EP3051141B1 - Rotor bearing - Google Patents

Rotor bearing Download PDF

Info

Publication number
EP3051141B1
EP3051141B1 EP15153248.8A EP15153248A EP3051141B1 EP 3051141 B1 EP3051141 B1 EP 3051141B1 EP 15153248 A EP15153248 A EP 15153248A EP 3051141 B1 EP3051141 B1 EP 3051141B1
Authority
EP
European Patent Office
Prior art keywords
rotor
bearing
stator
intermediate part
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15153248.8A
Other languages
German (de)
French (fr)
Other versions
EP3051141A1 (en
Inventor
Armin Conrad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP15153248.8A priority Critical patent/EP3051141B1/en
Priority to EP19210176.4A priority patent/EP3628873B1/en
Publication of EP3051141A1 publication Critical patent/EP3051141A1/en
Application granted granted Critical
Publication of EP3051141B1 publication Critical patent/EP3051141B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/048Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps comprising magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control

Definitions

  • the present invention relates to an arrangement for mounting a rotor relative to a stator, in particular for mounting the rotor of a vacuum pump, with a radially stabilizing permanent magnet bearing in the region of one of the two rotor ends and a further bearing in the region of the opposite rotor end according to the preamble of claim 1
  • the invention further relates to a vacuum pump, in particular a turbomolecular pump, with such a rotor bearing.
  • a vacuum pump with such an arrangement is out DE 28 25 551 A1 known.
  • Magnetic bearing rotors are used in vacuum pumps, among others.
  • Vacuum pumps such as Turbomolecular pumps are used in different areas of technology to create a vacuum necessary for a particular process.
  • Turbomolecular pumps comprise a stator with a plurality of stator disks which follow one another in the direction of a rotor axis and a rotor which is rotatably mounted about the rotor axis relative to the stator and which comprises a rotor shaft and a plurality of rotor disks arranged on the rotor shaft, which are arranged in the axial direction and are arranged between the stator disks, the stator disks and the rotor disks each have a pump-active structure.
  • the currently most frequently used mechanical / magnetic or hybrid rotor bearing in turbomolecular pumps comprises a permanent magnetic radial bearing at one rotor end and a roller bearing provided with lubricant on the opposite side.
  • a safety bearing in the form of a dry, mechanical roller bearing forms a kind of stop, which should prevent the rotor from rotating in the area of the permanent magnetic radial bearing in the event of a stronger deflection of the rotor and touch the stator.
  • Single-axis or multi-axis active magnet-bearing rotors have also been proposed. These are single or multi-axis position controlled rotors. The currently most frequently used rotors are actively controlled in all five axes, which is associated with a relatively high level of complexity, particularly with regard to the sensors, the actuators, the electronics and the control algorithm. In the area of turbomolecular pumps, some uniaxially active bearings were also used in the 1980s and 1990s, which included a necessarily heavy iron disk on the rotor, electromagnets in the stator and contactless rotor position sensors for axial stabilization. Due to the relatively complex construction and the correspondingly high manufacturing costs, single-axis active bearings of this type were then replaced by 5-axis active systems. This brought with it a certain cost reduction. Particularly with regard to reliability, stability and precision, however, there is still a considerable difference between such 5-axis active systems and the mechanical / magnetic or hybrid rotor bearings mentioned above.
  • the invention has for its object to provide a rotor bearing and a vacuum pump of the type mentioned, with which the problems mentioned above are eliminated.
  • the rotor bearing should have at least essentially the same reliability with a simpler construction and correspondingly cheaper manufacturing and operating costs and avoiding the disadvantages that arise in connection with the previous uniaxially active bearings. Stability and precision like mechanical / magnetic or hybrid rotor bearings.
  • the arrangement according to the invention for mounting the rotor in relation to a stator, in particular for mounting the rotor of a vacuum pump, comprises a radially stabilizing permanent magnet bearing in the region of one of the two rotor ends and a further bearing in the region of the opposite rotor end.
  • the further bearing is designed as an axially active, radially stabilizing permanent magnet bearing which, for axial stabilization, comprises a stator-side bearing part which is assigned to an intermediate part which is axially movably mounted with respect to a fixed housing of the stator and, together with this, is axially movable relative to the stator housing.
  • the intermediate part can be acted upon by an actuator unit in order to counteract a respective axial deviation of the rotor from a desired position.
  • the design according to the invention results in a rotor bearing arrangement which, with a simpler construction and correspondingly lower manufacturing and operating costs, in particular has at least essentially the same reliability, stability and precision as a conventional mechanical / magnetic or hybrid rotor bearing arrangement, and that without the connection with the disadvantages resulting from the previous uniaxial active bearings.
  • stator-side bearing part for axial stabilization which is assigned to an intermediate part which is axially movably mounted with respect to a fixed housing of the stator and is axially movable together with this with the stator housing, the heavy iron disk on the rotor, which was previously required for uniaxially active bearings, is eliminated.
  • the arrangement according to the invention comprises a sensor unit for measuring a respective axial deflection of the intermediate part relative to the stator housing and a control device connected to the sensor unit and the actuator unit, by means of which the actuator unit can be controlled as a function of the measured axial deflection of the intermediate part.
  • the actuator unit can preferably be controlled via the control unit such that the axial deflection of the intermediate part relative to the stator housing is zero on average over time. This results in a stable axial working point on average over time.
  • the intermediate part is inserted resiliently and / or damped into the stator housing.
  • the system is dynamically stabilized by the resilient and / or damped installation of the intermediate part in the stator housing.
  • the intermediate part can be inserted in the stator housing in a resilient and damped manner, for example via O-rings and / or the like.
  • the control device can in particular comprise control electronics which act upon the actuator unit more strongly when the intermediate part is detected in order to accelerate the intermediate part in the direction of rotor movement, so that the rotor is "overhauled” so to speak and the unstable point is exceeded so that a counterforce can then be built up , which brakes the rotor and accelerates in the opposite direction.
  • the result is a stable axial working point on average, at which the deflection of the intermediate part relative to the stator housing is zero on average over time.
  • the operating points in different operating situations (rotor weight) and at different operating temperatures (thermal rotor elongation) may differ slightly, but this is not a problem if the spring elements involved are chosen appropriately.
  • the actuator unit can in particular comprise at least one linear actuator.
  • the actuator unit comprises at least one electromagnet and / or at least one hydraulic actuator.
  • the sensor unit for measuring a respective axial deflection of the intermediate part relative to the stator housing comprises a touching sensor.
  • the use of such a contacting sensor is easily possible for measuring a respective axial deflection of the intermediate part and is associated with less effort than the use of a contactless sensor.
  • the structure of the rotor bearing is thus further simplified.
  • the sensor unit for measuring a respective axial deflection of the intermediate part relative to the stator housing can comprise, for example, a strain gauge or the like.
  • an at least radially acting catch bearing is additionally provided in the area of the two rotor ends.
  • the catch bearing in the region of the opposite rotor end provided with the axially active, radially stabilizing permanent magnet bearing is preferably designed as an axially and radially acting catch bearing.
  • the rotor bearing according to the invention above all has the advantages of a purely non-contact bearing, with which the restrictions associated with conventional rolling and sliding bearings are eliminated, which are due, among other things, to the fact that these rolling and Plain bearings with solid, liquid or gaseous lubricants on the contact surfaces between the fixed and movable bearing part work.
  • field force bearings in which the bearing forces are generated by magnetic fields, work without contact and without contact medium.
  • Corresponding field force bearings can be used with particular advantage where other bearings reach their limits due to lubricant problems.
  • the lubricant can overheat in rapidly rotating systems and thereby lose its function.
  • liquid lubricants can become tough and therefore unusable.
  • the use of lubricants can also be undesirable in certain applications due to a physico-chemical incompatibility, as is the case in particular in vacuum technology and, inter alia, also in clean room, chemical, food and medical technology.
  • the restrictions mentioned do not apply. It works without locks and maintenance and is free from friction-related energy losses.
  • the rotor bearing according to the invention there are also advantages over known multi-axis active and the previous single-axis active magnetic bearings. Compared to the previous 3-axis active magnetic bearings, this results in a significantly lower expenditure on actuators, sensors and electronics. Since no iron parts are required on the rotor, the rotor weight is reduced. The associated, on average, lower unbalance also results in a reduced risk of starting or a reduced risk of contact with the bearing and a reduction in noise.
  • the actuators and sensors as a whole can be kept relatively compact and accommodated in the stator, since the force is transmitted to the rotor magnetically via the axially active, radially stabilizing permanent magnet bearing and the rotor position can be detected indirectly by deflections of the intermediate part from its central position.
  • the rotor bearing arrangement according to the invention can be used in particular in the case of rotary machines with low axial and radial loads in standard operating cases and in vacuum pumps, such as, in particular, turbomolecular pumps.
  • the vacuum pump according to the invention in particular turbomolecular pump, is characterized in that its rotor is supported relative to its stator by a bearing according to the invention.
  • the vacuum pump preferably comprises a permanent magnet motor as a rotary drive for the rotor.
  • the permanent magnet motor is arranged axially between an axially and radially acting catch bearing and the axially active radially stabilizing permanent magnet bearing.
