EP3042551B1 - Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung damit - Google Patents

Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung damit Download PDF

Info

Publication number
EP3042551B1
EP3042551B1 EP13759691.2A EP13759691A EP3042551B1 EP 3042551 B1 EP3042551 B1 EP 3042551B1 EP 13759691 A EP13759691 A EP 13759691A EP 3042551 B1 EP3042551 B1 EP 3042551B1
Authority
EP
European Patent Office
Prior art keywords
guiding device
surface region
beam guiding
partial
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13759691.2A
Other languages
English (en)
French (fr)
Other versions
EP3042551A1 (de
Inventor
Jürgen-Michael Weick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Lasersystems for Semiconductor Manufacturing GmbH
Original Assignee
Trumpf Lasersystems for Semiconductor Manufacturing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Lasersystems for Semiconductor Manufacturing GmbH filed Critical Trumpf Lasersystems for Semiconductor Manufacturing GmbH
Publication of EP3042551A1 publication Critical patent/EP3042551A1/de
Application granted granted Critical
Publication of EP3042551B1 publication Critical patent/EP3042551B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Definitions

  • the present invention relates to a beam guidance device for guiding a laser beam from a radiation source in the direction of a target area, to which a target material for generating EUV radiation can be introduced, comprising: a focusing device for focusing the laser beam in the target area, and a deflection device, which is designed to divide the laser beam into a deflected first partial beam and into a second partial beam, which are focused at two different focus positions within the target area, and an EUV radiation generating device comprising such a beam guiding device and a radiation source for generating the laser beam.
  • Such a device for plasma-based generation of EUV radiation is in the DE 10 2004 005 242 A1 described.
  • a beam guiding device for an EUV radiation generating device is also known, for example, from US Pat US 2011/0140008 A1 known.
  • the beam guiding device described therein serves to guide laser radiation which has been generated and amplified in a beam source, more precisely in a driver laser system.
  • the beam guiding device guides the laser beam from the driver laser system to a focusing device to focus the laser beam in a target area.
  • a target material is provided, which passes into a plasma state during irradiation with the laser beam and thereby emits EUV radiation.
  • a portion of the target material eg, tin
  • a CO 2 laser is usually used as the laser source or driver laser: CO 2 laser radiation is reflected due to its high wavelength of about 10.6 microns and optical elements that a comparatively rough optical Have surface as through tin deposits is caused.
  • the use of a laser source or a driver laser in the form of a CO 2 laser also allows for certain target materials, such as tin, a high conversion efficiency between the input power of the driver laser and the output power of the generated EUV radiation.
  • the in the US 2011/0140008 A1 has a focusing device with a focusing lens for focusing the laser beam in the target area.
  • laser radiation reflected from the focusing lens is reflected at a plane mirror disposed in front of the focusing lens for diagnostic purposes to a measuring system.
  • the deflecting mirror has a device for separating the laser beam extending in the direction of the target area from the laser radiation reflected back at the focusing lens.
  • This device can be embodied as a facet tilted to the planar mirror surface, which is arranged in a central region of the mirror surface.
  • a driver laser arrangement which has a seed laser for generating a pre-pulse and a further seed laser for generating a main pulse.
  • the pre-pulse and the main pulse have different wavelengths and are combined by means of a beam combiner to travel along a common beam path an amplifier and the beam guiding device following the driver laser array.
  • the pre-pulse is intended to influence the target material, for example to heat it, to expand, to vaporize, to ionize and / or to produce a weak or possibly a strong plasma.
  • the main pulse is intended to convert the main part of the material influenced by the pre-pulse into the plasma state and thereby to generate EUV radiation.
  • a beam guiding device of the aforementioned type and an EUV radiation generating device to further develop so that the generation of EUV radiation can be made more effective.
  • a beam guiding device of the type mentioned in which the surface of the deflecting device for dividing into the two partial beams has a first surface area and a second, the first tilted surface area.
  • the beam guiding device instead of a pre-pulse and a main pulse, which are focused temporally successively in the target area, a spatial separation of the laser beam into two sub-beams is performed, which are typically focused on different focus positions within the target area.
  • the target material is typically in the form of tin droplets that move in a predetermined, typically linear, path.
  • the tin droplets emerge from a supply device and move by the force of gravity along a vertical axis and serve as a moving target, which must be hit by the laser beam or by the two partial beams.
  • one and the same tin droplet must be hit by two partial beams along its trajectory. Since the laser beam is typically pulsed generated by the beam source, it is necessary to set or adjust the time interval between two successive laser pulses so that this corresponds to the time of flight of the tin droplet between the two focus positions. In this way, the tin droplets are hit by the first and second sub-beam different, typically directly temporally successive laser pulses.
  • the generation of a pre-pulse and a main pulse can typically be dispensed with, so that the provision of two laser beams or radiation sources with different wavelengths required for this purpose can be dispensed with, which is costly for the beam guiding device significantly reduced.
  • the surface of the deflection device for dividing into the two partial beams on a first surface area and a second, the first tilted surface area can be produced by a surface treatment.
  • the tilt angle can be selected or possibly adjusted so that sets the desired distance between the two focus positions in the typical common focal plane of the two partial beams.
  • the deflection device is a transmissive optical element having a surface on which the first surface area and the second, to the first tilted surface area are formed. Due to the tilting of the two surface areas, the incident laser beam is split into the two partial beams, which run in two different directions after passing through the transmissive optical element.
  • the surface on which the two surface areas tilted relative to one another may be formed can be the radiation-entry-side or the beam-exit-side surface of the optical element.
  • the transmissive optical element can in particular be designed as a plane-parallel plate, in which one of the two surface areas is arranged perpendicular to the beam direction of the laser beam.
  • the mutually tilted surface areas can by a surface treatment, for example by ion etching, the Surface to be produced.
  • the transmissive optical element closes off a gas-tight chamber formed in the beam guiding device.
  • the transmissive optical element typically forms a window in the form of a plane-parallel plate and thus an aperture in the chamber wall for the passage of the laser beam.
  • the chamber may be a vacuum chamber in which the target material is disposed, but also another chamber in which optical elements of the beam guiding device are arranged.
  • the window can be arranged at the transition between two chambers with different pressure levels.
  • the optical element may be formed of (artificially produced) diamond, since this material can effectively dissipate the heat introduced by the high laser power (> 1 kW) of the laser beam due to its high thermal conductivity.
  • the deflecting device is a deflecting mirror whose reflective surface has the first surface area for deflecting the first partial beam and the second, the first tilted surface area for deflecting the second partial beam.
  • the two tilted surface areas can be prepared by a surface treatment of typically metallic and thus reflective for the CO 2 laser radiation mirror material, for example by turning or milling using a hard tool, for example, diamond.
  • the CO 2 laser beam used to generate the EUV radiation has a high radiation power (typically greater than 1 kW).
  • the ratio of the surfaces of the two tilted surface areas of the surface to each other determines the power components of the two partial beams.
  • the first surface area forms less than 20%, preferably less than 10% of the surface of the deflection device, ie the second surface area forms more than 80% or more than 90% of the surface.
  • the first partial beam which acts in the manner of a pre-pulse, should typically have a lower power than the second partial beam, which acts in the manner of the main pulse. If the surface is completely hit by the laser beam, the performance of the Laser beam in the appropriate ratio (eg 2: 8) divided into the first and second partial beam.
  • a tilt angle between the first surface area and the second area area is less than 10 mrad, preferably less than 5 mrad.
  • the two surface areas which are tilted relative to each other at a small tilt angle in the range of several mrad can be produced in a particularly simple way by machining the surface, e.g. by diamond turning, diamond milling or ion beam etching.
  • a small tilt angle is sufficient to produce the desired separation or spacing between the two focus positions in the target area because the desired spacing between the two focus positions is typically only a few hundred microns.
  • the first partial beam which has a lower power, can propagate a long distance within the second, larger partial beam, so that apertures designed for the second partial beam can also be used for the passage of the first partial beam.
  • Such apertures may e.g. be provided at the transition between two chambers of the beam guide, which have a different pressure level.
  • the tilt angle can also be chosen to be greater, for example, more than 0.2 °, possibly more than 0.5 ° or more, in order to ensure that the first partial beam leaves the beam path of the second partial beam rapidly.
  • a deflection mirror which is arranged in the beam path in front of the vacuum chamber in which the target material is arranged, is typically used as the deflection device.
  • a further, in particular tiltable deflecting mirror which is arranged in the beam path of the deflected first partial beam, for deflecting the first partial beam to an (adjustable or adjustable) angle, so that the first partial beam centric through an aperture or a window at the transition to Vacuum chamber can pass.
  • the first area area is surrounded by the second area area.
  • the first surface area forms a comparatively small facet or island within the second area area, ie, the second area completely surrounds the first area area.
  • the first surface area may, for example, be arranged in the center of the second surface region or in the center of the surface, but it is also possible to arrange the first surface region eccentrically to the center of the, for example, circular surface. It is favorable if a minimum distance from the outer edge of the surface or from the outer edge of the first surface area is maintained, so that the first deflected partial beam remains as long as possible within the beam path of the second partial beam and passes through it together with the provided in the beam guiding device boundaries.
  • the distance of the first surface area from the edge of the surface may, for example, be more than 2 mm or more than 3 mm, depending on the position of the deflection mirror and the beam diameter used.
  • the first area region has an elliptical outer contour.
  • the eccentricity of the elliptical outer contour depends on the angle of incidence of the laser beam on the deflection device or on the surface and serves to produce a focus with an ideally round cross-sectional shape at the first focus position.
  • the first surface area for setting the tilt angle is tiltable about a tilt axis, which is typically perpendicular to the plane of incidence, which is formed by the incident laser beam and the partial beams.
  • the tilting allows an adjustment of the tilt angle and thus the focus position of the first partial beam in the target area. Since typically both partial beams are substantially focused on a common plane along which the tin droplets move, it is usually sufficient to adjust the relative position, ie the distance, between the two focus positions, for which a fine -Justage one of the two partial beams is sufficient.
  • the setting of the tilt angle can be done by a controllable actuator, for example by a piezo actuator.
  • the adjustment of the tilt angle with a predetermined angle amplitude around a fixed tilt angle can take place, which defines a basic position of the first surface area.
  • the (fixed) tilt angle can be significantly larger in this case (eg several mrad) than the angular range within which the Tilt angle can be adjusted (eg in the range of about 100 ⁇ rad).
  • the first surface region forms an edge region of the surface of the deflection device, i. the reflective surface of the deflection mirror or of the transmissive surface of the transmissive optical element which adjoins the second surface region at one edge.
  • the deflection device or the surface can be formed in this case, in particular prismatic, i. have parallel edges, wherein one of the edges forms the boundary between the two surface areas.
  • the limiting edge is formed in this case typically as a straight boundary line between the mutually tilted surface areas.
  • no further edges or areas are required in order to realize the tilting of the two surface areas.
  • the two tilted areas can be made by milling or turning the surface, since in this case, the required tilt angle in an angular range of a few mrad.
  • the deflection device is a deflection mirror, which is displaceably mounted in a direction extending transversely to the edge. With fixed alignment of the laser beam shifts in the displacement of the deflection mirror transversely to the edge of the proportion of the laser beam, which impinges on the first and on the second surface area and thus also the ratio between the power levels of the first and the second partial beam.
  • the second surface area is planar.
  • the second surface area serves to form the deflected partial beam with the greater power and is usually plan to perform the function of the deflection mirror or serving as a window transmissive optical element.
  • the first surface area can likewise be designed flat.
  • the first surface area is curved in order to effect a focusing or a defocusing of the first deflected partial beam.
  • the curvature may, for example, be parabolic or toroidal.
  • the formation of a curved first surface region makes it possible to move the focus position of the first partial beam out of the focal plane of the second partial beam or out of the common focal plane, if such a defocusing has an advantageous effect on the generation of the EUV radiation.
  • the first and second area regions are planar, they are usually focused in a common plane in which the target material is also arranged.
  • the beam guiding device may additionally comprise a further deflecting mirror for deflecting the first partial beam, which is arranged outside the beam path of the second partial beam.
  • the first partial beam after the deflection initially runs within the second partial beam, which is favorable in order to guide both partial beams together through apertures in the beam guiding device.
  • the further deflecting mirror can be movably mounted in order to change the focus position of the first partial beam.
  • the deflecting mirror can be tilted in particular about a tilting axis in order to change the angle between the impinging first partial beam and the mirror surface by means of a suitable drive and thus to adjust the direction in which the first partial beam is reflected by the further deflecting mirror.
  • other optical elements can also be arranged in the beam path of the separated first partial beam and / or the second partial beam in order to influence the partial beams independently of one another.
  • the focusing device may comprise a transmissive optical element in the form of a focusing lens.
  • a transmissive optical element in the form of a focusing lens.
  • reflective focusing elements for example parabolic mirrors, possibly in combination with transmitting optical elements.
  • the beam guidance device can have a control device, which is designed to control at least one of the two focus positions to a desired focus position.
  • a control is advantageous if interference occurs on the radiation source side, which causes the focus position to change.
