EP3041618B1 - Bending machine and method for bending a sheet metal workpiece - Google Patents

Bending machine and method for bending a sheet metal workpiece Download PDF

Info

Publication number
EP3041618B1
EP3041618B1 EP14796392.0A EP14796392A EP3041618B1 EP 3041618 B1 EP3041618 B1 EP 3041618B1 EP 14796392 A EP14796392 A EP 14796392A EP 3041618 B1 EP3041618 B1 EP 3041618B1
Authority
EP
European Patent Office
Prior art keywords
bending
punch
sheet metal
metal workpiece
punches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14796392.0A
Other languages
German (de)
French (fr)
Other versions
EP3041618A1 (en
Inventor
Wolfgang Aigner
Bernhard Fischereder
Stefano Speziali
Thomas Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Maschinen Austria GmbH and Co KG
Original Assignee
Trumpf Maschinen Austria GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Maschinen Austria GmbH and Co KG filed Critical Trumpf Maschinen Austria GmbH and Co KG
Publication of EP3041618A1 publication Critical patent/EP3041618A1/en
Application granted granted Critical
Publication of EP3041618B1 publication Critical patent/EP3041618B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • B21D5/0209Tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/06Stamping using rigid devices or tools having relatively-movable die parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/08Stamping using rigid devices or tools with die parts on rotating carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/04Movable or exchangeable mountings for tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/04Movable or exchangeable mountings for tools
    • B21D37/06Pivotally-arranged tools, e.g. disengageable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/006Bending sheet metal along straight lines, e.g. to form simple curves combined with measuring of bends

Definitions

  • the invention relates to a bending machine comprising at least three bending punches, each having mutually parallel working edges, as set forth in claim 1, and a method for bending a sheet metal workpiece on such a bending machine, as specified in claim 11.
  • a bending machine in which an upper counter-punch relative to a frame, transverse to the sheet plane, from an upper retracted position to a lower working position and back is movable.
  • This counter-holder stamp are two arranged on the frame, lower punch opposite, the two lower bending punch are mounted pivotably about an axis extending in the region of the bend of the sheet axis in the frame and coupled together by a pivoting mechanism.
  • the fact that the two lower bending punch are coupled in the pivot mechanism it is achieved that in a deformation of the sheet through the upper counter-punch, the two legs of the sheet are bent symmetrically.
  • the upper counter-holder punch can be pivotally mounted so that sheets with protruding tabs can be bent in a larger bending angle.
  • the present invention has for its object to provide a bending machine, which ensures a variety deformability of the sheet metal workpiece to be machined Furthermore, the possibility should be opened that at least one bending leg of the sheet metal workpiece during the bending process in an initial plane which defines the initial position of the sheet metal workpiece remains. This is intended to minimize the safety risk for the machine operator, since at least on that side of the bending machine, on which the sheet metal workpiece is inserted, the bending leg should remain in a rest position during the bending process. Furthermore, in a further development of the bending machine, the force peaks of the forces acting on the bending machine should be reduced as much as possible during the bending process. Such a bending machine should also not damage the surface of the sheet metal workpiece during the bending process.
  • This object of the invention is achieved by a bending machine with the features according to claim 1 or by the special bending method with said bending machine according to claim 11.
  • a bending machine with the features according to claim 1 or by the special bending method with said bending machine according to claim 11.
  • a bending machine can be realized in which the sheet to be machined is touched at the three working edges of the three bending punch.
  • the expression that at least the second bending punch has three degrees of freedom in the reference plane or the third bending punch has at least one rotational and translational degree of freedom with respect to the reference plane it can be ensured that during the bending process the bending punches are guided flexibly along an arbitrary trajectory can, that a bending leg of the sheet metal workpiece during the bending process in a in the output plane lying position remains.
  • the arbitrary trajectory can be chosen so that the relative movement between the sheet metal workpiece and the bending leg are kept as low as possible during the bending process.
  • a bending machine for bending a sheet metal work piece comprising at least three bending punches, each having mutually parallel working edges formed.
  • the first and the second bending punch are positioned on one side, and the third bending punch is positioned on the opposite side of the output plane.
  • the working edge of the third bending punch is adjustable between the working edges of the first and second bending punch.
  • the third bending punch has at least one rotational and one translational degree of freedom in a reference plane oriented at right angles to a working edge.
  • the second punch has three degrees of freedom in the reference plane.
  • An advantage of the design according to the invention is that due to the high number of degrees of freedom, and therefore possibilities of movement of the individual bending dies, a bending process can be realized which combines the advantages of die bending and pivoting bending.
  • the high flexibility of the bending machine the sheet metal workpiece deforming punch can be performed along a trajectory that the smallest possible relative movement between the punch and sheet metal workpiece is formed, whereby the surface of the sheet metal workpiece is protected from damage.
  • the surface of the sheet metal workpiece can be protected by optimizing the trajectories of the individual bending dies, but also the necessary energy input by the bending machine during the bending process can be minimized.
  • a support body defining the output plane is designed for a sheet metal workpiece. It is advantageous in this case that this support body can be designed either as a simple support table, or as a special construction for the feed and the positioning of sheet metal workpieces. In a manual feed of the sheet metal workpieces to be processed sheet metal workpiece is placed on the support body and positioned with the aid of a stop element. It can be provided that the stop element is integrated directly into the support body.
  • the support body for example, a conveyor is integrated, which is used for Zu dinnern the workpieces to be processed.
  • the support body is movable and thus can record a workpiece to be machined from a defined transfer position and this can then perform the bending machine.
  • the support body is designed to pivot about a transverse axis, or about its vertical axis.
  • the third bending punch has three degrees of freedom.
  • the advantage here is that thereby the variety of applications of the bending machine and thus the variation of the bends of Blechwerk Swissenen be further increased.
  • the "die width" of the bending machine can be adjusted by adjusting the distance between the first and second bending punch, and the third punch can then be positioned symmetrically between these two punch punches.
  • the first bending punch has at least one translational degree of freedom in the reference plane. The advantage here is that thereby the variety of applications of the bending machine and thus the variation of the bends of Blechwerk Kohlenen can be further increased.
  • the "die width" can be adjusted.
  • the attack side of the punch can be moved to the opposite side of the output plane and therefore to the opposite side of the sheet metal. If the first punch has more than one degree of freedom, it can be moved according to the positioning capabilities of the third punch.
  • the first and the second bending punch are movable independently of each other. It is advantageous in an independent movement of the first and the second punch that during the bending process, for example, the first punch can be left in its position and only the second punch performs a kind of pivotal movement to bend the sheet metal workpiece. This ensures that one leg of the processed sheet metal workpiece can remain in a horizontal position. Furthermore, it is expedient that the three bending punches for positioning according to the number of their degrees of freedom with a drive mechanism selected from a group comprising rotary drive, rotary actuator, linear drive or combinations thereof are connected. The degree of freedom in the reference plane is a possibility of movement of the bending punch in this reference plane.
  • the possibility of movement of the punch is implemented by one of the above drives in a movement and positioning movement of the punch.
  • movement possibilities of a bending punch according to its degrees of freedom there are several different possibilities, which are mentioned here.
  • One degree of freedom in the reference plane means that the bending punch in this plane can perform a rectilinear motion in one direction. This will be realized by a linear drive which moves the bending punch.
  • a degree of freedom in the reference plane can also mean that the bending punch can perform a rotational movement, such as a rotation about its working edge. This rotational movement is implemented either by a rotary drive or by a rotary actuator.
  • Two degrees of freedom in the reference plane mean that the punch has either two translational degrees of freedom, one translational and one rotational degree of freedom, or two rotational degrees of freedom.
  • Two translatory degrees of freedom mean that the punch can be positioned at any point in the plane, but its orientation can not be changed.
  • This can be realized by a combination of two linear drives, which are arranged, for example, in a main direction and in a secondary direction normal to them.
  • these linear drives are normal to each other, but it can also be implemented a kind of parallel kinematics, in which the linear drives have a common crosspoint, whereby this point of the punch is freely movable in the reference plane.
  • a translational and a rotational degree of freedom can be implemented, for example, by a swivel arm with a linear drive connected thereto. Another possibility is a linear drive with attached rotary head.
  • the maximum freedom of movement of a punch is achieved by three degrees of freedom and a corresponding combination of the necessary drives. This can be achieved by a bending punch any point in the range of the punch with any orientation of the punch.
  • the possibilities of combinations of drives is very diverse and can be deduced from the above descriptions.
  • At least one of the bending punches is adjustable in the direction of its working edge, or is adjustable about a pivot axis parallel to the reference plane. It is advantageous in this development that after completion of the bending process, the bending tool can be swung out, for example, so that a processed sheet metal workpiece can be easily removed from the bending machine.
  • a bending punch can also be provided that the punch is extended linearly along its working edge from its working position.
  • a combination of swinging out and linear extension can also be provided. In this case, for example, the bending punch can be extended linearly in half, and then swung out about its center in order to minimize the space required for this procedure.
  • At least one of the bending punches has two working edges which are approximately opposite each other.
  • the versatility of the punch can be increased, which also bends in sections opposing orientations can be performed with this punch without the bending punch must be rotated by 180 ° with respect to its working edge.
  • the punch must be placed only on the opposite side of the sheet metal workpiece to allow an oppositely oriented bend.
  • At least one of the three bending dies is assigned a further bending punch, which is arranged on the opposite side of the starting plane, wherein the working edges of these two opposing bending dies are trimmed to one another. It is advantageous in such an embodiment of the bending machine that the versatility of the bending machine can be increased by the use of two opposing bending dies. Such an arrangement is ideal, especially for bends in orientations in opposite directions, since the bending dies do not have to be pivoted or brought to the opposite side of the starting plane in order to bend in the opposite direction of a preceding bend.
  • a force measuring element is integrated in at least one of the bending punch and / or in the drive device.
  • the sheet thickness can be determined because the force sensor returns a reading of a measured force as soon as the sheet metal workpiece touches all three bending dies, and thus clamped between them .
  • a force measuring element can detect when the sheet metal workpiece is no longer clamped at the end of a bending operation, while relieving the bending punch, and thus the sheet metal workpiece is fully spring-back and has reached its bending angle, which it is maintained due to the plastic deformation. This can be recalculated on the position of the punch, which bending angle was realized on the sheet metal workpiece.
  • At least one of the bending punches has at least one stop surface.
  • An advantage of the expression of a stop surface in one of the bending punch is that the bending punch can be used as a stop unit to correctly position a sheet metal workpiece to be bent, especially when manually inserting the workpiece. As a result, on the one hand space and on the other hand can be saved cost because no own stop unit must be performed in the bending machine. Furthermore, it is particularly expedient to provide one of the bending punch with a stop surface, since the position, or the geometry of the punch must be determined very accurately anyway for the labor of the bending machine.
  • a method in which for bending a sheet metal workpiece on a bending machine which has three bending dies with mutually parallel working edges, wherein with respect to an output plane in which a bending section to be processed of the sheet metal workpiece lies on one side of the first and the second Bending punch are positioned, and on the opposite side of the output plane of the third punch is positioned.
  • the working edge of the third bending punch is adjusted between the working edges of the first and second bending punch, and the third bending punch is moved in at least one rotational and one translational direction in a reference plane oriented at right angles to a working edge.
  • the sheet metal workpiece between the first and third working edge is held substantially in the starting plane, whereby a first bending leg is formed and the working edge of the second punch is guided along a path around the working edge of the third bending punch, whereby at the third Working edge of the bending edge and then a second bending leg is formed on this.
  • a bending machine which has three bending punches can be operated by this method.
  • the advantages of the Gesenkbiegens are, for example, that by three working edges on which the sheet metal workpiece is touched, a well-defined and very beautiful bending edge can be generated.
  • the bending force to be applied during the bending operation can be regulated very well.
  • the advantages of the pivoting bending for example, that during the bending process, one of the two bending legs of a processed sheet metal workpiece remains in a horizontal output plane.
  • the bending machine is ideal for automation tasks, since the position of the workpiece to be machined should be precisely defined here for the transfer of the sheet metal workpiece to a manipulation unit.
  • the path of the second working edge is set so that it contacts the sheet metal workpiece with the least possible relative movement during the bending process.
  • a control of the punch with attention to this aspect is particularly advantageous because the sheet metal workpiece is not damaged by largely avoiding relative movement between the punch and sheet metal workpiece. Such damage can be, for example, notches or grinding grooves in the sheet metal workpiece.
  • the necessary forming energy can also be reduced, since a certain amount of energy input is necessary for the unwanted damage of the workpiece surface in the form of damage.
  • the distance between the first and the second working edge is set and / or adjusted as a function of workpiece properties. It is particularly advantageous that the "Gesenkweite" can be adjusted by changing the distance between the first and second working edge. As a result, the force peaks of the bending forces acting on the bending machine forces can be adjusted because a greater distance between the first and second working edge has the consequence that the introduced by the punch in the sheet metal workpiece bending moment at the same effective force of the punch becomes larger. This allows the sheet metal workpiece to be bent more easily.
  • the free adjustability of the "Gesenkweite” is very advantageous because for sheet metal workpieces, which have a higher sheet thickness, simply the “Gesenkweite” can be increased. This possibility can also be used to sheet thickness fluctuations, which occur due to the manufacturing tolerances for rolled sheets.
  • the bending force regulation can be made flexible by changing the "Gesenkweite” and the bending radius, or the shape of the area of the sheet metal workpiece, which lies between the working edges of the punch.
  • the calculation programs, or the knowledge in connection with the three-point bending and variable Gesenkweite is present. It can thereby be achieved that the calculation programs on which such a bending process is based can be designed with the aid of years of know-how.
  • the distances between the third and first working edge and the third and second working edge are kept approximately the same during the bending process.
  • the advantage here is that act by adjusting an approximately equal distance between the working edges of the individual bending punch, the forces acting symmetrically on the two bending legs of the sheet metal workpiece.
  • a sheet metal workpiece can be produced, in which on the one hand, the bending radius has a uniform course, and also the two bending legs of the sheet metal workpiece are formed symmetrically in the vicinity of the bending edge.
  • the bending punches are guided oriented substantially at right angles to the workpiece surface. That a punch is oriented perpendicular to the workpiece surface means that essentially the vertical axis of the punch, on which also the working edge of the punch and the point of force application of a drive mechanism is oriented at right angles to the workpiece surface.
  • the sheet metal workpiece in sections opposing orientations before the respective bending operation of the first and / or second bending punch are required, positioned on the one or on the opposite side of the output plane.
  • the advantage here is that by the ability to position the punch on both sides of the output level to increase the variety of possible bends on the sheet metal workpiece.
  • the positioning of the bending punch is always carried out so that the first and the second bending punch are placed on one side of the output plane, and placed on the opposite side of the output plane of the third punch with its working edge between the first and second bending die lying.
  • the punch on the opposite side of the Output level are placed, so the orientation of the punch must be adjusted. This ensures that the working edge of the punch is always aligned so that it is oriented in the direction of the sheet metal workpiece to be processed.
  • the sheet thickness and / or the bending angle can be calculated by determining the position of a punch and the measurement of the force exerted on the sheet metal workpiece to be bent force. It is advantageous here that the position of the punch is known anyway, or is specified by the control unit of the bending machine. The geometry of the punch is known. By measuring the force exerted on the bending workpiece force, the sheet thickness and / or the bending angle can be calculated. Furthermore, it is possible by the measurement of the bending force during the bending process already to integrate the expected springback of the sheet metal workpiece in the calculations for the intended bending angle, creating a possible Bending can be omitted. Especially by the detection of the sheet thickness and the force to be applied in the bending process, it is possible to predict the bending behavior of the sheet metal workpiece on the basis of statistical records, whereby the final bending angle can be well precalculated.
  • Fig. 1 shows in an exemplary representation of the section through a bending machine 1 and to be processed sheet metal workpiece 2, which is oriented in an output plane 3.
  • the sheet metal workpiece 2 is essentially located on a first bending punch 4 and on a second punch 5.
  • a third bending punch 6 is positioned on the opposite side of the starting plane 3.
  • the three bending punches 4, 5, 6 touch the sheet metal workpiece 2 to be bent essentially at its working edges 7, 8, 9.
  • the bending punch 4, 5 act here similar to the die of a press brake as a lower tool, and the third punch 6 acts like an upper tool of a press brake.
  • the sheet metal workpiece 2 to be machined Upon contact of all three bending punches 4, 5, 6 with the sheet metal workpiece 2 to be machined, the largest bending moment in the sheet metal workpiece 2 is introduced at the bending edge 11. This bending edge 11 is almost coherent with the third working edge 9 of the third bending punch 6. By the bending edge 11, the sheet metal workpiece 2 within the bending portion 10 in a first Bending leg 12 and a second bending leg 13 divided. These two bending legs 12, 13 are deformed during the bending process only in their lying within the bending portion 10 part. As shown in this schematic diagram, the sheet metal workpiece 2 to be machined can also rest on a support body 14 in addition to the first bending punch 4 and the second bending punch 5.
  • the support body 14 may be formed as a simple support table, which only serves to support the sheet metal workpiece 2. This is particularly advantageous if the sheet metal workpiece is very large. It is also possible that the support body 14 comprises a conveyor 15, which is responsible for the manipulation of the sheet metal workpiece 2. Such a conveyor 15 may for example be a conveyor belt integrated in the support body 14, which is used for the transport of the sheet metal workpiece 2.
  • a further support body 16 is formed, on which the sheet metal workpiece 2 can rest.
  • a stop unit 17 is formed, which serves for positioning of the sheet metal workpiece 2.
  • This stop unit 17 can either be designed as a stand-alone element or it can also be integrated in a support body 14, 16. Of course, it is possible that the stop unit 17 not only takes over positioning tasks, but that this is also used simultaneously for the sheet metal manipulation.
  • the distance 18 between the two bending dies 4, 5, which essentially defines the bending portion 10 can be adjusted.
  • the third bending punch 6 is positioned between the first bending punch 4 and the second punch 5 in such a way that it comes to rest symmetrically between the two punching dies 4, 5.
  • Fig. 2 shows a perspective view of a punch 4, 5, 6, which is shown in a reference plane 19 cut.
  • the bending punch 4, 5, 6 shown in this view has at both ends of its high expansion a working edge 7, 8, 9. Thereby, it can be used so that it lying on both sides of the output plane 3, the sheet metal workpiece 2 with its working edge 7, 8, 9 can touch, causing him to use on the opposite Side of the output level 3 does not have to be pivoted.
  • a bending of a sheet metal workpiece 2 in the opposite direction with such a punch 4, 5, 6 realized well.
  • Fig. 2 are the possible movement possibilities, also called degrees of freedom, located in which the bending punch 4, 5, 6 can be moved in the reference plane 19.
  • the movement possibilities consist in a transverse direction 20, which corresponds to a guide direction along the output plane 3, a vertical direction 21, which corresponds to a guide along a direction normal to the output plane 3 and a direction of rotation 22, which rotation of the bending punch 4, 5, 6 in the reference plane 19 corresponds.
  • a transverse direction 20 and a vertical direction 21 which corresponds to a guide along a direction normal to the output plane 3
  • a direction of rotation 22 which rotation of the bending punch 4, 5, 6 in the reference plane 19 corresponds.
  • Fig. 3 shows a schematic structure of a combination of different drive mechanisms 23 in order to position a bending punch 4, 5, 6 in the reference plane 19 can arbitrarily.
  • This drive mechanism is responsible for the positioning of the punch 4, 5, 6 in the reference plane 19.
  • Fig. 4a and 4b such as Fig. 5a to 5e show several possible combinations of drives to a bending punch 4, 5, 6 to move in the reference plane 19.
  • Fig. 4a and 4b show the simplest embodiment of a drive combination in which a degree of freedom is given by a drive mechanism 23.
  • This can either be like in Fig. 4a represented by a linear drive 26 can be accomplished or by a in Fig. 4b shown rotary drive 24 or rotary actuator 25.
  • a bending punch 4, 5, 6 are changed in one direction, or the position of the punch 4, 5, 6 are changed in the reference plane 19.
  • Fig. 5a to Fig. 5e shows various arrangements by the bending punch 4, 5, 6 given two degrees of freedom to move, which are realized by appropriate drives.
  • two degrees of freedom are made possible by a combination of two linear actuators 26, which is not required that they are necessarily at right angles to each other.
  • the bending punch 4, 5, 6 can be brought into any position in the reference plane 19, however, its orientation is not changeable.
  • Another possibility is a combination of rotary or rotary actuator 24, 25 and linear drive 26.
  • Fig. 5b represented by a machine frame from the linear drive 26
  • FIG. 5d and 5e shown to combine two rotary or rotary actuators 24, 25, which may be installed at different positions of the drive mechanism 23. Also, a combination of these drives results in either the position or the position of the punch 4, 5, 6 are not arbitrary.
  • a combination of the drive mechanism can be realized in which three drives are used to arbitrarily position and orient the bending punch 4, 5, 6 in the reference plane 19. Due to the diversity of the embodiments, however, an exact description of the possibilities and / or graphic design is dispensed with here, since the individual execution options are in any case made up of a combination of the in 4 and 5 assembled embodiments shown.
  • Fig. 6 shows a schematic diagram of a sequence of a bending process.
  • the sheet metal workpiece 2 which was clamped between the punch punches 4, 5, 6, bent by the movement of the punch 5 along a path 27.
  • the third bending punch 6 can be tilted during the bending process in order to achieve an optimum bending result.
  • the trajectory 27 of the second punch 5, in particular the working edge 7 should be chosen so that the least possible relative movement between the punch 5 and the sheet metal workpiece 2 occurs. As a result, not only is the workpiece surface 28 protected, but also the energy required for the bending process can be minimized. Also, the third punch 6 should be moved with the sheet metal workpiece 2, that no relative movement between this and the sheet metal workpiece 2 occurs. In the bending process, as in Fig. 6 is shown, the first bending leg 12 remains horizontal and the second bending leg 13 is pressed by the second bending punch 5 upwards. The transformation of the sheet metal workpiece 2 takes place mainly in the bending edge 11.
  • Fig. 7 shows the same schematic diagram of a bending process as in Fig. 6 is shown, but here the second bending leg 13 is not bent upwards, but the second bending leg 13 is bent in the opposite direction down.
  • the bending dies 4, 5, 6 On the second side of the starting plane, the bending dies 4, 5, 6 must then each be pivoted by 180 ° so that their working edges 7, 8, 9 again face the sheet metal workpiece 2 to be machined.
  • a punch as in Fig. 2 is shown, which has two opposing working edges 7, 8, 9.
  • Fig. 8 shows a similar schematic diagram of the arrangement of bending dies 4, 5, 6, as shown in Fig. 6 is shown, but here is for a bend to be executed in the opposite direction, not provided that, as in Fig. 7 shown, the bending punch 4, 5, 6 are moved to the other side of the output level 3, but at least one further punch 29 is provided, which is not engaged in the bending operation in one side and in a bending operation in the other side than Replacement for the respective punch 4, 5, 6 is used, so that these bending punch 4, 5, 6 need not be brought to the other side of the reference plane 19 and also their orientation does not need to be changed.
  • Fig. 9 shows a possible construction of such a bending machine with three bending dies.
  • the first punch 4 and the second punch 5 are each coupled to a drive mechanism 23, which two linear actuators and a rotary actuator includes.
  • the bending punch 4, 5 in a certain work area 30 of the bending machine, which is within the reference plane 19, freely positionable.
  • the drive mechanism 23 connects the bending punches 4, 5 to the machine frame 31.
  • the third punch 6 is pivotable with respect to its working edge 9 and further zubewegbar on the sheet metal workpiece 2 or removable from this.
  • the illustrated bending machine was cut in the reference plane 19, which is located exactly in the middle of the bending machine.
  • the second half of the bending machine not shown here is a symmetrical illustration of the in Fig. 9 illustrated half of the bending machine.
  • the bending punch 4, 5, 6 can each be swung out of the working area 30 about a pivot axis 32, so that the sheet can be easily removed from the bending machine.
  • This Ausschwenkvorgang the bending punch 4, 5, 6 may also be necessary if they must be positioned for a bend in the opposite bending direction on the opposite side of the output level 3.
  • Fig. 10 will be in the Fig. 9 shown bending machine shown in a non-cut state.
  • the drive mechanisms 23 of the respective punch 4, 5, 6 are shown on both sides of the punch 4, 5, 6. At these drive mechanisms 23, the bending punch 4, 5, 6 are attached.
  • Fig. 11 shows a schematic diagram in which a force measuring element 33 is mounted on the third bending punch 6, by which force measuring element 33 and by determining the position of the bending punch 4, 5, 6, the sheet thickness 34 and the bending angle 35 can be determined.
  • the sheet thickness 34 can be determined by bringing all the bending punch 4, 5, 6 in an upright position. Thereafter, the sheet metal workpiece 2 is placed on the first punch 4 and the second punch 5. Subsequently, the third punch 6 is moved so far down until the force measuring element 33 returns a value to the machine control, thus it is registered when the third punch 6 touches the sheet metal workpiece 2.
  • the fact that the position of the individual punch 4, 5, 6 is specified by the machine control highly accurate, and is retrievable at any time, can now be recalculated to the plate thickness 34.
  • the procedure for determining the bending angle is as follows.
  • the sheet metal workpiece 2 is bent, wherein a plastic, as well as an elastic deformation occurs during the bending process. If the sheet metal workpiece 2 is now bent over by its elastic component, that is to say it is bent too much, then the sheet metal workpiece 2 will spring back by its elastic component when the bending punch 4,5,6 retracts. Now, if the force on the force measuring element 33 is zero, the bending angle 35 is reached, which is maintained by plastic deformation resistant. Due to the geometry and the position of the individual bending punch 4, 5, 6 can now be calculated back to the reached bending angle.
  • the force measuring element 33 may be, for example, a piezo element which is integrated in the bending punch 4, 5, 6. However, it can also be switched between bending punch 4,5,6 and drive mechanism 23 so as to detect the force acting on the punch 4,5,6 forces.
  • Fig. 12 shows a further embodiment of a bending punch 4, 5, 6 in the bending punch 4, 5, 6, a stop surface 36 is formed, on which the sheet metal workpiece 2 can be posted.
  • Fig. 1-12 are independent and possibly independent embodiments of the bending machine 1 shown, again with the same parts the same reference numerals or component names are used.
  • the representation and the description of the embodiments are limited to the exemplary embodiments and arrangement examples of the bending punch 4, 5, 6.