  • the conventional vacuum pump 10 shown comprises a pump inlet 14 surrounded by an inlet flange 12 and a plurality of pump stages for conveying the gas present at the pump inlet 14 to an in Fig. 1 Pump outlet, not shown.
  • the vacuum pump 10 comprises a stator with a static housing 16 and a rotor arranged in the housing 16 with a rotor shaft 20 mounted rotatably about an axis of rotation 18.
  • the vacuum pump 10 is designed as a turbomolecular pump and comprises a plurality of turbomolecular pump stages connected in series with one another with effective pumping, with a plurality of turbomolecular rotor disks 22 connected to the rotor shaft 20 and a plurality of turbomolecular stator disks 24 arranged in the axial direction between the rotor disks 22 and fixed in the housing 16 by spacer rings 26 are held at a desired axial distance from one another.
  • the rotor disks 22 and stator disks 24 provide an axial pumping action in the direction of the arrow 30 in a scoop area 28.
  • the vacuum pump 10 also comprises three Holweck pump stages which are arranged one inside the other in the radial direction and have a pumping effect and are connected in series with one another.
  • the rotor-side part of the Holweck pump stages comprises a rotor hub 32 connected to the rotor shaft 20 and two cylindrical jacket-shaped Holweck rotor sleeves 34, 36 fastened to and supported by the rotor hub 32, which are oriented coaxially to the rotor axis 18 and nested one inside the other in the radial direction.
  • two cylindrical jacket-shaped Holweck stator sleeves 38, 40 are provided, which are also oriented coaxially to the axis of rotation 18 and are nested in one another in the radial direction.
  • the pump-active surfaces of the Holweck pump stages are each formed by the radial jacket surfaces opposite each other, forming a narrow radial Holweck gap, each of a Holweck rotor sleeve 34, 36 and a Holweck stator sleeve 38, 40. It is In each case one of the pump-active surfaces is smooth, in the present case that of the Holweck rotor sleeve 34 or 36, and the opposite pump-active surface of the Holweck stator sleeve 38, 40 is structured with helical grooves around the axis of rotation 18 in the axial direction, in which the gas is propelled by the rotation of the rotor and thereby pumped.
  • the rotatable mounting of the rotor shaft 20 is effected by a roller bearing 42 in the area of the pump outlet and a permanent magnet bearing 44 in the area of the pump inlet 14.
  • the permanent magnet bearing 44 comprises a rotor-side bearing half 46 and a stator-side bearing half 48, each of which comprises an annular stack of a plurality of permanent magnetic rings 50, 52 stacked one on top of the other in the axial direction, the magnetic rings 50, 52 lying opposite one another to form a radial bearing gap 54.
  • an emergency or catch bearing 56 is provided, which is designed as an unlubricated rolling bearing and idles without contact during normal operation of the vacuum pump and only comes into engagement with an excessive radial deflection of the rotor relative to the stator in order to make a radial stop for the To form a rotor that prevents a collision of the rotor-side structures with the stator-side structures.
  • a conical spray nut 58 is provided on the rotor shaft 20 with an external diameter increasing toward the roller bearing 42, which is in sliding contact with a wiper of an operating medium reservoir comprising several absorbent disks 60 soaked with an operating medium, such as a lubricant ,
  • an operating medium such as a lubricant
  • the equipment is opened by capillary action from the equipment storage via the wiper transfer the rotating spray nut 58 and, as a result of the centrifugal force, conveyed along the spray nut 58 in the direction of the increasing outer diameter of the spray nut 58 to the roller bearing 42, where it fulfills a lubricating function, for example.
  • the vacuum pump comprises a drive motor 62 for rotatingly driving the rotor, the rotor of which is formed by the rotor shaft 20.
  • a control unit 64 controls the drive motor 62.
  • the turbomolecular pump stages provide a pumping action in the direction of the arrow 30 in the scoop region 28.
  • Fig. 2 shows a schematic diagram of an exemplary embodiment of a rotor bearing according to the invention.
  • Fig. 3 shows a schematic partial representation of the rotor bearing according to the invention Fig. 2 , in particular the axially active radially stabilizing permanent magnet bearing is shown in more detail.
  • the in Figure 3 rotor bearing shown, for example, integrated into a vacuum pump, in particular turbomolecular pump.
  • the in the Fig. 2 and 3 The arrangement 66 shown for mounting a rotor 68 relative to a stator 70 is, for example, for mounting the rotor 68 of a vacuum pump 72, in particular a turbomolecular pump (cf. in particular Fig. 3 ), can be used.
  • the rotor bearing formed by the arrangement 66 comprises a radially stabilizing permanent magnet bearing 74 (cf. Fig. 2 ) in the area of one of the two rotor ends and a further bearing in the area of the opposite rotor end, which is designed as an axially active, radially stabilizing permanent magnet bearing 76.
  • the axially active, radially stabilizing permanent magnet bearing 76 comprises a stator-side bearing part 78 (cf. Fig. 3 ), which is associated with an axially movably mounted intermediate part 82 with respect to a fixed housing 80 of the stator 70 and, together with this, is axially movable relative to the stator housing 80.
  • the intermediate part 82 is connected via an actuator unit 84 (cf. Fig. 3 ) acted upon in order to counteract a respective axial deviation of the rotor 68 with respect to a desired position.
  • the arrangement or rotor bearing 66 comprises a sensor unit 86 (cf. Fig. 3 ) for measuring a respective axial deflection of the intermediate part 82 relative to the stator housing 80.
  • a control device 88 is provided which is connected to the sensor unit 86 and the actuator unit 84 and by means of which the actuator unit 84 can be controlled as a function of the measured axial deflection of the intermediate part 82 is.
  • the actuator unit 84 can in particular be controlled via the control device 88 such that the axial deflection of the intermediate part 82 with respect to the stator housing 80 is zero on average over time.
  • the intermediate part 82 is inserted resiliently and damped into the stator housing 80, which is illustrated here by O-rings 90.
  • the actuator unit 84 can in particular comprise one or more linear actuators.
  • One or more electromagnets and / or one or more hydraulic actuators can be used, for example.
  • the actuator unit 84 comprises, for example, two electromagnets 84 ′, 84 ′′ for acting on the intermediate part 82 in opposite axial directions.
  • the sensor unit 86 for measuring a respective axial deflection of the intermediate part 82 with respect to the stator housing 80 can in particular comprise a touching sensor such as a strain gauge or the like.
  • a radially acting catch bearing 92, 94 can also be provided in the area of the two rotor ends.
  • the catch bearing 92 can be designed as an axially and radially acting catch bearing in the region of the relevant rotor end provided with the axially active, radially stabilizing permanent magnet bearing 76.
  • the relevant electromagnet 84 ′ or 84 ′′ of the actuator unit 84 can be energized or energized via the control device 88 or a control electronics assigned to it, which accelerates the intermediate part 82 in the direction of rotor movement in order to accelerate this intermediate part 82 in particular to such an extent that it the rotor 68, so to speak, "overhauled", thereby exceeding the unstable point in order to then be able to build up a counterforce which brakes the rotor 68 and accelerates in the opposite direction.
  • An axial working point which is stable on average over time can thus be set, at which the deflection of intermediate part 82 with respect to stator housing 80 is zero on average over time.
  • stator-side bearing part 78 arranged on the intermediate part 82 and the rotor-side bearing part 96 of the axially active radially stabilizing permanent magnet bearing 76 can each be formed by a magnet ring stack from a plurality of permanent magnet magnet rings.
  • the magnetic rings of a respective stack can be stacked on one another in the axial direction and form an at least approximately cylindrical jacket-shaped basic shape of the respective stack.
  • the essentially cylindrical jacket-shaped rotor stack and the substantially cylindrical jacket-shaped stator stack are arranged essentially coaxially to one another and essentially coaxially to the axis of rotation 98 of the vacuum pump 72.
  • the stator stack is positioned within the rotor stack, so that the essentially cylindrical outer radial surface of the rotor stack is opposite the likewise substantially cylindrical outer radial surface of the stator stack.
  • the stator-side bearing part 78 and the rotor-side bearing part 96 of the axially active, radially stabilizing permanent magnet bearing 76 there is an at least approximately cylindrical jacket-shaped radial magnetic gap 100, which is limited by the magnetic rings.
  • the rotor 68 of the vacuum pump 72 comprises a rotor shaft 104 and rotor disks 106 arranged thereon.
  • the rotor 68 can be driven, for example, by a permanent magnet motor 102.
  • This permanent magnet motor 102 is in the present case, for example, axially between the axially and radially acting Catch bearing 92 and the axially active radially stabilizing permanent magnet bearing 76 is arranged.
  • the in the Fig. 2 and 3 The rotor bearing 66 according to the invention shown differs from that in FIG Fig. 1
  • the conventional mechanical / magnetic or hybrid rotor bearing shown is thus essentially replaced by the fact that the mechanical rolling bearing is replaced by the axially active, radially stabilizing permanent magnet bearing 76, which for axial stabilization comprises the stator-side bearing part 78, which is the intermediate part which is axially movably mounted with respect to the fixed stator housing 80 82 assigned and together with this is axially movable relative to the stator housing 80.
  • the intermediate part 82 can be acted upon by the actuator unit 84 in the manner described above in order to counteract a respective axial deviation of the rotor 68 with respect to a desired position.
  • the vacuum pump 72 or turbomolecular pump according to the invention can, for example, at least essentially again have the same structure as that in FIG Fig. 1 shown vacuum pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die vorliegende Erfindung betrifft eine Anordnung zur Lagerung eines Rotors gegenüber einem Stator, insbesondere zur Lagerung des Rotors einer Vakuumpumpe, mit einem radial stabilisierenden Permanentmagnetlager im Bereich eines der beiden Rotorenden und einem weiteren Lager im Bereich des gegenüberliegenden Rotorendes gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft ferner eine Vakuumpumpe, insbesondere Turbomolekularpumpe, mit einer solchen Rotorlagerung.The present invention relates to an arrangement for mounting a rotor relative to a stator, in particular for mounting the rotor of a vacuum pump, with a radially stabilizing permanent magnet bearing in the region of one of the two rotor ends and a further bearing in the region of the opposite rotor end according to the preamble of claim 1 The invention further relates to a vacuum pump, in particular a turbomolecular pump, with such a rotor bearing.

Eine Vakuumpumpe mit einer solchen Anordnung ist aus DE 28 25 551 A1 bekannt.A vacuum pump with such an arrangement is out DE 28 25 551 A1 known.