  • disturbances in the form of fluctuations in the direction or divergence of the laser beam or a respective partial beam (for example drift) can be "out-regulated" or suppressed by the control device, so that the two partial beams or their focal positions are adjusted by the readjustment at their respective nominal values. Focus position remain.
  • the control device can also serve to regulate the distance between the two focus positions in a direction along which the target material usually moves in the form of tin droplets in a typically constant value.
  • the distance between two adjacent droplets of the target material should correspond to an integer multiple of the focal distance.
  • the distance between the two focus positions should correspond to the distance traveled by a droplet of the target material between successive laser pulses.
  • the deflecting mirror effecting the division is the last deflecting mirror of the beam guiding device in front of the target area.
  • the last deflecting mirror is typically arranged in the beam path after the focusing device.
  • the last deflecting mirror can be arranged in a vacuum chamber in which the target material is also provided.
  • the deflecting mirror can also be arranged elsewhere in the beam path of the beam guiding device, in particular in the beam path in front of the focusing device.
  • an EUV radiation generating device comprising: a beam source for generating the laser beam and a beam guiding device as described above.
  • the beam source is typically a CO 2 laser source that generates a single laser beam.
  • the beam guiding device with the deflecting mirror the laser beam can be split and a movable target material with two partial beams at two target positions simultaneously hit accurately.
  • the generation of two laser pulses with two different wavelengths for generating a pre-pulse and a main pulse can be dispensed with, but nevertheless the effect to be achieved with the pre-pulse and the main pulse can be achieved.
  • Fig. 1 shows an EUV radiation generating device 1, which comprises a beam source 2 in the form of a driver laser device with a CO 2 laser and with multiple amplifiers to produce a laser beam 4 with high radiation power (> 1 kW).
  • the laser beam 4 is guided by means of a beam guiding device 3 in the direction of a target area 5, on which a target material 6 in the form of tin droplets is arranged to produce EUV radiation 7.
  • the illustration of measuring devices for monitoring the beam path of the laser beam 4 has been omitted for reasons of clarity.
  • the target material 6, ie the tin droplets are generated by means of a supply device (not shown) and move along a predetermined Path or a predetermined path in the direction of gravity.
  • the beam guiding device 3 has a plurality of deflecting mirrors 8 or parabolic mirrors 9 in order to guide the laser beam 4 to a focusing device, which in the present example is designed as a focusing lens 10 (for example made of ZnSe). It is understood that the focusing device can also have two or more transmitting optical elements or, alternatively, can be constructed from one or more reflective optical elements. The use of a focusing device with reflective and transmitting optical elements is also possible.
  • the focusing lens 10 is arranged in the present example at the transition between a vacuum chamber 11, in which the target material 6 is arranged, and a further chamber 12, in which a large part of the deflection mirror 8 and the parabolic mirror 9 is housed.
  • the focusing lens 10 may form a gas-tight seal of the vacuum chamber 11, but it may also be a separate optical element 19, e.g. in the manner of a window, be provided to seal the vacuum chamber 11 relative to the other chamber 12 or complete.
  • the laser beam 4 focused by the focusing lens 10 on the target area 5 strikes a last deflecting mirror 8 arranged in the beam path behind the focusing lens 10.
  • the last deflection mirror 8 is designed to divide the incident laser beam 4 into two partial beams 4a, 4b, which are deflected in two different directions and focused at different focus positions F1, F2 within the target area 5.
  • the first partial beam 4a impinges at the focus position F1 on a tin droplet 6 in order to influence this, for example to expand this and / or to vaporize.
  • the tin droplet 6 is hit by the second partial beam 4b at the second focus position F2, which crosses the trajectory of the tin droplet 6 somewhat further down.
  • the second sub-beam 4b completely or almost completely transfers the material of the tin droplet into a plasma, which emits EUV radiation 7, which is collected by a focusing mirror (not shown) and focused, as for example in the US 2011/0140008 A1 is described.
  • the two partial beams 4a, 4b of the same laser pulse simultaneously reach the two focus positions F1, F2, where they strike two different tin droplets 6.
  • the tin droplet 6, which is struck by the first partial beam 4a at the first focus position F1 is struck by the second partial beam 4b at the second focal position F2 in the case of a subsequent pulse.
  • Droplet 6 between two successive laser pulses of the beam source 2 corresponds.
  • the distance between two adjacent tin droplets 6 should be an integer multiple of the distance A between the two focus positions F1, F2 in the direction of the tin droplets 6.
  • the EUV radiation generating device 1 For possibly necessary adaptation of the distance A between the two focus positions F1, F2 and for synchronizing the beam source 2 with the provision device for the tin droplets 6, the EUV radiation generating device 1, a control device 13, which can serve in particular to at least one focus position F1, F2 of one of the two partial beams 4a, 4b to regulate to a desired focus position.
  • a control device 13 For the control of the beam path of the laser beam 4 can be measured by means of the measuring devices, not shown, described above.
  • the control device 13 is signal-technically connected to actuators (not shown) influencing the beam direction of the laser beam 4, which are e.g. can serve for tilting one or more of the deflection mirror 8.
  • the following is based on Fig. 2 and Fig. 2a, b an example for the realization of the last deflecting mirror 8 for dividing the laser beam 4 in the two deflected partial beams 4a, 4b described.
  • the in Fig. 2 shown deflection mirror 8 has a circular reflective surface 8a, which in a first plan Area portion 14a and a second, also plan surface area 14b is divided, which are tilted to each other.
  • the first area region 14a is surrounded annularly by the second, larger area area 14b.
  • the first surface area 14a has an elliptical outer contour in order to produce a focus with substantially round geometry at the first focus position F1.
  • the ratio of the major axes or the numerical eccentricity of the elliptical outer contour of the first surface area 14a depends on the angle of incidence of the laser beam 4 on the reflective surface 8a.
  • the first area region 14a has a surface that is significantly smaller than that of the second area region 14b.
  • the ratio of the surfaces of the two surface regions 14a, 14b is less than 2: 8, ie the first surface region 14a forms less than 20% of the reflective surface 8a of the deflection mirror 8.
  • the ratio of the surface dimensions of the two surface regions 14a, 14b influenced directly the ratio of the power components, in which the power of the incident laser beam 4 is split between the two partial beams 4a, 4b.
  • the power component, and thus also the surface region 14a, which acts in the manner of a pre-pulse and impinges on a respective tin droplet 6 at the first focus position F1 is significantly lower than the power component of the second partial beam 4b, which in the art of a main pulse and the tin droplet 6 hits at the second focus position F2.
  • the first surface area 14a of the deflection mirror 8 can be produced by surface treatment of the typically metallic surface 8a, for example by diamond turning the surface 8a during production of the surface 8a small elliptical shaped surface area 14a is introduced.
  • the tilt angle ⁇ between the two surface areas 14a, 14b is typically very small for the present application and is generally only a few milliraders, typically less than about 5 mrads.
  • a tilt angle ⁇ of about 0.5 mrad sufficient.
  • the distance between the highest point of the projecting portion over the flat surface portion 14 a and the lowest point of the recess introduced into the planar surface 8 a (cf. Fig. 2a ) is less than about 100 microns, so that it can be produced by a surface treatment in the form of diamond turning.
  • the tilt angle ⁇ between the two surface areas 14a, 14b is constant, can be in the in Fig. 2b shown example set the tilt angle ⁇ .
  • the first area region 14a is formed on a disk-shaped body, which is mounted pivotably about a tilting axis T on the deflection mirror 8.
  • a recess is formed in the center of the deflecting mirror 8.
  • the tilting of the first surface region 14a relative to the second surface region 14b can be effected by an actuator 15, for example in the manner of a piezoactuator.
  • the tilt angle ⁇ can only be tilted by a fixed tilt angle ⁇ with a low tilt amplitude, for example in the range of approximately +/- 100 ⁇ rad, which forms a basic position and, for example, at approximately 0.7 mrad can lie.
  • first surface area 14a is not necessarily as in FIG Fig. 2 respectively.
  • Fig. 2a, b shown must be mounted in a central region of the reflective surface 8a of the deflection mirror 8, but that this can also be arranged offset from the central axis of the deflection mirror 8. This is particularly favorable when the deflection mirror 8 different than in Fig. 1 shown not in the converging beam path behind the focusing lens 10 but in the beam path of the beam guiding device 3 is arranged in front of the focusing lens 10 and arranged, for example, the last in the (approximately) collimated beam path Deflection mirror 8 in front of the focusing lens 10 forms.
  • the small tilt angle ⁇ and thus also the comparatively small difference between the beam directions of the two partial beams 4a, 4b make it possible to maintain a sufficient distance of the first surface region 14a from the edge of the reflective surface 8a or from the edge of the second surface region 14b. that the first partial beam 4a remains over a comparatively large distance of typically several meters within the beam path of the second partial beam 4b. If a window or a bore is arranged within this section, at which the transition from the further chamber 12 into the vacuum chamber 11 takes place, the separated first partial beam 4a fits through this window or through this bore, without it passing through of the separated first partial beam 4a has to be extended. It is understood that in the arrangement of the deflecting mirror 9 in front of the focusing lens 10 and the focusing of the tilt angle ⁇ should be set or fixed depending on the focusing focal length, so that the desired distance A between the two focus positions F1, F2 sets ,
  • Fig. 3a, b show an example of an alternative embodiment of the deflecting mirror 8, which has a substantially prismatic basic shape and in which the first surface portion 16a and the second surface portion 16b abut each other at an edge K, wherein the first surface portion 16a an edge portion of the reflecting surface 8a of the deflection mirror 8 forms.
  • the two surface areas 16a, 16b are planar, wherein the first deflected partial beam 4a, as in FIG Fig. 2 or in Fig. 2a, b example shown initially within the beam path of the second partial beam 4b remains, since the two surface portions 16a, 16b abut each other at an obtuse angle.
  • the distribution of the power of the incident laser beam 4 on the two deflected partial beams 4a, 4b depends on the region in which the laser beam 4 in a direction Z of an XYZ coordinate system transverse to the (in the example shown) edge K on the deflection mirror. 8 incident.
  • a displacement of the deflection mirror 8 along this direction allows a change in the distribution of the power of the laser beam. 4 to the two deflected partial beams 4a, 4b.
  • the deflection mirror 8 for example by means of a in Fig. 3b be indicated by a double arrow indicated translational drive 17 in the Z-axis direction.
  • the control of the drive 17 can be done by means of the control device 13.
  • Fig. 4a, b show examples of deflection mirror 8 analogous to Fig. 3a, b in which the first surface area 16a has a curvature.
  • the in Fig. 4a The first surface area 16a shown is curved parabolically to focus the first deflected partial beam 4b, while the in Fig. 4b shown first surface area 16a is toroidally curved and the expansion of the deflected first partial beam 16a is used.
  • the tilt angle ⁇ in Fig. 4a, b is identical to the one in Fig. 3a, b shown example, wherein the tilt angle ⁇ in Fig. 4a, b is measured along a connecting line between the edge K and the outer edge of the first surface portion 16a.
  • the focus position F1 of the first deflected sub-beam 4a can be shifted out of a plane in which the focus position F2 of the second deflected sub-beam 4b is in order to achieve a fixed defocusing between the two focus positions F1, F2.
  • the focal planes of the two deflected partial beams 4a, 4b substantially coincide and contain the plane or direction along which the tin droplets 6 move.
  • FIGS. 5a, b show an example of a deflection mirror 8, in which the two adjoining surface portions 16a, 16b are arranged at an obtuse angle (> 180 °) to each other, so that adjusts a roof-like geometry of the reflective surface 8a.
  • Fig. 1 shows an example of a deflection mirror 8 in which the two adjoining surface portions 16a, 16b are arranged at an obtuse angle (> 180 °) to each other, so that adjusts a roof-like geometry of the reflective surface 8a.
  • the two partial beams 4a, 4b completely separated during the deflection, that is, the first deflected partial beam 4a does not extend within the beam path of the second deflected partial beam 4b.
  • This can be exploited to arrange a further deflecting mirror 18 in the beam path of the first partial beam 4a, which is mounted movably and can be tilted in the example shown by means of a rotary drive about a tilt axis C to change the focus position F1 of the first deflected partial beam 4a, for example to set the distance A between the two focus positions F1, F2 to an appropriate value.
  • All in Fig. 3a . b to Fig. 5a . b shown deflecting mirror 8, more precisely their mutually tilted surface areas 16a, 16b, can be prepared by diamond milling or by diamond turning.
  • the example in Fig. 3a . b to Fig. 5a . b shown deflecting mirror 8 can be arranged in front of or behind the focusing lens 10, wherein the arrangement is advantageous at a position within the beam path of the beam guiding device 3, at which the beam position of the laser beam 4 is not changed too much by fluctuations of the beam source 2, as this is the power distribution to the two deflected partial beams 4a, 4b influenced.
  • Fig. 6a shows a vacuum chamber 11 of an EUV radiation generating device 1, otherwise as in Fig. 1 is shown formed.
  • a transmissive optical element 19 is formed in the form of a plane plate, which closes the vacuum chamber 11 gas-tight and which forms an aperture for the laser beam 4.
  • a surface 19a of the optical element 19, which forms a beam entry surface has a first planar surface region 14a and a second planar surface region 14b, which are arranged at a tilt angle ⁇ relative to one another.
  • the first area region 14a is surrounded annularly by the second, larger area area 14b.
  • the first area region 14a is formed by ion beam etching in the surface 19a and has the same as in FIG Fig. 2a shown embodiment on an elliptical outer contour.
  • the laser beam 4 impinges substantially perpendicular to the surface 19 a of the plate-shaped optical element 19.
  • the part of the laser beam 4 which impinges on the second surface area 14b of the plate-shaped optical element 19, passes through the optical element 19 substantially without deflection and forms the second partial beam 4b.
  • the part of the laser beam 4, which impinges on the first surface area 14a, is refracted when passing into the optically denser medium of the optical element 19 and forms on exit from the optical element 19, a first partial beam 4a, which extends at an angle to the second partial beam 4b ,
  • the illustration of the refraction of the first partial beam 4a at a beam exit-side surface 19b of the optical element 19 has been omitted. It goes without saying that an optical element (not shown), which closes off the further chamber 12 in a gastight manner, can also serve as a deflection device.
  • a deflection device in the form of a deflection mirror 8 or a transmissive optical element 19, which allow a division into two partial beams 4a, 4b, one of the generation of a pre-pulse and a main pulse analogous effect on the target material in the form of Tin droplets 6 can be achieved without for this purpose the generation of two laser beams with different wavelengths or the provision of two beam sources is required. Also can be dispensed with elaborate optics for unification or for the separation of laser beams with different wavelengths.

