EP3058379A1 - Method for measuring a temperature - Google Patents

Method for measuring a temperature

Info

Publication number
EP3058379A1
EP3058379A1 EP14781252.3A EP14781252A EP3058379A1 EP 3058379 A1 EP3058379 A1 EP 3058379A1 EP 14781252 A EP14781252 A EP 14781252A EP 3058379 A1 EP3058379 A1 EP 3058379A1
Authority
EP
European Patent Office
Prior art keywords
temperature
voltage drop
electrically conductive
conductive material
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14781252.3A
Other languages
German (de)
French (fr)
Inventor
Wolfgang Jöckel
Jens HERCHENRÖDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of EP3058379A1 publication Critical patent/EP3058379A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements

Definitions

  • the invention relates to a method for measuring a temperature in a current sensor.
  • Electric currents in and out of a vehicle battery to be measured for example, in DE 10 2005 039 587 Al with a current ⁇ sensor in which a sensing element Manganin is welded between two terminals acting as contact resistance of copper.
  • a method of measuring a temperature in a current sensor comprising a first electrically conductive material and a second electrically conductive material connected in series with the first electrically conductive material, both of which are flowed through by an electrical current, comprising:
  • the specified method is based on the consideration that current sensors, in particular, if they are used for measuring electric currents in or from a vehicle battery, as mentioned above, in the electric power path of the Batteries are interconnected.
  • the current ⁇ sensors with a so-called ohm see 'shunt or measurement shunt, hereinafter referred to as measuring element be constructed of which the current to be measured is determined from the induced at the measuring shunt by the current to be measured voltage drop in the frame, this interconnection can to power path lead to clearly noticeable negative side effects due to the occurring high electrical currents and the associated power loss.
  • the main reason is that the measuring element can become very hot due to the high currents that occur and thus to the resulting power loss.
  • the heat generated by the power loss affects the measurement accuracy of the entire measuring chain, which typically includes the measuring element, an amplifier and an analog / digital converter.
  • the measuring terminals for detecting the voltage drop across the measuring element as close as possible to the measuring element, but the success of this measure is extremely limited.
  • the temperature in the current sensor could be measured. This would make it possible, by suitable compensation methods, such as cooling, emergency shutdown, Regulation of the circuit or even computational compensation of the measurement results to compensate for the deviations occurring.
  • the temperature detection could be done directly (at current sensor) or indirectly (in the vicinity of the current sensor) placed by a temperature sensor, it would j edoch the required item expense, especially in the mass production ⁇ increase noticeably.
  • the direct temperature measurement would be realized only with a very high cost, even if it would be relatively more reliable than the indirect temperature measurement.
  • the loss ⁇ performance could be detected and used as a basis for the aforementioned compensation.
  • the accuracy of the compensation is very low. This is where the specified method, based on the consideration that changes its electrical resistance in the measuring element depending on the temperature. In other words, by detecting the electrical resistance of the measuring element and thus of the first electrically conductive material, the temperature could be determined directly.
  • Measuring element not the electrical resistance but the voltage drop is detected, in addition to the tempera ⁇ turtwo changing electrical resistance and the electrical current to be detected is included.
  • any, that is also an extra electric current can be used for the temperature detection.
  • Particularly expedient ⁇ FLOWING manner al electric current to be measured by the current sensor electric power used (and eliminated subsequently by the juxtaposition), because in this way no further additional electrical elements such as an own power source must be used.
  • the first electrically conductive material and the second electrically conductive material, on which the voltage drops are measured can be integrated into any electrical elements.
  • the material of the measuring element, that is to say of the measuring shunt, at which the measuring voltage drops which depends on the current of the current sensor to be measured is particularly expediently selected as the first electrically conductive material.
  • the already existing in the current sensor for current measurement structure for measuring the temperature can be fully used with.
  • a Be ⁇ reference potential is necessary is known, which is applied in a particularly advantageous development of the measuring shunt, as a further measuring point at a position with the second electrically conductive material is only necessary in this way.
  • the first and second electrically conductive materials are to be interpreted broadly below. It is only important that there is a difference between the two materials. It may therefore be in principle to the same types of material, the difference may be, for example, in the length of the material or in the volume of the two materials.
  • the current sensor has at least one circuit connection for supplying or discharging the current to be measured with the second electrically conductive material which is connected to the measuring shunt.
  • the second electrically conductive material different from the first electrically conductive material, only a few additional electrical lines need to be electrically contacted, for example, by bonding, soldering or conductive bonding to implement the specified method. From all the information thus obtained, the temperature can then be evaluated with a suitable signal processing device.
  • a quotient of the two voltage drops is formed in the context of another development of the specified method for facing the first voltage drop and the second voltage drop.
  • This refinement is based on the consideration that the detected voltage drops in the context of the ohmic law are composed of a quotient of the electric current to be detected and the electrical resistance entering into the respective detected voltage drop.
  • the electric current is basically the same for both voltage drops, so that it can be shortened within the scope of the aforementioned quotient formation.
  • the quotient thus formed can be assigned a unique temperature as a temperature to be measured in a characteristic curve.
  • a characteristic can be stored programmatically in a simple manner in a memory and retrieved, if necessary, without much computational effort.
  • the unique temperature can be determined in advance experimentally, for example by means of test series.
  • a control device is set up to carry out a method according to one of the preceding claims.
  • the specified device has a memory and a processor.
  • the specified method is stored in the form of a Compu ⁇ terprogramms in the memory and the processor is provided for performing the method when the computer program from the memory is loaded into the processor.
  • a computer program comprises program code means for performing all the steps of one of the specified methods when the computer program is executed on a computer or one of the specified devices.
  • a computer program product comprises a program code which is stored on a data carrier and the compu ⁇ terlesbaren, when executed on a data processing device, carries out one of the methods specified.
  • a current sensor comprises a specified controller.
  • a vehicle includes a specified controller.
  • Fig. 1 is a schematic diagram of a vehicle with an electric drive
  • Fig. 2 is a schematic diagram of a current sensor of the vehicle of Fig. 1
  • Fig. 3 is a circuit diagram of the current sensor of Fig. 2;
