/air mixture to different gas qualities.
  • the present application provides further a unique calibration method for calibrating the gas/air mixture to different gas qualities.
  • the calibration is based on a signal provided by the flame rod 13 positioned downstream of the mixing device 23 within the burner chamber 11 making use of the above described measuring arrangement of the present invention.
  • the calibration of the gas/air mixture of the present invention is performed in at least two calibration steps, namely in a coarse calibration step and a fine calibration step.
  • the measuring arrangement as well as the flame rod 13 are both used to measure the flame ionization current and/or the thermionic voltage.
  • the gas/air mixture is made richer by increasing the gas amount of the gas/air mixture relative to the air amount of the same until a flattening or a maximum in a dynamic behavior of the flame ionization current is detected and/or until a minimum in a dynamic behavior of thermionic voltage is detected.
  • both measurements can in principle be used for the coarse calibration step.
  • the flame ionization current measurement is used during the coarse calibration. It would also be possible to use the thermionic voltage for the coarse calibration.
  • the measuring arrangement 43 is switched by the input definition circuit 34 to a relative low measuring impedance circuit and the supply voltage provided by the first power supply device 26 is preferably switched on and off making use of a defined switching rate.
  • the curve 43 of Figure 3 illustrates the dependence of the dynamic behavior of the flame ionization current I provided by the flame rod 13 during the coarse calibration step from the throttle position X 17 of the throttle 17 assigned to the gas duct 16 used for the calibration.
  • the arrow 44 in Figure 3 illustrates that the gas/air mixture is made richer during the coarse calibration step.
  • the throttle position X 17 is changed through the actuator 21 and the controller 20 in order to increase the gas flow while keeping the fan speed of the fan 14 and the air flow constant thereby increasing the gas amount of the gas/air mixture relative to the air amount of the same (see arrow 44 in Figure 3 ).
  • the throttle position X 17 is preferably continuously changed with a first throttle position changing speed in order to continuously increase the gas amount of the gas/air mixture relative to the air amount of the same until a flattening or a maximum of the signal I provided by the flame rod 13 is detected.
  • Figure 3 shows a throttle position X 17-COARSE determined during the coarse calibration step.
  • the fine calibration step After a flattening or a maximum in the dynamic behavior of the flame ionization current I has been detected during the coarse calibration step, the fine calibration step will be performed.
  • the circuit arrangement as well as the flame rod 13 are used to measure the thermionic voltage based on the thermionic effect.
  • the gas/air mixture is made leaner by decreasing the gas amount of the gas/air mixture relative to the air amount of the same until an increase of the thermionic voltage U is detected.
  • the thermionic voltage measurement is used during the fine calibration.
  • the measuring arrangement 43 is switched by the input definition circuit 34 to a relative high measuring impedance circuit and the supply voltage provided by the first power supply device 26 is preferably permanently switched off.