Description

  • Die vorliegende Erfindung betrifft eine Strahlführungseinrichtung zur Führung eines Laserstrahls von einer Strahlungsquelle in Richtung auf einen Zielbereich, an dem einem Target-Material zur Erzeugung von EUV-Strahlung einbringbar ist, umfassend: eine Fokussiereinrichtung zur Fokussierung des Laserstrahls in dem Zielbereich, sowie eine Umlenkeinrichtung, die ausgebildet ist, den Laserstrahl in einen umgelenkten ersten Teilstrahl und in einen zweiten Teilstrahl aufzuteilen, die an zwei unterschiedlichen Fokuspositionen innerhalb des Zielbereichs fokussiert werden, sowie eine EUV-Strahlungserzeugungsvorrichtung, die eine solche Strahlführungseinrichtung sowie eine Strahlungsquelle zur Erzeugung des Laserstrahls aufweist.
  • Eine solche Vorrichtung zur plasmabasierten Erzeugung von EUV-Strahlung ist in der DE 10 2004 005 242 A1 beschrieben.
  • Eine Strahlführungseinrichtung für eine EUV-Strahlungserzeugungsvorrichtung ist beispielsweise auch aus der US 2011/0140008 A1 bekannt geworden. Die dort beschriebene Strahlführungseinrichtung dient zur Führung von Laserstrahlung, die in einer Strahlquelle, genauer gesagt in einem Treiberlasersystem, erzeugt und verstärkt wurde. Die Strahlführungseinrichtung führt den Laserstrahl von dem Treiberlasersystem zu einer Fokussiereinrichtung, um den Laserstrahl in einem Zielbereich zu fokussieren. In dem Zielbereich wird ein Target-Material bereitgestellt, welches bei der Bestrahlung mit dem Laserstrahl in einen Plasma-Zustand übergeht und hierbei EUV-Strahlung emittiert.
  • Bei der Bestrahlung mit dem Laserstrahl wird typischer Weise ein Teil des Target-Materials (z.B. Zinn) verdampft, der sich auf den optischen Oberflächen von optischen Elementen ablagert, die in der Nähe des Zielbereichs angeordnet sind. Um diesem Problem zu begegnen, wird als Laserquelle bzw. als Treiberlaser in der Regel ein CO2-Laser verwendet: CO2-Laserstrahlung wird aufgrund ihrer hohen Wellenlänge von ca. 10,6 µm auch von optischen Elementen reflektiert, die eine vergleichsweise raue optische Oberfläche aufweisen, wie sie durch Zinn-Ablagerungen hervorgerufen wird. Die Verwendung einer Laserquelle bzw. eines Treiberlasers in Form eines CO2-Lasers ermöglicht zudem bei bestimmten TargetMaterialien, z.B. Zinn, eine hohe Konversionseffizienz zwischen der Eingangsleistung des Treiberlasers und der Ausgangsleistung der erzeugten EUV-Strahlung.
  • Die in der US 2011/0140008 A1 beschriebene Strahlführungseinrichtung weist eine Fokussiereinrichtung mit einer Fokussierlinse zur Fokussierung des Laserstrahls in dem Zielbereich auf. In einem Beispiel wird Laserstrahlung, die von der Fokussierlinse reflektiert wird, an einem vor der Fokussierlinse angeordneten Planspiegel für Diagnosezwecke zu einem Messsystem reflektiert. Der Umlenkspiegel weist zu diesem Zweck eine Einrichtung zur Separation des in Richtung auf den Zielbereich verlaufenden Laserstrahls von der an der Fokussierlinse zurück reflektierten Laserstrahlung auf. Diese Einrichtung kann als zur planen Spiegeloberfläche verkippte Facette ausgebildet sein, die in einem zentralen Bereich der Spiegeloberfläche angeordnet ist.
  • Aus der WO 2011/162903 ist eine Treiberlaseranordnung bekannt geworden, welche einen Seed-Laser zur Erzeugung eines Vor-Pulses und einen weiteren Seed-Laser zur Erzeugung eines Haupt-Pulses aufweist. Der Vor-Puls und der Haupt-Puls weisen unterschiedliche Wellenlängen auf und werden mittels eines Strahlkombinierers kombiniert, um entlang eines gemeinsamen Strahlwegs einen Verstärker sowie die auf die Treiberlaseranordnung folgende Strahlführungseinrichtung zu durchlaufen. Der Vor-Puls soll dazu dienen, das Target-Material zu beeinflussen, beispielsweise dieses aufzuheizen, zu expandieren, zu vaporisieren, zu ionisieren und/oder um ein schwaches oder ggf. ein starkes Plasma zu erzeugen. Der Haupt-Puls soll dazu dienen, den Hauptteil des von dem Vor-Puls beeinflussten Materials in den Plasmazustand überzuführen und hierbei EUV-Strahlung zu erzeugen.
  • Aufgabe der Erfindung
  • Es ist die Aufgabe der vorliegenden Erfindung, eine Strahlführungseinrichtung der eingangs genannten Art sowie eine EUV-Strahlungserzeugungsvorrichtung dahingehend weiterzubilden, dass die Erzeugung von EUV-Strahlung effektiver erfolgen kann.
  • Gegenstand der Erfindung
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Strahlführungseinrichtung der eingangs genannten Art, bei der die Oberfläche der Umlenkeinrichtung zur Aufteilung in die zwei Teilstrahlen einen ersten Flächenbereich und einen zweiten, zum ersten verkippten Flächenbereich aufweist.
  • Bei der Strahlführungseinrichtung wird an Stelle eines Vor-Pulses und eines Haupt-Pulses, die zeitlich aufeinander folgend in dem Zielbereich fokussiert werden, eine räumliche Separation des Laserstrahls in zwei Teilstrahlen vorgenommen, die an typischer Weise unterschiedlichen Fokuspositionen innerhalb des Zielbereichs fokussiert werden. Das Target-Material liegt in der Regel in Form von Zinn-Tröpfchen vor, die sich auf einer vorgegebenen, typischer Weise linearen Bahn bewegen. Die Zinn-Tröpfchen treten aus einer Bereitstellungseinrichtung aus und bewegen sich durch die Schwerkraftwirkung entlang einer vertikalen Achse und dienen als bewegliches Ziel, welches von dem Laserstrahl bzw. von den beiden Teilstrahlen getroffen werden muss.
  • Um eine dem Vor-Puls und dem Haupt-Puls entsprechende Wirkung zu erzielen, muss ein- und dasselbe Zinn-Tröpfchen entlang seiner Bewegungsbahn von zwei Teilstrahlen getroffen werden. Da der Laserstrahl von der Strahlquelle typischer Weise gepulst erzeugt wird, ist es erforderlich, das Zeitintervall zwischen zwei aufeinander folgenden Laserpulsen so zu wählen bzw. einzustellen, dass dieses der Flugzeit des Zinn-Tröpfchens zwischen den beiden Fokuspositionen entspricht. Auf diese Weise wird das Zinn-Tröpfchen vom ersten und zweiten Teilstrahl unterschiedlicher, typischer Weise direkt zeitlich aufeinander folgender Laserpulse getroffen.
  • In der Regel ist es erforderlich, den Abstand zwischen zwei aufeinander folgenden Zinn-Tröpfchen so zu wählen bzw. einzustellen, dass dieser einem ganzzahligen Vielfachen des Abstands zwischen den beiden Fokuspositionen entspricht. Auf diese Weise kann sichergestellt werden, dass jedes der Zinn-Tröpfchen sowohl vom ersten Teilstrahl als auch vom zweiten Teilstrahl getroffen wird. Es versteht sich, dass derjenige Teilstrahl, welcher dem Vor-Puls entspricht, typischer Weise eine geringere Leistung aufweist als derjenige Teilstrahl, der dem Haupt-Puls entspricht.
  • Durch die Realisierung einer Strahlführungseinrichtung wie vorliegend beschrieben kann auf die Erzeugung eines Vor-Pulses und eines Haupt-Pulses typischer Weise verzichtet werden, so dass die zu diesem Zweck erforderliche Bereitstellung von zwei Laserstrahlen bzw. Strahlungsquellen mit unterschiedlichen Wellenlängen verzichtet werden kann, was die Kosten für die Strahlführungseinrichtung deutlich reduziert.
  • Gemäß der Erfindung weist die Oberfläche der Umlenkeinrichtung zur Aufteilung in die zwei Teilstrahlen einen ersten Flächenbereich und einen zweiten, zum ersten verkippten Flächenbereich auf. Die beiden zueinander verkippten Flächenbereiche können durch eine Oberflächenbearbeitung hergestellt werden. Bei einem vorgegebenen Abstand des Umlenkeinrichtung zur Fokusposition bzw. zum Zielbereich kann der Kippwinkel so gewählt oder ggf. eingestellt werden, dass sich in der typischer Weise gemeinsamen Fokusebene der beiden Teilstrahlen der gewünschte Abstand zwischen den beiden Fokuspositionen einstellt.
  • Bei einer Ausführungsform ist die Umlenkeinrichtung ein transmissives optisches Element mit einer Oberfläche, an welcher der erste Flächenbereich und der zweite, zum ersten verkippte Flächenbereich gebildet sind. Durch die Verkippung der beiden Flächenbereiche wird der auftreffende Laserstrahl in die beiden Teilstrahlen aufgeteilt, die nach dem Durchlaufen des transmissiven optischen Elements in zwei unterschiedlichen Richtungen verlaufen. Bei der Oberfläche, an der die beiden zueinander verkippten Flächenbereiche gebildet sind, kann es sich um die strahleintrittsseitige oder um die strahlaustrittsseitige Oberfläche des optischen Elements handeln. Das transmissive optische Element kann insbesondere als planparallele Platte ausgebildet sein, bei der einer der beiden Flächenbereiche senkrecht zur Strahlrichtung des Laserstrahls angeordnet ist. Abhängig vom Verhältnis zwischen dem Brechungsindex des Materials des transmittierenden optischen Elements und dem Brechungsindex in der Umgebung (hier: Luft bzw. Vakuum mit n = 1,0) ist ggf. schon ein sehr kleiner Kippwinkel ausreichend, um einen vergleichsweise großen Winkel zwischen den Strahlrichtungen der beiden Teilstrahlen zu erzeugen. Die gegeneinander verkippten Flächenbereiche können durch eine Oberflächenbearbeitung, beispielsweise durch Ionenätzen, der Oberfläche hergestellt werden.
  • Bei einer Weiterbildung schließt das transmissive optische Element eine in der Strahlführungseinrichtung gebildete Kammer gasdicht ab. In diesem Fall bildet das transmissive optische Element typischer Weise ein Fenster in Form einer planparallelen Platte und damit eine Apertur in der Kammerwand für den Durchtritt des Laserstrahls. Bei der Kammer kann es sich um eine Vakuum-Kammer handeln, in der das Target-Material angeordnet ist, aber auch um eine andere Kammer, in der optische Elemente der Strahlführungseinrichtung angeordnet sind. Insbesondere kann das Fenster am Übergang zwischen zwei Kammern mit unterschiedlichen Druckniveaus angeordnet sein. Das optische Element kann aus (künstlich hergestelltem) Diamant gebildet sein, da dieses Material die durch die hohe Laserleistung (> 1 kW) des Laserstrahls eingebrachte Wärme aufgrund seiner hohen Wärmeleitfähigkeit effektiv abführen kann.
  • Bei einer weiteren Ausführungsform ist die Umlenkeinrichtung ein Umlenkspiegel, dessen reflektierende Oberfläche den ersten Flächenbereich zur Umlenkung des ersten Teilstrahls und den zweiten, zum ersten verkippten Flächenbereich zur Umlenkung des zweiten Teilstrahls aufweist. Die beiden zueinander verkippten Flächenbereiche können durch eine Oberflächenbearbeitung des typischer Weise metallischen und damit für die CO2-Laserstrahlung reflektierenden Spiegelmaterials hergestellt werden, beispielsweise durch Drehen oder Fräsen unter Verwendung eines harten Werkzeugs beispielsweise aus Diamant.
  • Der zur Erzeugung der EUV-Strahlung verwendete CO2-Laserstrahl weist eine hohe Strahlungsleistung (typischer Weise größer 1 kW) auf. Das Verhältnis der Oberflächen der beiden verkippten Flächenbereiche der Oberfläche zueinander legt die Leistungsanteile der beiden Teilstrahlen fest. In einer Ausführungsform bildet der erste Flächenbereich weniger als 20%, bevorzugt weniger als 10% der Oberfläche der Umlenkeinrichtung, d.h. der zweite Flächenbereich bildet mehr als 80% bzw. mehr als 90% der Oberfläche. Wie weiter oben beschrieben wurde, sollte der erste Teilstrahl, der in der Art eines Vor-Pulses wirkt, typischer Weise eine geringere Leistung aufweisen als der zweite Teilstrahl, der in der Art des Haupt-Pulses wirkt. Wird die Oberfläche vollständig von dem Laserstrahl getroffen, wird die Leistung des Laserstrahls im entsprechenden Verhältnis (z.B. 2 : 8) auf den ersten und zweiten Teilstrahl aufgeteilt.