Description

Die Erfindung betrifft eine Biegemaschine umfassend zumindest drei Biegestempel, welche jeweils parallel zueinander ausgerichtete Arbeitskanten aufweisen, wie dies in Anspruch 1 angegeben ist, sowie ein Verfahren zum Biegen eines Blechwerkstückes auf einer derartigen Biegemaschine, wie dies im Anspruch 11 angegeben ist.The invention relates to a bending machine comprising at least three bending punches, each having mutually parallel working edges, as set forth in claim 1, and a method for bending a sheet metal workpiece on such a bending machine, as specified in claim 11.

Aus der EP 0 476 092 B1 ist eine Biegemaschine bekannt, in der ein oberer Gegenhalterstempel relativ zu einem Gestell, quer zur Blechebene, aus einer oberen zurückgezogenen Stellung in eine untere Arbeitsstellung und zurück bewegbar ist. Diesem Gegenhalterstempel stehen zwei am Gestell angeordnete, untere Biegestempel gegenüber, wobei die beiden unteren Biegestempel um eine im Bereich der Biegung des Blechs verlaufende Achse schwenkbar im Gestell gelagert und durch einen Schwenkmechanismus miteinander gekoppelt sind. Dadurch, dass die beiden unteren Biegestempel im Schwenkmechanismus gekoppelt sind, wird erreicht, dass bei einer Verformung des Bleches durch den oberen Gegenhalterstempel die beiden Schenkel des Bleches symmetrisch aufgebogen werden. Weiters kann der obere Gegenhalterstempel schwenkbar gelagert sein, so dass Bleche mit vorstehenden Laschen in einem größeren Biegewinkel gebogen werden können.From the EP 0 476 092 B1 a bending machine is known in which an upper counter-punch relative to a frame, transverse to the sheet plane, from an upper retracted position to a lower working position and back is movable. This counter-holder stamp are two arranged on the frame, lower punch opposite, the two lower bending punch are mounted pivotably about an axis extending in the region of the bend of the sheet axis in the frame and coupled together by a pivoting mechanism. The fact that the two lower bending punch are coupled in the pivot mechanism, it is achieved that in a deformation of the sheet through the upper counter-punch, the two legs of the sheet are bent symmetrically. Furthermore, the upper counter-holder punch can be pivotally mounted so that sheets with protruding tabs can be bent in a larger bending angle.

Bei einer aus der US 8,322,176 B2 bekannten Biegemaschine wird ein zu bearbeitendes Blechwerkstück in dessen Randbereich mittels einer Klemmvorrichtung gespannt und anschließend durch zwei im Raum frei bewegbare Biegestempel, welche an den beiden gegenüberliegenden Flächen des Bleches angeordnet sind, verformt. Diese beiden Biegestempel sind jeweils auf einer Hexapod-Konstruktion angeordnet. Dadurch dass die beiden Biegestempel in einem Bereich des Bleches an der jeweils gegenüber liegenden Seite des Bleches eine Kraft auf dieses ausüben, kann das Blech in dieser lokalen Zone verformt werden. Nachteilhaft bei der in der EP 0 476 092 B1 beschriebenen Ausführung einer Biegemaschine ist, dass durch die Kopplung der beiden unteren Biegestempel die beiden Schenkel des zu bearbeitenden Bleches nur symmetrisch aufgebogen werden können. Gleich wie bei einem herkömmlichen Biegevorgang auf einer Abkantpresse heben sich dadurch beide Schenkel von einer ursprünglichen Ausgangsebene, in der das Blech eingelegt wurde, ab. Dies ist besonders bei großen Blechwerkstücken nachteilhaft, da beiderseits des oberen Biegestempels ein Gefahrenbereich entsteht, in dem bei einer nicht automatisierten Biegemaschine der Maschinenbediener, welcher für das Einlegen des Blechwerkstückes verantwortlich ist gefährdet wird. Auch bei einer voll automatisierten Biegemaschine ist ein beidseitiges Aufschwenken des Blechwerkstückes nachteilhaft, da die Manipulationseinrichtung mit dem aufgeschwenkten Blechschenkel mitgeführt werden muss. Ein weiterer Nachteil besteht darin, dass bedingt durch die gemeinsame Achse in der die beiden Biegestempel schwenkbar am Gestell gelagert sind, ein Verstellen des Abstandes zwischen den beiden Biegestempeln und somit ein Verändern der Gesenkweite nicht möglich ist.At one of the US 8,322,176 B2 known bending machine to be machined sheet metal workpiece is clamped in its edge region by means of a clamping device and then deformed by two freely movable in space bending punch, which are arranged on the two opposite surfaces of the sheet. These two bending punches are each arranged on a hexapod construction. As a result of the fact that the two bending punches in a region of the sheet metal exert a force on the respective opposite side of the sheet metal, the sheet metal can be deformed in this local zone. Disadvantageous in the in the EP 0 476 092 B1 described embodiment of a bending machine, that the two legs of the sheet to be machined can be bent only symmetrically by the coupling of the two lower punch. As in a conventional bending operation on a press brake, both legs thereby lift off from an original starting plane in which the metal sheet was inserted. This is special disadvantageous for large sheet metal workpieces, since both sides of the upper punch a danger area arises in which is at a non-automated bending machine of the operator, which is responsible for inserting the sheet metal workpiece is at risk. Even with a fully automated bending machine is a double-sided pivoting of the sheet metal workpiece disadvantageous because the manipulation device must be carried along with the pivoted sheet metal leg. Another disadvantage is that due to the common axis in which the two bending dies are pivotally mounted on the frame, an adjustment of the distance between the two punch punches and thus changing the die width is not possible.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Biegemaschine zu schaffen, welche eine vielfältige Verformbarkeit des zu bearbeitenden Blechwerkstückes gewährleistet Weiters soll die Möglichkeit eröffnet werden sein, dass zumindest ein Biegeschenkel des Blechwerkstückes während des Biegevorganges in einer Ausgangsebene, die die Ausgangslage des Blechwerkstückes definiert, verbleibt. Dadurch soll das Sicherheitsrisiko für den Maschinenbediener minimiert werden, da zumindest an jener Seite der Biegemaschine, an der das Blechwerkstück eingelegt wird der Biegeschenkel während des Biegevorganges in einer Ruhestellung verharren soll. Weiters soll in einer Weiterentwicklung der Biegemaschine die Kraftspitzen der auf die Biegemaschine wirkenden Kräfte während des Biegevorganges möglichst reduziert werden. Eine derartige Biegemaschiene soll außerdem die Oberfläche des Blechwerkstückes während des Biegevorganges nicht beschädigen.The present invention has for its object to provide a bending machine, which ensures a variety deformability of the sheet metal workpiece to be machined Furthermore, the possibility should be opened that at least one bending leg of the sheet metal workpiece during the bending process in an initial plane which defines the initial position of the sheet metal workpiece remains. This is intended to minimize the safety risk for the machine operator, since at least on that side of the bending machine, on which the sheet metal workpiece is inserted, the bending leg should remain in a rest position during the bending process. Furthermore, in a further development of the bending machine, the force peaks of the forces acting on the bending machine should be reduced as much as possible during the bending process. Such a bending machine should also not damage the surface of the sheet metal workpiece during the bending process.