  • the curve 45 of Figure 3 illustrates the dependence of the dynamic behavior of the thermionic voltage U provided by the flame rod 13 during the fine calibration step from the throttle position X 17 of the throttle 17 assigned to the gas duct 16.
  • the arrow 46 in Figure 3 illustrates that the gas/air mixture is made leaner during the fine calibration step.
  • the throttle position X 17 is changed starting from throttle position X 17-COARSE through the actuator 21 and the controller 20 in order to decrease the gas flow while keeping the fan speed of the fan 14 and the air flow constant thereby decreasing the gas amount of the gas/air mixture relative to the air amount of the same (see arrow 46 in Figure 3 ).
  • the throttle position X 17 is preferably continuously changed with a second throttle position changing speed in order to continuously decrease the gas amount of the gas/air mixture relative to the air amount of the same until an increase of the signal U provided by the flame rod 13 is detected.
  • Figure 3 shows a throttle position X 17-FINE determined during the fine calibration step.
  • the first throttle position changing speed during the coarse calibration step is higher than the second throttle position changing speed during the fine calibration step.
  • the throttle position X 17-FINE provides a gas/air mixture providing a combustion with a A-value of 1,0.
  • the calibrated throttle position X 17-CAL is calculated from the throttle position X 17-FINE determined during the fine calibration step by adding an offset value ⁇ X 17 to the throttle position X 17-FINE .
  • the calibrated throttle position X 17-CAL is used for the further operation of the gas burner.
  • the coarse calibration step and a fine calibration step both make use of the same flame rod 13.
  • this flame rod 13 also serves as ignition rod.
  • the throttle 17 which is used for the calibration is assigned to the gas duct 16.
  • the throttle 17 which is used for the calibration can alternatively be assigned to the mixing device 23.
  • the dynamic behavior of the flame ionization current I and the dynamic behavior of the thermionic voltage U are used for the calibration, not the absolute values of the same.
  • the used dynamic behavior is detected based on a changing gas amount in the gas/air mixture and thereby on a changing A-value. So, it is not necessary to consider a time constant of a few seconds to measure a stable absolute value of e.g. the thermionic voltage U. Due to the fact that the method does not make use of the absolute value of e.g. the thermionic voltage, but of the dynamic behaviour of the same, this thermionic voltage doesn't have to stabilize. The transition that happens is big enough to see it immediately even if the signal has a natural time constant. So, the change of throttle position e.g. during the fine calibration step can be done continuously as described above.
  • the control of the defined gas/air mixture over the modulation range of the gas burner 11 depends on a pressure difference between the gas pressure of the gas flow in the gas pipe 16 and a reference pressure, wherein either the air pressure of the air flow in the air duct 15 or the ambient pressure is used as reference pressure, and wherein the pressure difference between the gas pressure of the gas flow in the gas pipe 16 and the reference pressure is determined either pneumatically by pneumatic sensor or electronically by an electric sensor.
  • the defined gas/air mixture is controlled by the pneumatic controller 24 making use of a pneumatic sensor to determine the pressure difference between the gas pressure and the reference pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Control Of Combustion (AREA)