Magnetgelagerte Rotoren finden unter anderem in Vakuumpumpen Verwendung. Vakuumpumpen wie z.B. Turbomolekularpumpen werden in unterschiedlichen Bereichen der Technik eingesetzt, um ein für einen jeweiligen Prozess notwendiges Vakuum zu schaffen. Turbomolekularpumpen umfassen einen Stator mit mehreren in Richtung einer Rotorachse aufeinanderfolgenden Statorscheiben und einen relativ zu dem Stator um die Rotorachse drehbar gelagerten Rotor, der eine Rotorwelle und mehrere auf der Rotorwelle angeordnete, in axialer Richtung aufeinanderfolgende und zwischen den Statorscheiben angeordnete Rotorscheiben umfasst, wobei die Statorscheiben und die Rotorscheiben jeweils eine pumpaktive Struktur aufweisen.Magnetic bearing rotors are used in vacuum pumps, among others. Vacuum pumps such as Turbomolecular pumps are used in different areas of technology to create a vacuum necessary for a particular process. Turbomolecular pumps comprise a stator with a plurality of stator disks which follow one another in the direction of a rotor axis and a rotor which is rotatably mounted about the rotor axis relative to the stator and which comprises a rotor shaft and a plurality of rotor disks arranged on the rotor shaft, which are arranged in the axial direction and are arranged between the stator disks, the stator disks and the rotor disks each have a pump-active structure.

Die derzeit bei Turbomolekularpumpen am häufigsten eingesetzte mechanisch/magnetische oder Hybrid-Rotorlagerung umfasst ein permanentmagnetisch wirkendes Radiallager an einem Rotorende sowie ein mit Schmiermittel versehenes Wälzlager auf der Gegenseite. Um bei einer solchen Hybrid-Rotorlagerung eine Zerstörung des permanentmagnetisch wirkenden Radiallagers sowie eine daraus resultierende Zerstörung des Gesamtrotors zu vermeiden, bildet ein Fanglager in Form eines trockenen, mechanischen Wälzlagers eine Art Anschlag, der verhindern soll, dass sich im Fall eines stärkeren Auslenkens des Rotors im Bereich des permanentmagnetisch wirkenden Radiallagers Rotor und Stator berühren.The currently most frequently used mechanical / magnetic or hybrid rotor bearing in turbomolecular pumps comprises a permanent magnetic radial bearing at one rotor end and a roller bearing provided with lubricant on the opposite side. In order for such a hybrid rotor bearing To prevent destruction of the permanent magnetic radial bearing and the resulting destruction of the entire rotor, a safety bearing in the form of a dry, mechanical roller bearing forms a kind of stop, which should prevent the rotor from rotating in the area of the permanent magnetic radial bearing in the event of a stronger deflection of the rotor and touch the stator.

Es wurden auch bereits ein- oder mehrachsig aktive magnetgelagerte Rotoren vorgeschlagen. Dabei handelt es sich um ein- bzw. mehrachsig positionsgeregelte Rotoren. Die derzeit am häufigsten eingesetzten Rotoren sind in allen fünf Achsen aktiv geregelt, was insbesondere bezüglich der Sensorik, der Aktuatoren, der Elektronik und des Regelalgorithmus mit einem relativ hohen Aufwand verbunden ist. Im Bereich der Turbomolekularpumpen kamen in den 1980er und 1990er Jahren auch einige einachsig aktive Lagerungen zum Einsatz, die zur axialen Stabilisierung eine notwendigerweise schwere Eisenscheibe auf dem Rotor, im Stator befindliche Elektromagnete sowie berührungslose Rotorpositionssensoren umfassten. Aufgrund der relativ aufwendigen Konstruktion und der entsprechend hohen Herstellungskosten wurden einachsig aktive Lagerungen dieser Art dann von 5-achsig aktiven Systemen abgelöst. Dies brachte zwar eine gewisse Kostenreduzierung mit sich. Insbesondere im Hinblick auf die Zuverlässigkeit, Stabilität und Präzision besteht jedoch auch zwischen solchen 5-achsig aktiven Systemen und der zuvor genannten mechanisch/magnetischen oder Hybrid-Rotorlagerung noch ein erheblicher Unterschied.Single-axis or multi-axis active magnet-bearing rotors have also been proposed. These are single or multi-axis position controlled rotors. The currently most frequently used rotors are actively controlled in all five axes, which is associated with a relatively high level of complexity, particularly with regard to the sensors, the actuators, the electronics and the control algorithm. In the area of turbomolecular pumps, some uniaxially active bearings were also used in the 1980s and 1990s, which included a necessarily heavy iron disk on the rotor, electromagnets in the stator and contactless rotor position sensors for axial stabilization. Due to the relatively complex construction and the correspondingly high manufacturing costs, single-axis active bearings of this type were then replaced by 5-axis active systems. This brought with it a certain cost reduction. Particularly with regard to reliability, stability and precision, however, there is still a considerable difference between such 5-axis active systems and the mechanical / magnetic or hybrid rotor bearings mentioned above.

Der Erfindung liegt die Aufgabe zugrunde, eine Rotorlagerung sowie eine Vakuumpumpe der eingangs genannten Art anzugeben, mit denen die zuvor angeführten Probleme beseitigt sind. Dabei soll die Rotorlagerung bei einfacherem Aufbau und entsprechend günstigeren Herstellungs- und Betriebskosten sowie unter Vermeidung der sich im Zusammenhang mit den bisherigen einachsig aktiven Lagerungen ergebenden Nachteile zumindest im Wesentlichen dieselbe Zuverlässigkeit, Stabilität und Präzision wie die mechanisch/magnetische bzw. Hybrid-Rotorlagerung besitzen.The invention has for its object to provide a rotor bearing and a vacuum pump of the type mentioned, with which the problems mentioned above are eliminated. The rotor bearing should have at least essentially the same reliability with a simpler construction and correspondingly cheaper manufacturing and operating costs and avoiding the disadvantages that arise in connection with the previous uniaxially active bearings. Stability and precision like mechanical / magnetic or hybrid rotor bearings.

Die Aufgabe wird erfindungsgemäß durch eine Rotorlagerung mit den Merkmalen des Anspruchs 1 sowie eine Vakuumpumpe mit den Merkmalen des Anspruchs 10 gelöst. Bevorzugte Ausführungsformen der erfindungsgemäßen Rotorlagerung sowie der erfindungsgemäßen Vakuumpumpe ergeben sich aus den Unteransprüchen, der vorliegenden Beschreibung sowie der Zeichnung.The object is achieved by a rotor bearing with the features of claim 1 and a vacuum pump with the features of claim 10. Preferred embodiments of the rotor bearing according to the invention and the vacuum pump according to the invention result from the subclaims, the present description and the drawing.

Die erfindungsgemäße Anordnung zur Lagerung des Rotors gegenüber einem Stator, insbesondere zur Lagerung des Rotors einer Vakuumpumpe, umfasst ein radial stabilisierendes Permanentmagnetlager im Bereich eines der beiden Rotorenden und ein weiteres Lager im Bereich des gegenüberliegenden Rotorendes. Dabei ist das weitere Lager als axial aktives radial stabilisierendes Permanentmagnetlager ausgeführt, das zur axialen Stabilisierung ein statorseitiges Lagerteil umfasst, das einem bezüglich eines feststehenden Gehäuses des Stators axial beweglich gelagerten Zwischenteil zugeordnet und zusammen mit diesem relativ zum Statorgehäuse axial beweglich ist. Das Zwischenteil ist über eine Aktuatoreinheit beaufschlagbar, um einer jeweiligen axialen Abweichung des Rotors gegenüber einer Solllage entgegenzuwirken.The arrangement according to the invention for mounting the rotor in relation to a stator, in particular for mounting the rotor of a vacuum pump, comprises a radially stabilizing permanent magnet bearing in the region of one of the two rotor ends and a further bearing in the region of the opposite rotor end. The further bearing is designed as an axially active, radially stabilizing permanent magnet bearing which, for axial stabilization, comprises a stator-side bearing part which is assigned to an intermediate part which is axially movably mounted with respect to a fixed housing of the stator and, together with this, is axially movable relative to the stator housing. The intermediate part can be acted upon by an actuator unit in order to counteract a respective axial deviation of the rotor from a desired position.

Aufgrund der erfindungsgemäßen Ausbildung ergibt sich eine Rotorlagerung, die bei einfacherem Aufbau und entsprechend günstigeren Herstellungs- und Betriebskosten insbesondere zumindest im Wesentlichen dieselbe Zuverlässigkeit, Stabilität und Präzision wie eine herkömmliche mechanisch/magnetische oder Hybrid-Rotorlagerung besitzt, und zwar ohne die sich im Zusammenhang mit den bisherigen einachsig aktiven Lagerungen ergebenden Nachteile.The design according to the invention results in a rotor bearing arrangement which, with a simpler construction and correspondingly lower manufacturing and operating costs, in particular has at least essentially the same reliability, stability and precision as a conventional mechanical / magnetic or hybrid rotor bearing arrangement, and that without the connection with the disadvantages resulting from the previous uniaxial active bearings.

Mit dem Ersatz des Wälzlagers der bisherigen mechanisch/magnetischen bzw. Hybrid-Rotorlagerung durch ein axial aktives radial stabilisierendes Permanentmagnetlager ist der Rotor nunmehr vollständig radial stabilisiert. Indem zur axialen Stabilisierung ein statorseitiges Lagerteil vorgesehen ist, das einem bezüglich eines feststehenden Gehäuses des Stators axial beweglich gelagerten Zwischenteil zugeordnet und zusammen mit diesem mit dem Statorgehäuse axial beweglich ist, entfällt die bisher bei einachsig aktiven Lagerungen erforderliche schwere Eisenscheibe auf dem Rotor.By replacing the rolling bearing of the previous mechanical / magnetic or hybrid rotor bearing with an axially active, radially stabilizing permanent magnet bearing the rotor is now completely radially stabilized. By providing a stator-side bearing part for axial stabilization, which is assigned to an intermediate part which is axially movably mounted with respect to a fixed housing of the stator and is axially movable together with this with the stator housing, the heavy iron disk on the rotor, which was previously required for uniaxially active bearings, is eliminated.