  • Bei einer weiteren Ausführungsform beträgt ein Kippwinkel zwischen dem ersten Flächenbereich und dem zweiten Flächenbereich weniger als 10 mrad, bevorzugt weniger als 5 mrad. Die beiden zueinander unter einem kleinen Kippwinkel im Bereich mehrerer mrad verkippten Flächenbereiche können auf besonders einfache Weise durch eine Bearbeitung der Oberfläche z.B. durch Diamantdrehen, Diamantfräsen oder Ionenstrahlätzen hergestellt werden. Typischer Weise ist ein geringer Kippwinkel ausreichend, um die gewünschte Separation bzw. den gewünschten Abstand zwischen den beiden Fokuspositionen im Zielbereich zu erzeugen, da der gewünschte Abstand zwischen den beiden Fokuspositionen typischer Weise nur einige 100 Mikrometer beträgt. Durch den kleinen Kippwinkel kann zudem der erste Teilstrahl, der eine geringere Leistung aufweist, eine lange Strecke innerhalb des zweiten, größeren Teilstrahls propagieren, so dass für den zweiten Teilstrahl ausgelegte Aperturen auch für den Durchtritt des ersten Teilstrahls genutzt werden können. Derartige Aperturen können z.B. am Übergang zwischen zwei Kammern der Strahlführung vorgesehen sein, die ein unterschiedliches Druckniveau aufweisen.
  • Alternativ kann der Kippwinkel auch größer gewählt werden, beispielsweise bei mehr als 0,2°, ggf. bei mehr als 0,5° oder darüber liegen, um zu erreichen, dass der erste Teilstrahl den Strahlengang des zweiten Teilstrahls rasch verlässt. In diesem Fall wird als Umlenkeinrichtung typischer Weise ein Umlenkspiegel verwendet, der im Strahlengang vor der Vakuum-Kammer angeordnet ist, in der das Target-Material angeordnet wird. Hierbei kann ein weiterer, insbesondere verkippbarer Umlenkspiegel, der im Strahlengang des umgelenkten ersten Teilstrahls angeordnet ist, zur Umlenkung des ersten Teilstrahls um einen (justierbaren bzw. einstellbaren) Winkel dienen, damit der erste Teilstrahl zentrisch durch eine Apertur bzw. ein Fenster am Übergang zur Vakuum-Kammer hindurchtreten kann.
  • In einer weiteren Ausführungsform ist der erste Flächenbereich vom zweiten Flächenbereich umgeben. In diesem Fall bildet der erste Flächenbereich eine vergleichsweise kleine Facette bzw. Insel innerhalb des zweiten Flächenbereichs, d.h. der zweite Flächenbereich umgibt den ersten Flächenbereich vollständig. Der erste Flächenbereich kann beispielsweise im Zentrum des zweiten Flächenbereichs bzw. im Zentrum der Oberfläche angeordnet sein, es ist aber auch möglich, den ersten Flächenbereich exzentrisch zum Zentrum der beispielsweise kreisförmigen Oberfläche anzuordnen. Es ist günstig, wenn ein Mindestabstand vom äußeren Rand der Oberfläche bzw. vom äußeren Rand des ersten Flächenbereichs eingehalten wird, damit der erste umgelenkte Teilstrahl möglichst lange innerhalb des Strahlengangs des zweiten Teilstrahls verbleibt und gemeinsam mit diesem die in der Strahlführungseinrichtung vorgesehenen Begrenzungen durchläuft. Der Abstand des ersten Flächenbereichs vom Rand der Oberfläche kann abhängig von der Position des Umlenkspiegels sowie der verwendeten Strahldurchmesser z.B. bei mehr als 2 mm oder bei mehr als 3 mm liegen.
  • In einer weiteren Ausführungsform weist der erste Flächenbereich eine elliptische Außenkontur auf. Die Exzentrizität der elliptischen Außenkontur hängt vom Einfallswinkel des Laserstrahls auf die Umlenkeinrichtung bzw. auf die Oberfläche ab und dient dazu, an der ersten Fokusposition einen Fokus mit einer idealer Weise runden Querschnittsform zu erzeugen.
  • In einer weiteren Ausführungsform ist der erste Flächenbereich zur Einstellung des Kippwinkels um eine Kippachse verkippbar, die typischer Weise senkrecht zur Einfallsebene verläuft, die von dem einfallenden Laserstrahl und den Teilstrahlen gebildet wird. Die Verkippung ermöglicht eine Justage des Kippwinkels und damit der Fokusposition des ersten Teilstrahls in dem Zielbereich. Da typischer Weise beide Teilstrahlen im Wesentlichen auf eine gemeinsame Ebene bzw. Linie fokussiert werden, entlang derer sich die Zinn-Tröpfchen bewegen, ist es in der Regel ausreichend, die relative Lage, d.h. den Abstand, zwischen den beiden Fokuspositionen einzustellen, wozu eine Fein-Justage eines der beiden Teilstrahlen ausreichend ist. Die Einstellung des Kippwinkels kann durch einen ansteuerbaren Aktor erfolgen, beispielsweise durch einen Piezo-Aktor. Gegebenenfalls kann die Einstellung des Kippwinkels mit einer vorgegebenen Winkel-Amplitude um einen festen Kippwinkel herum erfolgen, welcher eine Grundstellung des ersten Flächenbereichs definiert. Der (feste) Kippwinkel kann in diesem Fall deutlich größer ausfallen (z.B. mehrere mrad) als der Winkelbereich, innerhalb dessen der Kippwinkel eingestellt werden kann (z.B. im Bereich von ca. 100 µrad).
  • Bei einer weiteren Ausführungsform bildet der erste Flächenbereich einen Randbereich der Oberfläche der Umlenkeinrichtung, d.h. der reflektierenden Oberfläche des Umlenkspiegels oder der transmissiven Oberfläche des transmissiven optischen Elements, der an einer Kante an den zweiten Flächenbereich angrenzt. Die Umlenkeinrichtung bzw. die Oberfläche kann in diesem Fall insbesondere prismatisch ausgebildet sein, d.h. parallel verlaufende Kanten aufweisen, wobei eine der Kanten die Begrenzung zwischen den beiden Flächenbereichen bildet. Die begrenzende Kante ist in diesem Fall typischer Weise als gerade Begrenzungslinie zwischen den zueinander verkippt verlaufenden Flächenbereichen ausgebildet. Im Gegensatz zur weiter oben beschriebenen Ausführungsform, bei welcher der erste Flächenbereich vom zweiten Flächenbereich umgeben ist, sind bei der hier beschriebenen Ausführungsform keine weiteren Kanten bzw. Flächen erforderlich, um die Verkippung der beiden Flächenbereiche zu realisieren. Die beiden verkippten Flächenbereiche können durch Fräsen oder Drehen der Oberfläche hergestellt werden, da auch in diesem Fall die benötigten Kippwinkel in einem Winkelbereich von wenigen mrad liegen.
  • Alternativ zur Anordnung am Rand der reflektierenden Oberfläche ist es auch möglich, den ersten Flächenbereich der prismatischen Umlenkeinrichtung mit zwei planen Teilbereichen des zweiten Flächenbereichs zu umgeben, allerdings entsteht hierbei eine zusätzliche Kante bzw. Fläche, die typischer Weise bei der vorliegenden Anwendung nicht erwünscht ist.
  • In einer Weiterbildung ist die Umlenkeinrichtung ein Umlenkspiegel, der in einer quer zur Kante verlaufenden Richtung verschiebbar gelagert ist. Bei fester Ausrichtung des Laserstrahls verschiebt sich bei der Verschiebung des Umlenkspiegels quer zur Kante der Anteil des Laserstrahls, der auf den ersten bzw. auf den zweiten Flächenbereich auftrifft und somit auch das Verhältnis zwischen den Leistungsanteilen des ersten bzw. des zweiten Teilstrahls.
  • Bei einer Ausführungsform ist der zweite Flächenbereich plan ausgebildet. Der zweite Flächenbereich dient zur Bildung des umgelenkten Teilstrahls mit der größeren Leistung und ist in der Regel plan, um die Funktion des Umlenkspiegels bzw. des als Fenster dienenden transmissiven optischen Elements zu erfüllen. Der erste Flächenbereich kann ebenfalls plan ausgebildet sein.
  • In einer weiteren Ausführungsform ist der erste Flächenbereich gekrümmt ausgebildet, um eine Fokussierung bzw. eine Defokussierung des ersten umgelenkten Teilstrahls zu bewirken. Die Krümmung kann beispielsweise parabolisch oder toroidal sein. Die Ausbildung eines gekrümmten ersten Flächenbereichs ermöglicht es, die Fokusposition des ersten Teilstrahls aus der Fokusebene des zweiten Teilstrahls bzw. aus der gemeinsamen Fokusebene heraus zu bewegen, sofern sich eine solche Defokussierung vorteilhaft auf die Erzeugung der EUV-Strahlung auswirkt. Sind der erste und zweite Flächenbereich plan ausgebildet, werden diese üblicher Weise in einer gemeinsamen Ebene fokussiert, in der auch das Target-Material angeordnet ist.
  • Die Strahlführungseinrichtung kann zusätzlich einen weiteren Umlenkspiegel zur Umlenkung des ersten Teilstrahls umfassen, der außerhalb des Strahlengangs des zweiten Teilstrahls angeordnet ist. Typischer Weise verläuft der erste Teilstrahl nach der Umlenkung zunächst innerhalb des zweiten Teilstrahls, was günstig ist, um beide Teilstrahlen gemeinsam durch Aperturen in der Strahlführungseinrichtung zu führen. Es ist aber auch möglich, den ersten Teilstrahl schon bei der Umlenkung vom zweiten Teilstrahl zu separieren, beispielsweise indem der erste Flächenbereich, welcher einen Randbereich des prismatisch ausgebildeten Umlenkspiegels bildet, mit dem zweiten Flächenbereich an der gemeinsamen Kante einen Winkel von mehr als 180° einschließt. Auf diese Weise kann der erste Teilstrahl direkt nach der Umlenkung unabhängig vom zweiten Teilstrahl beeinflusst werden.
  • Der weitere Umlenkspiegel kann beweglich gelagert sein, um die Fokusposition des ersten Teilstrahls zu verändern. Der Umlenkspiegel kann zu diesem Zweck insbesondere um eine Kippachse verkippbar gelagert sein, um mittels eines geeigneten Antriebs den Winkel zwischen dem auftreffenden ersten Teilstrahl und der Spiegeloberfläche zu verändern und somit die Richtung einzustellen, in welcher der erste Teilstrahl von dem weiteren Umlenkspiegel reflektiert wird. Es versteht sich, dass zusätzlich oder alternativ zu einem Umlenkspiegel auch andere optische Elemente im Strahlengang des separierten ersten Teilstrahls und/oder des zweiten Teilstrahls angeordnet werden können, um die Teilstrahlen unabhängig voneinander zu beeinflussen.
  • Die Fokussiereinrichtung kann ein transmissives optisches Element in Form einer Fokussierlinse aufweisen. Für die Fokussierung können auch reflektive Fokussierelemente, beispielsweise Parabolspiegel, eingesetzt werden, ggf. in Kombination mit transmittierenden optischen Elementen.
  • Die Strahlführungseinrichtung kann eine Regeleinrichtung aufweisen, die zum Regeln mindestens einer der beiden Fokuspositionen an eine Soll-Fokusposition ausgebildet ist. Eine solche Regelung ist vorteilhaft, wenn strahlungsquellenseitig Störungen auftreten, die dazu führen, dass sich die Fokusposition verändert. Beispielsweise können durch die Regeleinrichtung Störungen in Form von Schwankungen in der Richtung oder Divergenz des Laserstrahls bzw. eines jeweiligen Teilstrahls (beispielsweise Drift) "herausgeregelt" bzw. unterdrückt werden, sodass die beiden Teilstrahlen bzw. deren Fokuspositionen durch die Nachregelung an ihrer jeweiligen Soll-Fokusposition verbleiben. Insbesondere kann die Regeleinrichtung auch dazu dienen, den Abstand zwischen den beiden Fokuspositionen in einer Richtung, entlang derer sich das Target-Material in der Regel in Form von Zinn-Tröpfchen bewegt, auf einen typischer Weise konstanten Wert zu regeln. Entlang dieser Richtung sollte der Abstand zwischen zwei benachbarten Tröpfchen des Target-Materials einem ganzzahligen Vielfachen des Fokusabstands entsprechen. Auch sollte der Abstand zwischen den beiden Fokuspositionen der von einem Tröpfchen des Target-Materials zurückgelegten Wegstrecke zwischen aufeinander folgenden Laserpulsen entsprechen.
