EP3055454A1 - Verfahren zur herstellung von papier, papier und dessen verwendung, faser und holzbasierte zusammensetzung - Google Patents

Verfahren zur herstellung von papier, papier und dessen verwendung, faser und holzbasierte zusammensetzung

Info

Publication number
EP3055454A1
EP3055454A1 EP14852845.8A EP14852845A EP3055454A1 EP 3055454 A1 EP3055454 A1 EP 3055454A1 EP 14852845 A EP14852845 A EP 14852845A EP 3055454 A1 EP3055454 A1 EP 3055454A1
Authority
EP
European Patent Office
Prior art keywords
pulp
wood based
paper
furnish
based component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14852845.8A
Other languages
English (en)
French (fr)
Other versions
EP3055454A4 (de
Inventor
Mika RÄTY
Jouko Lehto
Peter SANDÅS
Jussi VENTOLA
Tarja Sinkko
Janne Varvemaa
Mika V KOSONEN
Isko Kajanto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UPM Communication Papers Oy
Original Assignee
UPM Kymmene Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UPM Kymmene Oy filed Critical UPM Kymmene Oy
Publication of EP3055454A1 publication Critical patent/EP3055454A1/de
Publication of EP3055454A4 publication Critical patent/EP3055454A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/02Material of vegetable origin
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/22Agents rendering paper porous, absorbent or bulky