Diese Aufgabe der Erfindung wird durch eine Biegemaschine mit den Merkmalen gemäß Anspruch 1 bzw. durch das spezielle Biegeverfahren mit genannter Biegemaschine gemäß Anspruch 11 gelöst. Insbesondere durch den Einsatz von zumindest drei Biegestempel, welche jeweils parallel zueinander ausgerichtete Arbeitskanten aufweisen, kann eine Biegemaschine realisiert werden, bei der das zu bearbeitende Blech an den drei Arbeitskanten der drei Biegestempel berührt wird. Weiters kann durch die Ausprägung, wonach zumindest der zweite Biegestempel drei Freiheitsgrade in der Bezugsebene aufweist bzw. der dritte Biegestempel zumindest einen rotatorischen und translatorischen Freiheitgrad bezüglich der Bezugsebene aufweist, gewährleistet werden, dass während des Biegevorganges die Biegestempel dermaßen flexibel entlang einer beliebigen Bahnkurve geführt werden können, dass ein Biegeschenkel des Blechwerkstückes während des Biegevorganges in einer in der Ausgangsebene liegenden Position verharrt. Weiters kann die beliebige Bahnkurve so gewählt werden, dass während des Biegevorganges die Relativbewegung zwischen Blechwerkstück und Biegeschenkel möglichst gering gehalten werden.This object of the invention is achieved by a bending machine with the features according to claim 1 or by the special bending method with said bending machine according to claim 11. In particular, by the use of at least three bending dies, which each have mutually parallel working edges, a bending machine can be realized in which the sheet to be machined is touched at the three working edges of the three bending punch. Furthermore, by the expression that at least the second bending punch has three degrees of freedom in the reference plane or the third bending punch has at least one rotational and translational degree of freedom with respect to the reference plane, it can be ensured that during the bending process the bending punches are guided flexibly along an arbitrary trajectory can, that a bending leg of the sheet metal workpiece during the bending process in a in the output plane lying position remains. Furthermore, the arbitrary trajectory can be chosen so that the relative movement between the sheet metal workpiece and the bending leg are kept as low as possible during the bending process.

Erfindungsgemäß ist eine Biegemaschine zum Biegen eines Blechwerkstückes, umfassend zumindest drei Biegestempel, welche jeweils parallel zueinander ausgerichtete Arbeitskanten aufweisen ausgebildet. Bezüglich einer Ausgangsebene, in der ein zu bearbeitender Biegeabschnitt des Blechwerkstückes liegt, ist an einer Seite der erste und der zweite Biegestempel, und an der gegenüberliegenden Seite der Ausgangsebene der dritte Biegestempel positioniert. Die Arbeitskante des dritten Biegestempels ist zwischen die Arbeitskanten des ersten und zweiten Biegestempels verstellbar. Der dritte Biegestempel weist zumindest einen rotatorischen und einen translatorischen Freiheitsgrad in einer rechtwinkelig auf eine Arbeitskante orientierten Bezugsebene auf. Der zweite Biegestempel weist drei Freiheitsgrade in der Bezugsebene auf.According to the invention, a bending machine for bending a sheet metal work piece, comprising at least three bending punches, each having mutually parallel working edges formed. With respect to an output plane in which a bending section of the sheet metal workpiece to be processed is located, the first and the second bending punch are positioned on one side, and the third bending punch is positioned on the opposite side of the output plane. The working edge of the third bending punch is adjustable between the working edges of the first and second bending punch. The third bending punch has at least one rotational and one translational degree of freedom in a reference plane oriented at right angles to a working edge. The second punch has three degrees of freedom in the reference plane.

Ein Vorteil der erfindungsgemäßen Ausbildung liegt darin, dass durch die hohe Anzahl an Freiheitsgraden, und daher Bewegungsmöglichkeiten der einzelnen Biegestempel, ein Biegeverfahren realisiert werden kann, welches die Vorteile des Gesenkbiegens und des Schwenkbiegens in sich vereint. Beispielsweise können durch die hohe Flexibilität der Biegemaschine die das Blechwerkstück verformenden Biegestempel so entlang einer Bahnkurve geführt werden, dass eine möglichst geringe Relativbewegung zwischen Biegestempel und Blechwerkstück entsteht, wodurch die Oberfläche des Blechwerkstückes vor Beschädigungen geschützt wird. Überraschenderweise kann durch die Optimierung der Bahnkurven der einzelnen Biegestempel nicht nur die Oberfläche des Blechwerkstückes geschützt werden, sondern auch der notwendige Energieeintrag durch die Biegemaschine während des Biegevorganges minimiert werden. Dies kann darauf zurückgeführt werden, dass durch eine Relativbewegung zwischen Biegestempel und Blechwerkstück eine beachtliche Energiemenge in Wärme umgewandelt wird, beziehungsweise, dass weiters eine gewisse Energiemenge dafür aufgewendet wird, das Blechwerkstück zu beschädigen. Somit kann nicht nur die Qualität der Oberfläche des zu bearbeitenden Werkstückes positiv beeinflusst werden, sondern während des Biegevorganges der nötige Energieeintrag durch die Biegepresse in das Blechwerkstück vermindert werden. Weiters kann durch die hohe Flexibilität dieser Biegemaschine erreicht werden, dass zumindest eine der beiden Biegestempel in einer beliebigen Ausgangsebene verweilen kann, wodurch er durch eine an die Biegemaschine gekoppelte Manipulationseinheit problemlos aufgenommen und bewegt werden kann. Ein großer Vorteil hierin besteht in der Möglichkeit des Einsetzens einer einfachen Manipulationsvorrichtung zum An- und Abtransport der Blechwerkstücke, beispielsweise durch ein einfaches Förderband. Ein weiterer Vorteil der Biegemaschine nach oben genannten Ausprägungen besteht darin, dass bei sehr großen Blechwerkstücken der Platzbedarf der Biegemaschine dadurch reduziert werden kann, dass der kürzere Biegeschenkel aufgebogen wird, und der längere Biegeschenkel in seiner Ausgangsposition verharrt. Erfindungsgemäß ist ein die Ausgangsebene definierender Auflagekörper für ein Blechwerkstück ausgebildet. Vorteilhaft ist hierbei, dass dieser Auflagekörper entweder als einfacher Auflagetisch, oder als Spezialkonstruktion für die Zuförderung sowie die Positionierung von Blechwerkstücken ausgebildet sein kann. Bei einer manuellen Zuförderung der Blechwerkstücke wird das zu bearbeitende Blechwerkstück auf den Auflagekörper gelegt und unter Zuhilfenahme eines Anschlagelementes positioniert. Hierbei kann vorgesehen sein, dass das Anschlagelement direkt in den Auflagekörper integriert ist. Für eine automatisierte Zuförderung der Blechwerkstücke ist es denkbar, dass in den Auflagekörper beispielsweise eine Fördereinrichtung integriert ist, welche für das Zufördern der zu bearbeitenden Werkstücke eingesetzt wird. Weiters kann vorgesehen sein, dass der Auflagekörper bewegbar ist und somit von einer definierten Übergabeposition ein zu bearbeitendes Blechwerkstück aufnehmen kann und dieses dann der Biegemaschine zuführen kann. Hierzu kann auch vorgesehen sein, dass der Auflagekörper um eine Querachse, oder um seine Hochachse schwenkbar ausgeführt ist.An advantage of the design according to the invention is that due to the high number of degrees of freedom, and therefore possibilities of movement of the individual bending dies, a bending process can be realized which combines the advantages of die bending and pivoting bending. For example, the high flexibility of the bending machine, the sheet metal workpiece deforming punch can be performed along a trajectory that the smallest possible relative movement between the punch and sheet metal workpiece is formed, whereby the surface of the sheet metal workpiece is protected from damage. Surprisingly, not only the surface of the sheet metal workpiece can be protected by optimizing the trajectories of the individual bending dies, but also the necessary energy input by the bending machine during the bending process can be minimized. This can be attributed to the fact that a considerable amount of energy is converted into heat by a relative movement between the punch and the sheet metal workpiece, or that further a certain amount of energy is expended to damage the sheet metal workpiece. Thus, not only the quality of the surface of the workpiece to be machined can be positively influenced, but can be reduced during the bending process of the necessary energy input through the bending press in the sheet metal workpiece. Furthermore, can be achieved by the high flexibility of this bending machine that at least one of the two punch can dwell in any output level, whereby it can be easily absorbed and moved by a manipulation unit coupled to the bending machine. A great advantage of this is the possibility of using a simple manipulation device for transporting and removing the sheet metal workpieces, for example by a simple conveyor belt. Another advantage of the bending machine according to the above characteristics is that for very large sheet metal workpieces, the space requirement of the bending machine can be reduced by the fact that the shorter bending leg is bent, and the longer bending leg remains in its initial position. According to the invention, a support body defining the output plane is designed for a sheet metal workpiece. It is advantageous in this case that this support body can be designed either as a simple support table, or as a special construction for the feed and the positioning of sheet metal workpieces. In a manual feed of the sheet metal workpieces to be processed sheet metal workpiece is placed on the support body and positioned with the aid of a stop element. It can be provided that the stop element is integrated directly into the support body. For an automated feed of the sheet metal workpieces, it is conceivable that in the support body, for example, a conveyor is integrated, which is used for Zufördern the workpieces to be processed. Furthermore, it can be provided that the support body is movable and thus can record a workpiece to be machined from a defined transfer position and this can then perform the bending machine. For this purpose, it can also be provided that the support body is designed to pivot about a transverse axis, or about its vertical axis.

Entsprechend einer Weiterbildung kann vorgesehen sein, dass der dritte Biegestempel drei Freiheitsgrade aufweist. Vorteilhaft ist hierbei, dass dadurch die Vielzahl der Einsatzmöglichkeiten der Biegemaschine und damit die Variation der Biegungen von Blechwerkstückenen weiter gesteigert werden. Weiters kann durch diese Maßnahme erreicht werden, dass die "Gesenkweite" der Biegemaschine durch einstellen des Abstandes zwischen erstem und zweitem Biegestempel angepasst werden kann, und der dritte Biegestempel anschließend symmetrisch zwischen diesen beiden Biegestempeln positioniert werden kann. Erfindungsgemäß ist vorgesehen, dass der erste Biegestempel zumindest einen translatorischen Freiheitsgrad in der Bezugsebene aufweist. Vorteilhaft ist hierbei, dass dadurch die Vielzahl der Einsatzmöglichkeiten der Biegemaschine und damit die Variation der Biegungen von Blechwerkstückenen weiter gesteigert werden kann. Bei Ausführung mit nur einem translatorischen Freiheitsgrad in horizontaler Richtung kann beispielsweise die "Gesenkweite" verstellt werden. Bei Ausführung des translatorischen Freiheitsgrades in vertikaler Richtung kann beispielsweise die Angriffseite des Biegestempels auf die gegenüberliegende Seite der Ausgangsebene und daher auf die gegenüberliegende Blechseite verschoben werden. Wenn der erste Biegestempel mehr als einen Freiheitsgrad aufweist, kann dieser entsprechend der Positioniermöglichkeiten des dritten Biegestempels bewegt werden.According to a development, it can be provided that the third bending punch has three degrees of freedom. The advantage here is that thereby the variety of applications of the bending machine and thus the variation of the bends of Blechwerkstückenen be further increased. Furthermore, it can be achieved by this measure that the "die width" of the bending machine can be adjusted by adjusting the distance between the first and second bending punch, and the third punch can then be positioned symmetrically between these two punch punches. According to the invention, it is provided that the first bending punch has at least one translational degree of freedom in the reference plane. The advantage here is that thereby the variety of applications of the bending machine and thus the variation of the bends of Blechwerkstückenen can be further increased. For example, in the embodiment with only one translatory degree of freedom in the horizontal direction, the "die width" can be adjusted. When executing the translational degree of freedom in the vertical direction, for example, the attack side of the punch can be moved to the opposite side of the output plane and therefore to the opposite side of the sheet metal. If the first punch has more than one degree of freedom, it can be moved according to the positioning capabilities of the third punch.