  • In einer weiteren Ausführungsform ist der die Aufteilung bewirkende Umlenkspiegel der letzte Umlenkspiegel der Strahlführungseinrichtung vor dem Zielbereich. Der letzte Umlenkspiegel ist typischer Weise im Strahlweg nach der Fokussiereinrichtung angeordnet. Insbesondere kann der letzte Umlenkspiegel in einer Vakuum-Kammer angeordnet sein, in der auch das Target-Material bereitgestellt wird. In diesem Fall bestehen bei der Umlenkung der beiden Teilstrahlen mehrere Freiheitsgrade, da die beiden Teilstrahlen nicht durch eine gemeinsame Apertur passen müssen, wie sie typischer Weise am Übergang zwischen der Vakuum-Kammer und einer weiteren Kammer der Strahlführungseinrichtung vorgesehen ist. Es versteht sich, dass der Umlenkspiegel auch an anderer Stelle im Strahlengang der Strahlführungseinrichtung angeordnet sein kann, insbesondere im Strahlweg vor der Fokussiereinrichtung.
  • Ein weiterer Aspekt der Erfindung ist realisiert in einer EUV-Strahlungserzeugungsvorrichtung, umfassend: eine Strahlquelle zur Erzeugung des Laserstrahls sowie eine Strahlführungseinrichtung wie oben beschrieben. Bei der Strahlquelle handelt es sich typischer Weise um eine CO2-Laserquelle, welche einen einzigen Laserstrahl erzeugt. Durch die Strahlführungseinrichtung mit dem Umlenkspiegel kann der Laserstrahl aufgeteilt und ein bewegliches Target-Material mit zwei Teilstrahlen an zwei Ziel-Positionen gleichzeitig zielgenau getroffen werden. Auf die Erzeugung von zwei Laserpulsen mit zwei unterschiedlichen Wellenlängen zur Erzeugung eines Vor-Pulses und eines Haupt-Pulses kann hierbei verzichtet werden, aber dennoch kann der mit dem Vor-Puls und dem Haupt-Puls zu erreichende Effekt erzielt werden.
  • Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer EUV-Strahlungserzeugungsvorrichtung mit einem Umlenkspiegel, an dem ein Laserstrahl in zwei auf unterschiedliche Fokuspositionen fokussierte Teilstrahlen aufgeteilt wird,
    Fig. 2
    eine schematische Darstellung des Umlenkspiegels von Fig. 1 mit zwei zueinander verkippten Flächenbereichen,
    Fig. 2a,b
    schematische Schnittdarstellungen von zwei unterschiedlichen Ausführungsbeispielen des Umlenkspiegels von Fig. 2,
    Fig. 3a,b
    schematische Darstellungen eines Umlenkspiegels mit zwei an einer gemeinsamen Kante aneinander angrenzenden Flächenbereichen,
    Fig. 4a,b
    schematische Darstellungen von Umlenkspiegeln analog zu Fig. 3a,b mit einem gekrümmten ersten Flächenbereich,
    Fig. 5a,b
    schematische Darstellungen eines Umlenkspiegels analog zu Fig. 3a,b, welcher den Strahlengang der beiden Teilstrahlen separiert, und
    Fig. 6a,b
    schematische Darstellungen einer Vakuum-Kammer einer EUV-Strahlungserzeugungseinrichtung und eines Diamant-Fensters zur Aufteilung eines Laserstrahls in zwei auf unterschiedliche Fokuspositionen fokussierte Teilstrahlen.
  • In der folgenden Beschreibung der Zeichnungen werden für gleiche bzw. funktionsgleiche Bauteile identische Bezugszeichen verwendet. Auf die Darstellung der Strahlbrechung an den jeweiligen Oberflächen wurde verzichtet.
  • Fig. 1 zeigt eine EUV-Strahlungserzeugungsvorrichtung 1, welche eine Strahlquelle 2 in Form einer Treiberlasereinrichtung mit einem CO2-Laser sowie mit mehreren Verstärkern umfasst, um einen Laserstrahl 4 mit hoher Strahlungsleistung (> 1 kW) zu erzeugen. Der Laserstrahl 4 wird mittels einer Strahlführungseinrichtung 3 in Richtung auf einen Zielbereich 5 geführt, an dem ein Target-Material 6 in Form von Zinn-Tröpfchen angeordnet ist, um EUV-Strahlung 7 zu erzeugen. Auf die Darstellung von Messeinrichtungen zur Überwachung des Strahlengangs des Laserstrahls 4 wurde aus Gründen der Übersichtlichkeit verzichtet. Das Target-Material 6, d.h. die Zinn-Tröpfchen, werden mittels einer (nicht gezeigten) Bereitstellungseinrichtung erzeugt und bewegen sich entlang eines vorgegebenen Pfades bzw. einer vorgegebenen Bahn in Schwerkraftrichtung. Für Details zur Bereitstellung des Target-Materials 6 sei auf die eingangs zitierte US 2011/0140008 A1 verwiesen.
  • Die Strahlführungseinrichtung 3 weist eine Mehrzahl von Umlenkspiegeln 8 bzw. Parabolspiegeln 9 auf, um den Laserstrahl 4 zu einer Fokussiereinrichtung zu führen, die im vorliegenden Beispiel als Fokussierlinse 10 (beispielsweise aus ZnSe) ausgebildet ist. Es versteht sich, dass die Fokussiereinrichtung auch zwei oder mehr transmittierende optische Elemente aufweisen oder alternativ aus einem oder mehreren reflektierenden optischen Elementen aufgebaut sein kann. Auch die Verwendung einer Fokussiereinrichtung mit reflektierenden und transmittierenden optischen Elementen ist möglich. Die Fokussierlinse 10 ist im vorliegenden Beispiel am Übergang zwischen einer Vakuum-Kammer 11, in der das Target-Material 6 angeordnet ist, und einer weiteren Kammer 12 angeordnet, in welcher ein Großteil der Umlenkspiegel 8 sowie die Parabolspiegel 9 untergebracht ist. Die Fokussierlinse 10 kann einen gasdichten Abschluss der Vakuum-Kammer 11 bilden, es kann aber auch ein eigenes optisches Element 19, z.B. in der Art eines Fensters, vorgesehen sein, um die Vakuum-Kammer 11 gegenüber der weiteren Kammer 12 abzudichten bzw. abzuschließen.
  • Der von der Fokussierlinse 10 auf den Zielbereich 5 fokussierte Laserstrahl 4 trifft auf einen im Strahlweg hinter der Fokussierlinse 10 angeordneten letzten Umlenkspiegel 8 auf. Der letzte Umlenkspiegel 8 ist ausgebildet, den auftreffenden Laserstrahl 4 in zwei Teilstrahlen 4a, 4b aufzuteilen, die in zwei unterschiedliche Richtungen umgelenkt und an unterschiedlichen Fokuspositionen F1, F2 innerhalb des Zielbereichs 5 fokussiert werden. Der erste Teilstrahl 4a trifft an der Fokusposition F1 auf ein Zinn-Tröpfchen 6 auf, um dieses zu beeinflussen, beispielsweise um dieses zu expandieren und/oder zu vaporisieren. Nach der Beeinflussung durch den ersten Teilstrahl 4a wird das Zinn-Tröpfchen 6 von dem zweiten Teilstrahl 4b an der zweiten Fokusposition F2 getroffen, der die Flugbahn des Zinn-Tröpfchens 6 etwas weiter unten kreuzt. Der zweite Teilstrahl 4b führt das Material des Zinn-Tröpfchens vollständig oder annähernd vollständig in ein Plasma über, wobei dieses EUV-Strahlung 7 abgibt, die von einem (nicht gezeigten) Fokussier-Spiegel aufgefangen und fokussiert wird, wie dies beispielsweise in der US 2011/0140008 A1 beschrieben ist.
  • Da die Erzeugung des Laserstrahls 4 in der Strahlquelle 2 gepulst erfolgt, erreichen die beiden Teilstrahlen 4a, 4b ein- und desselben Laserpulses gleichzeitig die beiden Fokuspositionen F1, F2, wo sie auf zwei unterschiedliche Zinn-Tröpfchen 6 treffen. Das Zinn-Tröpfchen 6, welches an der ersten Fokusposition F1 von dem ersten Teilstrahl 4a getroffen wird, wird bei einem nachfolgenden Puls von dem zweiten Teilstrahl 4b an der zweiten Fokusposition F2 getroffen. Um dies zu erreichen, ist es typischer Weise erforderlich, den Abstand A zwischen den beiden Fokuspositionen F1, F2 entlang der Flugrichtung der Zinn-Tröpfchen 6 so zu wählen, dass dieser der Flugdauer (oder ggf. einem ganzzahligen Vielfachen der Flugdauer) eines Zinn-Tröpfchens 6 zwischen zwei aufeinander folgenden Laserpulsen der Strahlquelle 2 entspricht. Um alle Zinn-Tröpfchen 6 auf die oben beschriebene Weise zur treffen, sollte auch der Abstand zwischen zwei benachbarten Zinn-Tröpfchen 6 ein ganzzahliges Vielfaches des Abstandes A zwischen den beiden Fokuspositionen F1, F2 in Flugrichtung der Zinn-Tröpfchen 6 sein.
  • Zur ggf. erforderlichen Anpassung des Abstandes A zwischen den beiden Fokuspositionen F1, F2 sowie zur Synchronisierung der Strahlquelle 2 mit der Bereitstellungseinrichtung für die Zinn-Tröpfchen 6 weist die EUV-Strahlungserzeugungsvorrichtung 1 eine Regeleinrichtung 13 auf, die insbesondere dazu dienen kann, mindestens eine Fokusposition F1, F2 eines der beiden Teilstrahlen 4a, 4b auf eine Soll-Fokusposition zu regeln. Für die Regelung kann der Strahlengang des Laserstrahls 4 mittels der weiter oben beschriebenen, nicht gezeigten Messeinrichtungen vermessen werden. Die Regelungseinrichtung 13 ist signaltechnisch mit (nicht gezeigten) die Strahlrichtung des Laserstrahls 4 beeinflussenden Aktoren verbunden, die z.B. zur Verkippung eines oder mehrerer der Umlenkspiegel 8 dienen kann.
  • Nachfolgend wird anhand von Fig. 2 und Fig. 2a,b ein Beispiel zur Realisierung des letzten Umlenkspiegels 8 zur Aufteilung des Laserstrahls 4 in die zwei umgelenkten Teilstrahlen 4a, 4b beschrieben. Der in Fig. 2 gezeigte Umlenkspiegel 8 weist eine kreisförmige reflektierende Oberfläche 8a auf, die in einen ersten, planen Flächenbereich 14a und einen zweiten, ebenfalls planen Flächenbereich 14b aufgeteilt ist, die zueinander verkippt sind. Der erste Flächenbereich 14a ist von dem zweiten, größeren Flächenbereich 14b ringförmig umgeben. Der erste Flächenbereich 14a weist eine elliptische Außenkontur auf, um an der ersten Fokusposition F1 einen Fokus mit im Wesentlichen runder Geometrie zu erzeugen. Das Verhältnis der Hauptachsen bzw. die numerische Exzentrizität der ellipsenförmigen Außenkontur des ersten Flächenbereichs 14a hängt vom Einfallswinkel des Laserstrahls 4 auf die reflektierende Oberfläche 8a ab. Die numerische Exzentrizität der elliptischen Außenkontur ist definiert als e / a, wobei gilt e = Wurzel(a2 - b2) und a und b die große bzw. die kleine Halbachse der elliptischen Außenkontur bezeichnen, vgl. Fig. 2. Es gilt sin(90°-β) = cos(β) = e / a, wobei β den Einfallswinkel des Laserstrahls 4, genauer gesagt dessen Laserstrahlachse zur Normalenrichtung der optischen Oberfläche 8a bezeichnet, wie dies in Fig. 2a dargestellt ist. Die numerische Exzentrizität kann auch beschrieben werden als das Verhältnis aus dem Strahldurchmesser d des einfallenden Laserstrahls 4 zu seiner Projektion d' auf der reflektierenden Oberfläche 8a, d.h. es gilt d / d' = cos(β), wobei β den Einfallswinkel des Laserstrahls 4 bezeichnet.
  • Wie in Fig. 2 zu erkennen ist, weist der erste Flächenbereich 14a eine Oberfläche auf, die deutlich kleiner ist als diejenige des zweiten Flächenbereichs 14b. Im gezeigten Beispiel liegt das Verhältnis der Oberflächen der beiden Flächenbereiche 14a, 14b bei weniger als 2:8, d.h. der erste Flächenbereich 14a bildet weniger als 20 % der reflektierenden Oberfläche 8a des Umlenkspiegels 8. Das Verhältnis der Flächenmaße der beiden Flächenbereiche 14a, 14b beeinflusst direkt das Verhältnis der Leistungsanteile, in dem die Leistung des einfallenden Laserstrahls 4 auf die beiden Teilstrahlen 4a, 4b aufgeteilt wird. Typischer Weise ist der Leistungsanteil und damit auch der Flächenbereich 14a, welcher in der Art eines Vor-Pulses wirkt und an der ersten Fokusposition F1 auf ein jeweiliges Zinn-Tröpfchen 6 trifft, deutlich geringer als der Leistungsanteil des zweiten Teilstrahls 4b, welcher in der Art eines Haupt-Pulses wirkt und das Zinn-Tröpfchen 6 an der zweiten Fokusposition F2 trifft.
  • Der erste Flächenbereich 14a des Umlenkspiegels 8 lässt sich durch Oberflächenbearbeitung der typischer Weise metallischen Oberfläche 8a herstellen, beispielsweise indem beim Herstellen der Oberfläche 8a durch Diamantdrehen der kleine elliptisch geformte Flächenbereich 14a eingebracht wird. Hierbei wirkt es sich vorteilhaft aus, dass der Kippwinkel α zwischen den beiden Flächenbereichen 14a, 14b für die vorliegende Anwendung typischer Weise sehr klein ist und in der Regel nur wenige Millirad beträgt, typischer Weise weniger als ca. 5 mrad. Bei einem Abstand A zwischen den beiden Fokuspositionen F1, F2 von beispielsweise ca. 600 µm und einem Abstand zwischen dem Umlenkspiegel 8 und der ersten Fokusposition F1 von ca. 320 mm ist beispielsweise ein Kippwinkel α von ca. 0,5 mrad ausreichend. Der Abstand zwischen dem höchsten Punkt des über den planen Flächenbereich 14a vorstehenden Abschnitts und dem niedrigsten Punkt der in die plane Oberfläche 8a eingebrachten Ausnehmung (vgl. Fig. 2a) liegt bei weniger als ca. 100 µm, so dass diese sich durch eine Oberflächenbearbeitung in Form von Diamantdrehen herstellen lässt.