Zudem kann eine jeweilige Auslenkung des Zwischenteils nunmehr auch durch einen im Vergleich zu einem berührungslosen Sensor einfacheren berührenden Sensor erfasst werden. Schließlich muss über die Aktuatoreinheit lediglich noch das relativ leichte Zwischenteil bewegt werden, um einer jeweiligen axialen Abweichung des Rotors gegenüber der Solllage entgegenzuwirken. Es ergibt sich somit ein magnetgelagerter Rotor mit einer einfachen, einachsig aktiven Lagerung ohne die mit den bisherigen einachsig aktiven Lagerungen einhergehenden Probleme.In addition, a respective deflection of the intermediate part can now also be detected by a touching sensor which is simpler in comparison to a contactless sensor. Finally, only the relatively light intermediate part has to be moved via the actuator unit in order to counteract a respective axial deviation of the rotor with respect to the desired position. The result is a magnetically mounted rotor with a simple, uniaxially active bearing without the problems associated with the previous uniaxially active bearings.

Des Weiteren umfasst die erfindungsgemäße Anordnung eine Sensoreinheit zur Messung einer jeweiligen axialen Auslenkung des Zwischenteils gegenüber dem Statorgehäuse und eine mit der Sensoreinheit und der Aktuatoreinheit in Verbindung stehende Steuereinrichtung, über die die Aktuatoreinheit in Abhängigkeit von der gemessenen axialen Auslenkung der Zwischenteils ansteuerbar ist.Furthermore, the arrangement according to the invention comprises a sensor unit for measuring a respective axial deflection of the intermediate part relative to the stator housing and a control device connected to the sensor unit and the actuator unit, by means of which the actuator unit can be controlled as a function of the measured axial deflection of the intermediate part.

Bei einer axialen Abweichung des Rotors von der Solllage ergibt sich eine Axialkraft, die sich magnetisch auf die statorseitigen Lagerteile der Permanentmagnetlager überträgt. Die betreffende Axialkraft stützt sich im Fall des radial stabilisierenden Permanentmagnetlagers im Bereich des einen Rotorendes am Statorgehäuse und im Fall des axial aktiven radial stabilisierenden Permanentmagnetlagers im Bereich des gegenüberliegenden Rotorendes an dem relativ zum Statorgehäuse axial beweglichen Zwischenteil ab. Damit kann eine Auslenkung des Zwischenteils durch die Sensoreinheit erfasst werden, wodurch eine jeweilige axiale Abweichung des Rotors gegenüber der Solllage feststellbar ist.If the rotor deviates axially from the desired position, an axial force results which is magnetically transmitted to the stator-side bearing parts of the permanent magnet bearings. The axial force in question is supported in the case of the radially stabilizing permanent magnet bearing in the region of one rotor end on the stator housing and in the case of the axially active radially stabilizing permanent magnet bearing in the region of the opposite rotor end on the intermediate part which is axially movable relative to the stator housing. This can deflect the intermediate part are detected by the sensor unit, as a result of which a respective axial deviation of the rotor from the nominal position can be determined.

Bevorzugt ist die Aktuatoreinheit über die Steuereinheit so ansteuerbar, dass die axiale Auslenkung des Zwischenteils gegenüber dem Statorgehäuse im zeitlichen Mittel Null ist. Damit ergibt sich im zeitlichen Mittel ein stabiler axialer Arbeitspunkt.The actuator unit can preferably be controlled via the control unit such that the axial deflection of the intermediate part relative to the stator housing is zero on average over time. This results in a stable axial working point on average over time.

Gemäß einer bevorzugten praktischen Ausführungsform der erfindungsgemäßen Anordnung ist das Zwischenteil federnd und/oder gedämpft in das Statorgehäuse eingelegt.According to a preferred practical embodiment of the arrangement according to the invention, the intermediate part is inserted resiliently and / or damped into the stator housing.

Durch den federnden und/oder gedämpften Einbau des Zwischenteils in das Statorgehäuse wird das System dynamisch stabilisiert. Dabei kann das Zwischenteil beispielsweise über O-Ringe und/oder dergleichen federnd sowie gedämpft in das Statorgehäuse eingelegt sein.The system is dynamically stabilized by the resilient and / or damped installation of the intermediate part in the stator housing. The intermediate part can be inserted in the stator housing in a resilient and damped manner, for example via O-rings and / or the like.

Die Steuereinrichtung kann insbesondere eine Regelelektronik umfassen, die die Aktuatoreinheit bei einer erfassten Auslenkung des Zwischenteils stärker beaufschlagt, um das Zwischenteil in Rotorbewegungsrichtung zu beschleunigen, so dass der Rotor sozusagen "überholt" und der labile Punkt überschritten wird, um dann eine Gegenkraft aufbauen zu können, die den Rotor abbremst und in Gegenrichtung beschleunigt. Es ergibt sich somit im Mittel ein stabiler axialer Arbeitspunkt, bei dem die Auslenkung des Zwischenteils gegenüber dem Statorgehäuse im zeitlichen Mittel Null ist. Die Arbeitspunkte in verschiedenen Betriebssituationen (Rotorgewicht) und bei verschiedenen Betriebstemperaturen (thermische Rotorlängung) können sich geringfügig unterscheiden, was jedoch bei passend gewählten Steifigkeiten der beteiligten Federelemente unproblematisch ist.The control device can in particular comprise control electronics which act upon the actuator unit more strongly when the intermediate part is detected in order to accelerate the intermediate part in the direction of rotor movement, so that the rotor is "overhauled" so to speak and the unstable point is exceeded so that a counterforce can then be built up , which brakes the rotor and accelerates in the opposite direction. The result is a stable axial working point on average, at which the deflection of the intermediate part relative to the stator housing is zero on average over time. The operating points in different operating situations (rotor weight) and at different operating temperatures (thermal rotor elongation) may differ slightly, but this is not a problem if the spring elements involved are chosen appropriately.

Die Aktuatoreinheit kann insbesondere wenigstens einen Linearaktuator umfassen.The actuator unit can in particular comprise at least one linear actuator.

Gemäß einer bevorzugten praktischen Ausführungsform der erfindungsgemäßen Anordnung umfasst die Aktuatoreinheit wenigstens einen Elektromagneten und/oder wenigstens einen hydraulischen Aktuator.According to a preferred practical embodiment of the arrangement according to the invention, the actuator unit comprises at least one electromagnet and / or at least one hydraulic actuator.

Von Vorteil ist insbesondere auch, wenn die Sensoreinheit zur Messung einer jeweiligen axialen Auslenkung des Zwischenteils gegenüber dem Statorgehäuse einen berührenden Sensor umfasst.It is also particularly advantageous if the sensor unit for measuring a respective axial deflection of the intermediate part relative to the stator housing comprises a touching sensor.

Der Einsatz eines solchen berührenden Sensors ist zur Messung einer jeweiligen axialen Auslenkung des Zwischenteils problemlos möglich und mit weniger Aufwand verbunden als der Einsatz eines berührungslosen Sensors. Der Aufbau der Rotorlagerung wird damit weiter vereinfacht. Dabei kann die Sensoreinheit zur Messung einer jeweiligen axialen Auslenkung des Zwischenteils gegenüber dem Statorgehäuse beispielsweise einen Dehnungsmessstreifen oder dergleichen umfassen.The use of such a contacting sensor is easily possible for measuring a respective axial deflection of the intermediate part and is associated with less effort than the use of a contactless sensor. The structure of the rotor bearing is thus further simplified. The sensor unit for measuring a respective axial deflection of the intermediate part relative to the stator housing can comprise, for example, a strain gauge or the like.

Von Vorteil ist zudem, wenn im Bereich der beiden Rotorenden jeweils zusätzlich ein zumindest radial wirkendes Fanglager vorgesehen ist.It is also advantageous if an at least radially acting catch bearing is additionally provided in the area of the two rotor ends.

Dabei ist das Fanglager im mit dem axial aktiven radial stabilisierenden Permanentmagnetlager versehenen Bereich des gegenüberliegenden Rotorendes bevorzugt als axial und radial wirkendes Fanglager ausgeführt.The catch bearing in the region of the opposite rotor end provided with the axially active, radially stabilizing permanent magnet bearing is preferably designed as an axially and radially acting catch bearing.

Gegenüber den bisher üblichen mechanischen/magnetischen oder Hybrid-Rotorlagerungen weist die erfindungsgemäße Rotorlagerung vor allem die Vorteile einer rein berührungslosen Lagerung auf, mit der die mit herkömmlichen Wälz- und Gleitlagern einhergehenden Beschränkungen entfallen, die unter anderem darauf zurückzuführen sind, dass diese Wälz- und Gleitlager mit festen, flüssigen oder gasförmigen Schmierstoffen an den Kontaktflächen zwischen feststehendem und beweglichem Lagerteil arbeiten. Im Gegensatz dazu arbeiten Feldkraftlager, in denen die Lagerkräfte von magnetischen Feldern erzeugt werden, berührungslos und ohne Kontaktmedium. Entsprechende Feldkraftlager können mit besonderem Vorteil dort eingesetzt werden, wo andere Lager aufgrund von Schmierstoffproblemen an ihre Grenzen stoßen. So kann bei hohen Umgebungstemperaturen sowie durch Reibungswärme am Lagerspalt der Schmierstoff in schnell drehenden Systemen überhitzt werden und dadurch seine Funktion verlieren. Bei tiefen Temperaturen können flüssige Schmierstoffe zäh und dadurch unbrauchbar werden. Die Verwendung von Schmierstoffen kann auch aufgrund einer physikalischchemischen Unverträglichkeit bei bestimmten Anwendungen unerwünscht sein, wie dies insbesondere in der Vakuumtechnik und unter anderem beispielsweise auch in der Reinstraum-, Chemie-, Nahrungsmittel- und Medizintechnik der Fall ist. Bei der erfindungsgemäßen Rotorlagerung entfallen die genannten Beschränkungen. Sie arbeitet verschließ- und wartungsfrei und ist frei von reibungsbedingten Energieverlusten.Compared to the conventional mechanical / magnetic or hybrid rotor bearings, the rotor bearing according to the invention above all has the advantages of a purely non-contact bearing, with which the restrictions associated with conventional rolling and sliding bearings are eliminated, which are due, among other things, to the fact that these rolling and Plain bearings with solid, liquid or gaseous lubricants on the contact surfaces between the fixed and movable bearing part work. In contrast, field force bearings, in which the bearing forces are generated by magnetic fields, work without contact and without contact medium. Corresponding field force bearings can be used with particular advantage where other bearings reach their limits due to lubricant problems. Thus, at high ambient temperatures and due to frictional heat at the bearing gap, the lubricant can overheat in rapidly rotating systems and thereby lose its function. At low temperatures, liquid lubricants can become tough and therefore unusable. The use of lubricants can also be undesirable in certain applications due to a physico-chemical incompatibility, as is the case in particular in vacuum technology and, inter alia, also in clean room, chemical, food and medical technology. In the rotor bearing arrangement according to the invention, the restrictions mentioned do not apply. It works without locks and maintenance and is free from friction-related energy losses.