Definitions

  • the invention relates to a method for manu ⁇ facturing a paper. Further, the invention relates to a paper and its use. Further, the invention relates to a furnish and a wood based composition. BACKGROUND OF THE INVENTION
  • the objective of the invention is to disclose a new method for manufacturing a paper to form a new type paper product. Further, the objective of the in- vention is to disclose a lighter product. Further, the objective of the invention is to disclose a new type furnish formed from a new type of material composi ⁇ tion. Further, the objective of the invention is to disclose a new wood based composition.
  • the method for manufacturing a paper according to the present invention is characterized by what is presented in claim 1.
  • the paper according to the present invention is characterized by what is presented in claim 11.
  • the wood based composition according to the present invention is characterized by what is present ⁇ ed in claim 15.
  • Fig. 1 is a flow chart illustration of a method according to one embodiment of the present in ⁇ vention.
  • Fig. 2 is a flow chart illustration of a method according to another embodiment of the present invention.
  • a paper 10 is formed from the furnish 6 which comprises at least pulp 1 including at least mechanical pulp 8, a wood based component 2 and a strength chemical 3.
  • the wood based component 2 and strength chemical 3 are mixed in the pulp 1 for forming a wood based composi ⁇ tion, and the furnish 6 is formed from the pulp 1 com- prising the wood based composition.
  • the wood based component 2 is arranged into the furnish 6 to replace inorganic filler. Then the paper with good quality and low basis weight can be formed.
  • the method is used for forming a printing paper. In one embodiment the method is used for forming a coated paper. In one embodiment the method is used for forming a coated printing pa ⁇ per .
  • the paper refer to any paper or paper product which is formed from a fiber-based composition, such as from a furnish.
  • the paper may be any paper, paperboard, cardboard or the like.
  • the pa ⁇ per may contain suitable pigments, fillers and addi- tives and different surface treatment and coating agents.
  • the paper may be in the form of a web or a sheet or in other form suitable for the purpose of use.
  • the furnish refers to any furnish comprising pulp and desired fillers, pigments and additives.
  • the fur- nish is formed from pulp composition in the mixing vessel 12 of the paper manufacturing.
  • the furnish includes at least mechanical pulp, and it may include also other pulp or different combinations of pulps. Further, the furnish includes the wood based composi- tion including a wood based component and a strength chemical .
  • the pulp includes any pulp but at least mechanical pulp.
  • the pulp may be formed from any raw stock.
  • the pulp may be selected from the group consisting of mechanical pulp, chemical pulp, chemimechanical pulp, recycled pulp, pulp from non- wood raw stock and their combination.
  • the mechanical pulp may be any mechanical pulp or chemimechanical pulp or their combination.
  • the pulp can include one or more pulp components. In one embodiment other pulp is added into the mechanical pulp. In one embodiment other pulp is added into the mechanical pulp in connection with the treatment of the pulp and/or the mixing vessel of the furnish.
  • the furnish includes mechani ⁇ cal pulp between 10 to 100, preferably 20 to 100 %, by weight of dry weight of the base paper furnish.
  • the pulp includes mechanical pulp between 25 to 100 %, preferably 60 to 90 %, more preferably 70 to 85 %, by weight of dry weight of the pulp.
  • an amount of the mechanical pulp is increased in com- parison with the reference papers.
  • the wood based component means any wood containing component which may be used as a pigment or filler in the pulp.
  • the wood based com ⁇ ponent may be a wood based pigment or filler, or wood based pigment type or filler type material.
  • the wood based component includes wood fibres, fines, ground wood particles or their combinations.
  • the wood based compo ⁇ nent may be formed by any suitable method, such as by grinding and/or other suitable treatment. In one embod- iment the wood based component consists of mainly parti ⁇ cles which are passed a sieve with 200 mesh, as deter ⁇ mined by SCAN-CN 6:05 standard.
  • the wood based compo ⁇ nent can include one or more component.
  • the wood based component can be in the form of dispersion, slurry, solution, dry composition or the like.
  • the wood based component 2 is formed from wood based raw material in a separate pro ⁇ cess, and the wood based component 2 is fed into the pulp 1.
  • the wood based component may be formed by any suitable method, such as by grinding and/or other suita ⁇ ble treatment, e.g. by means of some method presented in patent applications WO 2009080894 (teidan viite 2133), WO2009144372 (2159), WO 2009144373 (2009) and/or WO2013034811 (11094) .
  • the wood based component is fibre containing component. In one embodi ⁇ ment the wood based component contains fibres and/or fines .
  • the wood based component 2 is formed in connection with the manufacture of the pulp, preferably the mechanical pulp 8, e.g. in a refining or in another process step, and then the pulp comprises the wood based component.
  • the wood based component consists of pigment type fines, e.g. fines of ground pulp or fines of refiner groundwood.