Claims (15)

  1. Agencement de mesure (43) pour un brûleur à gaz, comprenant
    une électrode de détection de flamme (13) ;
    un premier dispositif d'alimentation en énergie (26) conçu pour appliquer une tension d'alimentation à l'électrode de détection de flamme (13), le premier dispositif d'alimentation en énergie (26) étant conçu pour être activé et désactivé ce qui permet d'activer et de désactiver la tension d'alimentation vers l'électrode de détection de flamme (13) ;
    un dispositif de mesure (27) conçu pour mesurer un courant d'ionisation de flamme au niveau de l'électrode de détection de flamme (13) à l'aide de la tension d'alimentation appliquée à l'électrode de détection de flamme (13),
    un microcontrôleur (44) conçu pour recevoir le courant d'ionisation de flamme en provenance de l'électrode de détection de flamme (13) ;
    caractérisé en ce que
    le courant d'ionisation de flamme est mesurable avec la tension d'alimentation activée et avec la tension d'alimentation désactivée, et en ce que l'agencement de mesure comprend en cours un circuit de définition d'entrée (34) conçu pour commuter l'agencement de mesure entre un circuit de mesure à impédance basse relative et un circuit de mesure à impédance élevée relative, dans lequel
    l'agencement de mesure (43) est conçu pour mesurer le courant d'ionisation de flamme au niveau de l'électrode de détection de flamme (13) lorsque l'agencement de mesure (43) est commuté par le circuit de définition d'entrée (34) sur un circuit à impédance de mesure basse relative ;
    l'agencement de mesure (43) est conçu pour mesurer une tension thermionique au niveau de l'électrode de détection de flamme (13) lorsque l'agencement de mesure (43) est commuté par le circuit de définition d'entrée (34) sur un circuit de mesure à impédance élevée relative.
  2. Agencement de mesure selon la revendication 1,
    caractérisé en ce que le circuit de définition d'entrée (34) comprend une première borne de connexion (39), la première borne de connexion (39) étant connectée au microcontrôleur (44), et le microcontrôleur (44) étant conçu pour commuter la première borne de connexion entre un premier état de borne et un second état de borne.
  3. Agencement de mesure selon la revendication 2,
    caractérisé en ce que l'agencement de mesure (43) est commuté sur un circuit de mesure à impédance faible relative lorsque la première borne de connexion (39) est commutée par le microcontrôleur (44) sur le premier état de borne, et dans lequel l'agencement de mesure (43) est commuté sur un circuit de mesure à impédance élevée relative lorsque la première borne de connexion (39) est commutée par le microcontrôleur (44) sur le second état de borne d'entrée.
  4. Agencement de mesure selon la revendication 2 ou 3,
    caractérisé par une première résistance (42), la première résistance (42) étant connectée à la première borne de connexion (39).
  5. Agencement de mesure selon l'une des revendications 2 à 4, caractérisé par un second dispositif d'alimentation en énergie électrique (45), dans lequel le circuit de définition d'entrée (34) comprend en outre une deuxième borne de connexion (37) par le biais de laquelle le circuit de définition d'entrée (34) est connecté au second dispositif d'alimentation en énergie électrique (45).
  6. Agencement de mesure selon l'une des revendications 2 à 5, caractérisé par un potentiel à la terre (46), dans lequel le circuit de définition d'entrée (34) comprend en outre une troisième borne de connexion (38) par le biais de laquelle le circuit de définition d'entrée (34) est connecté au potentiel à la terre (46).
  7. Agencement de mesure selon l'une des revendications 2 à 6, caractérisé en ce que le circuit de définition d'entrée (34) comprend en outre une quatrième borne de connexion (36) par le biais de laquelle le circuit de définition d'entrée (34) est connecté à l'électrode de détection de flamme (13).
  8. Agencement de mesure selon la revendication 7, caractérisé par un dispositif filtrant (35), le dispositif filtrant (35) étant connecté entre la quatrième borne de connexion (36) du circuit de définition d'entrée (34) et l'électrode de détection de flamme (13).
  9. Agencement de mesure selon l'une des revendications 5 à 8, caractérisé par
    une deuxième résistance (40), la deuxième résistance (40) étant connectée entre la deuxième borne de connexion (37) et la quatrième borne de connexion (36) ;
    une troisième résistance (41), la troisième résistance (41) étant connectée entre la troisième borne de connexion (38) et la quatrième borne de connexion (36) ;
    la deuxième résistance (40) et la troisième résistance (41) ayant toutes les deux une résistance électrique plus grande que la première résistance (42).
  10. Agencement de mesure selon l'une des revendications 5 à 9, caractérisé en ce que le microcontrôleur (44) comprend un commutateur électronique, le commutateur électronique étant conçu pour être actionné de sorte que lorsque le commutateur électronique est fermé la première borne de connexion (39) soit connectée au second dispositif d'alimentation électrique (45) de sorte que celle-ci soit commutée sur le premier état de borne, et que lorsque le commutateur électronique est ouvert la première borne de connexion (39) soit déconnectée du second dispositif d'alimentation électrique (45) de sorte que celle-ci soit commutée sur le second état de borne.