Mit der erfindungsgemäßen Rotorlagerung ergeben sich darüber hinaus auch Vorteile gegenüber bekannten mehrachsig aktiven und den bisherigen einachsig aktiven Magnetlagerungen. So ergibt sich insbesondere gegenüber den bisherigen 3-achsig aktiven Magnetlagerungen ein wesentlich geringerer Aufwand an Aktorik, Sensorik und Elektronik. Nachdem keine Eisenteile auf dem Rotor mehr benötigt werden, ergibt sich ein reduziertes Rotorgewicht. Mit der damit einhergehenden im Mittel geringeren Unwucht ergeben sich auch eine reduzierte Anlaufgefahr bzw. eine reduzierte Gefahr von Fanglagerkontakten sowie eine Verringerung der Geräusche. Die Aktorik und Sensorik kann insgesamt relativ kompakt gehalten und im Stator untergebracht werden, da die Kraftübertragung auf den Rotor magnetisch über das axial aktive radial stabilisierende Permanentmagnetlager erfolgen und die Rotorlage indirekt über Auslenkungen des Zwischenteils von dessen Mittellage erfasst werden kann.With the rotor bearing according to the invention, there are also advantages over known multi-axis active and the previous single-axis active magnetic bearings. Compared to the previous 3-axis active magnetic bearings, this results in a significantly lower expenditure on actuators, sensors and electronics. Since no iron parts are required on the rotor, the rotor weight is reduced. The associated, on average, lower unbalance also results in a reduced risk of starting or a reduced risk of contact with the bearing and a reduction in noise. The actuators and sensors as a whole can be kept relatively compact and accommodated in the stator, since the force is transmitted to the rotor magnetically via the axially active, radially stabilizing permanent magnet bearing and the rotor position can be detected indirectly by deflections of the intermediate part from its central position.

Die erfindungsgemäße Rotorlagerung ist insbesondere bei Rotationsmaschinen mit geringen Axial- und Radiallasten im Standardbetriebsfall und bei Vakuumpumpen, wie insbesondere Turbomolekularpumpen, einsetzbar.The rotor bearing arrangement according to the invention can be used in particular in the case of rotary machines with low axial and radial loads in standard operating cases and in vacuum pumps, such as, in particular, turbomolecular pumps.

Die erfindungsgemäße Vakuumpumpe, insbesondere Turbomolekularpumpe, zeichnet sich dadurch aus, dass deren Rotor durch eine erfindungsgemäße Lagerung gegenüber deren Stator gelagert ist.The vacuum pump according to the invention, in particular turbomolecular pump, is characterized in that its rotor is supported relative to its stator by a bearing according to the invention.

Dabei umfasst die Vakuumpumpe bevorzugt einen Permanentmagnetmotor als Drehantrieb für den Rotor.The vacuum pump preferably comprises a permanent magnet motor as a rotary drive for the rotor.

Gemäß einer bevorzugten praktischen Ausführungsform der erfindungsgemäßen Vakuumpumpe ist der Permanentmagnetmotor axial zwischen einem axial und radial wirkenden Fanglager und dem axial aktiven radial stabilisierenden Permanentmagnetlager angeordnet.According to a preferred practical embodiment of the vacuum pump according to the invention, the permanent magnet motor is arranged axially between an axially and radially acting catch bearing and the axially active radially stabilizing permanent magnet bearing.

Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert; in dieser zeigen:

Fig. 1
eine schematische Darstellung einer herkömmlichen Vakuumpumpe mit einer herkömmlichen mechanischen/magnetischen oder Hybrid-Rotorlagerung,
Fig. 2
eine Prinzipskizze einer beispielhaften Ausführungsform einer erfindungsgemäßen Rotorlagerung, und
Fig. 3
eine detailliertere schematische Teildarstellung der erfindungsgemäßen Rotorlagerung gemäß Fig. 2, die hier beispielsweise in einer Vakuumpumpe, insbesondere Turbomolekularpumpe, integriert ist.
The invention is explained in more detail below using an exemplary embodiment with reference to the drawing; in this show:
Fig. 1
a schematic representation of a conventional vacuum pump with a conventional mechanical / magnetic or hybrid rotor bearing,
Fig. 2
a schematic diagram of an exemplary embodiment of a rotor bearing according to the invention, and
Fig. 3
a detailed schematic partial representation of the rotor bearing according to the invention Fig. 2 , which is integrated here, for example, in a vacuum pump, in particular a turbomolecular pump.

Die in Fig. 1 gezeigte herkömmliche Vakuumpumpe 10 umfasst einen von einem Einlassflansch 12 umgebenen Pumpeneinlass 14 sowie mehrere Pumpstufen zur Förderung des an dem Pumpeneinlass 14 anstehenden Gases zu einem in Fig. 1 nicht dargestellten Pumpenauslass. Die Vakuumpumpe 10 umfasst einen Stator mit einem statischen Gehäuse 16 und einem in dem Gehäuse 16 angeordneten Rotor mit einer um eine Rotationsachse 18 drehbar gelagerten Rotorwelle 20.In the Fig. 1 The conventional vacuum pump 10 shown comprises a pump inlet 14 surrounded by an inlet flange 12 and a plurality of pump stages for conveying the gas present at the pump inlet 14 to an in Fig. 1 Pump outlet, not shown. The vacuum pump 10 comprises a stator with a static housing 16 and a rotor arranged in the housing 16 with a rotor shaft 20 mounted rotatably about an axis of rotation 18.

Die Vakuumpumpe 10 ist als Turbomolekularpumpe ausgebildet und umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren mit der Rotorwelle 20 verbundenen turbomolekularen Rotorscheiben 22 und mehreren in axialer Richtung zwischen den Rotorscheiben 22 angeordneten und in dem Gehäuse 16 festgelegten turbomolekularen Statorscheiben 24, die durch Distanzringe 26 in einem gewünschten axialen Abstand zueinander gehalten sind. Die Rotorscheiben 22 und Statorscheiben 24 stellen in einem Schöpfbereich 28 eine in Richtung des Pfeils 30 gerichtete axiale Pumpwirkung bereit.The vacuum pump 10 is designed as a turbomolecular pump and comprises a plurality of turbomolecular pump stages connected in series with one another with effective pumping, with a plurality of turbomolecular rotor disks 22 connected to the rotor shaft 20 and a plurality of turbomolecular stator disks 24 arranged in the axial direction between the rotor disks 22 and fixed in the housing 16 by spacer rings 26 are held at a desired axial distance from one another. The rotor disks 22 and stator disks 24 provide an axial pumping action in the direction of the arrow 30 in a scoop area 28.

Die Vakuumpumpe 10 umfasst zudem drei in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der rotorseitige Teil der Holweck-Pumpstufen umfasst eine mit der Rotorwelle 20 verbundene Rotornabe 32 und zwei an der Rotornabe 32 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 34, 36, die koaxial zu der Rotorachse 18 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 38, 40 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 18 orientiert und in radialer Richtung ineinander geschachtelt sind. Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind jeweils durch die einander unter Ausbildung eines engen radialen Holweck-Spalts gegenüberliegenden radialen Mantelflächen jeweils einer Holweck-Rotorhülse 34, 36 und einer Holweck-Statorhülse 38, 40 gebildet. Dabei ist jeweils eine der pumpaktiven Oberflächen glatt ausgebildet, im vorliegenden Fall die der Holweck-Rotorhülse 34 bzw. 36, und die gegenüberliegende pumpaktive Oberfläche der Holweck-Statorhülse 38, 40 weist eine Strukturierung mit schraubenlinienförmig um die Rotationsachse 18 herum in axialer Richtung verlaufenden Nuten auf, in denen durch die Rotation des Rotors das Gas vorangetrieben und dadurch gepumpt wird.The vacuum pump 10 also comprises three Holweck pump stages which are arranged one inside the other in the radial direction and have a pumping effect and are connected in series with one another. The rotor-side part of the Holweck pump stages comprises a rotor hub 32 connected to the rotor shaft 20 and two cylindrical jacket-shaped Holweck rotor sleeves 34, 36 fastened to and supported by the rotor hub 32, which are oriented coaxially to the rotor axis 18 and nested one inside the other in the radial direction. Furthermore, two cylindrical jacket-shaped Holweck stator sleeves 38, 40 are provided, which are also oriented coaxially to the axis of rotation 18 and are nested in one another in the radial direction. The pump-active surfaces of the Holweck pump stages are each formed by the radial jacket surfaces opposite each other, forming a narrow radial Holweck gap, each of a Holweck rotor sleeve 34, 36 and a Holweck stator sleeve 38, 40. It is In each case one of the pump-active surfaces is smooth, in the present case that of the Holweck rotor sleeve 34 or 36, and the opposite pump-active surface of the Holweck stator sleeve 38, 40 is structured with helical grooves around the axis of rotation 18 in the axial direction, in which the gas is propelled by the rotation of the rotor and thereby pumped.