  • the wood based component is fibre containing component.
  • the wood based component contains fibres and/or fines.
  • the wood based component 2 is a wood based pigment which contains wood fibres and/or fines .
  • the strength chemical means any strength component which improves strength in the pulp.
  • the strength chemical may include any strength chemical, strength improving agent or the like.
  • the strength chemical can be in the form of dispersion, slurry, solution, dry composition or the like.
  • the strength chemical 3 in ⁇ cludes nanofibrillated cellulose.
  • the strength chemical includes nanofibrillated cellu ⁇ lose between 50 to 100 % by weight of the dry weight of the strength chemical.
  • the strength chemical may contain from more than 0% to less than 100w-% of nano- fibrillated cellulose.
  • the strength chemical may contain other suitable components, e.g. other strength chemical, ad ⁇ ditives and/or fibers that may be formed from any plant-based raw material.
  • the strength chemical consists mainly of nanofibrillated cellulose .
  • the nanofibrillated cellu ⁇ lose with 0.5 to 2.5 %, in one embodiment 0.8 to 2.0 %, solution consistency is introduced to the pulp.
  • nanofibrillated cellulose may be in the form of a dispersion, e.g. in a gel-type or gelatinous form or in the form of a diluted disper ⁇ sion, or in the form of a suspension, e.g. aqueous suspension.
  • a dispersion e.g. in a gel-type or gelatinous form or in the form of a diluted disper ⁇ sion
  • a suspension e.g. aqueous suspension.
  • the nanofibrillated cellulose is in the form of an aqueous suspension.
  • Nanofibrillated cellulose in this context means cellulose consisting of nanofibrils and/or micro ⁇ fibrils, such as a set of isolated cellulose nanofibrils and/or nanofibril bundles derived from a cellulose raw material.
  • Cellulose fibers contain nanofibrils that are strand-like structural components of the cellulose fi ⁇ bers. The cellulose fiber is provided fibrous by fibril- lating.
  • the aspect ratio of nanofibrils is typically high; the length of individual nanofibrils may be more than one micrometer and the number-average diameter is typically less than 20nm.
  • the diameter of nanofibril bundles may be larger but generally less than lym.
  • nanofibrils are similar to the so-called ele ⁇ mentary fibrils, the diameter of which is typically from 2 to 4 nm.
  • the dimensions and structures of nanofibrils and nanofibril bundles depend on the raw material and production method.
  • Nanofibrillated cellulose may have been formed from any plant-based raw material, e.g. wood-based raw material, such as hardwood raw material or softwood raw material, or other plant-based raw material containing cellulose.
  • Plant-based raw materials may include e.g. agricultural waste, grasses, straw, bark, caryopses, peels, flowers, vegetables, cotton, maize, wheat, oat, rye, barley, rice, flax, hemp, abaca, sisal, kenaf, jute, ramie, bagasse, bamboo or reed or their different combinations .
  • Nanofibrillated cellulose may also contain hemicellulose, lignin and/or extractives, the amount of which depends on the raw material used. Nanofibrillated cellulose is isolated from the above-described raw ma ⁇ terial containing cellulose by an apparatus suitable for the purpose, e.g. a grinder, pulverizer, homoge- nizer, fluidizer, micro- or macrofluidizer, cryo- crushing and/or ultrasonic disintegrator. Nanofibril- lated cellulose may also be obtained directly by a fermentation process using microorganisms e.g.
  • Raw materials of nanofibrillated cellulose may also include for example the tunicates (Latin: tunica- ta) and organisms belonging to the chromalveolate groups (Latin: chromalveolata) , e.g. the water molds (Latin: oomycete) , that produce cellulose.
  • nanofibrillated cellulose may be any chemically or physically modified derivative of cellulose or nanofibril bundles consisting of nano- fibrils.
  • the chemical modification may be based on e.g. a carboxymethylation, oxidation, esterification and etherification reaction of the cellulose molecules.
  • the modification may also be carried out by physical adsorp ⁇ tion of anionic, cationic or non-ionic agents or their combinations to the surface of cellulose.
  • the modifica ⁇ tion may be performed before, during or after the manu- facture of nanofibrillated cellulose.
  • Nanofibrillated cellulose may be formed from a cellulose-based raw material by any manner known per se in the art.
  • nanofibrillated cellu ⁇ lose is formed from a dried and/or concentrated cellu- lose raw material by fibrillating .
  • the cellulose raw material has been concentrated.
  • the cellulose raw material has been dried.
  • the cellulose raw material has been dried and concentrated.
  • the cellulose raw material has been chemically pretreated to disinte ⁇ grate more easily, i.e. labilized, in which case nano- fibrillated cellulose is formed from the chemically la- bilized cellulose raw material.
  • a N-oxyl e.g.
  • nanofibrillated cellulose are fibers that are very long relative to the diameter. Nan- ofibrillated cellulose has a large specific surface ar ⁇ ea. Therefore, nanofibrillated cellulose is able to form multiple bonds and bind many particles. In addi ⁇ tion, nanofibrillated cellulose has good strength prop- erties.
  • nanofibrillated cellulose is mainly nanocellulose .
  • Nanocellulose consists at least mainly of nano-size class fibrils, the diameter of which is less than lOOnm but the length of which may also be in the ym-size class or below.