Ferner kann vorgesehen sein, dass der erste und der zweite Biegestempel unabhängig voneinander bewegbar sind. Vorteilhaft in einer voneinander unabhängigen Bewegung des ersten und des zweiten Biegestempels ist, dass während des Biegevorganges beispielsweise der erste Biegestempel in seiner Lage belassen werden kann und nur der zweite Biegestempel eine Art Schwenkbewegung ausführt, um das Blechwerkstück zu biegen. Dadurch wird erreicht, dass ein Schenkel des bearbeiteten Blechwerkstückes in einer horizontalen Lage verbleiben kann. Ferner ist es zweckmäßig, dass die drei Biegestempel für eine Positionierbarkeit entsprechend der Anzahl ihrer Freiheitsgrade mit einem Antriebsmechanismus ausgewählt aus einer Gruppe umfassend Drehantrieb, Schwenkantrieb, Linearantrieb oder Kombinationen daraus verbunden sind. Als Freiheitsgrad in der Bezugsebene wird eine Bewegungsmöglichkeit der Biegestempel in dieser Bezugsebene bezeichnet. Die Bewegungsmöglichkeit der Biegestempel wird durch einen der oben genannten Antriebe in eine Verfahr- und Positionierbewegung des Biegestempels umgesetzt. Für die Umsetzung von Bewegungsmöglichkeiten eines Biegestempels entsprechend seiner Freiheitsgrade gibt es mehrere verschiedene Möglichkeiten, welche hier genannt werden. Ein Freiheitsgrad in der Bezugsebene beispielsweise bedeutet, dass der Biegestempel in dieser Ebene Betrachtet eine geradlinige Bewegung in eine Richtung vollziehen kann. Dies wird durch einen Linearantrieb realisiert werden, welcher den Biegestempel bewegt. Ein Freiheitsgrad in der Bezugsebene kann jedoch auch bedeuten, dass der Biegestempel eine rotatorische Bewegung, etwa eine Drehung um seine Arbeitskante vollziehen kann. Diese rotatorische Bewegung wird entweder durch einen Drehantrieb oder durch einen Schwenkantrieb umgesetzt. Zwei Freiheitsgrade in der Bezugsebene bedeuten, dass der Biegestempel entweder zwei translatorische Freiheitsgrade, einen translatorischen und einen rotatorischen Freiheitsgrad, oder zwei rotatorische Freiheitsgrade aufweist. Zwei translatorische Freiheitsgrade führen dazu, dass der Biegestempel an jedem Punkt in der Ebene positioniert werden kann, jedoch seine Ausrichtung nicht verändert werden kann. Dies kann durch eine Kombination von zwei linearantrieben realisiert werden, welche beispielsweise in einer Hauptrichtung und in einer normal auf diese stehende Nebenrichtung angeordnet sind. Natürlich ist es nicht nur möglich, dass diese Linearantriebe normal aufeinander gerichtet sind, sondern es kann auch eine Art Parallelkinematik umgesetzt werden, in der die Linearantriebe einen gemeinsamen Koppelpunkt aufweisen, womit dieser Punkt des Biegestempels in der Bezugsebene frei bewegbar ist. Ein translatorischer und ein rotatorischer Freiheitsgrad können beispielsweise durch einen Schwenkarm mit einem daran angeschlossenen Linearantrieb umgesetzt werden. Eine weitere Möglichkeit ist ein Linearantrieb mit angeschlossenem Rotationskopf. Die maximale Bewegungsfreiheit eines Biegestempels wird durch drei Freiheitsgrade und eine entsprechende Kombination der hierzu nötigen Antriebe erreicht. Hierbei kann von einem Biegestempel jeder beliebige Punkt in der Reichweite des Biegestempels mit einer beliebigen Ausrichtung des Biegestempels erreicht werden. Die Möglichkeiten der Kombinationen von Antrieben ist sehr vielfältig und kann aus den obigen Beschreibungen abgeleitet werden.Furthermore, it can be provided that the first and the second bending punch are movable independently of each other. It is advantageous in an independent movement of the first and the second punch that during the bending process, for example, the first punch can be left in its position and only the second punch performs a kind of pivotal movement to bend the sheet metal workpiece. This ensures that one leg of the processed sheet metal workpiece can remain in a horizontal position. Furthermore, it is expedient that the three bending punches for positioning according to the number of their degrees of freedom with a drive mechanism selected from a group comprising rotary drive, rotary actuator, linear drive or combinations thereof are connected. The degree of freedom in the reference plane is a possibility of movement of the bending punch in this reference plane. The possibility of movement of the punch is implemented by one of the above drives in a movement and positioning movement of the punch. For the implementation of movement possibilities of a bending punch according to its degrees of freedom there are several different possibilities, which are mentioned here. One degree of freedom in the reference plane, for example, means that the bending punch in this plane can perform a rectilinear motion in one direction. This will be realized by a linear drive which moves the bending punch. However, a degree of freedom in the reference plane can also mean that the bending punch can perform a rotational movement, such as a rotation about its working edge. This rotational movement is implemented either by a rotary drive or by a rotary actuator. Two degrees of freedom in the reference plane mean that the punch has either two translational degrees of freedom, one translational and one rotational degree of freedom, or two rotational degrees of freedom. Two translatory degrees of freedom mean that the punch can be positioned at any point in the plane, but its orientation can not be changed. This can be realized by a combination of two linear drives, which are arranged, for example, in a main direction and in a secondary direction normal to them. Of course, it is not only possible that these linear drives are normal to each other, but it can also be implemented a kind of parallel kinematics, in which the linear drives have a common crosspoint, whereby this point of the punch is freely movable in the reference plane. A translational and a rotational degree of freedom can be implemented, for example, by a swivel arm with a linear drive connected thereto. Another possibility is a linear drive with attached rotary head. The maximum freedom of movement of a punch is achieved by three degrees of freedom and a corresponding combination of the necessary drives. This can be achieved by a bending punch any point in the range of the punch with any orientation of the punch. The possibilities of combinations of drives is very diverse and can be deduced from the above descriptions.

Entsprechend einer zweckmäßigen Weiterbildung kann vorgesehen sein, dass zumindest einer der Biegestempel mit zwei in Richtung der Arbeitskante distanzierten, insbesondere baugleichen, Antriebsmechanismen verbunden ist. Vorteilhaft ist hierbei, dass ein Biegestempel, wenn er längs seiner Arbeitskante eine große Länge besitzt, an beiden Seiten dieser Längsausdehnung durch einen Antriebsmechanismus unterstützt wird, wodurch die in den Biegestempel eingeleiteten Kräfte optimal aufgenommen werden können. Dadurch können die durch den Biegevorgang auf den Biegestempel einwirkenden Kräfte symmetrisch an den beiderseits angebrachten Antriebsmechanismen abgefangen werden, wodurch keine Drehmomente an dem Angriffspunkt eines Antriebsmechanismus auftreten. Es erscheint sinnvoll, wenn diese beidseitig des Biegestempels angebrachten Antriebsmechanismen baugleich ausgeführt sind, da sie für eine Führung des Biegestempels, in der alle Arbeitskanten ständig parallel zueinander verlaufen sollen die gleichen Bewegungen ausführen müssen. Auch für den Fall, dass es bei einem Biegevorgang notwendig ist, dass die Arbeitskanten nicht parallel zueinander verlaufen, erscheint es als sinnvoll, wenn trotzdem ein Baugleiches Antriebspaar verwendet wird.According to an expedient development, provision can be made for at least one of the bending punches to be connected to two drive mechanisms that are distanced in the direction of the working edge, in particular of the same type. It is advantageous here that a bending punch, if it has along its working edge a large length, is supported on both sides of this longitudinal extent by a drive mechanism, whereby the forces introduced into the punch can be optimally absorbed. As a result, the forces acting on the bending punch by the bending process forces can be intercepted symmetrically on the both sides mounted drive mechanisms, whereby no torques occur at the point of a drive mechanism. It seems to make sense if these drive mechanisms mounted on both sides of the punch are designed to be identical, since they have to carry out the same movements for a guide of the punch, in which all the working edges are constantly parallel to each other. Also in the case that it is necessary in a bending process that the working edges are not parallel to each other run, it seems to make sense, if still a same design drive pair is used.

Gemäß einer Weiterbildung kann vorgesehen sein, dass zumindest einer der Biegestempel in Richtung seiner Arbeitskante verstellbar, oder um eine zur Bezugsebene parallele Schwenkachse verstellbar ist. Vorteilhaft ist bei dieser Weiterbildung, dass nach Beendigung des Biegevorganges das Biegewerkzeug beispielsweise ausgeschwenkt werden kann, sodass ein bearbeitetes Blechwerkstück leicht aus der Biegemaschine entfernt werden kann. Anstatt des Ausschwenkvorganges eines Biegestempels kann auch vorgesehen sein, dass der Biegestempel linear entlang seiner Arbeitskante aus seiner Arbeitsposition ausgefahren wird. Um den Bauraum der Maschine möglichst gering zu halten kann auch eine Kombination aus ausschwenken und linearem Ausfahren vorgesehen sein. Hierbei kann der Biegestempel beispielsweise zur Hälfte linear ausgefahren werden, und dann um seine Mitte ausgeschwenkt werden, um so den Platzverbrauch für diesen Vorgang möglichst gering zu halten.According to a development it can be provided that at least one of the bending punches is adjustable in the direction of its working edge, or is adjustable about a pivot axis parallel to the reference plane. It is advantageous in this development that after completion of the bending process, the bending tool can be swung out, for example, so that a processed sheet metal workpiece can be easily removed from the bending machine. Instead of swinging out a bending punch can also be provided that the punch is extended linearly along its working edge from its working position. In order to keep the installation space of the machine as low as possible, a combination of swinging out and linear extension can also be provided. In this case, for example, the bending punch can be extended linearly in half, and then swung out about its center in order to minimize the space required for this procedure.

In einer vorteilhaften Weiterbildung kann vorgesehen sein, dass zumindest einer der Biegestempel zwei einander etwa gegenüberliegende Arbeitskanten aufweist. Durch den Einsatz von zwei einander gegenüberliegenden Arbeitskanten kann die Vielseitigkeit des Biegestempels erhöht werden, wodurch auch Biegungen in abschnittsweise gegensinnige Orientierungen mit diesem Biegestempel durchgeführt werden können, ohne dass der Biegestempel um 180° bezüglich seiner Arbeitskante geschwenkt werden muss. Hierbei muss der Biegestempel nur auf die gegenüberliegende Seite des Blechwerkstückes gebracht werden um eine gegensinnig orientierte Biegung zu ermöglichen.In an advantageous development, it can be provided that at least one of the bending punches has two working edges which are approximately opposite each other. Through the use of two opposing working edges, the versatility of the punch can be increased, which also bends in sections opposing orientations can be performed with this punch without the bending punch must be rotated by 180 ° with respect to its working edge. Here, the punch must be placed only on the opposite side of the sheet metal workpiece to allow an oppositely oriented bend.

Weiters kann es zweckmäßig sein, dass zumindest einem der drei Biegestempel ein weiterer Biegestempel zugeordnet ist, welcher an der Gegenüberseite der Ausgangsebene angeordnet ist, wobei die Arbeitskanten dieser beiden gegenüber liegenden Biegestempel einander zugerichtet sind. Vorteilhaft ist bei einer derartigen Ausführung der Biegemaschine, dass durch den Einsatz von zwei einander gegenüberliegenden Biegestempeln die Vielseitigkeit der Biegemaschine erhöht werden kann. Besonders für Biegungen in abschnittsweise gegensinnige Orientierungen ist eine derartige Anordnung ideal, da die Biegestempel weder geschwenkt, noch auf die gegenüberliegende Seite der Ausgangsebene gebracht werden müssen um eine Biegung in gegensinnige Richtung einer vorhergehenden Biegung durchzuführen. Bei einer derartigen Anordnung muss lediglich ein Biegestempel, welcher gerade im Arbeitseinsatz befindlich war aus dem Arbeitsbereich des zu biegenden Blechwerkstückes entfernt werden, und der weitere Biegestempel kann stattdessen in den Arbeitseinsatz gebracht werden. Durch diese Vorgehensweise kann eine Abfolge von Biegungen, welche in jeweils gegensinnige Richtungen durchgeführt werden, sehr schnell und effizient realisiert werden.Furthermore, it may be expedient that at least one of the three bending dies is assigned a further bending punch, which is arranged on the opposite side of the starting plane, wherein the working edges of these two opposing bending dies are trimmed to one another. It is advantageous in such an embodiment of the bending machine that the versatility of the bending machine can be increased by the use of two opposing bending dies. Such an arrangement is ideal, especially for bends in orientations in opposite directions, since the bending dies do not have to be pivoted or brought to the opposite side of the starting plane in order to bend in the opposite direction of a preceding bend. At a such an arrangement, only one bending punch, which was currently in operation was to be removed from the work area of the sheet metal workpiece to be bent, and the other punch can instead be brought into the labor. By this procedure, a sequence of bends, which are carried out in opposite directions, can be realized very quickly and efficiently.

Ferner kann es vorteilhaft sein, dass in zumindest einem der Biegestempel und/oder in dessen Antriebsvorrichtung eine Kraftmesselement integriert ist. Durch diese Maßnahme kann erreicht werden, dass die benötigte Biegekraft gemessen werden kann, wodurch Rückschlüsse auf die Werkstoffeigenschaften des zu bearbeitenden Werkstückes geschlossen werden können, diese Informationen können in eine aktive Biegewinkelsteuerung einfließen. Weiters kann mittels eines Kraftsensors in Kombination mit dem Wissen um die aktuelle Position und die Geometrie der Biegestempel beispielsweise die Blechdicke bestimmt werden, da der Kraftsensor einen Anzeigewert einer gemessenen Kraft rückliefert, sobald das Blechwerkstück von allen drei Biegestempeln berührt, und somit zwischen diesen geklemmt wird. Weiters kann ein derartiges Kraftmesselement erfassen, wenn das Blechwerkstück am Ende eines Biegevorganges, während des entlasten der Biegestempel nicht mehr geklemmt wird, und somit das Blechwerkstück vollständig rückgefedert ist und seinen Biegewinkel erreicht hat, welchen es aufgrund der plastischen Verformung beibehalten wird. Dadurch kann über die Position der Biegestempel rückgerechnet werden, welcher Biegewinkel am Blechwerkstück realisiert wurde. Diese Messungen und Berechnungen können in eine statistische Auswertung in der Steuereinheit der Biegemaschine eingehen, wodurch eine Anpassung der Biegeparameter für zukünftig zu biegende Werkstücke erreicht wird.Furthermore, it may be advantageous that in at least one of the bending punch and / or in the drive device, a force measuring element is integrated. By this measure it can be achieved that the required bending force can be measured, whereby conclusions can be drawn on the material properties of the workpiece to be machined, this information can be incorporated into an active bending angle control. Furthermore, by means of a force sensor in combination with the knowledge of the current position and the geometry of the punch, for example, the sheet thickness can be determined because the force sensor returns a reading of a measured force as soon as the sheet metal workpiece touches all three bending dies, and thus clamped between them , Furthermore, such a force measuring element can detect when the sheet metal workpiece is no longer clamped at the end of a bending operation, while relieving the bending punch, and thus the sheet metal workpiece is fully spring-back and has reached its bending angle, which it is maintained due to the plastic deformation. This can be recalculated on the position of the punch, which bending angle was realized on the sheet metal workpiece. These measurements and calculations can be included in a statistical evaluation in the control unit of the bending machine, whereby an adaptation of the bending parameters for future workpieces to be bent is achieved.

Ferner kann vorgesehen sein, dass zumindest einer der Biegestempel zumindest eine Anschlagfläche aufweist. Vorteilhaft durch die Ausprägung einer Anschlagfläche in einem der Biegestempel ist, dass der Biegestempel als Anschlageinheit benutzt werden kann, um ein zu biegendes Blechwerkstück besonders beim Manuellen Einlegen des Werkstückes richtig zu positionieren. Dadurch kann einerseits Bauraum und andererseits kosten eingespart werden, da keine eigene Anschlageinheit in der Biegemaschine ausgeführt werden muss. Weiters ist es besonders zweckmäßig einen der Biegestempel mit einer Anschlagfläche zu versehen, da die Lage, beziehungsweise die Geometrie der Biegestempel ohnehin für den Arbeitseinsatz der Biegemaschine sehr genau bestimmt werden muss.Furthermore, it can be provided that at least one of the bending punches has at least one stop surface. An advantage of the expression of a stop surface in one of the bending punch is that the bending punch can be used as a stop unit to correctly position a sheet metal workpiece to be bent, especially when manually inserting the workpiece. As a result, on the one hand space and on the other hand can be saved cost because no own stop unit must be performed in the bending machine. Furthermore, it is particularly expedient to provide one of the bending punch with a stop surface, since the position, or the geometry of the punch must be determined very accurately anyway for the labor of the bending machine.

Außerdem kann ein Verfahren vorgesehen sein, bei dem zum Biegen eines Blechwerkstückes auf einer Biegemaschine welche drei Biegestempel mit jeweils parallel zueinander ausgerichtete Arbeitskanten aufweist, wobei bezüglich einer Ausgangsebene, in der ein zu bearbeitender Biegeabschnitt des Blechwerkstückes liegt, an einer Seite der erste und der zweite Biegestempel positioniert werden, und an der gegenüberliegenden Seite der Ausgangsebene der dritte Biegestempel positioniert wird. Dabei wird die Arbeitskante des dritten Biegestempels zwischen die Arbeitskanten des ersten und zweiten Biegestempels verstellt, und der dritte Biegestempel in zumindest einer rotatorischen und einen translatorischen Richtung in einer rechtwinkelig auf eine Arbeitskante orientierten Bezugsebene bewegt. Weiters ist vorgesehen, dass beim Biegevorgang das Blechwerkstück zwischen erster und dritter Arbeitskante im Wesentlichen in der Ausgangsebene gehalten wird, wodurch ein erster Biegeschenkel gebildet wird und die Arbeitskante des zweiten Biegestempels entlang einer Bahn um die Arbeitskante des dritten Biegestempels geführt wird, wodurch an der dritten Arbeitskante die Biegekante und an diese anschließend ein zweiter Biegeschenkel gebildet wird.In addition, a method may be provided, in which for bending a sheet metal workpiece on a bending machine which has three bending dies with mutually parallel working edges, wherein with respect to an output plane in which a bending section to be processed of the sheet metal workpiece lies on one side of the first and the second Bending punch are positioned, and on the opposite side of the output plane of the third punch is positioned. In this case, the working edge of the third bending punch is adjusted between the working edges of the first and second bending punch, and the third bending punch is moved in at least one rotational and one translational direction in a reference plane oriented at right angles to a working edge. It is further provided that during the bending process, the sheet metal workpiece between the first and third working edge is held substantially in the starting plane, whereby a first bending leg is formed and the working edge of the second punch is guided along a path around the working edge of the third bending punch, whereby at the third Working edge of the bending edge and then a second bending leg is formed on this.