Die drehbare Lagerung der Rotorwelle 20 wird durch ein Wälzlager 42 im Bereich des Pumpenauslasses und ein Permanentmagnetlager 44 im Bereich des Pumpeneinlasses 14 bewirkt.The rotatable mounting of the rotor shaft 20 is effected by a roller bearing 42 in the area of the pump outlet and a permanent magnet bearing 44 in the area of the pump inlet 14.

Das Permanentmagnetlager 44 umfasst eine rotorseitige Lagerhälfte 46 und eine statorseitige Lagerhälfte 48, die jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinandergestapelten permanentmagnetischen Ringen 50, 52 umfassen, wobei die Magnetringe 50, 52 unter Ausbildung eines radialen Lagerspalts 54 einander gegenüberliegen.The permanent magnet bearing 44 comprises a rotor-side bearing half 46 and a stator-side bearing half 48, each of which comprises an annular stack of a plurality of permanent magnetic rings 50, 52 stacked one on top of the other in the axial direction, the magnetic rings 50, 52 lying opposite one another to form a radial bearing gap 54.

Innerhalb des Permanentmagnetlagers 44 ist ein Not- oder Fanglager 56 vorgesehen, das als ungeschmiertes Wälzlager ausgebildet ist und im normalen Betrieb der Vakuumpumpe ohne Berührung leerläuft und erst bei einer übermäßigen radialen Auslenkung des Rotors gegenüber den Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor zu bilden, der eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert.Within the permanent magnet bearing 44 an emergency or catch bearing 56 is provided, which is designed as an unlubricated rolling bearing and idles without contact during normal operation of the vacuum pump and only comes into engagement with an excessive radial deflection of the rotor relative to the stator in order to make a radial stop for the To form a rotor that prevents a collision of the rotor-side structures with the stator-side structures.

Im Bereich des Wälzlagers 42 ist an der Rotorwelle 20 eine konische Spritzmutter 58 mit einem zu dem Wälzlager 42 hin zunehmenden Außendurchmesser vorgesehen, die mit einem Abstreifer eines mehrere mit einem Betriebsmittel, wie z.B. einem Schmiermittel, getränkte saugfähige Scheiben 60 umfassenden Betriebsmittelspeichers in gleitendem Kontakt steht. Im Betrieb wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 58 übertragen und infolge der Zentrifugalkraft entlang der Spritzmutter 58 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 58 zu dem Wälzlager 42 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt.In the area of the roller bearing 42, a conical spray nut 58 is provided on the rotor shaft 20 with an external diameter increasing toward the roller bearing 42, which is in sliding contact with a wiper of an operating medium reservoir comprising several absorbent disks 60 soaked with an operating medium, such as a lubricant , In operation, the equipment is opened by capillary action from the equipment storage via the wiper transfer the rotating spray nut 58 and, as a result of the centrifugal force, conveyed along the spray nut 58 in the direction of the increasing outer diameter of the spray nut 58 to the roller bearing 42, where it fulfills a lubricating function, for example.

Die Vakuumpumpe umfasst einen Antriebsmotor 62 zum drehenden Antreiben des Rotors, dessen Läufer durch die Rotorwelle 20 gebildet ist. Eine Steuereinheit 64 steuert den Antriebsmotor 62 an.The vacuum pump comprises a drive motor 62 for rotatingly driving the rotor, the rotor of which is formed by the rotor shaft 20. A control unit 64 controls the drive motor 62.

Die turbomolekularen Pumpstufen stellen in dem Schöpfbereich 28 eine Pumpwirkung in Richtung des Pfeils 30 bereit.The turbomolecular pump stages provide a pumping action in the direction of the arrow 30 in the scoop region 28.

Fig. 2 zeigt eine Prinzipskizze einer beispielhaften Ausführungsform einer erfindungsgemäßen Rotorlagerung. Fig. 3 zeigt eine schematische Teildarstellung der erfindungsgemäßen Rotorlagerung gemäß Fig. 2, wobei insbesondere das axial aktive radial stabilisierende Permanentmagnetlager detaillierter dargestellt ist. Dabei ist die in Fig.3 dargestellte Rotorlagerung beispielsweise in eine Vakuumpumpe, insbesondere Turbomolekularpumpe, integriert. Fig. 2 shows a schematic diagram of an exemplary embodiment of a rotor bearing according to the invention. Fig. 3 shows a schematic partial representation of the rotor bearing according to the invention Fig. 2 , in particular the axially active radially stabilizing permanent magnet bearing is shown in more detail. Here is the in Figure 3 rotor bearing shown, for example, integrated into a vacuum pump, in particular turbomolecular pump.

Die in den Fig. 2 und 3 dargestellte Anordnung 66 zur Lagerung eines Rotors 68 gegenüber einem Stator 70 ist beispielsweise zur Lagerung des Rotors 68 einer Vakuumpumpe 72, insbesondere einer Turbomolekularpumpe (vgl. insbesondere Fig. 3), einsetzbar.The in the Fig. 2 and 3 The arrangement 66 shown for mounting a rotor 68 relative to a stator 70 is, for example, for mounting the rotor 68 of a vacuum pump 72, in particular a turbomolecular pump (cf. in particular Fig. 3 ), can be used.

Die durch die Anordnung 66 gebildete Rotorlagerung umfasst ein radial stabilisierendes Permanentmagnetlager 74 (vgl. Fig. 2) im Bereich eines der beiden Rotorenden und ein weiteres Lager im Bereich des gegenüberliegenden Rotorendes, das als axial aktives radial stabilisierendes Permanentmagnetlager 76 ausgeführt ist.The rotor bearing formed by the arrangement 66 comprises a radially stabilizing permanent magnet bearing 74 (cf. Fig. 2 ) in the area of one of the two rotor ends and a further bearing in the area of the opposite rotor end, which is designed as an axially active, radially stabilizing permanent magnet bearing 76.

Zur axialen Stabilisierung umfasst das axial aktive radial stabilisierende Permanentmagnetlager 76 ein statorseitiges Lagerteil 78 (vgl. Fig. 3), das einem bezüglich eines feststehenden Gehäuses 80 des Stators 70 axial beweglich gelagerten Zwischenteil 82 zugeordnet und zusammen mit diesem relativ zum Statorgehäuse 80 axial beweglich ist.For axial stabilization, the axially active, radially stabilizing permanent magnet bearing 76 comprises a stator-side bearing part 78 (cf. Fig. 3 ), which is associated with an axially movably mounted intermediate part 82 with respect to a fixed housing 80 of the stator 70 and, together with this, is axially movable relative to the stator housing 80.

Das Zwischenteil 82 ist über eine Aktuatoreinheit 84 (vgl. Fig. 3) beaufschlagbar, um einer jeweiligen axialen Abweichung des Rotors 68 gegenüber einer Solllage entgegenzuwirken.The intermediate part 82 is connected via an actuator unit 84 (cf. Fig. 3 ) acted upon in order to counteract a respective axial deviation of the rotor 68 with respect to a desired position.

Zudem umfasst die Anordnung bzw. Rotorlagerung 66 eine Sensoreinheit 86 (vgl. Fig. 3) zur Messung einer jeweiligen axialen Auslenkung des Zwischenteils 82 gegenüber dem Statorgehäuse 80. Des Weiteren ist eine mit der Sensoreinheit 86 und der Aktuatoreinheit 84 in Verbindung stehende Steuereinrichtung 88 vorgesehen, über die die Aktuatoreinheit 84 in Abhängigkeit von der gemessenen axialen Auslenkung des Zwischenteils 82 ansteuerbar ist.In addition, the arrangement or rotor bearing 66 comprises a sensor unit 86 (cf. Fig. 3 ) for measuring a respective axial deflection of the intermediate part 82 relative to the stator housing 80. Furthermore, a control device 88 is provided which is connected to the sensor unit 86 and the actuator unit 84 and by means of which the actuator unit 84 can be controlled as a function of the measured axial deflection of the intermediate part 82 is.

Dabei ist die Aktuatoreinheit 84 über die Steuereinrichtung 88 insbesondere so ansteuerbar, dass die axiale Auslenkung des Zwischenteils 82 gegenüber dem Statorgehäuse 80 im zeitlichen Mittel Null ist.In this case, the actuator unit 84 can in particular be controlled via the control device 88 such that the axial deflection of the intermediate part 82 with respect to the stator housing 80 is zero on average over time.

Das Zwischenteil 82 ist federnd sowie gedämpft in das Statorgehäuse 80 eingelegt, was hier durch O-Ringe 90 veranschaulicht ist.The intermediate part 82 is inserted resiliently and damped into the stator housing 80, which is illustrated here by O-rings 90.

Die Aktuatoreinheit 84 kann insbesondere einen oder mehrere Linearaktuatoren umfassen. Dabei können beispielsweise ein oder mehrere Elektromagnete und/oder ein oder mehrere hydraulische Aktuatoren eingesetzt werden. Im vorliegenden Fall umfasst die Aktuatoreinheit 84 beispielsweise zwei Elektromagnete 84', 84" zur Beaufschlagung des Zwischenteils 82 in entgegengesetzten Axialrichtungen.The actuator unit 84 can in particular comprise one or more linear actuators. One or more electromagnets and / or one or more hydraulic actuators can be used, for example. In the present case, the actuator unit 84 comprises, for example, two electromagnets 84 ′, 84 ″ for acting on the intermediate part 82 in opposite axial directions.