  • Während bei dem in Fig. 2a gezeigten Beispiel der Kippwinkel α zwischen den beiden Flächenbereichen 14a, 14b konstant ist, lässt sich bei dem in Fig. 2b gezeigten Beispiel der Kippwinkel α einstellen. Zu diesem Zweck ist der erste Flächenbereich 14a an einem scheibenförmigen Körper gebildet, der um eine Kippachse T verschwenkbar an dem Umlenkspiegel 8 gelagert ist. Zur Aufnahme des scheibenförmigen Körpers ist im Zentrum des Umlenkspiegels 8 eine Ausnehmung gebildet. Die Verkippung des ersten Flächenbereichs 14a relativ zum zweiten Flächenbereich 14b kann durch einen Aktor 15 beispielsweise in der Art eines Piezo-Aktors erfolgen. Hierbei kann es gegebenenfalls ausreichend sein, wenn der Kippwinkel α nur mit einer geringen Kippamplitude beispielsweise im Bereich von ca. +/- 100 µrad um einen festen Kippwinkel α verkippt werden kann, der eine Grundstellung bildet und der z.B. bei ca. 0,7 mrad liegen kann.
  • Es versteht sich, dass der erste Flächenbereich 14a nicht zwingend wie in Fig. 2 bzw. Fig. 2a,b gezeigt in einem zentralen Bereich der reflektierenden Oberfläche 8a des Umlenkspiegels 8 angebracht sein muss, sondern dass dieser auch versetzt zur zentralen Achse des Umlenkspiegels 8 angeordnet sein kann. Dies ist insbesondere günstig, wenn der Umlenkspiegel 8 anders als in Fig. 1 gezeigt nicht im konvergierenden Strahlengang hinter der Fokussierlinse 10 sondern im Strahlengang der Strahlführungseinrichtung 3 vor der Fokussierlinse 10 angeordnet ist und beispielsweise den letzten im (annähernd) kollimierten Strahlengang angeordneten Umlenkspiegel 8 vor der Fokussierlinse 10 bildet.
  • In diesem Fall ermöglicht es der geringe Kippwinkel α und somit auch die vergleichsweise geringe Differenz zwischen den Strahlrichtungen der beiden Teilstrahlen 4a, 4b bei der Einhaltung eines ausreichenden Abstands des ersten Flächenbereichs 14a vom Rand der reflektierenden Oberfläche 8a bzw. vom Rand des zweiten Flächenbereichs 14b, dass der erste Teilstrahl 4a über eine vergleichsweise große Strecke von typischer Weise mehreren Metern innerhalb des Strahlengangs des zweiten Teilstrahls 4b verbleibt. Wird innerhalb dieser Strecke ein Fenster bzw. eine Bohrung angeordnet, an welcher der Übergang von der weiteren Kammer 12 in die Vakuum-Kammer 11 erfolgt, passt der separierte erste Teilstrahl 4a durch dieses Fenster bzw. durch diese Bohrung, ohne dass diese für den Durchtritt des separierten ersten Teilstrahls 4a erweitert werden muss. Es versteht sich, dass bei der Anordnung des Umlenkspiegels 9 vor der Fokussierlinse 10 bzw. der Fokussiereinrichtung der Kippwinkel α in Abhängigkeit von der fokussierenden Brennweite eingestellt bzw. festgelegt werden sollte, so dass sich der gewünschte Abstand A zwischen den beiden Fokuspositionen F1, F2 einstellt.
  • Fig. 3a,b zeigen ein Beispiel für eine alternative Ausführung des Umlenkspiegels 8, der eine im Wesentlichen prismatische Grundform aufweist und bei dem der erste Flächenbereich 16a und der zweite Flächenbereich 16b an einer Kante K aneinander stoßen, wobei der erste Flächenbereich 16a einen Randbereich der reflektierenden Oberfläche 8a des Umlenkspiegels 8 bildet. Bei dem in Fig. 3a,b gezeigten Beispiel sind die beiden Flächenbereiche 16a, 16b plan ausgebildet, wobei der erste umgelenkte Teilstrahl 4a wie bei dem in Fig. 2 bzw. in Fig. 2a,b gezeigten Beispiel zunächst innerhalb des Strahlengangs des zweiten Teilstrahls 4b verbleibt, da die beiden Flächenbereiche 16a, 16b in einem stumpfen Winkel aneinander stoßen.
  • Bei dem in Fig. 3a,b gezeigten Beispiel hängt die Aufteilung der Leistung des einfallenden Laserstrahls 4 auf die beiden umgelenkten Teilstrahlen 4a, 4b davon ab, in welchem Bereich der Laserstrahl 4 in einer Richtung Z eines XYZ-Koordinatensystems quer zur (im gezeigten Beispiel geraden) Kante K auf den Umlenkspiegel 8 auftrifft. Eine Verschiebung des Umlenkspiegels 8 entlang dieser Richtung ermöglicht eine Veränderung der Aufteilung der Leistung des Laserstrahls 4 auf die beiden umgelenkten Teilstrahlen 4a, 4b. Zu diesem Zweck kann der Umlenkspiegel 8 beispielsweise mittels eines in Fig. 3b durch einen Doppelpfeil angedeuteten translatorischen Antriebs 17 in Richtung der Z-Achse verschoben werden. Die Ansteuerung des Antriebs 17 kann mit Hilfe der Regeleinrichtung 13 erfolgen.
  • Fig. 4a,b zeigen Beispiele für Umlenkspiegel 8 analog zu Fig. 3a,b, bei denen der erste Flächenbereich 16a eine Krümmung aufweist. Der in Fig. 4a gezeigte erste Flächenbereich 16a ist parabolisch gekrümmt, um den ersten umgelenkten Teilstrahl 4b zu fokussieren, während der in Fig. 4b gezeigte erste Flächenbereich 16a toroidal gekrümmt ist und der Aufweitung des umgelenkten ersten Teilstrahls 16a dient. Der Kippwinkel α in Fig. 4a,b ist identisch zu dem in Fig. 3a,b gezeigten Beispiel, wobei der Kippwinkel α in Fig. 4a,b, entlang einer Verbindungslinie zwischen der Kante K und der Außenkante des ersten Flächenbereichs 16a gemessen wird.
  • Durch die Krümmung des ersten Flächenbereichs 16a kann die Fokusposition F1 des ersten umgelenkten Teilstrahls 4a aus einer Ebene heraus verschoben werden, in welcher sich die Fokusposition F2 des zweiten umgelenkten Teilstrahls 4b befindet, um eine feste Defokussierung zwischen den beiden Fokuspositionen F1, F2 zu erreichen. Bei der Verwendung eines planen ersten Flächenbereichs 16a stimmen die Fokusebenen der beiden umgelenkten Teilstrahlen 4a, 4b hingegen im Wesentlichen überein und enthalten die Ebene bzw. die Richtung, entlang derer sich die Zinn-Tröpfchen 6 bewegen.
  • Bei den weiter oben beschriebenen Beispielen verbleibt der erste umgelenkte Teilstrahl 4a nach der Umlenkung innerhalb des zweiten umgelenkten Teilstrahls 4b, was den gemeinsamen Durchtritt der beiden Teilstrahlen 4a, 4b durch in der Strahlführungseinrichtung 3 vorgesehene Aperturen bzw. Strahlbegrenzungen erleichtert. Fign. 5a,b zeigen hingegen ein Beispiel für einen Umlenkspiegel 8, bei dem die beiden aneinander angrenzenden Flächenbereiche 16a, 16b unter einem überstumpfen Winkel (>180°) zueinander angeordnet sind, so dass sich eine dachartige Geometrie der reflektierenden Oberfläche 8a einstellt. Wie in Fig. 5a zu erkennen ist, werden die beiden Teilstrahlen 4a, 4b bei der Umlenkung vollständig voneinander separiert, d.h. der erste umgelenkte Teilstrahl 4a verläuft nicht innerhalb des Strahlengangs des zweiten umgelenkten Teilstrahls 4b. Dies kann ausgenützt werden, um im Strahlengang des ersten Teilstrahls 4a einen weiteren Umlenkspiegel 18 anzuordnen, der beweglich gelagert ist und im gezeigten Beispiel mittels eines Drehantriebs um eine Kippachse C verkippt werden kann, um die Fokusposition F1 des ersten umgelenkten Teilstrahls 4a zu verändern, beispielsweise um den Abstand A zwischen den beiden Fokuspositionen F1, F2 auf einen geeigneten Wert einzustellen.
  • Sämtliche in Fig. 3a,b bis Fig. 5a,b gezeigten Umlenkspiegel 8, genauer gesagt deren zueinander verkippte Flächenbereiche 16a, 16b, können durch Diamantfräsen oder durch Diamantdrehen hergestellt werden. Die beispielhaft in Fig. 3a,b bis Fig. 5a,b gezeigten Umlenkspiegel 8 können vor oder hinter der Fokussierlinse 10 angeordnet werden, wobei die Anordnung an einer Position innerhalb des Strahlengangs der Strahlführungseinrichtung 3 vorteilhaft ist, an der sich die Strahllage des Laserstrahls 4 durch Schwankungen der Strahlquelle 2 nicht zu sehr verändert, da dies die Leistungsaufteilung auf die beiden umgelenkten Teilstrahlen 4a, 4b beeinflusst.
  • Fig. 6a zeigt eine Vakuum-Kammer 11 einer EUV-Strahlungserzeugungsvorrichtung 1, die ansonsten wie in Fig. 1 gezeigt ausgebildet ist. An der Vakuum-Kammer 11 ist ein transmissives optisches Element 19 in Form einer Planplatte gebildet, welches die Vakuum-Kammer 11 gasdicht abschließt und welches eine Apertur für den Laserstrahl 4 bildet. Wie in Fig. 6b zu erkennen ist, weist eine Oberfläche 19a des optischen Elements 19, welche eine Strahleintrittsfläche bildet, einen ersten, planen Flächenbereich 14a und einen zweiten, planen Flächenbereich 14b auf, die zueinander unter einem Kippwinkel α angeordnet sind. Der erste Flächenbereich 14a ist von dem zweiten, größeren Flächenbereich 14b ringförmig umgeben. Der erste Flächenbereich 14a ist durch Ionenstrahlätzen in der Oberfläche 19a gebildet und weist wie bei der in Fig. 2a gezeigten Ausführungsform eine elliptische Außenkontur auf.
  • Der Laserstrahl 4 trifft im Wesentlichen senkrecht auf die Oberfläche 19a des plattenförmigen optischen Elements 19 auf. Der Teil des Laserstrahls 4, welcher auf den zweiten Flächenbereich 14b des plattenförmigen optischen Elements 19 auftrifft, tritt im Wesentlichen ohne Ablenkung durch das optische Element 19 hindurch und bildet den zweiten Teilstrahl 4b. Der Teil des Laserstrahls 4, welcher auf den ersten Flächenbereich 14a auftrifft, wird beim Übertritt in das optisch dichtere Medium des optischen Elements 19 gebrochen und bildet beim Austritt aus dem optischen Element 19 einen ersten Teilstrahl 4a, der unter einem Winkel zum zweiten Teilstrahl 4b verläuft. Auf die Darstellung der Brechung des ersten Teilstrahls 4a an einer strahlaustrittsseitigen Oberfläche 19b des optischen Elements 19 wurde verzichtet. Es versteht sich, dass auch ein (nicht gezeigtes) optisches Element, welches die weitere Kammer 12 gasdicht abschließt, als Umlenkeinrichtung dienen kann.
  • Das transmissive optische Element 19 besteht im vorliegenden Beispiel aus Diamant und hat bei der verwendeten Wellenlänge des Laserstrahls 4 von ca. 10,6 µm einen vergleichsweise hohen Brechungsindex von ca. n = 2,4. Gemäß dem Brechungsgesetz genügt daher bereits ein kleiner Kippwinkel α, um eine vergleichsweise große Ablenkung und damit einen vergleichsweise großen Winkel zwischen den Strahlrichtungen der beiden Teilstrahlen 4a, 4b zu erzeugen. Bei der weiter oben beschriebenen Separation mittels einer reflektierenden Oberfläche 8a liegt der Winkel, den die beiden Teilstrahlen 4a, 4b miteinander einschließen, hingegen beim Doppelten des Kippwinkels α. Es versteht sich, dass das transmissive optische Element 19 auch wie in Fig. 3a,b bis Fig. 5a,b ausgebildet sein kann, d.h. der erste Flächenbereich kann einen Randbereich der transmittierenden Oberfläche des transmissiven optischen Elements 19 bilden.
  • Zusammengefasst kann durch eine Umlenkeinrichtung in Form eines Umlenkspiegels 8 oder eines transmissiven optischen Elements 19, welche eine Aufteilung in zwei Teilstrahlen 4a, 4b ermöglichen, eine der Erzeugung eines Vor-Pulses und eines Haupt-Pulses analoge Wirkung auf das Target-Material in Form der Zinn-Tröpfchen 6 erzielt werden, ohne dass zu diesem Zweck die Erzeugung von zwei Laserstrahlen mit unterschiedlichen Wellenlängen bzw. die Bereitstellung von zwei Strahlquellen erforderlich ist. Auch kann auf aufwändige Optiken zur Vereinigung bzw. zur Separation von Laserstrahlen mit unterschiedlichen Wellenlängen verzichtet werden.