  • Nanofibrillated cellu ⁇ lose may refer to any nanofibrillated cellulose, nano- fibril cellulose, nanofibers of cellulose, nanoscale fi ⁇ brillated cellulose, microfibril cellulose or microfi ⁇ brils of cellulose.
  • nanofibrillated cellu- lose in this context does not mean so-called cellulose nanowhiskers or microcrystalline cellulose (MCC) .
  • the wood based composition means any composition, mixture, composite or the like which includes at least the wood based component 2 and the strength chemical 3.
  • the wood based composition can be in the form of dispersion, slurry, solution, dry composition or the like.
  • the mechanical pulp 8 is formed from raw stock in a refining step 4.
  • other pulp 9 is added into the mechanical pulp 8 after the refining step 4 in order to form pulp 1.
  • the mechanical pulp is used as such as pulp 1.
  • other pulp 9 is added into the pulp 1 in the mixing vessel 12 of the furnish 6.
  • the wood based component 2 is formed during the refining step 4, preferably dur ⁇ ing the forming of the mechanical pulp 8.
  • the strength chemical 3 is added into the pulp 1 which contains the wood based component 2.
  • the refining step 4 means any refining step, pulping step, defibering step, other pulp treatment step or their combination.
  • the refining step comprises a defibering step or a pulping step, e.g. a pulper.
  • fines are formed in the refining step. Any suit- able devices known in the art may be used in the re ⁇ fining step.
  • the wood based component 2 and strength chemical 3 are added into the pulp 1.
  • the wood based component 2 is added into the pulp 1. In one embodiment, the wood based component is added into the pulp after the re ⁇ fining step 4. In one embodiment, the wood based com ⁇ ponent is added into the pulp before the post-refining step 5. In one embodiment, the wood based component is added into the pulp during the post-refining step 5. In one embodiment, the wood based component is added into the pulp between two post-refining steps 5. In one embodiment, the wood based component is added into the pulp during more than one post-refining step 5.
  • the post-refining step 5 means any post-refining step, in which mixing, refining, grinding, defibrating, homogenisation, other pulp treatment or their combination can be made.
  • the post-refining step comprises a mixing step, e.g. a mixing device, in which refining or grinding is also made.
  • additional fines are formed in the post-refining step. Any suita- ble devices known in the art may be used in the post- refining step.
  • the post-refining is carried out in one or more than one post-refining step .
  • the strength chemical 3 is added into the pulp 1.
  • the strength chemical is added into the pulp after the refining step 4.
  • the strength chemical is added into the pulp before the post-refining step 5.
  • the strength chemical is added into the pulp during the post-refining step 5.
  • the strength chemical is added into the pulp between two post-refining steps 5.
  • the strength chemical is added into the pulp at one stage.
  • the strength chemical is added into the pulp at more than one stage. In one em ⁇ bodiment, the strength chemical is added into the pulp during more than one post-refining step 5.
  • the wood based component 2 is added into the pulp 1 and after that the strength chemical 3 is added into the pulp 1.
  • the wood based component 2 and the strength chemical 3 are added into the pulp 1 simultaneously.
  • the strength chemical 3 is added into the pulp 1 and after that the wood based compo ⁇ nent 2 is added into the pulp 1.
  • the wood based composition is formed on-line from the wood based component 2 and the strength chemical 3 during the treatment of the pulp 1.
  • the strength chemical 3 is added into the pulp 1 which contains the wood based component 2, and the strength chemical 3 and the wood based component 2 are mixed in order to form the wood based composition.
  • the wood based component 2 and strength chemical 3 are added into the pulp 1, and the strength chemical and the wood based component are mixed in order to form the wood based composition .
  • the wood based composition containing the wood based component 2 and the strength chemical 3 is added into the pulp 1.
  • the wood based component 2 and strength chemical 3 has been mixed, preferably in a separate process step or in a separate process, for forming the wood based com ⁇ position, and the wood based composition is added into the pulp 1.
  • the wood based composi ⁇ tion is added into the pulp after the refining step 4.
  • the wood based composition is added into the pulp before the post-refining step 5.
  • the wood based composition is added into the pulp during the post-refining step 5.
  • the wood based composition is added into the pulp between two post-refining steps 5. In one embodi ⁇ ment, the wood based composition is added into the pulp during more than one post-refining step 5.
  • the furnish 6 comprises ad ⁇ ditives, other chemicals or other agents, e.g. fixa ⁇ tives and other process chemical, which may be added during the treatment of the pulp 1 or in the mixing vessel of the furnish.
  • the furnish comprises inorganic pigment or filler which may be added after the treatment of the pulp or in the mixing vessel of the furnish.
  • the furnish 6 contains the wood based component 2 between 5 to 60 %, preferably 20 to 50 %, by weight of dry weight of the mechanical pulp .