  • Fig. 4 shows changes in the current measurement results of the current sensor of Figure 3 over the temperature.
  • Fig. 5 shows temperature measurement results of the current sensor of Fig. 3.
  • Fig. 1 shows a schematic diagram of a vehicle 2 with an electric drive 4.
  • the vehicle 2 is intended to have, for example, a front-wheel drive in which the electric drive 4 comprises an electric motor 6 which drives the front wheels 10 of the vehicle 2 via a drive shaft 8.
  • the rear wheels 12 of the vehicle 2 are therefore free-wheeling wheels.
  • the electric motor 6 of the electric drive 4 is supplied in the present embodiment via an electrical converter 14 in a manner known per se from a vehicle battery 16 with electrical energy 18.
  • the vehicle battery 16 emits an electrical current 20, which is then converted by the converter 14, controlled by a control device designed as a motor controller 22, into the electrical energy 18 suitable for driving the electric motor 6.
  • the motor controller 22 controls the converter 14 with known control signals.
  • an ambient temperature 26 around the current sensor 24 should also be detected.
  • the current sensor 24 outputs a first voltage value 28 and a second voltage value 30, which will be explained in more detail below with reference to FIGS. 2 and 3, in which the current sensor 24 is shown in a schematic representation and as a circuit diagram.
  • the current sensor 24 has as a measuring element a measuring shunt 32 made of a first electrically conductive material which can be electrically integrated into the electric drive 4 of FIG. 1 via two connecting elements 34 made of a second electrically conductive material.
  • the first electrically conductive material of the measuring shunt 32 may, for example, comprise manganin and be welded to the two connection elements 34, for example.
  • the second electrically conductive material of the two connection elements 34 may comprise copper, for example.
  • the two connection ⁇ elements 34 thus form a contact resistance between the rest of the circuit elements of the electric drive 4 and the measuring shunt 32nd
  • the current sensor 24 For measuring the electric current 20, the current sensor 24 has a first electrical connection 36 and a second electrical connection 38, viewed in the direction of the electrical current 20 corresponding to a first electrical potential 40 in front of the measuring shunt 32 and a second electrical potential 42 after Measuring shunt 32 can be detected.
  • the two detected electrical potentials 40, 42 are supplied to a first differential amplifier 44 in the present embodiment.
  • the first differential amplifier 44 subtracts the two electrical potentials 40, 42 vonei ⁇ Nander and so calculates the first voltage drop 28, which thus drops across the measuring shunt 32nd Based on the first Voltage drop 28 so that the electric current 20 can be determined.
  • the temperature 26 in the vicinity of the current sensor 24 should also be determined.
  • the current sensor 24 has a third electrical connection 46, which in the present embodiment, viewed in the direction of the electrical current 20, is applied to the connection element 34 after the measuring shunt 32.
  • a third electrical Po ⁇ tential 48 is detected, which is supplied together with the first electric potential 40 a second differential amplifier 50, which measures by subtraction of the two potentials 40, 48 the second voltage drop 30th
  • the second voltage drop 30 thus comprises a voltage which drops across the measuring shunt 32 and a part of the connecting element 34, which, viewed in the direction of the electrical current 20, is arranged after the measuring shunt 32.
  • the temperature can be determined by the current sensor 26 24th
  • the following table of measured values will be considered below:
  • the table consists of three subtables in the column direction. Here are in the first three columns for different values of the electrical current to be measured 20, the development of the first voltage drop 28 on the tempera ⁇ temperature 26 applied. In the second three columns of the development of the second voltage drop 30 are applied over the Tempe ⁇ temperature 26 for different values of the measured electric current 20th The development of the ratio between the first voltage drop 28 and the second voltage drop 30 across the temperature 26 is plotted in the last three columns for various values of the electric current 20 to be measured.
  • the deviations 52 of the first voltage drop 28 and of the second voltage drop 30 from a fixed reference point 54 are plotted against the temperature 26 in FIG. 4.
  • this reference point 54 was selected at a temperature 26 of 25 ° C.
  • the deviations 52 of the voltage drops 28, 30 are independent of the electric current 20 which flows through the current sensor 24, so that only the
  • Deviations out the temperature 26 could be determined. However, for real use, a predetermined reference point 54 would have to be measured at any time, from which the deviations 52 can be determined. However, depending on the application, this may not be possible or at least very time-consuming. In vehicle technology, for example, extreme temperature fluctuations can occur. Thus, in a vehicle, temperatures of 40 ° C to 50 ° C in the summer compared to -20 ° C to -10 ° C in winter can be expected. Serious problems could arise here if the reference temperature of 25 ° C had to be passed first to measure the temperature. In addition, the further problem would be to detect when the 25 ° C are reached, because the use of a temperature sensor should be obsolete. However, upon closer inspection of FIG.
  • the distance 56 between the deviations 52 of the first voltage drop 28 and the deviations 52 of the second voltage drop 30 across the temperature 26 is considered Temperature-dependent course has. If the distance 56 between the deviations 52 of the first voltage drop 28 and the second voltage drop 30 is therefore known, the temperature 26 to be measured can be determined unambiguously. Furthermore, in contrast to the voltage drops 28, 30, this distance 56 is independent of the current 20 to be measured.
  • a measure of the distance 56 can be determined by any counter ⁇ transfer of the first voltage drop 28 and the second voltage drop 30.
  • the quotient 58 between the first voltage drop 28 and the second voltage drop 30 has been exemplified in the above table. It can clearly be seen that the individual quotients 58 of the current 20 to be measured are not independent of the temperature 26 to be measured. Therefore, by the quotient formation between the first voltage drop 28 and the second voltage drop 30, the temperature to be measured 26 can be determined uniquely. The course of the quotient 58 over the temperature 26 is exemplified for the values of the above table in FIG.
  • Characteristic curve 60 could be playing at ⁇ by detecting a measured value table, as recorded, the table shown above in advance and then stored in a not shown memory of the engine controller 22 in FIG. 1. If the motor controller 22 then receives the two voltage drops 28, 30 in the manner shown in FIG. 1, it can determine the temperature 26 by forming the quotient of the two voltage drops 28, 30 and by means of the characteristic curve 60.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The invention relates to a method for measuring a temperature (26) in a current sensor (24), which comprises a first electrically conductive material (32) and a second electrically conductive material (34) connected in series with the first electrically conductive material (32), through both of which electrically conductive materials an electric current flows (20), comprising: detecting a reference potential (40) on the first or second electrically conductive material (32, 34) on the basis of a first voltage drop (28) on the first electrically conductive material (32); detecting, preferably on the basis of the reference potential (40), a second voltage drop (30) on the second electrically conductive material (34); and determining the temperature (26) on the basis of a comparison (58) of the first voltage drop (28) and the second voltage drop (30).