Claims (15)

  1. Strahlführungseinrichtung (3) zur Führung eines Laserstrahls (4) von einer Strahlungsquelle (2) in Richtung auf einen Zielbereich (5), in den ein Target-Material (6) zur Erzeugung von EUV-Strahlung (7) einbringbar ist, umfassend:
    eine Fokussiereinrichtung (10) zur Fokussierung des Laserstrahls (4) in dem Zielbereich (5), sowie
    eine Umlenkeinrichtung (8,19), die ausgebildet ist, den Laserstrahl (4) in einen umgelenkten ersten Teilstrahl (4a) und in einen zweiten Teilstrahl (4b) aufzuteilen, die an zwei unterschiedlichen Fokuspositionen (F1, F2) innerhalb des Zielbereichs (5) fokussiert werden,
    dadurch gekennzeichnet,
    dass eine Oberfläche (8a, 19a) der Umlenkeinrichtung (8, 19) zur Aufteilung in die zwei Teilstrahlen (4a, 4b) einen ersten Flächenbereich (14a, 16a) und einen zweiten, zum ersten verkippten Flächenbereich (14b, 16b) aufweist.
  2. Strahlführungseinrichtung nach Anspruch 1, bei welcher die Umlenkeinrichtung (19) ein transmissives optisches Element (19) mit einer transmissiven Oberfläche (19a) ist, die den ersten Flächenbereich (14a, 16a) und den zweiten, zum ersten verkippten Flächenbereich (14b, 16b) aufweist.
  3. Strahlführungseinrichtung nach Anspruch 2, bei welcher das transmissive optische Element (19) eine in der Strahlführungseinrichtung (3) gebildete Kammer (11, 12) gasdicht abschließt.
  4. Strahlführungseinrichtung nach Anspruch 1, bei welcher die Umlenkeinrichtung ein Umlenkspiegel (8) ist, dessen reflektierende Oberfläche (8a) den ersten Flächenbereich (14a, 16a) zur Umlenkung des ersten Teilstrahls (4a) und den zweiten, zum ersten verkippten Flächenbereich (14b, 16b) zur Umlenkung des zweiten Teilstrahls (4b) aufweist.
  5. Strahlführungseinrichtung nach einem der vorhergehenden Ansprüche, bei welcher der erste Flächenbereich (14a, 16a) weniger als 20% der Oberfläche (8a, 19a) der Umlenkeinrichtung (8, 19) bildet.
  6. Strahlführungseinrichtung nach einem der vorhergehenden Ansprüche, bei welcher ein Kippwinkel (α) zwischen dem ersten Flächenbereich (14a, 16a) und dem zweiten Flächenbereich (14b, 16b) weniger als 10 mrad, bevorzugt weniger als 5 mrad beträgt.
  7. Strahlführungseinrichtung nach einem der vorhergehenden Ansprüche, bei welcher der erste Flächenbereich (14a) von dem zweiten Flächenbereich (14b) umgeben ist.
  8. Strahlführungseinrichtung nach Anspruch 7, bei welcher der erste Flächenbereich (14a) eine elliptische Außenkontur aufweist.
  9. Strahlführungseinrichtung nach Anspruch 7 oder 8, bei welcher der erste Flächenbereich (14a) zur Einstellung des Kippwinkels (α) um eine Kippachse (T) verkippbar ist.
  10. Strahlführungseinrichtung nach einem der Ansprüche 1 bis 6, bei welcher der erste Flächenbereich (16a) einen Randbereich der Oberfläche (8a) bildet, der an einer Kante (K) an den zweiten Flächenbereich (16b) angrenzt.
  11. Strahlführungseinrichtung nach Anspruch 10, bei welcher die Umlenkeinrichtung ein Umlenkspiegel (8) ist, der entlang einer quer zur Kante (K) verlaufenden Richtung (Z) verschiebbar gelagert ist.
  12. Strahlführungseinrichtung nach einem der vorhergehenden Ansprüche, bei welcher der zweite Flächenbereich (14b, 16b) plan ausgebildet ist.
  13. Strahlführungseinrichtung nach einem der vorhergehenden Ansprüche, bei welcher der erste Flächenbereich (16a) gekrümmt ausgebildet ist.
  14. Strahlführungseinrichtung nach einem der vorhergehenden Ansprüche, bei welcher der die Aufteilung bewirkende Umlenkspiegel ein letzter Umlenkspiegel (8) der Strahlführungseinrichtung (3) vor dem Zielbereich (5) ist.
  15. EUV-Strahlungserzeugungsvorrichtung (1), umfassend: eine Strahlquelle (2) zur Erzeugung des Laserstrahls (4), sowie eine Strahlführungseinrichtung (3) nach einem der vorhergehenden Ansprüche.
EP13759691.2A 2013-09-02 2013-09-02 Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung damit Active EP3042551B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/068105 WO2015028103A1 (de) 2013-09-02 2013-09-02 Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung damit