  • the furnish 6 contains the strength chemical 3 between 0.1 to 3 %, preferably 0.3 to 2 % and more preferably 0.5 to 1.5 %, by weight of dry weight of the furnish fibers.
  • reject material comprising coated paper reject is added into the furnish 6 before the manufacture 11 of the paper 10, e.g. in the mixing vessel of the furnish.
  • the paper 10 of the invention com ⁇ prises pulp 1 including at least mechanical pulp 8 and wood based composition containing the wood based compo ⁇ nent 2 and strength chemical 3.
  • the paper 10 has been formed from a furnish 6 which comprises pulp including at least mechanical pulp, a wood based component and a strength chemical; the wood based component and strength chemical has been mixed for forming a wood based composition; and the furnish has been formed from the pulp comprising the wood based composition.
  • the paper 10 is coated to form a coated paper, e.g. a coated printing paper.
  • the paper may be used as a printing paper.
  • the paper 10 is formed from mechanical pulp 8 containing furnish 6, and the wood based composite composition is formed from wood based component 2, preferably wood based pigment type component, and nanofibrillated cellulose 3 during the pulp treatment.
  • An additional technical effect of the inven ⁇ tion is that an amount of inorganic pigment or filler can be decreased in the furnish and the paper.
  • the wood based component and the wood based composition may be replaced inorganic pigments and fillers.
  • the environmental load can be reduced, and recyclability of paper can be im ⁇ proved.
  • An additional technical effect of the inven ⁇ tion is that an amount of mechanical pulp may be in ⁇ creased in the paper. Further, an amount of wood based material can be increased in the paper. Further, total ash content decreases.
  • the paper product of the present invention may be 10 - 15 % lighter than a corresponding paper product with inorganic pigment or filler.
  • the paper of the invention has same quality than the heavier paper. Further, the paper of the invention feels like the heavier paper, e.g. page turnability, thickness and slipperiness of magazine, catalog or flyers.
  • the method according to the present invention is suitable for use in the manufacture of the differ ⁇ ent papers.
  • different wood based components and the strength chemical, such as nanofibrillated cellulose can be utilized in the paper manufacturing .
  • a paper 10 is formed in the paper manufacturing 11 from a furnish 6.
  • the furnish 6 is formed in a mixing vessel 12, and the furnish 6 comprises pulp 1 including at least mechanical pulp 8 and wood based composition in ⁇ cluding a wood based component 2 and a strength chemi- cal 3. Further, the furnish may include other pulp 9 which may be added into the pulp 1 before the post- refining 4 or in connection with the mixing vessel 12.
  • the mechanical pulp 8 is formed by refining raw stock 7 in a refining step 4.
  • the wood based component 2 is formed during the refining step 4 of the mechanical pulp 8.
  • the mechanical pulp 8 is used as pulp 1 as such, or other pulp 9 is added into the mechanical pulp 8 for forming pulp 1.
  • the strength chemical 3 is added into the pulp 1 containing the wood based compo ⁇ nent 2 before a post-refining step 5.
  • the wood based component 2 and strength chemical 3 is mixed for form ⁇ ing a wood based composition in the pulp 1.
  • the pulp 1 comprising the wood based composition which contains the wood based component 2 and strength chemical 3 is fed in the mixing vessel 12.
  • a paper 10 is formed in the paper manufacturing 11 from a furnish 6.
  • the furnish 6 is formed in a mixing vessel 12, and the furnish 6 comprises pulp 1 including at least mechanical pulp 8 and wood based composition in- eluding a wood based component 2 and a strength chemi ⁇ cal 3. Further, the furnish may include other pulp 9 which may be added into the pulp 1 before the post- refining 4 or in connection with the mixing vessel 12.
  • the mechanical pulp 8 is formed by refining raw stock 7 in a refining step 4.
  • the mechanical pulp 8 is used as pulp 1 as such, or other pulp 9 is added into the mechanical pulp 8 for forming pulp 1.
  • the wood based component 2 and strength chemical 3 are added in ⁇ to the pulp 1 before a post-refining step 5.
  • the wood based component 2 and strength chemical 3 is mixed for forming a wood based composition in the pulp 1.
  • the pulp 1 comprising the wood based composition which contains the wood based component 2 and strength chem ⁇ ical 3 is fed in the mixing vessel 12.
  • a coated paper 10 according to the invention was formed from pulp 1 comprising pressurized ground wood 8 and soft wood kraft 9, and the pulp contained 10 %-unit less chemi- cal pulp than the pulp of the reference paper.
  • the pressurized ground wood included wood pigment type particles 2 which were treated with nanofibrillated cellulose 3, dosage 0 to 1.0 % calculated from base paper furnish. Coating color was optimized in terms of RG printability .
  • the method according to the present invention is suitable as different embodiments to be used in different paper manufacturing process.
  • the method ac ⁇ cording to the present invention is suitable in the manufacture of most different papers.
  • the invention can be applied for use in the manufacture of different paper products in which it is desirable to utilize wood based pigments and strength chemicals. Further, the invention can be applied for use in the manufac ⁇ ture of different lighter paper products.