Description

Verfahren zum Messen einer Temperatur Method for measuring a temperature
Die Erfindung betrifft ein Verfahren zum Messen einer Temperatur in einem Stromsensor. The invention relates to a method for measuring a temperature in a current sensor.
Elektrische Ströme in und aus einer Fahrzeugbatterie werden beispielsweise in der DE 10 2005 039 587 AI mit einem Strom¬ sensor gemessen, bei dem ein Messelement aus Manganin zwischen zwei als Anschlüsse wirkenden Übergangswiderständen aus Kupfer geschweißt ist. Electric currents in and out of a vehicle battery to be measured, for example, in DE 10 2005 039 587 Al with a current ¬ sensor in which a sensing element Manganin is welded between two terminals acting as contact resistance of copper.
Es ist Aufgabe der vorliegenden Erfindung das bekannte Verfahren zur Strommessung zu verbessern. Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen sind Gegenstand der ab¬ hängigen Ansprüche. It is an object of the present invention to improve the known method for current measurement. The object is solved by the features of the independent claims. Preferred further developments are subject of the dependent claims from ¬.
Gemäß einem Aspekt der Erfindung umfasst ein Verfahren zum Messen einer Temperatur in einem Stromsensor, der ein erstes elektrisch leitfähiges Material und ein zum ersten elektrisch leitfähigen Material in Reihe geschaltenes zweites elektrisch leitfähiges Material umfasst, die beide von einem elektrischen Strom durchflössen werden, umfassend: According to one aspect of the invention, a method of measuring a temperature in a current sensor comprising a first electrically conductive material and a second electrically conductive material connected in series with the first electrically conductive material, both of which are flowed through by an electrical current, comprising:
- Erfassen von einem Bezugspotential auf dem ersten oder zweiten elektrisch leitfähigen Material ausgehend eines ersten Spannungsabfalls auf dem ersten elektrisch leitfähigen Material,Detecting a reference potential on the first or second electrically conductive material from a first voltage drop on the first electrically conductive material,
Erfassen, vorzugsweise vom Bezugspotential ausgehend, eines zweiten Spannungsabfalls auf dem zweiten elektrisch leitfähigen Material, und Detecting, preferably from the reference potential, a second voltage drop across the second electrically conductive material, and
Ermitteln der Temperatur basierend auf einer Gegenüberstellung des ersten Spannungsabfalls und des zweiten Spannungsabfalls . Dem angegebenen Verfahren liegt die Überlegung zugrunde, dass Stromsensoren insbesondere, wenn sie wie eingangs erwähnt zur Messung von elektrischen Strömen in oder aus einer Fahrzeugbatterie eingesetzt werden, im elektrischen Leistungspfad der Batterien verschaltet werden. Insbesondere, wenn die Strom¬ sensoren mit einem sogenannten ohm' sehen Shunt oder Messshunt, nachstehend Messelement genannt, aufgebaut werden, im Rahmen dessen der zu messende Strom anhand des am Messshunt durch den zu messenden Strom verursachten Spannungsabfall bestimmt wird, kann diese Verschaltung um Leistungspfad zu deutlich spürbaren negativen Nebenwirkungen aufgrund der auftretenden hohen elektrischen Ströme und der damit verbundenen Verlustleistung führen. Die Hauptursache liegt darin, dass sich das Messelement durch die auftretenden hohen Ströme und damit durch die entstehende Verlustleistung stark erwärmen kann. Determining the temperature based on a comparison of the first voltage drop and the second voltage drop. The specified method is based on the consideration that current sensors, in particular, if they are used for measuring electric currents in or from a vehicle battery, as mentioned above, in the electric power path of the Batteries are interconnected. Specifically, when the current ¬ sensors with a so-called ohm see 'shunt or measurement shunt, hereinafter referred to as measuring element, be constructed of which the current to be measured is determined from the induced at the measuring shunt by the current to be measured voltage drop in the frame, this interconnection can to power path lead to clearly noticeable negative side effects due to the occurring high electrical currents and the associated power loss. The main reason is that the measuring element can become very hot due to the high currents that occur and thus to the resulting power loss.
Regelmäßig können Temperaturen von weit über 125°C auftreten. Hierbei kann das Problem in Abhängigkeit der Übergangswider- stände zu den äußeren Kontaktstellen, wie beispielsweise zu den Stromschienen oder Kabeln weiter verschlimmert werden, weil diese durch einen schlechten elektrischen Kontakt beispielsweise im Rahmen von Schraubverbindungen oder korrodierender Anschlussstellen weitaus höhere elektrische Widerstände aufweisen können, so dass an ihnen weitaus höhere elektrische Verlust¬ leistungen abfallen. Das führt dazu, dass sich das Messelement weiter erhitzen kann, was zum Einen eine Gefahr für die in der Nähe zum Stromsensor befindliche Elektronik darstellt. Zum Anderen besteht aber auch für das gesamte System eine deutliche Brandgefahr. Regularly temperatures of well over 125 ° C can occur. In this case, the problem can be further aggravated as a function of the contact resistances to the outer contact points, for example to the conductor rails or cables, because they can have much higher electrical resistances due to poor electrical contact, for example in the context of screw connections or corroding connection points fall far higher in them electrical loss ¬ services. As a result, the measuring element can continue to heat up, which on the one hand represents a danger for the electronics located in the vicinity of the current sensor. On the other hand, there is also a significant risk of fire for the entire system.
Ferner beeinflusst die durch die Verlustleistung erzeugte Wärme die Messgenauigkeit der gesamten Messkette, die in der Regel das Messelement, einen Verstärker und einen Analog/Digital-Wandler umfasst. Zwar könnte zur Vermeidung dieses Problems versucht werden, die Messanschlüsse zur Erfassung des Spannungsabfalls über dem Messelement so nah wie möglich am Messelement zu verschalten, der Erfolg dieser Maßnahme ist jedoch äußerst begrenzt . Furthermore, the heat generated by the power loss affects the measurement accuracy of the entire measuring chain, which typically includes the measuring element, an amplifier and an analog / digital converter. Although it could be attempted to avoid this problem, the measuring terminals for detecting the voltage drop across the measuring element as close as possible to the measuring element, but the success of this measure is extremely limited.
Alternativ könnte die Temperatur im Stromsensor gemessen werden. Dies würde es ermöglichen, durch geeignete Kompensationsverfahren, wie beispielsweise Kühlung, Notabschaltung, Leis- tungsregulierung des Stromkreises oder aber auch rechnerische Kompensation der Messergebnisse, die auftretenden Abweichungen zu kompensieren. Zwar könnte die Temperaturerfassung direkt (am Stromsensor) oder indirekt (in der Nähe des Stromsensors) durch einen platzierten Temperatursensor erfolgen, dieser würde j edoch den benötigten Einzelteilaufwand insbesondere in der Massen¬ produktion spürbar steigern. Zudem wäre die direkte Temperaturmessung nur mit einem sehr hohen Kostenaufwand zu realisieren, auch wenn sie vergleichsweise zuverlässiger wäre, als die indirekte Temperaturmessung. Alternativ könnte die Verlust¬ leistung erfasst und als Grundlage zur zuvor genannten Kompensation herangezogen werden. Die Genauigkeit der Kompensation ist hierbei jedoch sehr gering. Hier setzt das angegebene Verfahren an, dem die Überlegung zugrunde liegt, dass sich im Messelement abhängig von der Temperatur sein elektrischer Widerstand verändert. Mit anderen Worten könnte durch Erfassen des elektrischen Widerstandes des Messelementes und damit des ersten elektrisch leitfähigen Materials die Temperatur unmittelbar bestimmt werden. AmAlternatively, the temperature in the current sensor could be measured. This would make it possible, by suitable compensation methods, such as cooling, emergency shutdown, Regulation of the circuit or even computational compensation of the measurement results to compensate for the deviations occurring. Although the temperature detection could be done directly (at current sensor) or indirectly (in the vicinity of the current sensor) placed by a temperature sensor, it would j edoch the required item expense, especially in the mass production ¬ increase noticeably. In addition, the direct temperature measurement would be realized only with a very high cost, even if it would be relatively more reliable than the indirect temperature measurement. Alternatively, the loss ¬ performance could be detected and used as a basis for the aforementioned compensation. However, the accuracy of the compensation is very low. This is where the specified method, based on the consideration that changes its electrical resistance in the measuring element depending on the temperature. In other words, by detecting the electrical resistance of the measuring element and thus of the first electrically conductive material, the temperature could be determined directly. At the
