EP3039575B1 - Architecture de stockage distribuée extensible - Google Patents
Architecture de stockage distribuée extensible Download PDFInfo
- Publication number
- EP3039575B1 EP3039575B1 EP14736203.2A EP14736203A EP3039575B1 EP 3039575 B1 EP3039575 B1 EP 3039575B1 EP 14736203 A EP14736203 A EP 14736203A EP 3039575 B1 EP3039575 B1 EP 3039575B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- objects
- file system
- file
- store
- virtual disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims description 32
- 238000013507 mapping Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 230000004044 response Effects 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 17
- 238000007726 management method Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000007792 addition Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/18—File system types
- G06F16/182—Distributed file systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/27—Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/18—File system types
- G06F16/188—Virtual file systems
Definitions
- Distributed systems allow multiple clients in a network to access a pool of shared resources.
- a distributed storage system allows a cluster of host computers to aggregate local disks (e.g., SSD, PCI-based flash storage, SATA, or SAS magnetic disks) located in or attached to each host computer to create a single and shared pool of storage.
- This pool of storage (sometimes referred to herein as a "datastore” or "store") is accessible by all host computers in the cluster and may be presented as a single namespace of storage entities (such as a hierarchical file system namespace in the case of files, a flat namespace of unique identifiers in the case of objects, etc.).
- Storage clients in turn, such as virtual machines spawned on the host computers may use the datastore, for example, to store virtual disks that are accessed by the virtual machines during their operation.
- the shared local disks that make up the datastore may have different performance characteristics (e.g., capacity, input/output per second or IOPS capabilities, etc.), usage of such shared local disks to store virtual disks or portions thereof may be distributed among the virtual machines based on the needs of each given virtual machine.
- a scalable object store e.g., applications, storage management tools, virtualization hypervisors, etc.
- object store may require that the object store provide a certain hierarchical file system based storage interface.
- vSphere Hypervisor from VMware, Inc. which stores virtual machine metadata in the form of files in a hierarchical file system.
- any file system that is used to manage the single namespace provided by the datastore needs to have mechanisms for concurrency control.
- Current distributed or clustered file systems typically provide some form of concurrency control.
- US 2005/0097073 A1 Mair et al describes a method for mapping a flat namespace on to a hierarchical namespace using locality of reference cues.
- US 2005/0240714 A1 McCauley et al describes a system and method for manipulating a virtual content repository where an external representation of a plurality of repositories preserves hierarchical relationships of the information contained therein.
- US 2011/0238814 A1 Pitts describes a method for constructing a unified namespace carried out by a domain manager service.
- none of these documents are concerned with or consider the difficulties of limitations in the current file systems, or address scalability issues.
- the present invention is defined according to the independent claims. Additional features of the invention will be appreciated from the dependent claims and the description herein. Any embodiments which are described but which do not fall within the scope of the claims are to be interpreted merely as examples useful for understanding of the invention.
- the following disclosure presents a method for providing a file system interface for an object store intended to support simultaneous access to objects stored in the object store by multiple clients.
- an abstraction of a root directory to a hierarchical namespace for the object store is exposed to clients.
- the object store is backed by a plurality of physical storage devices housed in or directly attached to the plurality of host computers and internally tracks its stored objects using a flat namespace that maps unique identifiers to the stored objects.
- the creation of top-level objects appearing as subdirectories of the root directory is enabled, wherein each top-level object represents a separate abstraction of a storage device having a separate namespace that can be organized in accordance with any designated file system.
- techniques herein are able to offer a framework that supports a large scalable clustered file system using a distribute of commodity storage resources. For example, providing the capability to create top-level objects representing file systems that contain file objects that may ultimately be accessed by clients, the foregoing object store offers higher scalability than existing distributed or clustered file systems because it is not confined, for example, by any limitations on the number of simultaneous clients inherent in the design of any particular distributed clustered file system (e.g., VMware VMFS, NFS, etc.) configured for any particular file system object in the object store.
- implementing a clustered file system on top of an object store has scalability advantages, because different parts of the clustered file system can be placed on different objects such that scalability requirements from particular clients need to be achieved only by the subset of such clients that access data in a certain sub-space of the namespace which, in turn, resides on a certain object.