Landscapes

  • Paper (AREA)
EP14852845.8A 2013-10-11 2014-10-09 Verfahren zur herstellung von papier, papier und dessen verwendung, faser und holzbasierte zusammensetzung Withdrawn EP3055454A4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20136012 2013-10-11
PCT/FI2014/050767 WO2015052380A1 (en) 2013-10-11 2014-10-09 Method for manufacturing a paper, a paper and its use, a furnish and a wood based composition

Publications (2)

Publication Number Publication Date
EP3055454A1 true EP3055454A1 (de) 2016-08-17
EP3055454A4 EP3055454A4 (de) 2017-07-12

Family

ID=52812557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14852845.8A Withdrawn EP3055454A4 (de) 2013-10-11 2014-10-09 Verfahren zur herstellung von papier, papier und dessen verwendung, faser und holzbasierte zusammensetzung

Country Status (2)

Country Link
EP (1) EP3055454A4 (de)
WO (1) WO2015052380A1 (de)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227024A (en) 1987-12-14 1993-07-13 Daniel Gomez Low density material containing a vegetable filler
FR2648488B1 (fr) 1989-06-15 1991-09-13 Gomez Daniel Charge vegetale poreuse, micronisee, peu dense, de granulometrie controlee et de faibles surfaces specifiques physique et hydraulique; procede de preparation et utilisation
JP3125475B2 (ja) 1992-10-29 2001-01-15 王子製紙株式会社 新聞用紙
JP2005163253A (ja) 2003-11-14 2005-06-23 Nippon Paper Industries Co Ltd 嵩高中質印刷用紙
FI20075954L (fi) 2007-12-21 2009-06-22 Upm Kymmene Oyj Menetelmä orgaanisen pigmentin valmistamiseksi
WO2009084566A1 (ja) 2007-12-28 2009-07-09 Nippon Paper Industries Co., Ltd. セルロースナノファイバーの製造方法、セルロースの酸化触媒及びセルロースの酸化方法
FI123643B (fi) 2008-05-30 2013-08-30 Upm Kymmene Oyj Menetelmä selluloosaesteripohjaisen pigmenttituotteen valmistamiseksi, pigmenttituote ja sen käyttö
FI123642B (fi) 2008-05-30 2013-08-30 Upm Kymmene Oyj Menetelmä pigmenttituotteen muodostamiseksi selluloosajohdannaisesta, pigmenttituote ja sen käyttö
FI20095692A0 (fi) * 2009-06-18 2009-06-18 Upm Kymmene Oyj Paperituote ja menetelmä sen valmistamiseksi
SE535014C2 (sv) * 2009-12-03 2012-03-13 Stora Enso Oyj En pappers eller kartongprodukt och en process för tillverkning av en pappers eller kartongprodukt
FI126513B (fi) 2011-01-20 2017-01-13 Upm Kymmene Corp Menetelmä lujuuden ja retention parantamiseksi ja paperituote
WO2013034811A1 (en) 2011-09-07 2013-03-14 Upm-Kymmene Corporation A method for manufacturing a material component, a material component and its use and a paper product