  11. Brûleur à gaz, comprenant
    une chambre (11) de brûleur dotée d'une surface (25) de brûleur ;
    un agencement de mesure selon l'une des revendications 1 à 10,
    dans lequel l'électrode de détection de flamme (13) de l'agencement de mesure est positionnée dans la chambre (11) de brûleur à gaz de façon adjacente à une surface (25) de brûleur à gaz.
  12. Procédé d'utilisation du brûleur à gaz selon la revendication 11, dans lequel pendant des phases d'activation de brûleur, un mélange gaz/air défini ayant un rapport de mélange défini de gaz et d'air est introduit dans une chambre (11) de brûleur du brûleur à gaz pour la combustion du mélange gaz/air défini dans la chambre (11) de brûleur, le mélange gaz/air défini étant fourni par un dispositif de mélange (23) mélangeant un flux d'air fourni par un conduit d'air (15) avec un flux de gaz fourni par un conduit de gaz (16), et dans lequel pendant les phases d'activation de brûleur le rapport de mélange défini de gaz et d'air du mélange gaz/air défini peut être étalonné sur différentes qualités de gaz sur la base d'un signal produit par une électrode de détection de flamme (13) positionnée en aval du dispositif de mélange (23) dans la chambre (11) de brûleur, caractérisé en ce que l'étalonnage du mélange gaz/air est réalisé en au moins deux étapes d'étalonnage, à savoir dans une étape d'étalonnage grossier et une étape d'étalonnage fin, c'est-à-dire de sorte que
    dans l'étape d'étalonnage grossier l'électrode de détection de flamme (13) du brûleur à gaz est utilisée pour mesurer un courant d'ionisation de flamme et/ou une tension thermionique, le mélange gaz/air étant enrichi pendant l'étape d'étalonnage grossier par l'augmentation de la quantité de gaz du mélange gaz/air par rapport à la quantité d'air de celui-ci jusqu'à la détection d'un aplatissement ou d'un maximum d'un comportement dynamique du courant d'ionisation de flamme et/ou d'un minimum d'un comportement dynamique de la tension thermionique,
    dans l'étape d'étalonnage fin après l'étape d'étalonnage grossier l'électrode de détection de flamme (13) est utilisée pour mesurer au moins la tension thermionique, le mélange gaz/air étant appauvri pendant l'étape d'étalonnage fin après la détection de l'aplatissement ou du maximum du comportement dynamique du courant d'ionisation de flamme et/ou après la détection du minimum du comportement dynamique de la tension thermionique par la diminution de la quantité de gaz du mélange gaz/air par rapport à la quantité d'air de celui-ci jusqu'à la détection d'une augmentation du comportement dynamique de la tension thermionique.
  13. Procédé selon la revendication 12, caractérisé en ce que le mélange gaz/air est enrichi pendant l'étape d'étalonnage grossier en augmentant une position de papillon d'un papillon de gaz (17) affecté à un conduit de gaz (16) ou à un dispositif de mélange (23) du brûleur à gaz à l'aide d'une première vitesse de changement de position de papillon, et en ce que le mélange gaz/air est appauvri pendant l'étape d'étalonnage fin en diminuant la position de papillon dudit papillon de gaz (17) à l'aide d'une seconde vitesse de changement de position de papillon, la première vitesse de changement de position de papillon étant supérieure à la seconde vitesse de changement de position de papillon.
  14. Procédé selon la revendication 12 ou 13, caractérisé en ce que
    seul l'étalonnage du mélange gaz/air défini dépend de la tension thermionique, la commande du mélange gaz/air défini sur la plage de modulation du brûleur à gaz (11) étant indépendante de la tension thermionique, et/ou
    seul l'étalonnage du mélange gaz/air défini dépend du courant d'ionisation de flamme, la commande du mélange gaz/air défini sur la plage de modulation du brûleur à gaz (11) étant indépendante du courant d'ionisation de flamme.
  15. Procédé selon la revendication 14, caractérisé en ce que la commande du mélange gaz/air défini sur la plage de modulation du brûleur à gaz (11) dépend d'une différence de pression entre la pression gazeuse du flux de gaz dans le tuyau de gaz et une pression de référence, dans lequel soit la pression d'air du flux d'air dans le conduit d'air, soit la pression ambiante est utilisée comme pression de référence, et dans lequel la différence de pression entre la pression gazeuse du flux de gaz dans le tuyau de gaz et la pression de référence est déterminée soit pneumatiquement par un capteur pneumatique, soit électroniquement par un capteur électrique.
EP16150776.9A 2015-02-23 2016-01-11 Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz Active EP3059496B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16150776.9A EP3059496B1 (fr) 2015-02-23 2016-01-11 Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15156090 2015-02-23
EP16150776.9A EP3059496B1 (fr) 2015-02-23 2016-01-11 Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz

Publications (2)

Publication Number Publication Date
EP3059496A1 EP3059496A1 (fr) 2016-08-24
EP3059496B1 true EP3059496B1 (fr) 2018-10-10

Family

ID=52589253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16150776.9A Active EP3059496B1 (fr) 2015-02-23 2016-01-11 Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz

Country Status (1)

Country Link
EP (1) EP3059496B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869101A1 (fr) 2020-02-19 2021-08-25 Pittway Sarl Dispositif de surveillance de flamme pour un brûleur à gaz et brûleur à gaz

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458647B2 (en) * 2014-08-15 2019-10-29 Clearsign Combustion Corporation Adaptor for providing electrical combustion control to a burner
EP3617596B1 (fr) 2018-08-28 2021-10-06 Ademco Inc. Procédé de fonctionnement d'un appareil à brûleur à gaz
DE102019131577A1 (de) * 2019-11-22 2021-05-27 Vaillant Gmbh Verfahren und Vorrichtung zur Messung des Lambda-Wertes in einem fossil befeuerten Brenner, insbesondere für eine Heizungs- und/oder Brauchwasseranlage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227639A (en) * 1991-12-16 1993-07-13 Honeywell Inc. Infrared-based sensing circuit providing an output simulating the output of a flame rod sensor
EP0861402A1 (fr) * 1995-11-13 1998-09-02 Gas Research Institute Appareil et procede de commande d'ionisation de flamme
DE19854824C1 (de) * 1998-11-27 2000-06-29 Stiebel Eltron Gmbh & Co Kg Verfahren und Schaltung zur Regelung eines Gasbrenners
DE10312669B3 (de) 2003-03-21 2004-10-21 Honeywell B.V. Schaltungsanordnung zur Ermittlung des Flammenstromes eines Brenners
DE102011079325B4 (de) 2011-07-18 2017-01-26 Viessmann Werke Gmbh & Co Kg Verfahren zur Luftzahlregelung eines Brenners
EP2667097B1 (fr) 2012-05-24 2018-03-07 Honeywell Technologies Sarl Procédé de fonctionnement d'un brûleur à gaz

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3869101A1 (fr) 2020-02-19 2021-08-25 Pittway Sarl Dispositif de surveillance de flamme pour un brûleur à gaz et brûleur à gaz
WO2021165032A1 (fr) 2020-02-19 2021-08-26 Pittway Sarl Dispositif de surveillance de flamme pour appareil de brûleur à gaz et appareil de brûleur à gaz

Also Published As

Publication number Publication date
EP3059496A1 (fr) 2016-08-24

Similar Documents

Publication Publication Date Title
EP3059496B1 (fr) Agencement de mesure pour un brûleur à gaz, brûleur à gaz et procédé pour faire fonctionner le brûleur à gaz
EP2667097B1 (fr) Procédé de fonctionnement d'un brûleur à gaz
EP3228936B1 (fr) Procédé de fonctionnement d'un appareil à brûleur à gaz
WO2008126650A3 (fr) Appareil de réglage de température, appareil de traitement, et méthode de réglage de température
EP3073195B1 (fr) Procédé de calibration d'un brûleur à gaz
WO2010094673A1 (fr) Brûleur à gaz à pré-mélange avec surveillance et régulation améliorées de la flamme
DE102008031979A1 (de) Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner
EP2405198B1 (fr) Procédé de calibration de régulation du rapport gaz combustible-air d'un brûleur à gaz combustible
EP2631541A1 (fr) Procédé de fonctionnement d'un brûleur à gaz
US20110234301A1 (en) Circuit arrangement with temperature compensation
WO2020237281A1 (fr) Brûleur à gaz perfectionné pour appareils de cuisson
EP3043115B1 (fr) Procédé pour faire fonctionner un brûleur à gaz à prémélange
US20120248896A1 (en) Field device
EP3869101A1 (fr) Dispositif de surveillance de flamme pour un brûleur à gaz et brûleur à gaz
KR20050057542A (ko) 선형 배기-가스 프로브를 동작시키기 위한 회로 장치
EP1811230B1 (fr) Procédé de contrôle du rapport air-combustible d'un brûleur à combustible
EP3913285A1 (fr) Procédé et appareil de commande pour faire fonctionner un appareil à brûleur à gaz
US11287131B2 (en) Method for operating a gas burner appliance
EP4033148B1 (fr) Procédé et appareil de commande pour faire fonctionner un appareil à brûleur à gaz
EP4092325A1 (fr) Procédé et appareil de commande pour faire fonctionner un appareil à brûleur à gaz
US20240230084A1 (en) Method and controller for operating a gas burner appliance and gas burner appliance
KR100481947B1 (ko) 가스 밸브
EP4119846A1 (fr) Procédé et appareil de commande pour faire fonctionner un appareil à brûleur à gaz
KR101552025B1 (ko) 광대역 산소 센서 시뮬레이터
JPH1165684A (ja) 電流調整器の補償調整方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180301

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051684

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016006274

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1051684

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016006274

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602016006274

Country of ref document: DE

Owner name: PITTWAY SARL, CH

Free format text: FORMER OWNER: HONEYWELL TECHNOLOGIES SARL, ROLLE, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220505 AND 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 9

Ref country code: GB

Payment date: 20240123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240125

Year of fee payment: 9