- inventions include, without limitation, a computer-readable medium that includes instructions that enable a processing unit to implement one or more aspects of the disclosed methods as well as a computer system having a processor, memory, and modules configured to implement one or more aspects of the disclosed methods.
- FIG. 1 illustrates a computing environment 100, according to one example.
- computing environment 100 is a software-based "virtual storage area network” (VSAN) environment that leverages the commodity local storage housed in or directly attached (hereinafter, use of the term “housed” or “housed in” may be used to encompass both housed in or otherwise directly attached) to host servers or nodes 111 of a cluster 110 to provide an aggregate object store 116 to virtual machines (VMs) 112 running on the nodes.
- the local commodity storage housed in or otherwise directly attached to the nodes 111 may include combinations of solid state drives (SSDs) 117 and/or magnetic or spinning disks 118.
- SSDs solid state drives
- each node 111 may include a storage management module (referred to herein as a "VSAN module") in order to automate storage management workflows (e.g., create objects in the object store, etc.) and provide access to objects in the object store (e.g., handle I/O operations to objects in the object store, etc.) based on predefined storage policies specified for objects in the object store.
- VSAN module storage management module
- a VM may be initially configured by an administrator to have specific storage requirements for its "virtual disk” depending its intended use (e.g., capacity, availability, IOPS, etc.), the administrator may define a storage profile or policy for each VM specifying such availability, capacity, IOPS and the like. As further described below, the VSAN module may then create an "object" for the specified virtual disk by backing it with physical storage resources of the object store based on the defined policy
- a virtualization management platform 105 is associated with cluster 110 of nodes 111.
- Virtualization management platform 105 enables an administrator to manage the configuration and spawning of VMs on the various nodes 111.
- each node 111 includes a virtualization layer or hypervisor 113, a VSAN module 114, and hardware 119 (which includes the SSDs 117 and magnetic disks 118 of a node 111).
- hypervisor 113 Through hypervisor 113, a node 111 is able to launch and run multiple VMs 112.
- Hypervisor 113 in part, manages hardware 119 to properly allocate computing resources (e.g., processing power, random access memory, etc.) for each VM 112.
- each hypervisor 113 through its corresponding VSAN module 114, provides access to storage resources located in hardware 119 (e.g., SSDs 117 and magnetic disks 118) for use as storage for virtual disks (or portions thereof) and other related files that may be accessed by any VM 112 residing in any of nodes 111 in cluster 110.
- storage resources located in hardware 119 e.g., SSDs 117 and magnetic disks 118
- VMware may be installed on nodes 111 as hypervisor 113
- vCenter Server from VMware may be used as virtualization management platform 105.
- VSAN module 114 is implemented as a "VSAN" device driver within hypervisor 113.
- VSAN module 114 provides access to a conceptual "VSAN" 115 through which an administrator can create a number of top-level "device” or namespace objects that are backed by object store 116.
- the administrator may specify a particular file system for the device object (such device objects hereinafter also thus referred to "file system objects").
- file system objects such device objects hereinafter also thus referred to "file system objects"
- each hypervisor 113 in each node 111 may, during a boot process, discover a /vs an / root node for a conceptual global namespace that is exposed by VSAN module 114.
- hypervisor 113 can then determine all the top-level file system objects (or other types of top-level device objects) currently residing in VSAN 115. When a VM (or other client) attempts to access one of the file system objects, hypervisor 113 may dynamically "auto-mount" the file system object at that time. In certain examples, file system objects may further be periodically “auto-unmounted” when access to objects in the file system objects cease or are idle for a period of time.
- a file system object (e.g., /vs an / fs_name 1, etc.) that is accessible through VSAN 115 may, for example, be implemented to emulate the semantics of a particular file system such as VMware's distributed or clustered file system, VMFS, which is designed to provide concurrency control among simultaneously accessing VMs.
- VMFS clustered file system
- a file system object e.g., /vs an / fs_name 1, etc.
- VSAN 115 supports multiple file system objects, it is able provide storage resources through object store 116 without being confined by limitations of any particular clustered file system. For example, many clustered file systems (e.g., VMFS, etc.) can only scale to support a certain amount of nodes 111.
- VSAN 115 overcomes the scalability limitations of such clustered file systems.