Die Sensoreinheit 86 zur Messung einer jeweiligen axialen Auslenkung des Zwischenteils 82 gegenüber dem Statorgehäuse 80 kann insbesondere einen berührenden Sensor wie beispielsweise einen Dehnungsmessstreifen oder dergleichen, umfassen.The sensor unit 86 for measuring a respective axial deflection of the intermediate part 82 with respect to the stator housing 80 can in particular comprise a touching sensor such as a strain gauge or the like.

Im Bereich der beiden Rotorenden kann jeweils auch ein radial wirkendes Fanglager 92, 94 vorgesehen sein. Dabei kann insbesondere das Fanglager 92 im mit dem axial aktiven radial stabilisierenden Permanentmagnetlager 76 versehenen Bereich des betreffenden Rotorendes als axial und radial wirkendes Fanglager ausgeführt sein.A radially acting catch bearing 92, 94 can also be provided in the area of the two rotor ends. In particular, the catch bearing 92 can be designed as an axially and radially acting catch bearing in the region of the relevant rotor end provided with the axially active, radially stabilizing permanent magnet bearing 76.

Bei einer jeweiligen axialen Abweichung des Rotors 68 aus der Solllage ergibt sich eine Axialkraft, die sich magnetisch auf die statorseitigen Lagerteile der Permanentmagnetlager 76, 76 überträgt. Diese wiederum stützen sich im Fall des radial stabilisierenden Permanentmagnetlagers 74 an dem Statorgehäuse 80 und im Fall des axial aktiven radial stabilisierenden Permanentmagnetlagers 76 an dem federnd im Statorgehäuse 80 aufgehängten Zwischenteil 82 ab. Dadurch wird das Zwischenteil 82 mit dem statorseitigen Lagerteil 78 des axial aktiven radial stabilisierenden Permanentmagnetlagers entsprechend der Federkonstanten gegenüber dem Statorgehäuse 80 ausgelenkt. Diese Auslenkung kann mittels der Sensoreinheit 86 gemessen werden.With a respective axial deviation of the rotor 68 from the desired position, an axial force results which is magnetically transmitted to the stator-side bearing parts of the permanent magnet bearings 76, 76. These in turn are supported in the case of the radially stabilizing permanent magnet bearing 74 on the stator housing 80 and in the case of the axially active radially stabilizing permanent magnet bearing 76 on the intermediate part 82 suspended resiliently in the stator housing 80. As a result, the intermediate part 82 with the stator-side bearing part 78 of the axially active, radially stabilizing permanent magnet bearing is deflected relative to the stator housing 80 in accordance with the spring constant. This deflection can be measured by means of the sensor unit 86.

Über die Steuereinrichtung 88 bzw. eine dieser zugeordnete Regelelektronik kann nun der betreffende Elektromagnet 84' bzw. 84" der Aktuatoreinheit 84 bestromt oder stärker bestromt werden, der das Zwischenteil 82 in Rotorbewegungsrichtung beschleunigt, um dieses Zwischenteil 82 insbesondere so stark zu beschleunigen, dass es den Rotor 68 sozusagen "überholt", womit der labile Punkt überschritten wird, um dann eine Gegenkraft aufbauen zu können, die den Rotor 68 abbremst und in Gegenrichtung beschleunigt.The relevant electromagnet 84 ′ or 84 ″ of the actuator unit 84 can be energized or energized via the control device 88 or a control electronics assigned to it, which accelerates the intermediate part 82 in the direction of rotor movement in order to accelerate this intermediate part 82 in particular to such an extent that it the rotor 68, so to speak, "overhauled", thereby exceeding the unstable point in order to then be able to build up a counterforce which brakes the rotor 68 and accelerates in the opposite direction.

Damit kann sich ein im zeitlichen Mittel stabiler axialer Arbeitspunkt einstellen, bei dem die Auslenkung des Zwischenteils 82 gegenüber dem Statorgehäuse 80 im zeitlichen Mittel Null ist.An axial working point which is stable on average over time can thus be set, at which the deflection of intermediate part 82 with respect to stator housing 80 is zero on average over time.

Wie der Fig. 3 entnommen werden kann, können der am Zwischenteil 82 angeordnete statorseitige Lagerteil 78 sowie der rotorseitige Lagerteil 96 des axial aktiven radial stabilisierenden Permanentmagnetlagers 76 jeweils durch einen Magnetringstapel aus mehreren permanentmagnetischen Magnetringen gebildet sein. Die Magnetringe eines jeweiligen Stapels können dabei in axialer Richtung aufeinander gestapelt sein und eine zumindest näherungsweise zylindermantelförmige Grundform des jeweiligen Stapels bilden. Der im Wesentlichen zylindermantelförmige Rotorstapel und der im Wesentlichen zylindermantelförmige Statorstapel sind im Wesentlichen koaxial zueinander und im Wesentlichen koaxial zu der Rotationsachse 98 der Vakuumpumpe 72 angeordnet. Dabei ist der Statorstapel im vorliegenden Fall innerhalb des Rotorstapels positioniert, so dass die im Wesentlichen zylindermantelförmige radiale Innenfläche des Rotorstapels der ebenfalls im Wesentlichen zylindermantelförmigen radialen Außenfläche des Statorstapels gegenüberliegt. Zwischen der radialen Innenfläche des Rotorstapels und der radialen Außenfläche des Statorstapels bzw. zwischen dem statorseitigen Lagerteil 78 und dem rotorseitigen Lagerteil 96 des axial aktiven radial stabilisierenden Permanentmagnetlagers 76 ergibt sich ein zumindest näherungsweise zylindermantelförmiger radialer magnetischer Spalt 100, der durch die Magnetringe begrenzt wird.Again Fig. 3 can be removed, the stator-side bearing part 78 arranged on the intermediate part 82 and the rotor-side bearing part 96 of the axially active radially stabilizing permanent magnet bearing 76 can each be formed by a magnet ring stack from a plurality of permanent magnet magnet rings. The magnetic rings of a respective stack can be stacked on one another in the axial direction and form an at least approximately cylindrical jacket-shaped basic shape of the respective stack. The essentially cylindrical jacket-shaped rotor stack and the substantially cylindrical jacket-shaped stator stack are arranged essentially coaxially to one another and essentially coaxially to the axis of rotation 98 of the vacuum pump 72. In the present case, the stator stack is positioned within the rotor stack, so that the essentially cylindrical outer radial surface of the rotor stack is opposite the likewise substantially cylindrical outer radial surface of the stator stack. Between the radial inner surface of the rotor stack and the radial outer surface of the stator stack or between the stator-side bearing part 78 and the rotor-side bearing part 96 of the axially active, radially stabilizing permanent magnet bearing 76, there is an at least approximately cylindrical jacket-shaped radial magnetic gap 100, which is limited by the magnetic rings.

Der Rotor 68 der Vakuumpumpe 72 umfasst eine Rotorwelle 104 sowie an dieser angeordnete Rotorscheiben 106. Der Rotor 68 ist beispielsweise durch einen Permanentmagnetmotor 102 antreibbar. Dabei ist dieser Permanentmagnetmotor 102 im vorliegenden Fall beispielsweise axial zwischen dem axial und radial wirkenden Fanglager 92 und dem axial aktiven radial stabilisierenden Permanentmagnetlager 76 angeordnet.The rotor 68 of the vacuum pump 72 comprises a rotor shaft 104 and rotor disks 106 arranged thereon. The rotor 68 can be driven, for example, by a permanent magnet motor 102. This permanent magnet motor 102 is in the present case, for example, axially between the axially and radially acting Catch bearing 92 and the axially active radially stabilizing permanent magnet bearing 76 is arranged.

Die in den Fig. 2 und 3 dargestellte erfindungsgemäße Rotorlagerung 66 unterscheidet sich von der in der Fig. 1 dargestellten herkömmlichen mechanischen/magnetischen oder Hybrid-Rotorlagerung somit im Wesentlichen dadurch, dass das mechanische Wälzlager durch das axial aktive radial stabilisierende Permanentmagnetlager 76 ersetzt ist, das zur axialen Stabilisierung das statorseitige Lagerteil 78 umfasst, das dem bezüglich des feststehenden Statorgehäuses 80 axial beweglich gelagerten Zwischenteil 82 zugeordnet und zusammen mit diesem relativ zum Statorgehäuse 80 axial beweglich ist. Das Zwischenteil 82 kann in der vorstehend beschriebenen Weise über die Aktuatoreinheit 84 beaufschlagbar sein, um einer jeweiligen axialen Abweichung des Rotors 68 gegenüber einer Solllage entgegenzuwirken.The in the Fig. 2 and 3 The rotor bearing 66 according to the invention shown differs from that in FIG Fig. 1 The conventional mechanical / magnetic or hybrid rotor bearing shown is thus essentially replaced by the fact that the mechanical rolling bearing is replaced by the axially active, radially stabilizing permanent magnet bearing 76, which for axial stabilization comprises the stator-side bearing part 78, which is the intermediate part which is axially movably mounted with respect to the fixed stator housing 80 82 assigned and together with this is axially movable relative to the stator housing 80. The intermediate part 82 can be acted upon by the actuator unit 84 in the manner described above in order to counteract a respective axial deviation of the rotor 68 with respect to a desired position.