Vorteilhaft ist hierbei, dass durch dieses Verfahren eine Biegemaschine, welche drei Biegestempel besitzt betrieben werden kann. Durch ein derartiges Verfahren werden die Vorteile des Gesenkbiegens und des Schwenkbiegens in sich vereint. Die Vorteile des Gesenkbiegens sind beispielsweise, dass durch drei Arbeitskanten an denen das Blechwerkstück berührt wird, eine gut definierte und sehr schöne Biegekante erzeugt werden kann. Außerdem kann durch Einstellen der Matrizenweite die Biegekraft, welche während des Biegevorganges aufgebracht werden muss sehr gut regulier werden. Die Vorteile des Schwenkbiegens sind beispielsweise, dass während des Biegevorganges einer der beiden Biegeschenkel eines bearbeiteten Blechwerkstückes in einer horizontalen Ausgangsebene verharrt. Weiters kann durch die hohe Flexibilität des hier beschriebenen Biegeverfahrens erreicht werden, dass durch eine frei definierbare Bewegungsmöglichkeit der Biegestempel eine möglichst geringe Relativbewegung zwischen Biegestempel und Blechwerkstück entsteht. Dadurch wird zum einen die Oberfläche des Blechwerkstückes vor Beschädigungen geschützt, und zum anderen kann die notwendige Umformenergie während dieses Biegevorganges minimiert werden. Weiters kann durch eine aktive Führung der Biegestempel in der Bezugsebene die Verformung des Blechwerkstückes so durchgeführt werden, dass entweder ein Schenkel des Blechwerkstückes in einer gleichbleibenden Lage zur Ausgangslage verbleibt, oder dass beide Schenkel um einen Bestimmten Winkel zur Ausgangsebene aufgebogen werden. Durch diese Möglichkeiten ist die Biegemaschine gerade für Automatisationsaufgaben ideal, da hier für die Übergabe des Blechwerkstückes an eine Manipulationseinheit die Lage des zu bearbeitenden Werkstückes genau definiert sein sollte.It is advantageous here that a bending machine which has three bending punches can be operated by this method. By such a method, the advantages of Gesenkbiegens and the pivoting bending are combined. The advantages of the Gesenkbiegens are, for example, that by three working edges on which the sheet metal workpiece is touched, a well-defined and very beautiful bending edge can be generated. In addition, by adjusting the die width, the bending force to be applied during the bending operation can be regulated very well. The advantages of the pivoting bending, for example, that during the bending process, one of the two bending legs of a processed sheet metal workpiece remains in a horizontal output plane. Furthermore, it can be achieved by the high flexibility of the bending method described here that the smallest possible relative movement between the punch and sheet metal workpiece is created by a freely definable movement possibility of the punch. As a result, on the one hand the surface of the sheet metal workpiece is protected from damage, and on the other hand, the necessary deformation energy can be minimized during this bending process. Furthermore, by actively guiding the bending punch in the reference plane, the deformation of the sheet metal work piece can be carried out so that either one leg of the sheet metal workpiece remains in a constant position relative to the starting position, or that both legs to a certain extent Angled angles to the starting plane. Through these possibilities, the bending machine is ideal for automation tasks, since the position of the workpiece to be machined should be precisely defined here for the transfer of the sheet metal workpiece to a manipulation unit.

Weiters kann vorgesehen sein, dass die Bahn der zweiten Arbeitskante so festgelegt wird, dass diese während des Biegevorganges das Blechwerkstück mit möglichst geringer Relativbewegung kontaktiert. Eine Steuerung der Biegestempel mit Augenmerk auf diesen Aspekt ist besonders vorteilhaft, da durch die weitgehende Vermeidung von Relativbewegungen zwischen Biegestempel und Blechwerkstück das Blechwerkstück nicht beschädigt wird. Derartige Beschädigungen können beispielsweise Kerben oder Schleifrillen im Blechwerkstück sein. Weiters kann durch die Verminderung von Relativbewegungen auch die nötige Umformenergie gesenkt werden, da zur ungewollten Beschädigung der Werkstückoberfläche in Form von Beschädigungen ein gewisser Energieeintrag nötig ist.Furthermore, it can be provided that the path of the second working edge is set so that it contacts the sheet metal workpiece with the least possible relative movement during the bending process. A control of the punch with attention to this aspect is particularly advantageous because the sheet metal workpiece is not damaged by largely avoiding relative movement between the punch and sheet metal workpiece. Such damage can be, for example, notches or grinding grooves in the sheet metal workpiece. Furthermore, by reducing relative movements, the necessary forming energy can also be reduced, since a certain amount of energy input is necessary for the unwanted damage of the workpiece surface in the form of damage.

Ferner kann es zweckmäßig sein, dass vor oder während des Biegevorganges der Abstand zwischen der ersten und der zweiten Arbeitskante in Abhängigkeit von Werkstückeigenschaften festgelegt und/oder verstellt wird. Besonders vorteilhaft ist hierbei, dass durch die Veränderung des Abstandes zwischen erster und zweiter Arbeitskante die "Gesenkweite" verstellt werden kann. Dadurch können die Kraftspitzen der im Biegevorgang auf die Biegemaschine wirkenden Kräfte angepasst werden, da ein größerer Abstand zwischen erster und zweiter Arbeitskante zur Folge hat, dass das durch die Biegestempel in das Blechwerkstück eingeleitete Biegemoment bei gleicher Wirkkraft der Biegestempel größer wird. Dadurch kann das Blechwerkstück leichter gebogen werden. Besonders bei unterschiedlichen Blechdicken ist die freie Einstellbarkeit der "Gesenkweite" sehr vorteilhaft, da für Blechwerkstücke, welche eine höhere Blechdicke aufweisen, einfach die "Gesenkweite" erhöht werden kann. Durch diese Möglichkeit kann auch auf Blechstärkenschwankungen eingegangen werden, welche aufgrund der Fertigungstoleranzen für Walzbleche auftreten. Neben diesen Eigenschaften der Biegekraftregulierung kann durch die Veränderung der "Gesenkweite" auch der Biegeradius, beziehungsweise die Form des Bereiches des Blechwerkstückes, welcher zwischen den Arbeitskanten der Biegestempel liegt, flexibel gestaltet werden. Von besonderem Vorteil ist hierbei, dass durch die Jahrelange Erfahrung der Anmelderin im Abkantpressenbereich, die Berechnungsprogramme, beziehungsweise das Wissen im Zusammenhang mit dem dreipunktbiegen und veränderlicher Gesenkweite vorhanden ist. Dadurch kann erreicht werden dass die, eines derartigen Biegevorganges zugrundeliegenden, Berechnungsprogramme unter Zuhilfenahme von jahrelangem Know-how gestaltet werden können.Furthermore, it may be expedient that before or during the bending process, the distance between the first and the second working edge is set and / or adjusted as a function of workpiece properties. It is particularly advantageous that the "Gesenkweite" can be adjusted by changing the distance between the first and second working edge. As a result, the force peaks of the bending forces acting on the bending machine forces can be adjusted because a greater distance between the first and second working edge has the consequence that the introduced by the punch in the sheet metal workpiece bending moment at the same effective force of the punch becomes larger. This allows the sheet metal workpiece to be bent more easily. Especially with different sheet thicknesses, the free adjustability of the "Gesenkweite" is very advantageous because for sheet metal workpieces, which have a higher sheet thickness, simply the "Gesenkweite" can be increased. This possibility can also be used to sheet thickness fluctuations, which occur due to the manufacturing tolerances for rolled sheets. In addition to these properties of the bending force regulation can be made flexible by changing the "Gesenkweite" and the bending radius, or the shape of the area of the sheet metal workpiece, which lies between the working edges of the punch. Of particular advantage here is that through the years of experience of the applicant in the press brake area, the calculation programs, or the knowledge in connection with the three-point bending and variable Gesenkweite is present. It can thereby be achieved that the calculation programs on which such a bending process is based can be designed with the aid of years of know-how.

Weiters kann vorgesehen sein, dass beim Biegevorgang die Abstände zwischen dritter und erster Arbeitskante und dritter und zweiter Arbeitskante etwa gleich groß gehalten werden. Vorteilhaft hierbei ist, dass durch Einstellen eines in etwa gleich großen Abstandes zwischen den Arbeitskanten der einzelnen Biegestempel, die Kräfte auf die beiden Biegeschenkel des Blechwerkstückes symmetrisch wirken. Dadurch kann ein Blechwerkstück erzeugt werden, bei welchem zum einen der Biegeradius einen gleichmäßigen Verlauf aufweist, und außerdem die beiden Biegeschenkel des Blechwerkstückes im Nahbereich der Biegekante symmetrisch geformt sind.Furthermore, it can be provided that the distances between the third and first working edge and the third and second working edge are kept approximately the same during the bending process. The advantage here is that act by adjusting an approximately equal distance between the working edges of the individual bending punch, the forces acting symmetrically on the two bending legs of the sheet metal workpiece. As a result, a sheet metal workpiece can be produced, in which on the one hand, the bending radius has a uniform course, and also the two bending legs of the sheet metal workpiece are formed symmetrically in the vicinity of the bending edge.

Ferner kann es vorteilhaft sein, dass beim Biegevorgang die Biegestempel im Wesentlichen rechtwinkelig auf die Werkstückoberfläche orientiert geführt werden. Dass ein Biegestempel rechtwinkelig auf die Werkstückoberfläche orientiert ist bedeutet, dass im Wesentlichen die Hochachse des Biegestempels, auf der auch die Arbeitskante des Biegestempels und der Kraftangriffspunkt eines Antriebsmechanismus liegt, rechtwinkelig auf die Werkstückoberfläche orientiert ist. Durch diese Maßnahme kann erreicht werden, dass im Biegestempel kein Biegemoment eingeleitet wird, welches durch einen Abstand zwischen Angriffspunkt des Antriebsmechanismus und Kraftvektor der auf das zu biegende Blechwerkstück ausgeübten Kraft entstehen könnte.Furthermore, it may be advantageous that during the bending process, the bending punches are guided oriented substantially at right angles to the workpiece surface. That a punch is oriented perpendicular to the workpiece surface means that essentially the vertical axis of the punch, on which also the working edge of the punch and the point of force application of a drive mechanism is oriented at right angles to the workpiece surface. By this measure can be achieved that in the punch no bending moment is initiated, which could be caused by a distance between the point of application of the drive mechanism and force vector of the force exerted on the sheet metal workpiece to be bent force.

Ferner kann vorgesehen sein, dass zum Biegen des Blechwerkstückes in abschnittsweise gegensinnige Orientierungen vor dem jeweiligen Biegevorgang der erste und/oder zweite Biegestempel bedarfsweise auf der einen oder auf der gegenüberliegenden Seite der Ausgangsebene positioniert werden. Vorteilhaft ist hierbei, dass durch die Möglichkeit die Biegestempel auf beiden Seiten der Ausgangsebene positionieren zu können die Vielfalt der möglichen Biegungen am Blechwerkstück steigt. Die Positionierung der Biegestempel erfolgt stets so, dass auf einer Seite der Ausgangsebene der erste und der zweite Biegestempel platziert sind, und auf der gegenüberliegenden Seite der Ausgangsebene der dritte Biegestempel mit seiner Arbeitskante zwischen erstem und zweitem Biegestempel liegend platziert wird. Müssen nun für eine Biegung in gegensinniger Richtung die Biegestempel auf der gegenüberliegenden Seite der Ausgangsebene platziert werden, so muss auch die Orientierung der Biegestempel angepasst werden. Dadurch wird erreicht, dass die Arbeitskante der Biegestempel stets so ausgerichtet ist, dass diese in Richtung des zu bearbeitenden Blechwerkstückes orientiert ist.Furthermore, it can be provided that for bending the sheet metal workpiece in sections opposing orientations before the respective bending operation of the first and / or second bending punch are required, positioned on the one or on the opposite side of the output plane. The advantage here is that by the ability to position the punch on both sides of the output level to increase the variety of possible bends on the sheet metal workpiece. The positioning of the bending punch is always carried out so that the first and the second bending punch are placed on one side of the output plane, and placed on the opposite side of the output plane of the third punch with its working edge between the first and second bending die lying. Now for a bend in the opposite direction, the punch on the opposite side of the Output level are placed, so the orientation of the punch must be adjusted. This ensures that the working edge of the punch is always aligned so that it is oriented in the direction of the sheet metal workpiece to be processed.

Weiters kann es zweckmäßig sein, dass zum Biegen des Blechwerkstückes in abschnittsweise gegensinnige Orientierungen ein weiterer Biegestempel zum Einsatz kommt, welcher einem der drei Biegestempel gegenüberliegend angeordnet ist, wobei während des Biegevorganges immer nur drei Biegestempel im Arbeitseinsatz sind. Vorteilhaft ist hierbei, dass durch den Einsatz von weiteren Biegestempeln, welche im Wesentlichen eine Spiegelung einer der drei Biegestempel um die Ausgangsebene darstellen, für eine Biegung in gegensinniger Orientierung nicht einer der drei Biegestempel auf die andere Seite der Ausgangsebene gebracht werden muss, sondern dass für eine Biegung in gegensinniger Orientierung der weitere Biegestempel anstatt einer der drei Biegestempel eingesetzt wird. Dadurch kann die Maschinennebenzeit reduziert werden, da der Positioniervorgang der Biegestempel verkürzt werden kann.Furthermore, it may be appropriate that for bending the sheet metal workpiece in sections opposing orientations another bending punch is used, which is arranged opposite one of the three punch, with only three bending punches are always working during the bending process. It is advantageous here that by using further bending punches, which essentially represent a reflection of one of the three bending punches about the starting plane, one of the three bending punches does not have to be brought to the other side of the starting plane for bending in the opposite direction, but rather that for a bend in the opposite orientation of the other punch is used instead of one of the three punch. As a result, the machine time can be reduced because the positioning of the punch can be shortened.

Ferner ist es vorteilhaft, dass zum Zuführen oder Entnehmen eines Blechwerkstückes zumindest einer der Biegestempel in Richtung seiner Arbeitskante, oder um eine zur Bezugsebene parallele Schwenkachse aus dem Arbeitsbereich entfernt wird. Dadurch können auch Blechwerkstücke erzeugt werden, deren Biegeschenkel eine große Länge aufweisen, und welche mit dem herkömmlichen Verfahren des Schwenkbiegens oder des Abkantbiegens nur schwer hergestellt werden können. Weiters kann dadurch erreicht werden, dass im Zusammenhang mit der Blechmanipulation, komplizierte Ausfädelvorgänge des Blechwerkstückes weitestgehend vermieden werden.Furthermore, it is advantageous for at least one of the bending punches in the direction of its working edge, or for a pivot axis parallel to the reference plane, to be removed from the working area for feeding or removal of a sheet metal workpiece. As a result, it is also possible to produce sheet metal workpieces whose bending legs have a large length and which can only be produced with difficulty using the conventional method of swivel bending or bending. Furthermore, it can be achieved that, in connection with the sheet metal manipulation, complicated Ausfädelvorgänge sheet metal workpiece are largely avoided.

Schlussendlich kann vorgesehen sein, dass durch die Bestimmung der Lage eines Biegestempels und die Messung der auf das zu biegende Blechwerkstück ausgeübten Kraft die Blechstärke und/oder der Biegewinkel berechnet werden können. Vorteilhaft ist hierbei, dass die Lage der Biegestempel ohnehin bekannt ist, beziehungsweise von der Steuereinheit der Biegemaschine vorgegeben ist. Auch die Geometrie der Biegestempel ist bekannt. Durch die Messung der auf das Biegewerkstück ausgeübten Kraft können die Blechdicke und/oder der Biegewinkel berechnet werden. Weiters ist es möglich durch die Messung der Biegekraft während des Biegevorganges bereits die zu erwartende Rückfederung des Blechwerkstückes in die Berechnungen zum vorgesehenen Biegewinkel zu integrieren, wodurch ein eventuelles nachbiegen entfallen kann. Besonders durch die Erfassung der Blechstärke und der im Biegevorgang aufzuwendenden Kraft ist es möglich das Biegeverhalten des Blechwerkstückes aufgrund von statistischen Aufzeichnungen vorherzusagen, wodurch der endgültige Biegewinkel gut vorausberechnet werden kann.Finally, it can be provided that the sheet thickness and / or the bending angle can be calculated by determining the position of a punch and the measurement of the force exerted on the sheet metal workpiece to be bent force. It is advantageous here that the position of the punch is known anyway, or is specified by the control unit of the bending machine. The geometry of the punch is known. By measuring the force exerted on the bending workpiece force, the sheet thickness and / or the bending angle can be calculated. Furthermore, it is possible by the measurement of the bending force during the bending process already to integrate the expected springback of the sheet metal workpiece in the calculations for the intended bending angle, creating a possible Bending can be omitted. Especially by the detection of the sheet thickness and the force to be applied in the bending process, it is possible to predict the bending behavior of the sheet metal workpiece on the basis of statistical records, whereby the final bending angle can be well precalculated.

Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.For a better understanding of the invention, this will be explained in more detail with reference to the following figures.

Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:

Fig. 1
eine Übersichtsdarstellung einer Biegemaschine mit drei Biegestempel;
Fig. 2
eine perspektivische Ansicht eines Schnittes durch einen Biegestempel mit zwei einander gegenüber liegenden Arbeitskanten;
Fig. 3
eine perspektivische Ansicht eines Biegestempels mit Antriebsmechanismus;
Fig. 4
Kombinationsmöglichkeiten zur Realisierung eines Antriebsmechanismus welcher einen Freiheitsgrad eines Biegestempels in einer Ebene gewährleistet
Fig. 5
Kombinationsmöglichkeiten zur Realisierung eines Antriebsmechanismus welcher zwei Freiheitsgrade eines Biegestempels in einer Ebene gewährleistet;
Fig. 6
Kombinationsmöglichkeiten zur Realisierung eines Antriebsmechanismus welcher einen Freiheitsgrad eines Biegestempels gewährleistet;
Fig. 7
eine Darstellung der Bewegungsabläufe der Biegestempel während eines Biegevorganges;
Fig. 8
eine Darstellung der Bewegungsabläufe der Biegestempel während eines Biegevorganges in gegensinnige Richtung;
Fig. 9
eine perspektivische Ansicht eines Schnittes einer möglichen Ausführungsvariante zur Umsetzung einer Biegemaschine mit drei Biegestempel;
Fig. 10
eine perspektivische Ansicht einer möglichen Ausführungsvariante zur Umsetzung einer Biegemaschine mit drei Biegestempel;
Fig. 11
eine schematische Darstellung der Möglichkeiten zur Blechdickenmessung, beziehungsweise zur Biegewinkelbestimmung an einem Blechwerkstück;
Fig. 12
einen Biegestempel mit einer integrierten Anschlagfläche
In each case, in a highly simplified, schematic representation:
Fig. 1
an overview of a bending machine with three bending punch;
Fig. 2
a perspective view of a section through a bending punch with two opposing working edges;
Fig. 3
a perspective view of a punch with drive mechanism;
Fig. 4
Combination possibilities for the realization of a drive mechanism which ensures a degree of freedom of a punch in a plane
Fig. 5
Combination options for the realization of a drive mechanism which ensures two degrees of freedom of a punch in a plane;
Fig. 6
Possible combinations for the realization of a drive mechanism which ensures a degree of freedom of a punch;
Fig. 7
a representation of the movements of the punch during a bending process;
Fig. 8
a representation of the movements of the punch during a bending operation in the opposite direction;
Fig. 9
a perspective view of a section of a possible embodiment for implementing a bending machine with three bending punch;
Fig. 10
a perspective view of a possible embodiment for implementing a bending machine with three bending punch;
Fig. 11
a schematic representation of the possibilities for sheet thickness measurement, or for bending angle determination on a sheet metal workpiece;
Fig. 12
a bending punch with an integrated stop surface

Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.By way of introduction, it should be noted that in the differently described embodiments, the same parts are provided with the same reference numerals or the same component names, the disclosures contained in the entire description can be mutatis mutandis to the same parts with the same reference numerals or component names. Also, the location information chosen in the description, such as top, bottom, side, etc. related to the immediately described and illustrated figure and these position information in a change in position mutatis mutandis to transfer to the new location.

Fig. 1 zeigt in einer exemplarischen Darstellung des Schnittes durch eine Biegemaschine 1 und ein zu bearbeitendes Blechwerkstück 2, welches in einer Ausgangsebene 3 orientiert ist. Dabei liegt das Blechwerkstück 2 im Wesentlichen auf einem ersten Biegestempel 4 und auf einem zweiten Biegestempel 5 auf. Ein dritter Biegestempel 6 ist auf der gegenüberliegenden Seite der Ausgangsebene 3 positioniert. Die drei Biegestempel 4, 5, 6 berühren das zu biegende Blechwerkstück 2 im Wesentlichen an deren Arbeitskanten 7, 8, 9. Zwischen den Arbeitskanten 7 und 8 des ersten und des zweiten Biegestempels 4 und 5 liegt der Biegeabschnitt 10, in welchem die wesentliche Umformung des Blechwerkstückes 2 stattfindet. Die Biegestempel 4, 5 wirken hierbei ähnlich dem Gesenk einer Abkantpresse als Unterwerkzeug, und der dritte Biegestempel 6 wirkt ähnlich einem Oberwerkzeug einer Abkantpresse. Bei einer Berührung aller drei Biegestempel 4, 5, 6 mit dem zu bearbeitenden Blechwerkstück 2 wird das größte Biegemoment im Blechwerkstück 2 an der Biegekante 11 eingeleitet. Diese Biegekante 11 ist nahezu kohärent mit der dritten Arbeitskante 9 des dritten Biegestempels 6. Durch die Biegekante 11 wird das Blechwerkstück 2 innerhalb des Biegeabschnittes 10 in einen ersten Biegeschenkel 12 und einen zweiten Biegeschenkel 13 geteilt. Diese beiden Biegeschenkel 12, 13 werden während des Biegevorganges nur in ihrem innerhalb des Biegeabschnittes 10 liegenden Teil verformt. Wie in dieser Prinzipskizze dargestellt, kann das zu bearbeitende Blechwerkstück 2 neben dem ersten Biegestempel 4 und dem zweiten Biegestempel 5 auch auf einem Auflagekörper 14 aufliegen. Der Auflagekörper 14 kann als einfacher Auflagetisch ausgebildet sein, welcher nur zur Unterstützung des Blechwerkstückes 2 dient. Dies ist besonders vorteilhaft, wenn das Blechwerkstück sehr groß ist. Es ist auch möglich, dass der Auflagekörper 14 eine Fördereinrichtung 15 umfasst, welche für die Manipulation des Blechwerkstückes 2 verantwortlich ist. Eine derartige Fördereinrichtung 15 kann beispielsweise ein in den Auflagekörper 14 integriertes Förderband sein, welches für den Transport des Blechwerkstückes 2 eingesetzt wird. Fig. 1 shows in an exemplary representation of the section through a bending machine 1 and to be processed sheet metal workpiece 2, which is oriented in an output plane 3. In this case, the sheet metal workpiece 2 is essentially located on a first bending punch 4 and on a second punch 5. A third bending punch 6 is positioned on the opposite side of the starting plane 3. The three bending punches 4, 5, 6 touch the sheet metal workpiece 2 to be bent essentially at its working edges 7, 8, 9. Between the working edges 7 and 8 of the first and second bending punch 4 and 5 is the bending section 10, in which the essential transformation of the sheet metal workpiece 2 takes place. The bending punch 4, 5 act here similar to the die of a press brake as a lower tool, and the third punch 6 acts like an upper tool of a press brake. Upon contact of all three bending punches 4, 5, 6 with the sheet metal workpiece 2 to be machined, the largest bending moment in the sheet metal workpiece 2 is introduced at the bending edge 11. This bending edge 11 is almost coherent with the third working edge 9 of the third bending punch 6. By the bending edge 11, the sheet metal workpiece 2 within the bending portion 10 in a first Bending leg 12 and a second bending leg 13 divided. These two bending legs 12, 13 are deformed during the bending process only in their lying within the bending portion 10 part. As shown in this schematic diagram, the sheet metal workpiece 2 to be machined can also rest on a support body 14 in addition to the first bending punch 4 and the second bending punch 5. The support body 14 may be formed as a simple support table, which only serves to support the sheet metal workpiece 2. This is particularly advantageous if the sheet metal workpiece is very large. It is also possible that the support body 14 comprises a conveyor 15, which is responsible for the manipulation of the sheet metal workpiece 2. Such a conveyor 15 may for example be a conveyor belt integrated in the support body 14, which is used for the transport of the sheet metal workpiece 2.

Für besonders lange Blechwerkstücke 2 mit langen Biegeschenkeln 12, 13 ist es auch denkbar, dass ein weiterer Auflagekörper 16 ausgebildet ist, auf welchem das Blechwerkstück 2 aufliegen kann. Weiters ist es möglich, dass eine Anschlageinheit 17 ausgebildet ist, welche zum Positionieren des Blechwerkstückes 2 dient. Diese Anschlageinheit 17 kann entweder als alleinstehendes Element ausgeführt sein oder sie kann auch in einem Auflagekörper 14, 16 integriert sein. Natürlich ist es möglich, dass die Anschlageinheit 17 nicht nur Positionieraufgaben übernimmt, sondern dass diese auch gleichzeitig für die Blechmanipulation herangezogen wird.For particularly long sheet metal workpieces 2 with long bending legs 12, 13, it is also conceivable that a further support body 16 is formed, on which the sheet metal workpiece 2 can rest. Furthermore, it is possible that a stop unit 17 is formed, which serves for positioning of the sheet metal workpiece 2. This stop unit 17 can either be designed as a stand-alone element or it can also be integrated in a support body 14, 16. Of course, it is possible that the stop unit 17 not only takes over positioning tasks, but that this is also used simultaneously for the sheet metal manipulation.

Durch die Verstellung des ersten Biegestempels 4 und/oder des zweiten Biegestempels 5 kann der Abstand 18 zwischen den beiden Biegestempeln 4, 5, welcher im Wesentlichen den Biegeabschnitt 10 definiert, eingestellt werden. Hierbei ist es vorteilhaft, wenn der dritte Biegestempel 6 dermaßen zwischen dem ersten Biegestempel 4 und dem zweiten Biegestempel 5 positioniert wird, dass dieser symmetrisch zwischen den beiden Biegestempeln 4, 5 zu liegen kommt.By adjusting the first bending punch 4 and / or the second bending punch 5, the distance 18 between the two bending dies 4, 5, which essentially defines the bending portion 10, can be adjusted. In this case, it is advantageous if the third bending punch 6 is positioned between the first bending punch 4 and the second punch 5 in such a way that it comes to rest symmetrically between the two punching dies 4, 5.

Fig. 2 zeigt eine perspektivische Ansicht eines Biegestempels 4, 5, 6, welcher in einer Bezugsebene 19 geschnitten dargestellt ist. Der in dieser Ansicht dargestellte Biegestempel 4, 5, 6 besitzt an beiden Enden seiner Hochausdehnung eine Arbeitskante 7, 8, 9. Dadurch kann er so eingesetzt werden, dass er beiderseits der Ausgangsebene 3 liegend das Blechwerkstück 2 mit seiner Arbeitskante 7, 8, 9 berühren kann, wodurch er für einen Einsatz auf der gegenüberliegenden Seite der Ausgangsebene 3 nicht geschwenkt werden muss. Somit ist eine Biegung eines Blechwerkstückes 2 in entgegengesetzte Richtung mit einem derartigen Biegestempel 4, 5, 6 gut zu realisierten. Fig. 2 shows a perspective view of a punch 4, 5, 6, which is shown in a reference plane 19 cut. The bending punch 4, 5, 6 shown in this view has at both ends of its high expansion a working edge 7, 8, 9. Thereby, it can be used so that it lying on both sides of the output plane 3, the sheet metal workpiece 2 with its working edge 7, 8, 9 can touch, causing him to use on the opposite Side of the output level 3 does not have to be pivoted. Thus, a bending of a sheet metal workpiece 2 in the opposite direction with such a punch 4, 5, 6 realized well.

In der Fig. 2 sind die möglichen Bewegungsmöglichkeiten, auch Freiheitsgrade genannt, eingezeichnet, in welchen der Biegestempel 4, 5, 6 in der Bezugsebene 19 bewegt werden kann. Die Bewegungsmöglichkeiten bestehen in einer Querrichtung 20, welche einer Führungsrichtung entlang der Ausgangsebene 3 entspricht, einer Hochrichtung 21, welche einer Führung entlang einer normal auf die Ausgangsebene 3 stehenden Richtung entspricht und einer Drehrichtung 22, welche einer Drehung des Biegestempel 4, 5, 6 in der Bezugsebene 19 entspricht. Durch Kombination der Führungsmöglichkeit entlang einer Querrichtung 20 und einer Hochrichtung 21 kann mit dem Biegestempel 4, 5, 6 im Prinzip jeder Punkt in der Bezugsebene 19 erreicht werden. Durch eine weitere Bewegungsmöglichkeit der Drehrichtung 22 kann nicht nur jeder Punkt in der Bezugsebene 19 erreicht werden, sondern auch die Ausrichtung des Biegestempels 4, 5, 6 an diesem beliebigen Punkt eingestellt werden.In the Fig. 2 are the possible movement possibilities, also called degrees of freedom, located in which the bending punch 4, 5, 6 can be moved in the reference plane 19. The movement possibilities consist in a transverse direction 20, which corresponds to a guide direction along the output plane 3, a vertical direction 21, which corresponds to a guide along a direction normal to the output plane 3 and a direction of rotation 22, which rotation of the bending punch 4, 5, 6 in the reference plane 19 corresponds. By combining the guiding possibility along a transverse direction 20 and a vertical direction 21, in principle any point in the reference plane 19 can be achieved with the bending punch 4, 5, 6. By a further possibility of movement of the direction of rotation 22 not only each point in the reference plane 19 can be achieved, but also the orientation of the punch 4, 5, 6 are set at this arbitrary point.

Fig. 3 zeigt einen schematischen Aufbau einer Kombination von verschiedenen Antriebsmechanismen 23, um einen Biegestempel 4, 5, 6 in der Bezugsebene 19 beliebig positionieren zu können. Um einen Biegestempel 4, 5, 6 zu bewegen, ist es notwendig, diesen an einen Antriebsmechanismus 23 zu koppeln. Dieser Antriebsmechanismus ist für die Positionierung des Biegestempels 4, 5, 6 in der Bezugsebene 19 verantwortlich. Entsprechend der Anzahl der Freiheitsgrade eines Biegestempels 4, 5, 6 gibt es verschiedene Möglichkeiten, den Antriebsmechanismus 23 durch Kombination verschiedener Drehantriebe 24, Schwenkantriebe 25 und Linearantriebe 26 umzusetzen. Fig. 3 shows a schematic structure of a combination of different drive mechanisms 23 in order to position a bending punch 4, 5, 6 in the reference plane 19 can arbitrarily. In order to move a bending punch 4, 5, 6, it is necessary to couple it to a drive mechanism 23. This drive mechanism is responsible for the positioning of the punch 4, 5, 6 in the reference plane 19. According to the number of degrees of freedom of a punch 4, 5, 6, there are various ways to implement the drive mechanism 23 by combining various rotary actuators 24, pivot drives 25 and linear drives 26.

Fig. 4a und 4b, sowie Fig. 5a bis 5e zeigen mehrere, mögliche Kombinationen von Antrieben um einen Biegestempel 4, 5, 6 in der Bezugsebene 19 zu bewegen. Fig. 4a and 4b , such as Fig. 5a to 5e show several possible combinations of drives to a bending punch 4, 5, 6 to move in the reference plane 19.

Fig. 4a und 4b zeigen die einfachste Ausführung einer Antriebskombination, in der ein Freiheitsgrad durch einen Antriebsmechanismus 23 gegeben ist. Dies kann entweder wie in Fig. 4a dargestellt durch einen Linearantrieb 26 bewerkstelligt werden oder durch einen in Fig. 4b dargestellten Drehantrieb 24 oder Schwenkantrieb 25. Hierbei kann entweder die Position eines Biegestempels 4, 5, 6 in eine Richtung verändert werden, oder die Lage des Biegestempels 4, 5, 6 in der Bezugsebene 19 verändert werden. Fig. 4a and 4b show the simplest embodiment of a drive combination in which a degree of freedom is given by a drive mechanism 23. This can either be like in Fig. 4a represented by a linear drive 26 can be accomplished or by a in Fig. 4b shown rotary drive 24 or rotary actuator 25. In this case, either the position a bending punch 4, 5, 6 are changed in one direction, or the position of the punch 4, 5, 6 are changed in the reference plane 19.