- a file system object may, itself, provide access to a number of virtual disk descriptor files (e.g., . vmdk files in a vSphere environment, etc.) accessible by VMs 112 running in cluster 110.
- virtual disk descriptor files e.g., . vmdk files in a vSphere environment, etc.
- These virtual disk descriptor files contain references to virtual disk "objects" that contain the actual data for the virtual disk and are separately backed by object store 116.
- a virtual disk object may itself be a hierarchical or "composite” object that, as described further below, is further composed of “component” objects (again separately backed by object store 116) that reflect the storage requirements (e.g., capacity, availability, IOPs, etc.) of a corresponding storage profile or policy generated by the administrator when initially creating the virtual disk.
- component objects e.g., capacity, availability, IOPs, etc.
- each VSAN module 114 (through a cluster level object management or "CLOM" sub-module, in examples as further described below) communicates with other VSAN modules 114 of other nodes 111 to create and maintain an in-memory metadata database (e.g., maintained separately but in synchronized fashion in the memory of each node 111) that contains metadata describing the locations, configurations, policies and relationships among the various objects stored in object store 116.
- This in-memory metadata database is utilized by a VSAN module 114 on a node 111 , for example, when an administrator first creates a virtual disk for a VM as well as when the VM is running and performing I/O operations (e.g., read or write) on the virtual disk.
- VSAN module 114 (through a document object manager or "DOM" sub-module, in one example as further described below) traverses a hierarchy of objects using the metadata in the in-memory database in order to properly route an I/O operation request to the node (or nodes) that houses (house) the actual physical local storage that backs the portion of the virtual disk that is subject to the I/O operation.
- DOM document object manager
- Figure 2 illustrates an example hierarchical structure of objects organized within object store 116 that represent a virtual disk, according to one example.
- a VM 112 running on one of nodes 111 may perform I/O operations on a virtual disk that is stored as a hierarchical or composite object 200 in object store 116.
- Hypervisor 113 provides VM 112 access to the virtual disk by interfacing with the abstraction of VSAN 115 through VSAN module 114 (e.g., by auto-mounting the top-level file system object corresponding to the virtual disk object, as previously discussed, in one example).
- VSAN module 114 by querying its local copy of the in-memory metadata database, is able to identify a particular file system object 205 (e.g., a VMFS file system object in one example, etc.) stored in VSAN 115 that stores a descriptor file 210 for the virtual disk (e.g., a . vmdk file, etc.).
- a particular file system object 205 e.g., a VMFS file system object in one example, etc.
- VSAN 115 that stores a descriptor file 210 for the virtual disk (e.g., a . vmdk file, etc.).
- the file system object 205 may store a variety of other files consistent with its purpose, such as virtual machine configuration files (e.g., . vmx files in a vSphere environment, etc.) and the like when supporting a virtualization environment.
- each file system object may be configured to support only those virtual disks corresponding to a particular VM (e.
- Descriptor file 210 includes a reference to composite object 200 that is separately stored in object store 116 and conceptually represents the virtual disk (and thus may also be sometimes referenced herein as a virtual disk object).
- Composite object 200 stores metadata describing a storage organization or configuration for the virtual disk (sometimes referred to herein as a virtual disk "blueprint") that suits the storage requirements or service level agreements (SLAs) in a corresponding storage profile or policy (e.g., capacity, availability, IOPs, etc.) generated by an administrator when creating the virtual disk.
- SLAs service level agreements
- composite object 200 includes a virtual disk blueprint 215 that describes a RAID 1 configuration where two mirrored copies of the virtual disk (e.g., mirrors) are each further striped in a RAID 0 configuration.
- Composite object 225 may thus contain references to a number of "leaf or "component" objects 220x corresponding to each stripe (e.g., data partition of the virtual disk) in each of the virtual disk mirrors.
- the metadata accessible by VSAN module 114 in the in-memory metadata database for each component object 220 provides a mapping to or otherwise identifies a particular node 111x in cluster 110 that houses the physical storage resources (e.g., magnetic disks 118, etc.) that actually store the stripe (as well as the location of the stripe within such physical resource).
- the physical storage resources e.g., magnetic disks 118, etc.
- FIG. 3 illustrates components of a VSAN module 114, according to one example.