Messelement wird jedoch nicht der elektrische Widerstand sondern der Spannungsabfall erfasst, in dem neben dem sich tempera¬ turabhängig verändernden elektrischen Widerstand auch der zu erfassende elektrische Strom enthalten ist. Measuring element, however, not the electrical resistance but the voltage drop is detected, in addition to the tempera ¬ turabhängig changing electrical resistance and the electrical current to be detected is included.
Um diesen elektrischen Strom zu eliminieren, wird mit dem angegebenen Verfahren vorgeschlagen, auch einen Spannungsabfall zu erfassen, in dem wenigstens einer der Übergangswiderstände und damit das zweite elektrisch leitfähige Material enthalten ist. Die Übergangswiderstände und das Messelement weisen voneinander abweichende Temperaturgänge, also verschiedene Span¬ nungs-Temperatur-Kennlinien auf. Das heißt, dass sich der elektrische Widerstand an den Übergangswiderständen und am Messelement je nach Temperatur unterschiedlich entwickelt. Werden die beiden erfassten Spannungsabfälle daher einander beispielsweise durch Quotientenbildung gegenübergestellt, dann wird der elektrische Strom aus der Messung eliminiert und man erhält direkt einen zuverlässigen Messwert für die Temperatur um den Stromsensor, ohne dass ein zusätzlicher Temperatursensor notwendig wäre. Damit kann die Temperatur um den Stromsensor zuverlässig und kostengünstig erfasst werden. Prinzipiell kann zum Erfassen der Temperatur um den Stromsensor jeder beliebige, das heißt auch ein extra elektrischer Strom für die Temperaturerfassung verwendet werden. Besonders zweckmä¬ ßiger Weise wird jedoch al elektrischer Strom der vom Stromsensor zu messende elektrische Strom verwendet (und im Anschluss durch die Gegenüberstellung eliminiert) , weil auf diese Weise keine weiteren elektrischen Zusatzelemente, wie beispielsweise eine eigene Stromquelle verwendet werden müssen. In order to eliminate this electric current, it is proposed with the specified method to also detect a voltage drop in which at least one of the contact resistances and thus the second electrically conductive material is contained. The contact resistance and the measuring element from each other have different temperature responses, so different clamping ¬-voltage-temperature characteristics. This means that the electrical resistance at the contact resistors and at the measuring element develops differently depending on the temperature. Therefore, if the two detected voltage drops are compared with each other, for example, by quotient formation, then the electric current is eliminated from the measurement and a direct measurement value for the temperature is directly obtained the current sensor, without an additional temperature sensor would be necessary. Thus, the temperature can be detected reliably and inexpensively around the current sensor. In principle, for detecting the temperature around the current sensor, any, that is also an extra electric current can be used for the temperature detection. Particularly expedient ¬ FLOWING manner, however al electric current to be measured by the current sensor electric power used (and eliminated subsequently by the juxtaposition), because in this way no further additional electrical elements such as an own power source must be used.
Für die Temperaturmessung können das erste elektrisch leitfähige Material und das zweite elektrisch leitfähige Material, an dem die Spannungsabfälle gemessen werden in beliebige elektrische Elemente integriert werden. Jedoch wird als erstes elektrisch leitfähiges Material besonders zweckmäßigerweise das Material des Messelements, also des Messshunt gewählt, an dem die Messspannung abfällt, die vom zu messenden Strom des Stromsensors abhängig ist. Auf diese Weise kann die ohnehin im Stromsensor zur Strommessung vorhandene Struktur zur Messung der Temperatur vollumfänglich mit verwendet werden. Zur Messung eines Spannungsabfalls ist bekanntlich ein Be¬ zugspotential notwendig, das in einer besonders günstigen Weiterbildung auf dem Messshunt gelegt wird, weil auf diese Weise lediglich ein weiterer Messpunkt an einer Stelle mit dem zweiten elektrisch leitfähigen Material notwendig ist. For the temperature measurement, the first electrically conductive material and the second electrically conductive material, on which the voltage drops are measured, can be integrated into any electrical elements. However, the material of the measuring element, that is to say of the measuring shunt, at which the measuring voltage drops which depends on the current of the current sensor to be measured, is particularly expediently selected as the first electrically conductive material. In this way, the already existing in the current sensor for current measurement structure for measuring the temperature can be fully used with. For the measurement of a voltage drop a Be ¬ reference potential is necessary is known, which is applied in a particularly advantageous development of the measuring shunt, as a further measuring point at a position with the second electrically conductive material is only necessary in this way.
Das erste und zweite elektrisch leitfähige Material sind nachstehend weit auszulegen. Es ist lediglich wichtig, dass ein Unterschied zwischen den beiden Materialien vorhanden ist. Es kann sich daher prinzipiell um dieselben Materialtypen handeln, wobei der Unterschied beispielsweise in der Länge des Materials oder im Volumen der beiden Materialien liegen kann. The first and second electrically conductive materials are to be interpreted broadly below. It is only important that there is a difference between the two materials. It may therefore be in principle to the same types of material, the difference may be, for example, in the length of the material or in the volume of the two materials.
In einer zusätzlichen Weiterbildung des angegebenen Verfahrens weist der Stromsensor wenigstens einen Schaltungsanschluss zum Zu- oder Abführen des zu messenden Stromes mit dem zweiten elektrisch leitfähigen Material auf, der mit dem Messshunt verbunden ist. An diesen ohnehin vorhandenen Schaltungsanschluss mit dem vom ersten elektrisch leitfähigen Material verschiedenen zweiten elektrisch leitfähigen Material braucht zur Umsetzung des angegebenen Verfahrens lediglich eine einige zusätzliche elektrische Leitung elektrisch beispielsweise durch Bonden, Löten oder Leitkleben kontaktiert zu werden. Aus allen so erhaltenen Informationen kann dann mit einer geeigneten Signalverarbeitungseinrichtung die Temperatur ausgewertet werden. In an additional development of the specified method For example, the current sensor has at least one circuit connection for supplying or discharging the current to be measured with the second electrically conductive material which is connected to the measuring shunt. At this already existing circuit connection with the second electrically conductive material different from the first electrically conductive material, only a few additional electrical lines need to be electrically contacted, for example, by bonding, soldering or conductive bonding to implement the specified method. From all the information thus obtained, the temperature can then be evaluated with a suitable signal processing device.