Abgesehen von der erfindungsgemäßen Rotorlagerung kann die erfindungsgemäße Vakuumpumpe 72 bzw. Turbomolekularpumpe beispielsweise zumindest im Wesentlichen wieder denselben Aufbau besitzen wie die in der Fig. 1 dargestellte Vakuumpumpe.Apart from the rotor bearing arrangement according to the invention, the vacuum pump 72 or turbomolecular pump according to the invention can, for example, at least essentially again have the same structure as that in FIG Fig. 1 shown vacuum pump.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Vakuumpumpevacuum pump
1212
Einlassflanschinlet flange
1414
Pumpeneinlasspump inlet
1616
Gehäusecasing
1818
Rotationsachseaxis of rotation
2020
Rotorwellerotor shaft
2222
Rotorscheiberotor disc
2424
Statorscheibestator
2626
Distanzringspacer
2828
Schöpfbereichadding area
3030
Pfeilarrow
3232
Rotornaberotor hub
3434
Holweck-RotorhülseHolweck rotor sleeve
3636
Holweck-RotorhülseHolweck rotor sleeve
3838
Holweck-StatorhülseHolweck stator
4040
Holweck-StatorhülseHolweck stator
4242
Wälzlagerroller bearing
4444
PermanentmagnetlagerPermanent magnetic bearings
4646
rotorseitige Lagerhälftehalf of the bearing on the rotor side
4848
statorseitige Lagerhälftestator side bearing half
5050
permanentmagnetischer Ringpermanent magnetic ring
5252
permanentmagnetischer Ringpermanent magnetic ring
5454
radialer Lagerspaltradial bearing gap
5656
Not- oder FanglagerEmergency or catch camp
5858
konische Spritzmutterconical injection nut
6060
saugfähige Scheibeabsorbent disc
6262
Antriebsmotordrive motor
6464
Steuereinheitcontrol unit
6666
Anordnung, RotorlagerungArrangement, rotor bearing
6868
Rotorrotor
7070
Statorstator
7272
Vakuumpumpevacuum pump
7474
radial stabilisierendes Permanentmagnetlagerradially stabilizing permanent magnet bearing
7676
axial aktives radial stabilisierendes Permanentmagnetlageraxially active radially stabilizing permanent magnet bearing
7878
statorseitiges Lagerteilstator side bearing part
8080
Statorgehäusestator
8282
Zwischenteilintermediate part
8484
Aktuatoreinheitactuator
84'84 '
Elektromagnetelectromagnet
84"84 "
Elektromagnetelectromagnet
8686
Sensoreinheitsensor unit
8888
Steuereinrichtungcontrol device
9090
O-RingO-ring
9292
axial und radial wirkendes Fanglagercatch bearing acting axially and radially
9494
radial wirkendes Fanglagerradially acting catch bearing
9696
rotorseitiger Lagerteilrotor-side bearing part
9898
Rotationsachseaxis of rotation
100100
magnetischer Spaltmagnetic gap
102102
PermanentmagnetmotorPermanent magnet motor
104104
Rotorwellerotor shaft
106106
Rotorscheiberotor disc

Claims (12)

  1. An arrangement (66) for supporting a rotor (68) with respect to a stator (70), in particular for supporting the rotor (68) of a vacuum pump (72), having a radially stabilizing permanent magnet bearing (74) in the region of one of the two rotor ends and having a further bearing (76) in the region of the oppositely disposed rotor end,
    wherein the further bearing is designed as an axially active radially stabilizing permanent magnet bearing (76) which comprises, for axial stabilization, a stator-side bearing part (78) which is associated with an intermediate part (82) axially movably supported with respect to a fixed-position housing (80) of the stator (70) and which is axially movable together with said intermediate part (82) relative to the stator housing (80); and
    wherein the intermediate part (82) can be acted on via an actuator unit (84) to counteract a respective axial deviation of the rotor (68) with respect to a desired position,
    characterized in that
    a sensor unit (86) for measuring a respective axial deflection of the intermediate part (82) with respect to the stator housing (80) is provided and a control device (88) is provided which is in communication with the sensor unit (86) and with the actuator unit (84) and via which the actuator unit (84) can be controlled in dependence on the measured axial deflection of the intermediate part (82).
  2. An arrangement in accordance with claim 1,
    characterized in that the actuator unit (48) can be controlled via the control device (88) such that the axial deflection of the intermediate part (82) with respect to the stator housing (80) is zero on average over time.
  3. An apparatus in accordance with at least one of the preceding claims,
    characterized in that the intermediate part (82) is inserted into the stator housing (80) in a resilient and/or damped manner, in particular via O-rings (90).
  4. An apparatus in accordance with at least one of the preceding claims,
    characterized in that the actuator unit (84) comprises at least one linear actuator.
  5. An apparatus in accordance with at least one of the preceding claims,
    characterized in that the actuator unit (84) comprises at least one electromagnet (84') and/or at least one hydraulic actuator.
  6. An apparatus in accordance with at least one of the preceding claims,
    characterized in that the sensor unit (86) for measuring a respective axial deflection of the intermediate part (82) with respect to the stator housing (80) comprises a contacting sensor.
  7. An arrangement in accordance with claim 6,
    characterized in that the sensor unit (86) for measuring a respective axial deflection of the intermediate part (82) with respect to the stator housing (80) comprises a strain gauge.
  8. An apparatus in accordance with at least one of the preceding claims,
    characterized in that an at least radially effective safety bearing (92, 94) is respectively additionally provided in the region of the two rotor ends.
  9. An arrangement in accordance with claim 8,
    characterized in that that safety bearing (92) which is provided at the rotor end in the region of the axially active radially stabilizing permanent magnet bearing (76) is designed as an axially and radially effective safety bearing.
  10. A vacuum pump (72), in particular a turbomolecular pump, comprising a rotor (68) and a stator (70), wherein the rotor (68) is supported with respect to the stator (70) by an arrangement (66) in accordance with any one of the preceding claims.
  11. A vacuum pump in accordance with claim 10,
    characterized in that the vacuum pump (72) comprises a permanent magnet motor (102) as a rotary drive for the rotor (68).
  12. A vacuum pump in accordance with claim 11,
    characterized in that the permanent magnet motor (102) is axially arranged between an axially and radially effective safety bearing (92) and the axially active radially stabilizing permanent magnet bearing (76).
EP15153248.8A 2015-01-30 2015-01-30 Rotor bearing Active EP3051141B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15153248.8A EP3051141B1 (en) 2015-01-30 2015-01-30 Rotor bearing
EP19210176.4A EP3628873B1 (en) 2015-01-30 2015-01-30 Rotor bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15153248.8A EP3051141B1 (en) 2015-01-30 2015-01-30 Rotor bearing

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP19210176.4A Division EP3628873B1 (en) 2015-01-30 2015-01-30 Rotor bearing
EP19210176.4A Division-Into EP3628873B1 (en) 2015-01-30 2015-01-30 Rotor bearing

Publications (2)

Publication Number Publication Date
EP3051141A1 EP3051141A1 (en) 2016-08-03
EP3051141B1 true EP3051141B1 (en) 2020-01-01

Family

ID=52432726

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19210176.4A Active EP3628873B1 (en) 2015-01-30 2015-01-30 Rotor bearing
EP15153248.8A Active EP3051141B1 (en) 2015-01-30 2015-01-30 Rotor bearing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19210176.4A Active EP3628873B1 (en) 2015-01-30 2015-01-30 Rotor bearing

Country Status (1)

Country Link
EP (2) EP3628873B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020112080A (en) * 2019-01-10 2020-07-27 エドワーズ株式会社 Vacuum pump
GB2589151A (en) * 2019-11-25 2021-05-26 Edwards Ltd Molecular drag vacuum pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2825551C3 (en) * 1978-06-10 1982-06-09 Arthur Pfeiffer Vakuumtechnik Wetzlar Gmbh, 6334 Asslar Magnetic storage
DE3239328C2 (en) * 1982-10-23 1993-12-23 Pfeiffer Vakuumtechnik Magnetically mounted turbomolecular pump with vibration damping
DE10022062A1 (en) * 2000-05-06 2001-11-08 Leybold Vakuum Gmbh Machine, preferably turbo-molecular vacuum pumps, has magnet bearings each comprising concentrically-arranged magnet ring stacks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3628873B1 (en) 2020-09-09
EP3051141A1 (en) 2016-08-03
EP3628873A1 (en) 2020-04-01

Similar Documents

Publication Publication Date Title
EP1972794B1 (en) Vacuum pump
EP0414127B1 (en) Vacuum pump with magnetic bearing
EP1281007B1 (en) Machine, preferably a vacuum pump, with magnetic bearings
EP2826999B1 (en) Vacuum pump
EP3447302B1 (en) Shaft bearing device with lifting device
EP0344503A2 (en) Magnetic bearing for a fast rotating vacuum pump
EP3071840B1 (en) Load-relieving device
EP3106668B1 (en) Vacuum pump
DE102008035891A1 (en) vacuum pump
EP3051141B1 (en) Rotor bearing
WO2007059727A2 (en) Bearing set with an angular ball bearing and a cylinder roller bearing receiving axial forces
EP2431614B1 (en) Vacuum pump
EP3112687B1 (en) Detection of the circulation of a flow of auxiliary gas that is supplied to a vacuum pump
EP2310632A1 (en) Use of a rolling-element bearing for bearing rotating components in vacuum devices and vacuum device
EP2910790B1 (en) Vakuumpumpe-Lagerschmierung, die unterschiedliche Pumporientierungen zuläßt
EP2927500A1 (en) System and method for supplying a bearing assembly
EP2678254B1 (en) Apparatus for a belt conveyor with a gearless drive for a drive drum of the belt conveyor
EP3683449B1 (en) Magnetic bearing and vacuum apparatus
EP3088746B1 (en) Vacuum pump
EP3032106B1 (en) Vacuum pump
EP3650702B1 (en) Use of a synthetic oil in a vacuum pump and vacuum pump
EP3557071B1 (en) Vacuum pump and method for operating the same
EP3926174B1 (en) Vacuum pump
EP3611383B1 (en) Speed control of a rotor of a vacuum pump
EP3133290A1 (en) Vacuum pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170202

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101ALI20190624BHEP

Ipc: F04D 29/058 20060101ALI20190624BHEP

Ipc: F04D 27/02 20060101AFI20190624BHEP

INTG Intention to grant announced

Effective date: 20190711

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1220101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011358

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200101

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011358

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1220101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 10

Ref country code: CZ

Payment date: 20240119

Year of fee payment: 10

Ref country code: GB

Payment date: 20240123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240129

Year of fee payment: 10