- VSAN module 114 may execute as a device driver exposing an abstraction of a VSAN 115 to hypervisor 113.
- Various sub-modules of VSAN module 114 handle different responsibilities and may operate within either user space 315 or kernel space 320 depending on such responsibilities.
- VSAN module 114 includes a cluster level object management (CLOM) sub-module 325 that operates in user space 315.
- CLOM sub-module 325 generates virtual disk blueprints during creation of a virtual disk by an administrator and ensures that objects created for such virtual disk blueprints are configured to meet storage profile or policy requirements set by the administrator.
- CLOM cluster level object management
- CLOM sub-module 325 may also be accessed (e.g., to dynamically revise or otherwise update a virtual disk blueprint or the mappings of the virtual disk blueprint to actual physical storage in object store 116) on a change made by an administrator to the storage profile or policy relating to an object or when changes to the cluster or workload result in an object being out of compliance with a current storage profile or policy.
- CLOM sub-module 325 applies a variety of heuristics and/or distributed algorithms to generate virtual disk blueprint 215 that describes a configuration in cluster 110 that meets or otherwise suits the storage policy (e.g., RAID configuration to achieve desired redundancy through mirroring and access performance through striping, which nodes' local storage should store certain portions/partitions/stripes of the virtual disk to achieve load balancing, etc.).
- CLOM sub-module 325 in one example, is responsible for generating blueprint 215 describing the RAID 1/RAID 0 configuration for virtual disk object 200 in Figure 2 when the virtual disk was first created by the administrator.
- a storage policy may specify requirements for capacity, IOPS, availability, and reliability.
- Storage policies may also specify a workload characterization (e.g., random or sequential access, I/O request size, cache size, expected cache hit ration, etc.).
- the administrator may also specify an affinity to VSAN module 114 to preferentially use certain nodes 111 (or the local disks housed therein). For example, when provisioning a new virtual disk for a VM, an administrator may generate a storage policy or profile for the virtual disk specifying that the virtual disk have a reserve capacity of 400GB, a reservation of 150 read IOPS, a reservation of 300 write IOPS, and a desired availability of 99.99%.
- CLOM sub-module 325 Upon receipt of the generated storage policy, CLOM sub-module 325 consults the in-memory metadata database maintained by its VSAN module 114 to determine the current state of cluster 110 in order generate a virtual disk blueprint for a composite object (e.g., the virtual disk object) that suits the generated storage policy. As further discussed below, CLOM sub-module 325 may then communicate the blueprint to its corresponding distributed object manager (DOM) sub-module 340 which interacts with object space 116 to implement the blueprint by, for example, allocating or otherwise mapping component objects (e.g., stripes) of the composite object to physical storage locations within various nodes 111 of cluster 110.
- DOM distributed object manager
- VSAN module 114 may also include a cluster monitoring, membership, and directory services (CMMDS) sub-module 335 that maintains the previously discussed in-memory metadata database to provide information on the state of cluster 110 to other sub-modules of VSAN module 114 and also tracks the general "health" of cluster 110 by monitoring the status, accessibility, and visibility of each node 111 in cluster 110.
- CMSDS cluster monitoring, membership, and directory services
- the in-memory metadata database serves as a directory service that maintains a physical inventory of the VSAN environment, such as the various nodes 111, the storage resources in the nodes 111 (SSD, magnetic disks, etc.) housed therein and the characteristics/capabilities thereof, the current state of the nodes 111 and there corresponding storage resources, network paths among the nodes 111, and the like.
- the in-memory metadata database further provides a catalog of metadata for objects stored in object store 116 (e.g., what composite and component objects exist, what component objects belong to what composite objects, which nodes serve as "coordinators” or "owners” that control access to which objects, quality of service requirements for each object, object configurations, the mapping of objects to physical storage locations, etc.).
- object store 116 e.g., what composite and component objects exist, what component objects belong to what composite objects, which nodes serve as "coordinators” or "owners” that control access to which objects, quality of service requirements for each object, object configurations, the mapping of objects to physical storage locations, etc.
- CMMDS sub-module 335 represented by the connecting lines in Figure 3
- CLOM sub-module 325 accesses the in-memory metadata database to generate a virtual disk blueprint, and in order to handle an I/O operation from a running VM 112, DOM sub-module 340 accesses the in-memory metadata database to determine the nodes 111 that store the component objects (e.g., stripes) of a corresponding composite object (e.g., virtual disk object) and the paths by which those nodes are reachable in order to satisfy the I/O operation.