Zum Gegenüberstellen der beiden Spannungsabfälle können beliebige mathematische Operationen wie Subtraktion, Korrelation oder Faltung verwendet werden. Besonders bevorzugt wird im Rahmen einer anderen Weiterbildung des angegebenen Verfahrens zum Gegenüberstellen des ersten Spannungsabfalls und des zweiten Spannungsabfalls ein Quotient der beiden Spannungsabfälle gebildet. Dieser Weiterbildung liegt die Überlegung zugrunde, dass sich die erfassten Spannungsabfälle im Rahmen des ohm' sehen Gesetzes aus einem Quotienten des zu erfassenden elektrischen Stromes und des in den jeweiligen erfassten Spannungsabfall eingehenden elektrischen Widerstands zusammensetzen. Der elektrische Strom ist jedoch prinzipbedingt für beide Span- nungsabfälle gleich, so dass er sich im Rahmen der zuvor genannten Quotientenbildung herauskürzen lässt. To juxtapose the two voltage drops arbitrary mathematical operations such as subtraction, correlation or folding can be used. Particularly preferably, a quotient of the two voltage drops is formed in the context of another development of the specified method for facing the first voltage drop and the second voltage drop. This refinement is based on the consideration that the detected voltage drops in the context of the ohmic law are composed of a quotient of the electric current to be detected and the electrical resistance entering into the respective detected voltage drop. However, the electric current is basically the same for both voltage drops, so that it can be shortened within the scope of the aforementioned quotient formation.
Dem so gebildeten Quotienten kann im Rahmen einer weiteren Ausführung des angegebenen Verfahrens in einer Kennlinie eine eindeutige Temperatur als zu messende Temperatur zugeordnet werden. Eine derartige Kennlinie kann programmtechnisch in einfacher Weise in einem Speicher hinterlegt und im Bedarfsfall ohne großen Rechenaufwand abgerufen werden. In einer besonderen Weiterbildung kann die eindeutige Temperatur vorab experimentell beispielsweise durch Testreihen bestimmt werden . Gemäß einem weiteren Aspekt der Erfindung ist eine Steuervorrichtung eingerichtet, ein Verfahren nach einem der vorstehenden Ansprüche durchzuführen. Within the scope of a further embodiment of the specified method, the quotient thus formed can be assigned a unique temperature as a temperature to be measured in a characteristic curve. Such a characteristic can be stored programmatically in a simple manner in a memory and retrieved, if necessary, without much computational effort. In a particular embodiment, the unique temperature can be determined in advance experimentally, for example by means of test series. According to a further aspect of the invention, a control device is set up to carry out a method according to one of the preceding claims.
In einer Weiterbildung der angegebenen Steuervorrichtung weist die angegebene Vorrichtung einen Speicher und einen Prozessor auf. Dabei ist das angegebene Verfahren in Form eines Compu¬ terprogramms in dem Speicher hinterlegt und der Prozessor zur Ausführung des Verfahrens vorgesehen, wenn das Computerprogramm aus dem Speicher in den Prozessor geladen ist. In a development of the specified control device, the specified device has a memory and a processor. In this case, the specified method is stored in the form of a Compu ¬ terprogramms in the memory and the processor is provided for performing the method when the computer program from the memory is loaded into the processor.
Gemäß einem weiteren Aspekt der Erfindung umfasst ein Computerprogramm Programmcodemittel, um alle Schritte eines der angegebenen Verfahren durchzuführen, wenn das Computerprogramm auf einem Computer oder einer der angegebenen Vorrichtungen ausgeführt wird. According to a further aspect of the invention, a computer program comprises program code means for performing all the steps of one of the specified methods when the computer program is executed on a computer or one of the specified devices.
Gemäß einem weiteren Aspekt der Erfindung enthält ein Computerprogrammprodukt einen Programmcode, der auf einem compu¬ terlesbaren Datenträger gespeichert ist und der, wenn er auf einer Datenverarbeitungseinrichtung ausgeführt wird, eines der angegebenen Verfahren durchführt. According to a further aspect of the invention a computer program product comprises a program code which is stored on a data carrier and the compu ¬ terlesbaren, when executed on a data processing device, carries out one of the methods specified.
Gemäß einem anderen Aspekt der Erfindung umfasst ein Stromsensor eine angegebene Steuervorrichtung. According to another aspect of the invention, a current sensor comprises a specified controller.
Gemäß einem anderen Aspekt der Erfindung umfasst ein Fahrzeug eine angegebene Steuervorrichtung. According to another aspect of the invention, a vehicle includes a specified controller.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden, wobei : The above-described characteristics, features and advantages of this invention, as well as the manner in which they are achieved, will become clearer and more clearly understood in connection with the following description of the exemplary embodiments, which are explained in more detail in conjunction with the drawings, in which:
Fig. 1 eine Prinzipdarstellung eines Fahrzeuges mit einem elektrischen Antrieb; Fig. 2 eine Prinzipdarstellung eines Stromsensors aus dem Fahrzeuges der Fig. 1 ; Fig. 3 einen Schaltplan des Stromsensors der Fig. 2 ; Fig. 1 is a schematic diagram of a vehicle with an electric drive; Fig. 2 is a schematic diagram of a current sensor of the vehicle of Fig. 1; Fig. 3 is a circuit diagram of the current sensor of Fig. 2;
Fig. 4 Veränderungen der Strommessergebnisse des Stromsensors der Fig. 3 über die Temperatur; und Fig. 5 Temperaturmessergebnisse des Stromsensors der Fig. 3 zeigen . Fig. 4 shows changes in the current measurement results of the current sensor of Figure 3 over the temperature. and Fig. 5 shows temperature measurement results of the current sensor of Fig. 3.
In den Figuren werden gleiche technische Elemente mit gleichen Bezugszeichen versehen und nur einmal beschrieben. In the figures, the same technical elements are provided with the same reference numerals and described only once.
Es wird auf Fig. 1 Bezug genommen, die eine Prinzipdarstellung eines Fahrzeuges 2 mit einem elektrischen Antrieb 4 zeigt. Reference is made to Fig. 1, which shows a schematic diagram of a vehicle 2 with an electric drive 4.
Im Rahmen des Ausführungsbeispiels soll das Fahrzeug 2 bei- spielhaft einen Vorderradantrieb aufweisen, in dem der elektrische Antrieb 4 umfasst einen Elektromotor 6 umfasst, der über eine Antriebswelle 8 die Vorderräder 10 des Fahrzeuges 2 antreibt. Die Hinterräder 12 des Fahrzeuges 2 sind daher freilaufende Räder. Within the scope of the exemplary embodiment, the vehicle 2 is intended to have, for example, a front-wheel drive in which the electric drive 4 comprises an electric motor 6 which drives the front wheels 10 of the vehicle 2 via a drive shaft 8. The rear wheels 12 of the vehicle 2 are therefore free-wheeling wheels.
Der Elektromotor 6 des elektrischen Antriebs 4 wird in der vorliegenden Ausführung über einen elektrischen Konverter 14 in einer an sich bekannten Weise aus einer Fahrzeugbatterie 16 mit elektrischer Energie 18 versorgt. Dazu gibt die Fahrzeugbat- terie 16 einen elektrischen Strom 20 ab, der dann über den Konverter 14 gesteuert von einer als Motorsteuerung 22 ausgebildeten Steuervorrichtung in die zum Antrieb des Elektromotors 6 geeignete elektrische Energie 18 umgewandelt wird. Dazu steuert die Motorsteuerung 22 den Konverter 14 mit an sich bekannten Steuersignalen an. The electric motor 6 of the electric drive 4 is supplied in the present embodiment via an electrical converter 14 in a manner known per se from a vehicle battery 16 with electrical energy 18. For this purpose, the vehicle battery 16 emits an electrical current 20, which is then converted by the converter 14, controlled by a control device designed as a motor controller 22, into the electrical energy 18 suitable for driving the electric motor 6. For this purpose, the motor controller 22 controls the converter 14 with known control signals.