Fig. 5a bis Fig. 5e zeigt verschiedene Anordnungen indem dem Biegestempel 4, 5, 6 zwei Freiheitsgrade zur Bewegung gegeben werden, welche durch entsprechende Antriebe realisiert werden. Einerseits können wie in Fig. 5a dargestellt zwei Freiheitsgrade durch eine Kombination von zwei Linearantrieben 26 ermöglicht werden, wobei nicht erforderlich ist, dass diese zwingend im rechten Winkel aufeinander stehen. Hierbei kann der Biegestempel 4, 5, 6 in jede Position in der Bezugsebene 19 gebracht werden, jedoch ist seine Ausrichtung nicht veränderbar. Eine weitere Möglichkeit ist eine Kombination aus Dreh- oder Schwenkantrieb 24, 25 und Linearantrieb 26. Hierbei kann wie in Fig. 5b dargestellt von einem Maschinengestell aus gesehen der Linearantrieb 26 dem Dreh- oder Schwenkantrieb 24, 25 vorgeschalten sein oder auch wie in Fig. 5c dargestellt der Dreh- oder Schwenkantrieb 24, 25 dem Linearantrieb vorgeschalten sein. Eine weitere Möglichkeit besteht darin wie in Fig. 5d und 5e dargestellt, zwei Dreh- oder Schwenkantriebe 24, 25 zu kombinieren, wobei diese an verschiedenen Positionen des Antriebsmechanismus 23 installiert sein können. Auch eine Kombination dieser Antriebe ergibt, dass entweder die Position oder die Lage des Biegestempels 4, 5, 6 nicht frei wählbar sind. Fig. 5a to Fig. 5e shows various arrangements by the bending punch 4, 5, 6 given two degrees of freedom to move, which are realized by appropriate drives. On the one hand, as in Fig. 5a shown two degrees of freedom are made possible by a combination of two linear actuators 26, which is not required that they are necessarily at right angles to each other. In this case, the bending punch 4, 5, 6 can be brought into any position in the reference plane 19, however, its orientation is not changeable. Another possibility is a combination of rotary or rotary actuator 24, 25 and linear drive 26. Here, as in Fig. 5b represented by a machine frame from the linear drive 26 the rotary or rotary actuator 24, 25 upstream or be as in Fig. 5c illustrated the rotary or rotary actuator 24, 25 upstream of the linear drive. Another possibility is as in Fig. 5d and 5e shown to combine two rotary or rotary actuators 24, 25, which may be installed at different positions of the drive mechanism 23. Also, a combination of these drives results in either the position or the position of the punch 4, 5, 6 are not arbitrary.

Entsprechend den hier dargestellten Beispielen kann auch eine Kombination des Antriebsmechanismus realisiert werden, in der drei Antriebe eingesetzt werden, um den Biegestempel 4, 5, 6 in der Bezugsebene 19 beliebig positionieren und orientieren zu können. Aufgrund der Vielfalt der Ausführungsbeispiele wird hierbei jedoch auf eine exakte Beschreibung der Möglichkeiten bzw. auf zeichnerische Ausführung verzichtet, da sich die einzelnen Ausführungsmöglichkeiten ohnehin aus einer Kombination der in Fig. 4 und 5 gezeigten Ausführungsbeispiele zusammensetzen.According to the examples shown here, a combination of the drive mechanism can be realized in which three drives are used to arbitrarily position and orient the bending punch 4, 5, 6 in the reference plane 19. Due to the diversity of the embodiments, however, an exact description of the possibilities and / or graphic design is dispensed with here, since the individual execution options are in any case made up of a combination of the in 4 and 5 assembled embodiments shown.

Fig. 6 zeigt eine Prinzipskizze eines Ablaufes eines Biegevorganges. Hierbei wird das Blechwerkstück 2, welches zwischen den Biegestempeln 4, 5, 6 geklemmt wurde, durch die Bewegung des Biegestempels 5 entlang einer Bahn 27 gebogen. Der dritte Biegestempel 6 kann während des Biegevorganges mitgekippt werden, um ein optimales Biegeergebnis zu erzielen. Fig. 6 shows a schematic diagram of a sequence of a bending process. Here, the sheet metal workpiece 2, which was clamped between the punch punches 4, 5, 6, bent by the movement of the punch 5 along a path 27. The third bending punch 6 can be tilted during the bending process in order to achieve an optimum bending result.

Die Bewegungsbahn 27 des zweiten Biegestempels 5, im speziellen der Arbeitskante 7 sollte so gewählt werden, dass möglichst wenig Relativbewegung zwischen dem Biegestempel 5 und dem Blechwerkstück 2 auftritt. Dadurch wird nicht nur die Werkstückoberfläche 28 geschont, sondern es kann auch die zum Biegevorgang nötige Energie minimiert werden. Auch der dritte Biegestempel 6 sollte so mit dem Blechwerkstück 2 mitbewegt werden, dass keine Relativbewegung zwischen diesem und dem Blechwerkstück 2 auftritt. In dem Biegevorgang, wie er in Fig. 6 dargestellt ist, bleibt der erste Biegeschenkel 12 waagrecht und der zweite Biegeschenkel 13 wird durch den zweiten Biegestempel 5 nach oben gedrückt. Die Umformung des Blechwerkstückes 2 findet hauptsächlich in der Biegekante 11 statt.The trajectory 27 of the second punch 5, in particular the working edge 7 should be chosen so that the least possible relative movement between the punch 5 and the sheet metal workpiece 2 occurs. As a result, not only is the workpiece surface 28 protected, but also the energy required for the bending process can be minimized. Also, the third punch 6 should be moved with the sheet metal workpiece 2, that no relative movement between this and the sheet metal workpiece 2 occurs. In the bending process, as in Fig. 6 is shown, the first bending leg 12 remains horizontal and the second bending leg 13 is pressed by the second bending punch 5 upwards. The transformation of the sheet metal workpiece 2 takes place mainly in the bending edge 11.

Fig. 7 zeigt die gleiche Prinzipskizze eines Biegevorganges wie in Fig. 6 gezeigt wird, jedoch wird hier der zweite Biegeschenkel 13 nicht nach oben gebogen, sondern wird der zweite Biegeschenkel 13 in die gegensinnige Richtung nach unten gebogen. Hierzu ist es notwendig, dass alle drei Biegestempel 4, 5, 6 auf die jeweils gegenüberliegende Seite der Ausgangsebene gebracht werden. Auf der zweiten Seite der Ausgangsebene müssen die Biegestempel 4, 5, 6 dann jeweils um 180° geschwenkt werden, sodass ihre Arbeitskanten 7, 8, 9 wieder den zu bearbeitenden Blechwerkstück 2 zugewandt sind. Um diesen Schwenkvorgang zu vermeiden, kann auch angedacht sein, dass ein Biegestempel wie in Fig. 2 dargestellt verwendet wird, welcher zwei einander gegenüberliegende Arbeitskanten 7, 8, 9 aufweist. Fig. 7 shows the same schematic diagram of a bending process as in Fig. 6 is shown, but here the second bending leg 13 is not bent upwards, but the second bending leg 13 is bent in the opposite direction down. For this purpose, it is necessary that all three bending punches 4, 5, 6 are brought to the respective opposite side of the starting plane. On the second side of the starting plane, the bending dies 4, 5, 6 must then each be pivoted by 180 ° so that their working edges 7, 8, 9 again face the sheet metal workpiece 2 to be machined. To avoid this pivoting process, can also be considered that a punch as in Fig. 2 is shown, which has two opposing working edges 7, 8, 9.

Fig. 8 zeigt eine ähnliche Prinzipskizze der Anordnung von Biegestempeln 4, 5, 6, wie es in Fig. 6 gezeigt wird, jedoch ist hier für eine Biegung, welche in die entgegengesetzte Richtung ausgeführt werden soll, nicht vorgesehen, dass, wie in Fig. 7 gezeigt, die Biegestempel 4, 5, 6 auf die jeweils andere Seite der Ausgangsebene 3 bewegt werden, sondern es ist zumindest ein weiterer Biegestempel 29 vorgesehen, welcher bei dem Biegevorgang in eine Seite nicht im Eingriff steht und bei einem Biegevorgang in die andere Seite als Ersatz für den jeweiligen Biegestempel 4, 5, 6 dient, sodass diese Biegestempel 4, 5, 6 nicht auf die andere Seite der Bezugsebene 19 gebracht werden müssen und auch deren Orientierung nicht verändert werden muss. Fig. 8 shows a similar schematic diagram of the arrangement of bending dies 4, 5, 6, as shown in Fig. 6 is shown, but here is for a bend to be executed in the opposite direction, not provided that, as in Fig. 7 shown, the bending punch 4, 5, 6 are moved to the other side of the output level 3, but at least one further punch 29 is provided, which is not engaged in the bending operation in one side and in a bending operation in the other side than Replacement for the respective punch 4, 5, 6 is used, so that these bending punch 4, 5, 6 need not be brought to the other side of the reference plane 19 and also their orientation does not need to be changed.

Fig. 9 zeigt einen möglichen Aufbau einer derartigen Biegemaschine mit drei Biegestempeln. Hierbei sind der erste Biegestempel 4 bzw. der zweite Biegestempel 5 jeweils an einen Antriebsmechanismus 23 gekoppelt, welcher zwei Linearantriebe und einen Schwenkantrieb umfasst. Durch diesen Antriebsmechanismus 23 sind die Biegestempel 4, 5 in einem gewissen Arbeitsbereich 30 der Biegemaschine, welcher innerhalb der Bezugsebene 19 liegt, frei positionierbar. Der Antriebsmechanismus 23 verbindet die Biegestempel 4, 5 mit dem Maschinengestell 31. Weiters mit dem Maschinengestell 31 verbunden, ist ein Antriebsmechanismus 23 für den dritten Biegestempel 6, welcher einen Rotationsantrieb und einen Linearantrieb umfasst. Somit ist der dritte Biegestempel 6 bezüglich seiner Arbeitskante 9 schwenkbar und weiters auf das Blechwerkstück 2 zubewegbar oder von diesem entfernbar. Die dargestellte Biegemaschine wurde in der Bezugsebene 19, welche sich genau in der Mitte der Biegemaschine befindet, geschnitten. Die zweite hier nicht dargestellte Hälfte der Biegemaschine ist eine symmetrische Abbildung der in Fig. 9 dargestellten Hälfte der Biegemaschine. Um nach einem Biegevorgang das Blechwerkstück auszufädeln, erscheint es sinnvoll, wenn die Biegestempel 4, 5, 6 jeweils um eine Schwenkachse 32 aus dem Arbeitsbereich 30 ausgeschwenkt werden können, sodass das Blech leicht aus der Biegemaschine entfernt werden kann. Dieser Ausschwenkvorgang der Biegestempel 4, 5, 6 kann auch notwendig sein, wenn diese für eine Biegung in entgegengesetzter Biegerichtung auf der gegenüberliegenden Seite der Ausgangsebene 3 positioniert werden müssen. Fig. 9 shows a possible construction of such a bending machine with three bending dies. Here, the first punch 4 and the second punch 5 are each coupled to a drive mechanism 23, which two linear actuators and a rotary actuator includes. By this drive mechanism 23, the bending punch 4, 5 in a certain work area 30 of the bending machine, which is within the reference plane 19, freely positionable. The drive mechanism 23 connects the bending punches 4, 5 to the machine frame 31. Further connected to the machine frame 31 is a drive mechanism 23 for the third bending punch 6, which comprises a rotary drive and a linear drive. Thus, the third punch 6 is pivotable with respect to its working edge 9 and further zubewegbar on the sheet metal workpiece 2 or removable from this. The illustrated bending machine was cut in the reference plane 19, which is located exactly in the middle of the bending machine. The second half of the bending machine not shown here is a symmetrical illustration of the in Fig. 9 illustrated half of the bending machine. To thread out the sheet metal workpiece after a bending operation, it makes sense if the bending punch 4, 5, 6 can each be swung out of the working area 30 about a pivot axis 32, so that the sheet can be easily removed from the bending machine. This Ausschwenkvorgang the bending punch 4, 5, 6 may also be necessary if they must be positioned for a bend in the opposite bending direction on the opposite side of the output level 3.

In Fig. 10 wird in der Fig. 9 gezeigte Biegemaschine in einem nicht geschnittenen Zustand gezeigt. Die Antriebsmechanismen 23 der jeweiligen Biegestempel 4, 5, 6 sind beiderseits des Biegestempels 4, 5, 6 dargestellt. An diesen Antriebsmechanismen 23 sind die Biegestempel 4, 5, 6 befestigt.In Fig. 10 will be in the Fig. 9 shown bending machine shown in a non-cut state. The drive mechanisms 23 of the respective punch 4, 5, 6 are shown on both sides of the punch 4, 5, 6. At these drive mechanisms 23, the bending punch 4, 5, 6 are attached.

Fig. 11 zeigt eine Prinzipskizze in der am dritten Biegestempel 6 ein Kraftmesselement 33 angebracht ist, durch welches Kraftmesselement 33 und durch die Bestimmung der Lage der Biegestempel 4, 5, 6 die Blechstärke 34 als auch der Biegewinkel 35 ermittelt werden kann. Die Blechstärke 34 kann ermittelt werden indem alle Biegestempel 4, 5, 6 in eine aufrecht stehende Position gebracht werden. Danach wird das Blechwerkstück 2 auf den ersten Biegestempel 4 und den zweiten Biegestempel 5 aufgelegt. Anschließend wird der dritte Biegestempel 6 so weit nach unten bewegt, bis das Kraftmesselement 33 einen Wert an die Maschinensteuerung rückliefert, somit wird registriert, wann der dritte Biegestempel 6 das Blechwerkstück 2 berührt. Dadurch dass die Position der einzelnen Biegestempel 4, 5, 6 von der Maschinensteuerung hochgenau vorgegeben wird, und jederzeit abrufbar ist, kann nun auf die Blechstärke 34 rückgerechnet werden. Fig. 11 shows a schematic diagram in which a force measuring element 33 is mounted on the third bending punch 6, by which force measuring element 33 and by determining the position of the bending punch 4, 5, 6, the sheet thickness 34 and the bending angle 35 can be determined. The sheet thickness 34 can be determined by bringing all the bending punch 4, 5, 6 in an upright position. Thereafter, the sheet metal workpiece 2 is placed on the first punch 4 and the second punch 5. Subsequently, the third punch 6 is moved so far down until the force measuring element 33 returns a value to the machine control, thus it is registered when the third punch 6 touches the sheet metal workpiece 2. The fact that the position of the individual punch 4, 5, 6 is specified by the machine control highly accurate, and is retrievable at any time, can now be recalculated to the plate thickness 34.

Das Verfahren zur Bestimmung des Biegewinkels läuft folgendermaßen ab. Hier wird das Blechwerkstück 2 gebogen, wobei während des Biegevorganges eine Plastische, wie auch eine elastische Verformung auftritt. Wird nun das Blechwerkstück 2 um seinen elastischen Anteil überbogen, das heißt zuviel gebogen, so federt das Blechwerkstück 2 bei einem Rückzug der Biegestempel 4,5,6 um seinen elastischen Anteil zurück. Wenn nun die Kraft auf das Kraftmesselement 33 null wird, so ist der Biegewinkel 35 erreicht, welcher durch plastische Verformung beständig erhalten bleibt. Durch die Geometrie und die Lage der einzelnen Biegestempel 4, 5, 6 kann nun auf den erreichten Biegewinkel zurückgerechnet werden.The procedure for determining the bending angle is as follows. Here, the sheet metal workpiece 2 is bent, wherein a plastic, as well as an elastic deformation occurs during the bending process. If the sheet metal workpiece 2 is now bent over by its elastic component, that is to say it is bent too much, then the sheet metal workpiece 2 will spring back by its elastic component when the bending punch 4,5,6 retracts. Now, if the force on the force measuring element 33 is zero, the bending angle 35 is reached, which is maintained by plastic deformation resistant. Due to the geometry and the position of the individual bending punch 4, 5, 6 can now be calculated back to the reached bending angle.