- component objects e.g., stripes
- composite object e.g., virtual disk object
- DOM sub-module 340 controls access to and handles operations on those component objects in object store 116 that are stored in the local storage of the particular node 111 in which DOM sub-module 340 runs as well as certain other composite objects for which its node 111 has been currently designated as the "coordinator" or "owner.”
- a DOM sub-module 340 that serves as the coordinator for the target composite object e.g., the virtual disk object that is subject to the I/O operation
- the DOM sub-module 340 of the node running the VM would also have to communicate across the network with the DOM sub-module 340 of the coordinator.
- the two DOM sub-modules 340 of the two nodes may to communicate to change the role of the coordinator of the virtual disk object to the node running the VM (e.g., thereby reducing the amount of network communication needed to coordinate I/O operations between the node running the VM and the node serving as the coordinator for the virtual disk object).
- DOM sub-modules 340 also similarly communicate amongst one another during object creation.
- a virtual disk blueprint generated by CLOM module 325 during creation of a virtual disk may include information that designates which nodes 111 should serve as the coordinators for the virtual disk object as well as its corresponding component objects (stripes, etc.).
- Each of the DOM sub-modules 340 for such designated nodes is issued requests (e.g., by the DOM sub-module 340 designated as the coordinator for the virtual disk object or by the DOM sub-module 340 of the node generating the virtual disk blueprint, etc.
- DOM sub-module 340 interacts with a log structured object manager (LSOM) sub-module 350 that serves as the component in VSAN module 114 that actually drives communication with the local SSDs and magnetic disks of its node 111.
- LSOM log structured object manager
- LSOM sub-module 350 In addition to allocating local storage for component objects (as well as to store other metadata such a policies and configurations for composite objects for which its node serves as coordinator, etc.), LSOM sub-module 350 additionally monitors the flow of I/O operations to the local storage of its node 111, for example, to report whether a storage resource is congested.
- Figure 3 also depicts a reliable datagram transport (RDT) sub-module 345 that delivers datagrams of arbitrary size between logical endpoints (e.g., nodes, objects, etc.), where the endpoints may potentially be over multiple paths.
- RDT reliable datagram transport
- the underlying transport is TCP.
- other transports such as RDMA may be used.
- RDT sub-module 345 is used, for example, when DOM sub-modules 340 communicate with one another, as previously discussed above to create objects or to handle I/O operations.
- RDT module 345 interacts with CMMDS module 335 to resolve the address of logical endpoints dynamically in order to maintain up-to-date location information in the in-memory metadata database as well as to create, remove, or reestablish connections based on link health status. For example, if CMMDS module 335 reports a link as unhealthy, RDT sub-module 345 may drop the connection in favor of a link in better condition.
- Figure 4 illustrates a method flow diagram for creating a virtual disk object based on a defined storage policy, according to one example.
- an administrator may interact with a user interface of virtual management platform 105 to create a virtual disk having capacity, availability and IOPS requirements (e.g., the defined storage policy).
- virtual management platform 105 may then request a "master" node 111 to create an object for the virtual disk in step 405.
- a master node 111 may generate a virtual disk blueprint through its CLOM sub-module 325 in VSAN module.
- CLOM sub-module 35 generates a virtual disk blueprint for the creation of a virtual disk object (e.g., a composite object) based on the status of cluster 110 as determined by consulting the in-memory metadata database of CMMS sub-module 335.
- the virtual disk blueprint may identify a particular node that should serve as the coordinator or owner of the virtual disk object.
- the DOM sub-module 340 of the master node 111 may the request the DOM sub-module 340 of the identified node to create the virtual disk object.
- the DOM sub-module 340 of the identified node receives the request and creates the virtual disk object, by, for example, communicating with its corresponding the LSOM sub-module 350 to persistently store metadata describing the virtual disk object in its local storage.
- the DOM sub-module 340 based on the virtual disk object blueprint, identifies those others nodes in cluster 110 that have been designated to serve as the coordinator or owner for any component objects in the virtual disk blueprint.