Zur Erfüllung diverser Aufgaben, wie beispielsweise das To fulfill various tasks, such as the
Ladestandsmanagement der Fahrzeugbatterie 16 muss die Motor- Steuerung 22 über einen Stromsensor 24 den von der Fahrzeugbatterie 16 abgegebenen elektrischen Strom 20 erfassen. Charge management of the vehicle battery 16, the engine Control 22 via a current sensor 24 detect the output from the vehicle battery 16 electrical current 20.
Im Rahmen der vorliegenden Ausführung soll dabei neben dem elektrischen Strom 20 auch eine Umgebungstemperatur 26 um den Stromsensor 24 herum erfasst werden. Zur Verwirklichung dieser beiden Messungen gibt der Stromsensor 24 einen ersten Spannungswert 28 und einen zweiten Spannungswert 30 aus, die nachstehend anhand der Fig. 2 und 3 näher erläutert werden sollen, in denen der Stromsensor 24 entsprechend in einer Prinzipdarstellung und als Schaltplan dargestellt ist. In the context of the present embodiment, in addition to the electric current 20, an ambient temperature 26 around the current sensor 24 should also be detected. To implement these two measurements, the current sensor 24 outputs a first voltage value 28 and a second voltage value 30, which will be explained in more detail below with reference to FIGS. 2 and 3, in which the current sensor 24 is shown in a schematic representation and as a circuit diagram.
Der Stromsensor 24 weist in der vorliegenden Ausführung als Messelement einen Messshunt 32 aus einem ersten elektrisch leitfähigen Material auf, der über zwei Anschlusselemente 34 aus einem zweiten elektrisch leitfähigen Material in den elektrischen Antrieb 4 der Fig. 1 elektrisch integriert werden kann. Das erste elektrisch leitfähige Material des Messshunts 32 kann beispielsweise Manganin umfassen und mit den beiden An- Schlusselemente 34 beispielsweise verschweißt sein. Das zweite elektrisch leitfähige Material der beiden Anschlusselemente 34 kann beispielsweise Kupfer umfassen. Die beiden Anschluss¬ elemente 34 bilden so einen Übergangswiderstand zwischen den restlichen Schaltungselementen des elektrischen Antriebs 4 und dem Messshunt 32. In the present embodiment, the current sensor 24 has as a measuring element a measuring shunt 32 made of a first electrically conductive material which can be electrically integrated into the electric drive 4 of FIG. 1 via two connecting elements 34 made of a second electrically conductive material. The first electrically conductive material of the measuring shunt 32 may, for example, comprise manganin and be welded to the two connection elements 34, for example. The second electrically conductive material of the two connection elements 34 may comprise copper, for example. The two connection ¬ elements 34 thus form a contact resistance between the rest of the circuit elements of the electric drive 4 and the measuring shunt 32nd
Zur Messung des elektrischen Stromes 20 weist der Stromsensor 24 einen ersten elektrischen Anschluss 36 und einen zweiten elektrischen Anschluss 38 auf, über die in Richtung des elektrischen Stromes 20 gesehen entsprechen ein erstes elektrisches Potential 40 vor dem Messshunt 32 und ein zweites elektrisches Potential 42 nach dem Messshunt 32 erfasst werden können. Die beiden erfassten elektrischen Potentiale 40, 42 werden in der vorliegenden Ausführung einem ersten Diffe- renzverstärker 44 zugeführt. Der erste Differenzverstärker 44 subtrahiert die beiden elektrischen Potentiale 40, 42 vonei¬ nander und berechnet so den ersten Spannungsabfall 28, der damit über dem Messshunt 32 abfällt. Basierend auf dem ersten Spannungsabfall 28 kann damit der elektrische Strom 20 bestimmt werden . For measuring the electric current 20, the current sensor 24 has a first electrical connection 36 and a second electrical connection 38, viewed in the direction of the electrical current 20 corresponding to a first electrical potential 40 in front of the measuring shunt 32 and a second electrical potential 42 after Measuring shunt 32 can be detected. The two detected electrical potentials 40, 42 are supplied to a first differential amplifier 44 in the present embodiment. The first differential amplifier 44 subtracts the two electrical potentials 40, 42 vonei ¬ Nander and so calculates the first voltage drop 28, which thus drops across the measuring shunt 32nd Based on the first Voltage drop 28 so that the electric current 20 can be determined.
Wie bereits erwähnt, soll neben dem elektrischen Strom 20 auch die Temperatur 26 in der Umgebung des Stromsensors 24 bestimmt werden . As already mentioned, in addition to the electric current 20, the temperature 26 in the vicinity of the current sensor 24 should also be determined.
Dazu weist der Stromsensor 24 einen dritten elektrischen An- schluss 46 auf, der in der vorliegenden Ausführung in Richtung des elektrischen Stromes 20 gesehen auf dem Anschlusselement 34 nach dem Messshunt 32 aufgebracht ist. Über den dritten elektrischen Anschluss 46 wird ein drittes elektrisches Po¬ tential 48 erfasst, das gemeinsam mit dem ersten elektrischen Potential 40 einem zweiten Differenzverstärker 50 zugeführt wird, der durch Subtraktion der beiden Potentiale 40, 48 den zweiten Spannungsabfall 30 misst. Der zweite Spannungsabfall 30 umfasst damit eine Spannung, die über dem Messshunt 32 und einem Teil des Anschlusselements 34 abfällt, das in Richtung des elektrischen Stromes 20 gesehen nach dem Messshunt 32 angeordnet ist. For this purpose, the current sensor 24 has a third electrical connection 46, which in the present embodiment, viewed in the direction of the electrical current 20, is applied to the connection element 34 after the measuring shunt 32. Via the third electrical connection 46, a third electrical Po ¬ tential 48 is detected, which is supplied together with the first electric potential 40 a second differential amplifier 50, which measures by subtraction of the two potentials 40, 48 the second voltage drop 30th The second voltage drop 30 thus comprises a voltage which drops across the measuring shunt 32 and a part of the connecting element 34, which, viewed in the direction of the electrical current 20, is arranged after the measuring shunt 32.
Aus dem ersten Spannungsabfall 28 und dem zweiten Spannungs¬ abfall 30 kann in nachstehender Weise die Temperatur 26 um den Stromsensor 24 ermittelt werden. Dazu soll nachstehend der Einfachheit halber folgende Messwerttabelle betrachtet werden: From the first voltage drop 28 and the second voltage ¬ waste 30 in the following manner, the temperature can be determined by the current sensor 26 24th For simplicity's sake, the following table of measured values will be considered below:
Spannungsabfall 28 in mV 1 Spannungsabfall 30 in mV. 1 Quotient 58 der Spannungsabfälle elektrischer Voltage drop 28 in mV 1 Voltage drop 30 in mV . 1 quotient 58 of the electrical voltage drops
100A 150A 200A 100A 150A 200A 100A 150A 200A Strom 20  100A 150A 200A 100A 150A 200A 100A 150A 200A current 20
-55,5 13,8893 20,8040 27,7386 16,8778 25,3167 33,7556 0,8217 0,8217 0,8217 -55.5 13,8893 20,8040 27,7386 16,8778 25,3167 33,7556 0,8217 0,8217 0,8217
-39,5 13,9074 20,8611 27,8148 16,9189 25,3783 33,8378 0,8220 0,8220 0.8220-39.5 13.9074 20.8611 27.8148 16.9189 25.3783 33.8378 0.8220 0.8220 0.8220
-29,8 13,9272 20,8908 27,8544 16,9401 25,4101 33,8801 0,8221 0,8221 0,8221-29.8 13.9272 20.8908 27.8544 16.9401 25.4101 33.8801 0.8221 0.8221 0.8221
-15,3 13,9531 20,9297 27,9062 16,9846 25,4469 33,9292 0,8225 0,8225 0,8225-15.3 13,9531 20,9297 27,9062 16,9846 25,4469 33,9292 0,8225 0,8225 0,8225
-9,4 13,9619 20,9429 27,9238 16,9728 25,4592 33,9456 0,8226 0,8226 0,8226-9.4 13.9619 20.9429 27.9238 16.9728 25.4592 33.9456 0.8226 0.8226 0.8226
4,9 13,9788 20,9682 27,9576 16,9863 25,4794 33,9726 0,8229 0,8229 0,82294.9 13.9788 20.9682 27.9576 16.9863 25.4794 33.9726 0.8229 0.8229 0.8229
3 3
26,0 13,9978 20,9967 27,9956 16,9978 25,4967 33,9956 0,8235 0,8235 0,8235 26.0 13,9978 20,9967 27,9956 16,9978 25,4967 33,9956 0,8235 0,8235 0,8235