Das Kraftmesselement 33 kann beispielsweise ein Piezolement sein, welches in den Biegestempel 4,5,6 integriert ist. Es kann jedoch auch zwischen Biegestempel 4,5,6 und Antriebsmechanismus 23 geschalten sein, um so die auf den Biegestempel 4,5,6 wirkenden Kräfte zu erfassen.The force measuring element 33 may be, for example, a piezo element which is integrated in the bending punch 4, 5, 6. However, it can also be switched between bending punch 4,5,6 and drive mechanism 23 so as to detect the force acting on the punch 4,5,6 forces.

Fig. 12 zeigt eine weitere Ausführungsvariante eines Biegestempels 4, 5, 6 in der im Biegestempel 4, 5, 6 eine Anschlagfläche 36 ausgebildet ist, an der das Blechwerkstück 2 angeschlagen werden kann. Fig. 12 shows a further embodiment of a bending punch 4, 5, 6 in the bending punch 4, 5, 6, a stop surface 36 is formed, on which the sheet metal workpiece 2 can be posted.

In den Fig. 1-12 sind unabhängige und gegebenenfalls für sich eigenständige Ausführungsformen der Biegemaschine 1 gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen verwendet werden. Die Darstellung und die Beschreibung der Ausführungen beschränken sich auf die Ausführungsbeispiele und Anordnungsbeispiele der Biegestempel 4, 5, 6. Als Grundlage für die Beschreibung der einzelnen Anordnungen wurden bestehende Abkantpressen, beziehungsweise Schwenkbiegemaschinen herangezogen. Es wird daher darauf hingewiesen, dass gewisse Bestandteile einer Biegemaschine, wie beispielsweise Pressbalken, in die die Biegestempel 4, 5, 6 integriert sind, oder eine Steuerungseinrichtung nicht explizit beschrieben wurden, da dies allgemein bekannte Bestandteile sind, welche natürlich in der vorliegenden Biegemaschine zum Einsatz kommen können.In the Fig. 1-12 are independent and possibly independent embodiments of the bending machine 1 shown, again with the same parts the same reference numerals or component names are used. The representation and the description of the embodiments are limited to the exemplary embodiments and arrangement examples of the bending punch 4, 5, 6. As a basis for the description of the individual arrangements existing press brakes, or folding machines were used. It is therefore to be understood that certain components of a bending machine, such as press beams, in which the bending punches 4, 5, 6 are integrated, or a control device have not been explicitly described, since these are well-known components, which of course in the present bending machine for Use can come.

Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten der Biegemaschine 1 wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt.The embodiments show possible embodiments of the bending machine 1 wherein it should be noted at this point that the invention is not limited to the specifically illustrated embodiments thereof, but rather also various combinations of individual variants are mutually possible and this variation possibility due to the doctrine of technical action by objective invention in the skill of those working in this technical field is the expert.

Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.Furthermore, individual features or combinations of features from the different exemplary embodiments shown and described can also represent independent, inventive or inventive solutions.

Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.The task underlying the independent inventive solutions can be taken from the description.

Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mitumfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mit umfasst sind, d.h. sämtliche Teilbereiche beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1, oder 5,5 bis 10.All statements of value ranges in the present description should be understood to include any and all sub-ranges thereof, e.g. is the statement 1 to 10 to be understood that all sub-areas, starting from the lower limit 1 and the upper limit 10 are included, ie. all sub-areas begin with a lower limit of 1 or greater and end at an upper limit of 10 or less, e.g. 1 to 1.7, or 3.2 to 8.1, or 5.5 to 10.

Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus der Biegemaschine 1 diese bzw. deren Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden. Bezugszeichenaufstellung 1 Biegemaschine 31 Maschinengestell 2 Blechwerkstück 32 Schwenkachse 3 Ausgangsebene 33 Kraftmesselement 4 erster Biegestempel 34 Blechstärke 5 zweiter Biegestempel 35 Biegewinkel 6 dritter Biegestempel 36 Anschlagfläche 7 erste Arbeitskante 8 zweite Arbeitskante 9 dritte Arbeitskante 10 Biegeabschnitt 11 Biegekante 12 erster Biegeschenkel 13 zweiter Biegeschenkel 14 Auflagekörper 15 Fördereinrichtung 16 weiterer Auflagekörper 17 Anschlageinheit 18 Abstand 19 Bezugsebene 20 Querrichtung 21 Hochrichtung 22 Drehrichtung 23 Antriebsmechanismus 24 Drehantrieb 25 Schwenkantrieb 26 Linearantrieb 27 Bahn 28 Werkstückoberfläche 29 weiterer Biegestempel 30 Arbeitsbereich For the sake of order, it should finally be pointed out that, for a better understanding of the structure of the bending machine 1, these or their components have been shown partially unevenly and / or enlarged and / or reduced in size. <B> Reference Numbers </ b> 1 bending machine 31 machine frame 2 Sheet metal work 32 swivel axis 3 output level 33 Force measuring element 4 first bending punch 34 sheet thickness 5 second bending punch 35 bending angle 6 third bending punch 36 stop surface 7 first working edge 8th second working edge 9 third working edge 10 bending section 11 bending edge 12 first bending leg 13 second bending leg 14 support body 15 Conveyor 16 additional support body 17 stop unit 18 distance 19 reference plane 20 transversely 21 vertical direction 22 direction of rotation 23 drive mechanism 24 rotary drive 25 Rotary actuator 26 linear actuator 27 train 28 Workpiece surface 29 another bending punch 30 Workspace

Claims (19)

  1. A bending machine (1) for bending a sheet metal workpiece (2), comprising at least three bending punches (4,5,6), which respectively have working edges (7,8,9) which are aligned parallel to one another, wherein relative to an initial plane (3) in which a bend section (10) to be made in the sheet metal workpiece (2) lies, the first and the second bending punch (4,5) are positioned on one side and the third bending punch (6) is positioned on the opposite side of the initial plane (3) and the working edge (9) of the third bending punch (6) is displaceable between the working edges (7,8) of the first and second bending punches (4,5), wherein the third bending punch (6) has at least one rotary and one translatory degree of freedom in a reference plane (19) oriented at a right angle to a working edge (7,8,9), wherein the second bending punch (5) has three degrees of freedom in the reference plane (19), characterized in that a supporting body (14) defining the initial plane (3) and structurally separate from the first bending punch (4) is provided for a sheet metal workpiece (2) and that the first bending punch (4) has at least one translatory degree of freedom in the reference plane (19).
  2. The bending machine according to claim 1 or 2, characterized in that the third bending punch (6) has three degrees of freedom.
  3. The bending machine according to one of the preceding claims, characterized in that the first and the second bending punch (4,5) can be moved independently of one another.
  4. The bending machine according to one of the preceding claims, characterized in that to enable positioning and depending on the number of their degrees of freedom, the three bending punches (4,5,6) are connected to a driving mechanism (23) selected from a group comprising rotary drives (24), swivel drives (25), linear actuators (26) or combinations thereof.
  5. The bending machine according to claim 4, characterized in that at least one of the bending punches (4,5,6,29) is connected to two driving mechanisms (23), in particular of identical construction, spaced apart from one another in the direction of the working edge (7,8,9).
  6. The bending machine according to claim 4 or 5, characterized in that at least one of the bending punches (4,5,6) is displaceable in the direction of its working edge (7,8,9) or is displaceable about a pivot axis (32) parallel to the reference plane (19).
  7. The bending machine according to one of the preceding claims, characterized in that at least one of the bending punches (4,5,6) has two working edges (7,8,9) lying approximately opposite one another.
  8. The bending machine according to one of the preceding claims, characterized in that at least one of the three bending punches (4,5,6) co-operates with an additional bending punch (29) which is disposed on the opposite side of the initial plane (3), wherein the working edges (7,8,9) of these two oppositely lying bending punches (4,5,6;29) are directed towards one another.
  9. The bending machine according to one of the preceding claims, characterized in that a force-measuring element (33) is integrated in at least one of the bending punches (4,5,6,29) and/or in the driving mechanism (23) thereof.
  10. The bending machine according to one of the preceding claims, characterized in that at least one of the bending punches (4,5,6,29) has at least one stop face (36).
  11. A method of bending a sheet metal workpiece (2) on a bending machine having three bending punches (4,5,6) which respectively have working edges (7,8,9) which are aligned parallel to one another, wherein relative to an initial plane (3) in which a bend section (10) to be made in a sheet metal workpiece (2) lies, the first and second bending punch (4,5) are positioned on one side and the third bending punch (6) is positioned on the opposite side of the initial plane (3), wherein the working edge (9) of the third bending punch (6) is displaced between the working edges (7,8) of the first and second bending punch (4,5) and the third bending punch (6) is moved in at least one rotary and one translatory direction in a reference plane (19) oriented at a right angle to a working edge (7,8,9), characterized in that during the bending operation, the sheet metal workpiece (2) is retained between the first and third working edges (7,9) essentially in the initial plane (3) so that a first bend leg (12) is formed, and the working edge (8) of the second bending punch (5) is directed along a path (27) about the working edge (9) of the third bending punch (6), so that the bend edge (11) and a second bend leg (13) adjoining it is formed at the third working edge (6).
  12. The method according to claim 11, characterized in that the path (27) of the second working edge (8) is set so that it makes contact with the sheet metal workpiece (2) with as little relative movement as possible during the bending operation.
  13. The method according to one of claims 11 or 12, characterized in that before or during the bending operation, the distance (18) between the first and the second working edge (7,8) is set and/or adjusted depending on workpiece properties.
  14. The method according to one of claims 11 to 13, characterized in that during the bending operation, the distances (18) between the third and first working edge (7,9) and the third and second working edge (8,9) may be kept more or less the same size.
  15. The method according to one of claims 11 to 14, characterized in that the bending punches (4,5,6,29) are directed onto the workpiece surface (28) oriented essentially at a right angle during the bending operation.
  16. The method according to one of claims 11 to 15, characterized in that in order to bend the sheet metal workpiece (2) in partially opposite directions, the first and/or second bending punches (4,5) is or are positioned on one side or on the opposite side of the initial plane (3), if necessary, before the respective bending operation.
  17. The method according to one of claims 11 to 16, characterized in that in order to bend the sheet metal workpiece (2) in partially opposite directions, an additional bending punch (29) is used which is disposed lying opposite one of the three bending punches (4,5,6), wherein only three bending punches (4,5,6;29) are ever active use during the bending operation.
  18. The method according to one of claims 11 to 17, characterized in that in order to introduce or remove a sheet metal workpiece (2), at least one of the bending punches (4,5,6,29) is removed from the working area (30) in the direction of its working edge (7,8,9) or about a pivot axis (32) parallel to the reference plane (19).
  19. The method according to one of claims 11 to 18, characterized in that the sheet thickness (34) and/or the bend angle (35) can be calculated by determining the position of a bending punch (4,5,6,29) and measuring the force applied to the sheet metal workpiece to be bent (2).
EP14796392.0A 2013-09-02 2014-08-27 Bending machine and method for bending a sheet metal workpiece Active EP3041618B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50538/2013A AT514769B1 (en) 2013-09-02 2013-09-02 Bending machine, and method for bending a sheet metal workpiece
PCT/AT2014/050187 WO2015027265A1 (en) 2013-09-02 2014-08-27 Bending machine and method for bending a sheet metal workpiece

Publications (2)

Publication Number Publication Date
EP3041618A1 EP3041618A1 (en) 2016-07-13
EP3041618B1 true EP3041618B1 (en) 2017-06-21

Family

ID=51893785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14796392.0A Active EP3041618B1 (en) 2013-09-02 2014-08-27 Bending machine and method for bending a sheet metal workpiece

Country Status (4)

Country Link
US (1) US9849493B2 (en)
EP (1) EP3041618B1 (en)
AT (1) AT514769B1 (en)
WO (1) WO2015027265A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108405665A (en) * 2017-02-09 2018-08-17 上海岩灵自动化工程有限公司 A kind of automatic bending production line of door of elevator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1427344A1 (en) 1961-11-18 1968-11-28 Harald Wirth Device for bending flat rails
AT393639B (en) 1990-03-15 1991-11-25 Lift Verkaufsgeraete Gmbh SHEET BENDING DEVICE
US5474437A (en) 1992-04-24 1995-12-12 Anritsu Corporation Metallic die device for press machine
JPH06226354A (en) 1993-01-29 1994-08-16 Amada Co Ltd Bending device for metal plate
FR2741288B1 (en) 1995-11-21 1997-12-26 Mas Barral Atel Const Du ADJUSTABLE TOOLS FOR BENDING SHEETS
IT1290685B1 (en) * 1997-02-18 1998-12-10 Work Corp Inc S R L EQUIPMENT FOR COLD FORMING OF SHEET SHEETS TO OBTAIN ELONGATED ARTICLES WITH A PREFIXED PROFILE SECTION.
US6959573B2 (en) * 2000-08-11 2005-11-01 Amada Company, Limited Bending method and device therefore
US7415857B1 (en) 2005-06-24 2008-08-26 Davor Petricio Yaksic Plate bending machines and methods
US8322176B2 (en) 2009-02-11 2012-12-04 Ford Global Technologies, Llc System and method for incrementally forming a workpiece

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015027265A1 (en) 2015-03-05
AT514769B1 (en) 2015-05-15
EP3041618A1 (en) 2016-07-13
AT514769A1 (en) 2015-03-15
US9849493B2 (en) 2017-12-26
US20160236254A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
AT503790B1 (en) STOPPING DEVICE FOR A BEND PRESS
EP2008736B1 (en) Machine tool and method for discharging a workpiece part
EP2881188B1 (en) Backgauge for a bending machine
DE1552633B2 (en) Device for trimming at least one edge of a sheet metal strip
DE2741001A1 (en) THREE-POINT SHEET BENDING MACHINE
EP3010663B1 (en) Rear stop device for a bending machine
EP2481492B1 (en) Bending tool for free-form bending of sheet metal
EP2756891A1 (en) Device for bending bar-like workpieces
DE102018000344B3 (en) Bending machine, bending unit, electronic control device and method for bending a workpiece from flat material
EP3144076A1 (en) Tool for a stamping machine for shaping sections of a platelike workpiece and method for same
WO2000043142A2 (en) Bending machine
AT409733B (en) POSITIONING DEVICE AND METHOD FOR WELDING DOORS AND FLAPS
EP0546392B1 (en) Cutting blade and apparatus therewith
WO2000043140A1 (en) Bending machine
EP3041618B1 (en) Bending machine and method for bending a sheet metal workpiece
EP2497580B1 (en) Bending tool and bending tool assembly
AT518538B1 (en) Processing machine for processing workpieces
AT507945B1 (en) BANK PRESS FOR BENDING FOILS
EP3427853B1 (en) Rear stop element and production assembly with same
EP3095534B1 (en) Bending machine
DE102010016555B4 (en) Process for manufacturing a workpiece by forming, as well as manufacturing equipment with a bending tool for a sheet metal bending press
AT524261B1 (en) Bending device with backgauge unit
EP1324841B1 (en) Device for bending a line of material
DE19640119C2 (en) Bending tool
DE202020002598U1 (en) Bending machine for bending a workpiece from flat material and control unit for such a bending machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160331

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170201

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FISCHEREDER, BERNHARD

Inventor name: WEISS, THOMAS

Inventor name: SPEZIALI, STEFANO

Inventor name: AIGNER, WOLFGANG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AIGNER, WOLFGANG

Inventor name: SPEZIALI, STEFANO

Inventor name: WEISS, THOMAS

Inventor name: FISCHEREDER, BERNHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 902454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004366

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004366

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170831

26N No opposition filed

Effective date: 20180322

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014004366

Country of ref document: DE

Representative=s name: ABP BURGER RECHTSANWALTSGESELLSCHAFT MBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180827

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 902454

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190827

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230817

Year of fee payment: 10

Ref country code: CZ

Payment date: 20230818

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230818

Year of fee payment: 10

Ref country code: DE

Payment date: 20230818

Year of fee payment: 10