Publications (2)

Publication Number Publication Date
EP3042551A1 EP3042551A1 (de) 2016-07-13
EP3042551B1 true EP3042551B1 (de) 2017-08-23

Family

ID=49150915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13759691.2A Active EP3042551B1 (de) 2013-09-02 2013-09-02 Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung damit

Country Status (2)

Country Link
EP (1) EP3042551B1 (de)
WO (1) WO2015028103A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166369B (zh) * 2018-04-24 2023-05-23 通快激光系统半导体制造有限公司 Euv辐射产生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9308981D0 (en) * 1993-04-30 1993-06-16 Science And Engineering Resear Laser-excited x-ray source
US7518787B2 (en) * 2006-06-14 2009-04-14 Cymer, Inc. Drive laser for EUV light source
DE102004005242B4 (de) * 2004-01-30 2006-04-20 Xtreme Technologies Gmbh Verfahren und Vorrichtung zur plasmabasierten Erzeugung intensiver kurzwelliger Strahlung
NL2004837A (en) * 2009-07-09 2011-01-10 Asml Netherlands Bv Radiation system and lithographic apparatus.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015028103A1 (de) 2015-03-05
EP3042551A1 (de) 2016-07-13

Similar Documents

Publication Publication Date Title
EP3045021B1 (de) Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung mit einer überlagerungseinrichtung
EP3248442B1 (de) Strahlführungseinrichtung, euv-strahlungserzeugungsvorrichtung und verfahren zum einstellen eines strahldurchmessers und eines öffnungswinkels eines laserstrahls
DE102014201739B4 (de) Laserbearbeitungsvorrichtung sowie Verfahren zum Erzeugen zweier Teilstrahlen
EP2901458B1 (de) Strahlführungseinrichtung und verfahren zum einstellen des öffnungswinkels eines laserstrahls
EP1896893B1 (de) Vorrichtung zur strahlformung
EP4168207A1 (de) Bearbeitungsoptik, laserbearbeitungsvorrichtung und verfahren zur laserbearbeitung
WO2021005061A1 (de) Optische apparatur und verfahren zum laserschweissen eines werkstücks, mit mehreren teilstrahlen, die im strahlprofil eine kernzone und eine ringzone aufweisen
EP3045022B1 (de) Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung mit einer überlagerungseinrichtung
EP2217961A1 (de) Vorrichtung zur strahlformung
WO2020212175A1 (de) Bearbeitungsoptik, laserbearbeitungsvorrichtung und verfahren zur laserbearbeitung
DE102007019812A1 (de) Multispot-Laserbearbeitung
WO2008049389A1 (de) Vorrichtung zur bearbeitung eines werkstücks mittels laserstrahlung
DE102008027229B4 (de) Vorrichtung zur Strahlformung
EP3042551B1 (de) Strahlführungseinrichtung und euv-strahlungserzeugungsvorrichtung damit
WO2018189080A1 (de) Vorrichtung und verfahren zum laserbasierten trennen eines transparenten, sprödbrechenden werkstückes
EP3014957B1 (de) Euv-strahlungserzeugungsvorrichtung mit einer strahlbeeinflussungsoptik
DE102015200795B3 (de) Anordnung zur Bestrahlung einer Objektfläche mit mehreren Teilstrahlen ultrakurz gepulster Laserstrahlung
WO2014076290A1 (de) Divergenzänderungsvorrichtung
WO2022033923A1 (de) Vorrichtung zum erzeugen einer definierten laserlinie auf einer arbeitsebene
EP3183610B1 (de) Verfahren zum verlängern eines laufwegs eines lichtstrahls, optische verzögerungseinrichtung und treiberlaseranordnung damit
DE102011006152A1 (de) Trepanieroptik zur Einstellung und Variation eines Propagationswinkels und einer lateralen Versetzung elektromagnetischer Strahlung
WO2019206399A1 (de) Reflektierendes optisches element, strahlführungseinrichtung und euv-strahlungserzeugungseinrichtung
WO2022122238A1 (de) Laserbearbeitung eines teiltransparenten werkstücks mit einem quasi-nichtbeugenden laserstrahl
WO2023006821A1 (de) Fokussiereinrichtung mit einer parallel oder deckungsgleich zu einer targetebene verlaufenden bildebene
DE102012111091B4 (de) Divergenzänderungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 922586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008151

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171124

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008151

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170902

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

26N No opposition filed

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171023

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 922586

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 11