44,8 14,0093 21 ,0140 28,0186 17,0001 25,5001 34,0001 0,8241 0,8241 0,824144.8 14.0093 21, 0140 28.0186 17.0001 25.5001 34.0001 0.8241 0.8241 0.8241
63,9 14,0156 21 ,0234 28,0312 16,9951 25,4926 33,9901 0,8247 0,8247 0,824763.9 14.0156 21, 0234 28.0312 16.9951 25.4926 33.9901 0.8247 0.8247 0.8247
84,5 14,0182 21 ,0273 28,0364 16,9839 25,4759 33,9679 0,8254 0,8254 0,825484.5 14.0182 21, 0273 28.0364 16.9839 25.4759 33.9679 0.8254 0.8254 0.8254
104,6 14,0172 21 ,0258 28,0344 16,9686 25,4530 33,9373 0,8261 0,8261 0,8261104.6 14.0172 21, 0258 28.0344 16.9686 25.4530 33.9373 0.8261 0.8261 0.8261
14,0148 21 ,0222 28,0296 16,9499 25,4248 33t8gg7. 0,8268 0,8268 14,0148 21, 0222 28,0296 16,9499 25,4248 33 t 8gg7 . 0.8268 0.8268
Die Tabelle besteht in Spaltenrichtung betrachtet aus drei Untertabellen. Dabei sind in den ersten drei Spalten für verschiedene Werte des zu messenden elektrischen Stromes 20 die Entwicklung des ersten Spannungsabfalls 28 über die Tempera¬ tur 26 aufgetragen. In den zweiten drei Spalten sind für verschiedene Werte des zu messenden elektrischen Stromes 20 die Entwicklung des zweiten Spannungsabfalls 30 über die Tempe¬ ratur 26 aufgetragen. In den letzten drei Spalten sind für verschiedene Werte des zu messenden elektrischen Stromes 20 die Entwicklung des Verhältnisses zwischen dem ersten Spannungsabfall 28 und dem zweiten Spannungsabfall 30 über die Tempe- ratur 26 aufgetragen. The table consists of three subtables in the column direction. Here are in the first three columns for different values of the electrical current to be measured 20, the development of the first voltage drop 28 on the tempera ¬ temperature 26 applied. In the second three columns of the development of the second voltage drop 30 are applied over the Tempe ¬ temperature 26 for different values of the measured electric current 20th The development of the ratio between the first voltage drop 28 and the second voltage drop 30 across the temperature 26 is plotted in the last three columns for various values of the electric current 20 to be measured.
Zum besseren Verständnis der ersten beiden Untertabellen sind in Fig. 4 die Abweichungen 52 des ersten Spannungsabfalls 28 und des zweiten Spannungsabfalls 30 von einem festen Bezugspunkt 54 über die Temperatur 26 aufgetragen. In Fig. 4 wurde dieser Bezugspunkt 54 bei einer Temperatur 26 von 25°C gewählt. For a better understanding of the first two sub-tables, the deviations 52 of the first voltage drop 28 and of the second voltage drop 30 from a fixed reference point 54 are plotted against the temperature 26 in FIG. 4. In Fig. 4, this reference point 54 was selected at a temperature 26 of 25 ° C.
Wie aus Fig. 4 ersichtlich, sind die Abweichungen 52 der Spannungsabfälle 28, 30 unabhängig vom elektrischen Strom 20, der den Stromsensor 24 durchströmt, so dass allein aus denAs can be seen from FIG. 4, the deviations 52 of the voltage drops 28, 30 are independent of the electric current 20 which flows through the current sensor 24, so that only the
Abweichungen heraus die Temperatur 26 bestimmt werden könnte. Jedoch müsste für den realen Einsatz jederzeit zunächst ein vorbestimmter Bezugspunkt 54 gemessen werden, von dem aus die Abweichungen 52 bestimmt werden können. Dies kann jedoch an- wendungsabhängig nicht möglich oder zumindest sehr zeitaufwändig sein. In der Fahrzeugtechnik können beispielsweise extreme Temperaturschwankungen auftreten. So sind bei einem Fahrzeug Temperaturen von 40°C bis 50°C im Sommer gegenüber -20°C bis -10°C im Winter zu erwarten. Hier könnten sich ernsthafte Probleme aufwerfen, müsste zur Temperaturmessung zunächst der Bezugspunkt von 25°C durchlaufen werden. Zudem bestünde das weitere Problem zu erfassen, wann die 25°C erreicht sind, denn die Verwendung eines Temperatursensors sollte obsolet sein. Bei einer genaueren Betrachtung der Fig. 4 ist jedoch deutlich erkennbar, dass der Abstand 56 zwischen den Abweichungen 52 des ersten Spannungsabfalls 28 und den Abweichungen 52 des zweiten Spannungsabfalls 30 über die Temperatur 26 betrachtet einen temperaturabhängigen Verlauf aufweist. Ist der Abstand 56 zwischen den Abweichungen 52 des ersten Spannungsabfalls 28 und des zweiten Spannungsabfalls 30 daher bekannt, kann die zu messende Temperatur 26 eindeutig ermittelt werden. Ferner ist dieser Abstand 56 im Gegensatz zu den Spannungsabfällen 28, 30 vom zu messenden Strom 20 unabhängig. Deviations out the temperature 26 could be determined. However, for real use, a predetermined reference point 54 would have to be measured at any time, from which the deviations 52 can be determined. However, depending on the application, this may not be possible or at least very time-consuming. In vehicle technology, for example, extreme temperature fluctuations can occur. Thus, in a vehicle, temperatures of 40 ° C to 50 ° C in the summer compared to -20 ° C to -10 ° C in winter can be expected. Serious problems could arise here if the reference temperature of 25 ° C had to be passed first to measure the temperature. In addition, the further problem would be to detect when the 25 ° C are reached, because the use of a temperature sensor should be obsolete. However, upon closer inspection of FIG. 4, it can be clearly seen that the distance 56 between the deviations 52 of the first voltage drop 28 and the deviations 52 of the second voltage drop 30 across the temperature 26 is considered Temperature-dependent course has. If the distance 56 between the deviations 52 of the first voltage drop 28 and the second voltage drop 30 is therefore known, the temperature 26 to be measured can be determined unambiguously. Furthermore, in contrast to the voltage drops 28, 30, this distance 56 is independent of the current 20 to be measured.
Ein Maß für den Abstand 56 kann durch jede beliebige Gegen¬ überstellung des ersten Spannungsabfalls 28 und des zweiten Spannungsabfalls 30 bestimmt werden. Als beispielhaftes Maß wurde in der obigen Tabelle anhand der Quotient 58 zwischen dem ersten Spannungsabfall 28 und dem zweiten Spannungsabfall 30 beispielhaft gezeigt. Deutlich zu sehen ist, dass die einzelnen Quotienten 58 vom zu messenden Strom 20 aber nicht von der zu messenden Temperatur 26 unabhängig sind. Daher kann durch die Quotientenbildung zwischen dem ersten Spannungsabfall 28 und dem zweiten Spannungsabfall 30 die zu messende Temperatur 26 eindeutig bestimmt werden. Der Verlauf des Quotienten 58 über die Temperatur 26 ist für die Werte der obigen Tabelle in Fig. 5 beispielhaft dargestellt. A measure of the distance 56 can be determined by any counter ¬ transfer of the first voltage drop 28 and the second voltage drop 30. As an exemplary measure, the quotient 58 between the first voltage drop 28 and the second voltage drop 30 has been exemplified in the above table. It can clearly be seen that the individual quotients 58 of the current 20 to be measured are not independent of the temperature 26 to be measured. Therefore, by the quotient formation between the first voltage drop 28 and the second voltage drop 30, the temperature to be measured 26 can be determined uniquely. The course of the quotient 58 over the temperature 26 is exemplified for the values of the above table in FIG.
Eine derartige, in Fig. 5 gezeigte Kennlinie 60 könnte bei¬ spielsweise durch Erfassen einer Messwerttabelle, wie die oben gezeigte Tabelle im Vorfeld aufgezeichnet und dann in einem nicht weiter dargestellten Speicher der Motorsteuerung 22 aus Fig. 1 hinterlegt werden. Erhält die Motorsteuerung 22 dann in der in Fig. 1 gezeigten Weise die beiden Spannungsabfälle 28, 30 kann sie sich die Temperatur 26 durch Quotientenbildung der beiden Spannungsabfälle 28, 30 und anhand der Kennlinie 60 bestimmen. Such, shown in Figure 5. Characteristic curve 60 could be playing at ¬ by detecting a measured value table, as recorded, the table shown above in advance and then stored in a not shown memory of the engine controller 22 in FIG. 1. If the motor controller 22 then receives the two voltage drops 28, 30 in the manner shown in FIG. 1, it can determine the temperature 26 by forming the quotient of the two voltage drops 28, 30 and by means of the characteristic curve 60.