Also Published As

Publication number Publication date
WO2015052380A1 (en) 2015-04-16
EP3055454A4 (de) 2017-07-12

Similar Documents

Publication Publication Date Title
US9399838B2 (en) Method for improving strength and retention, and paper product
Boufi et al. Nanofibrillated cellulose as an additive in papermaking process: A review
US20200347552A1 (en) Method for producing paper, board or the like
Hassan et al. Improving bagasse pulp paper sheet properties with microfibrillated cellulose isolated from xylanase-treated bagasse
US11077648B2 (en) Board with improved compression strength
RU2535688C2 (ru) Способ получения модифицированной целлюлозы
US20160273165A1 (en) Method for improving strength and retention, and paper product
EP1936032A1 (de) Verfahren zur Herstellung eines Papierprodukts
JP2019520490A (ja) ミクロフィブリル化フィルム
CA2811380C (en) Method for improving the removal of water
CN112575618A (zh) 多层纸板
CA3079132A1 (en) A method for producing a film having good barrier properties and a film having good barrier properties
US20130000856A1 (en) Method for improving the properties of a paper product and forming an additive component and the corresponding paper product and additive component and use of the additive component
RU2731770C1 (ru) Связующая композиция на основе растительных волокон и минеральных наполнителей, ее получение и применение
US20140338849A1 (en) Paper product and a method and a system for manufacturing furnish
Espinosa et al. Recycled fibers for fluting production: The role of lignocellulosic micro/nanofibers of banana leaves
WO2019189590A1 (ja) カルボキシメチル化ミクロフィブリルセルロース繊維およびその組成物
Fathi et al. Prospects for the preparation of paper money from cotton fibers and bleached softwood kraft pulp fibers with nanofibrillated cellulose
CN112585310B (zh) 水分散性复合结构体及其制备方法
Liu et al. Cellulose nanofiber extraction from unbleached kraft pulp for paper strengthening
Faris et al. Effect of microcrystalline cellulose on the strength of oil palm empty fruit bunch paper
EP3055454A1 (de) Verfahren zur herstellung von papier, papier und dessen verwendung, faser und holzbasierte zusammensetzung
Bahar et al. The potential of nanocellulose from Acacia mangium pulp for specialty paper making
SE2230126A1 (en) Pulp with reduced refining requirement
JP2020180414A (ja) ミクロフィブリルセルロース繊維の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160510

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170614

RIC1 Information provided on ipc code assigned before grant

Ipc: D21H 11/00 20060101ALI20170608BHEP

Ipc: D21H 17/02 20060101AFI20170608BHEP

Ipc: D21H 11/18 20060101ALI20170608BHEP

Ipc: D21H 21/22 20060101ALI20170608BHEP

Ipc: D21H 21/18 20060101ALI20170608BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UPM PAPER ENA OY

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UPM COMMUNICATION PAPERS OY

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230531