Claims

Patentansprüche claims
1. Verfahren zum Messen einer Temperatur (26) in einem Stromsensor (24), der ein erstes elektrisch leitfähiges Material (32) und ein zum ersten elektrisch leitfähigen Material (32) in Reihe geschaltenes zweites elektrisch leitfähiges Material (34) umfasst, die beide von einem elektrischen Strom durchflössen (20) werden, umfassend: A method of measuring a temperature (26) in a current sensor (24) comprising a first electrically conductive material (32) and a second electrically conductive material (34) connected in series with the first electrically conductive material (32), both flowed through by an electric current (20), comprising:
- Erfassen von einem Bezugspotential (40) auf dem ersten oder zweiten elektrisch leitfähigen Material (32, 34) ausgehend einen ersten Spannungsabfall (28) auf dem ersten elektrisch leit¬ fähigen Material (32), - acquiring a reference potential (40) on the first or second electrically conductive material (32, 34) from a first voltage drop (28) on the first electrically leit ¬ compatible material (32),
Erfassen vom Bezugspotential (40) ausgehend einen zweiten Spannungsabfall (30) auf dem zweiten elektrisch leitfähigen Material (34) , und  Detecting from the reference potential (40) starting a second voltage drop (30) on the second electrically conductive material (34), and
Ermitteln der Temperatur (26) basierend auf einer Gegenüberstellung (58) des ersten Spannungsabfalls (28) und des zweiten Spannungsabfalls (30).  Determining the temperature (26) based on a comparison (58) of the first voltage drop (28) and the second voltage drop (30).
2. Verfahren nach Anspruch 1, wobei der elektrische Strom (20) der vom Stromsensor (24) zu messende elektrische Strom (20) ist. 2. The method of claim 1, wherein the electrical current (20) of the current sensor (24) to be measured electric current (20).
3. Verfahren nach Anspruch 1 oder 2, wobei der Stromsensor (20) einen Messshunt mit dem ersten elektrisch leitfähige Material (32) umfasst, an dem eine Messspannung (28) abfällt, die vom zu messenden Strom (20) des Stromsensors (24) abhängig ist. 3. The method of claim 1 or 2, wherein the current sensor (20) comprises a measuring shunt with the first electrically conductive material (32) at which a measuring voltage (28) drops, which is to be measured by the current (20) of the current sensor (24). is dependent.
4. Verfahren nach Anspruch 3, wobei das Bezugspotential (40) auf dem Messshunt liegt. 4. The method of claim 3, wherein the reference potential (40) lies on the measuring shunt.
5. Verfahren nach Anspruch 3 oder 4, wobei der Stromsensor (24) wenigstens einen Schaltungsanschluss zum Zu- oder Abführen des zu messenden Stromes (20) mit den zweiten elektrisch leitfähigen Material (34) aufweist, der mit dem Messshunt verbunden ist. 5. The method of claim 3 or 4, wherein the current sensor (24) has at least one circuit terminal for supplying or discharging the current to be measured (20) with the second electrically conductive material (34) which is connected to the measuring shunt.
6. Verfahren nach einem der vorstehenden Ansprüche, wobei zum Gegenüberstellen des ersten Spannungsabfalls (28) und des zweiten Spannungsabfalls (30) ein Quotient (58) der beiden Spannungsabfälle (28, 30) gebildet wird. 6. The method according to any one of the preceding claims, wherein the Opposite the first voltage drop (28) and the second voltage drop (30) a quotient (58) of the two voltage drops (28, 30) is formed.
7. Verfahren nach Anspruch 6, wobei dem Quotienten (58) in einer Kennlinie (60) eine eindeutige Temperatur als zu messende Temperatur (26) zugeordnet ist. 7. The method of claim 6, wherein the quotient (58) in a characteristic curve (60) is assigned a unique temperature as the temperature to be measured (26).
8. Verfahren nach Anspruch 7, wobei die eindeutige Temperatur vorab experimentell bestimmt wird. 8. The method of claim 7, wherein the unique temperature is previously determined experimentally.
9. Steuervorrichtung (22), die eingerichtet ist, ein Verfahren nach einem der vorstehenden Ansprüche auszuführen. A control device (22) arranged to carry out a method according to any one of the preceding claims.
10. Stromsensor (24) umfassend eine Steuervorrichtung (22) nach Anspruch 9. 10. Current sensor (24) comprising a control device (22) according to claim 9.
EP14781252.3A 2013-10-18 2014-10-08 Method for measuring a temperature Withdrawn EP3058379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310221210 DE102013221210A1 (en) 2013-10-18 2013-10-18 Method for measuring a temperature
PCT/EP2014/071585 WO2015055483A1 (en) 2013-10-18 2014-10-08 Method for measuring a temperature

Publications (1)

Publication Number Publication Date
EP3058379A1 true EP3058379A1 (en) 2016-08-24

Family

ID=51662143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14781252.3A Withdrawn EP3058379A1 (en) 2013-10-18 2014-10-08 Method for measuring a temperature

Country Status (4)

Country Link
EP (1) EP3058379A1 (en)
CN (1) CN105899956A (en)
DE (1) DE102013221210A1 (en)
WO (1) WO2015055483A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100043A (en) * 2018-08-21 2018-12-28 西北工业大学 A kind of test specimen thermometry in thermo-electrically-power coupling testing system
DE102019101408B3 (en) * 2019-01-21 2020-06-18 Infineon Technologies Ag Current measuring device, current measuring method and calibration method
DE102022201996B3 (en) 2022-02-25 2023-07-13 Bruker Biospin Gmbh Method for determining an electric current with a shunt arrangement, with compensation for heating generated by the current in the shunt arrangement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006001874A1 (en) * 2006-01-13 2007-07-19 Infineon Technologies Ag Current and temperature measurement method for e.g. half-bridge circuit of three-phase converter, involves evaluating measured levels with parameters for compensating temperature and current dependence of actual measured value

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828539B2 (en) * 1978-06-09 1983-06-16 セイコーインスツルメンツ株式会社 temperature detection device
JP2508929B2 (en) * 1991-03-15 1996-06-19 船井電機株式会社 Temperature measuring circuit in heating and cooking equipment
DE19757258C2 (en) * 1997-12-23 2001-02-08 Heraeus Electro Nite Int Sensor with temperature-dependent measuring resistor and its use for temperature measurement
DE19841202C1 (en) * 1998-09-09 2000-03-02 Siemens Ag Temperature sensor for load cut-out device, to provide temperature over loading protection
JP2000258257A (en) * 1999-03-04 2000-09-22 Nec Ic Microcomput Syst Ltd Method and apparatus for deciding temperature
CN2493938Y (en) * 2001-08-09 2002-05-29 赵锋 Photomagnetic current mutual inductor
DE102004046275B4 (en) * 2003-09-23 2006-12-21 Saxotec Gmbh & Co.Kg Device for monitoring the temperature of high-voltage assemblies
DE102005039587A1 (en) 2005-08-19 2007-02-22 Robert Bosch Gmbh Battery sensor unit
US20110089931A1 (en) * 2009-10-19 2011-04-21 Nemic-Lambda Ltd. Temperature-compensated shunt current measurement
US8727616B2 (en) * 2010-04-19 2014-05-20 Fairchild Semiconductor Corporation Differential thermistor circuit
DE102010028086A1 (en) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Method for measuring current and temperature in motor car, involves switching power supply for measuring temperature, and measuring another measuring voltage falling at measuring resistor and temperature-dependent resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006001874A1 (en) * 2006-01-13 2007-07-19 Infineon Technologies Ag Current and temperature measurement method for e.g. half-bridge circuit of three-phase converter, involves evaluating measured levels with parameters for compensating temperature and current dependence of actual measured value

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015055483A1 *

Also Published As

Publication number Publication date
CN105899956A (en) 2016-08-24
DE102013221210A1 (en) 2015-04-23
WO2015055483A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
EP3134742B1 (en) Temperature correction for current measuring via shunt
DE112011103260B4 (en) Electrostatic capacitance sensor and method for detecting the failure of an electrostatic capacitance sensor
WO2014037465A1 (en) Method and device for checking the plausibility of a current sensor measurement result
DE102017223535A1 (en) Method and battery sensor for determining a load current
DE102014213731A1 (en) Method and apparatus for measuring the electrical current of a battery having a plurality of battery modules
EP3058379A1 (en) Method for measuring a temperature
WO2014095226A1 (en) Method for setting up a current sensor
DE102017221612A1 (en) Current sensor and method for measuring an electrical current
DE102014219807B4 (en) Method and device for testing the functionality of a current sensor and vehicle
DE102010038851A1 (en) Electrical detector for detecting high voltages in high voltage transmission system of electrical operable vehicle e.g. hybrid electric car, has potential divider including high and low impedance resistor portions on substrate
WO2016041658A1 (en) Calibration of current sensors by means of reference current
EP3233578B1 (en) Monitoring device for at least one ignition circuit for a personal protection means for a vehicle, and method for operating a monitoring device
DE102016208066A1 (en) Method for determining a temperature of a battery cell
EP3640652B1 (en) Battery sensor and method for operating same
DE102019200062A1 (en) Battery sensor and method for operating a battery sensor
WO2009112412A1 (en) Apparatus for measuring a current strength, circuit arrangement and method for measuring a current strength
EP3853620B1 (en) Battery sensor for temperature-independent current measurement using a shunt
EP3640656A1 (en) Method of operating a battery sensor and battery sensor
DE102013105439A1 (en) FLOATING CONNECTION OF A DIODE FOR BARRIER TEMPERATURE MEASUREMENT
EP1879005A1 (en) Method for testing a temperature sensor with at least two temperature-sensitive resistances
DE102011003699A1 (en) Method for determining electric current intensity of battery in motor vehicle, involves detecting difference between battery voltage and consumer voltage to determine current intensity of battery
DE102015223526A1 (en) Current sensor and battery with such a current sensor
DE102019132455B4 (en) Method for determining the current and arrangement for implementing the method
DE102014222430B4 (en) Current measuring arrangement
DE102019217376A1 (en) Procedure for testing a battery sensor and battery sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL TEVES AG & CO. OHG

17Q First examination report despatched

Effective date: 20190402

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190813