- the DOM sub-module 340 communicates (e.g., using its RTP sub-module 345) with the DOM sub-modules 340 of the other nodes that will serve as coordinators for the component objects and store the data backing such component objects in their local storage.
- DOM sub-modules 340 When such DOM sub-modules 340 receive a request from the DOM sub-module 340 of the coordinator of the virtual disk object to create their respective component objects, they, in turn in step 430, communicate with their respective LSOM modules 350 to allocate local storage for the component object (and its related metadata). Once such component objects have been created, their DOM sub-modules 340 advertise the creation of the components to the in-memory metadata database of its CMMS sub-module 335 in step 435.
- the DOM sub-module 340 for the coordinator of the virtual disk object also advertises its creation to its CMMDS sub-module 335 to update the in-memory metadata database and ultimately transmits an acknowledgement to the administrator (e.g., via the master node communications back to virtual management platform 105).
- FIG. 5 illustrates the handling of an I/O operation originating from a VM, according to one example.
- the VM's guest operating system transmits an I/O operation request intended for its virtual disk (through a device driver of the guest operating system) which, in step 505, is received by hypervisor 113 and ultimately transmitted and transformed through various layers of an I/O stack in hypervisor 113 to DOM sub-module 340 of VSAN module 114.
- the I/O request received by DOM sub-module 340 includes a unique identifier for an object representing the virtual disk that DOM sub-module 340 uses to identify the coordinator node of the virtual disk object by accessing the in-memory metadata database of CMMS sub-module 335 (in certain examples, accessing the in-memory metadata database to look up a mapping of the identity of the coordinator node to the unique identifier occurs only when the virtual disk object is initially accessed, with such mapping persisting for future I/O operations such that subsequent lookups are not needed).
- the DOM sub-module 340 of the node running the VM communicates (e.g., using its RTP sub-module 345) with the DOM sub-module 340 of the coordinator node to request that it perform the I/O operation in step 515.
- the two DOM sub-modules will communicate to update the role of the coordinator of the virtual disk object to be the node of the running VM.
- DOM sub-module Upon the coordinator's receipt of the I/O request, in step 520, its DOM sub-module identifies (e.g., by again referencing the in-memory metadata database, in certain examples) those coordinator nodes for the particular component objects (e.g., stripes) of the virtual disk object that are subject to the I/O operation. For example, if the I/O operation spans multiple stripes (e.g., multiple component objects) of a RAID 0 configuration, DOM sub-module 340 may split the I/O operation and appropriately transmit correspond I/O requests to the respective coordinate nodes for the relevant component objects that correspond to the two stripes.
- component objects e.g., stripes
- the DOM sub-module of the coordinator node for the virtual disk object requests that the DOM sub-modules for the coordinator nodes of the identified component objects perform the I/O operation request and, in step 530, the DOM sub-modules of such coordinator nodes for the identified component objects interact with their corresponding LSOM sub-modules to perform the I/O operation in the local storage resource where the component object is stored.
- VSAN module may enable creation of high level storage objects other than virtual disks, such as, without limitation, REST objects, files, file systems, blob (binary large objects) and other objects.
- VSAN module 114 has been generally depicted as embedded in hypervisor 113, alternative examples may implement VSAN module separate from hypervisor 113, for example as a special virtual machine or virtual appliance, a separate application or any other "pluggable" module or driver that can be inserted into computing platform in order to provide and manage a distributed object store.
- RAID configurations as one technique to organize a blueprint, it should be recognized that other configurations may be utilized in other examples, including, without limitation, using erasure codes and other similar techniques.
- the various examples described herein may employ various computer-implemented operations involving data stored in computer systems. For example, these operations may require physical manipulation of physical quantities usually, though not necessarily, these quantities may take the form of electrical or magnetic signals where they, or representations of them, are capable of being stored, transferred, combined, compared, or otherwise manipulated. Further, such manipulations are often referred to in terms, such as producing, identifying, determining, or comparing. Any operations described herein that form part of one or more examples may be useful machine operations.
- one or more examples also relate to a device or an apparatus for performing these operations. The apparatus may be specially constructed for specific required purposes, or it may be a general purpose computer selectively activated or configured by a computer program stored in the computer.
- various general purpose machines may be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations.
- One or more examples may be implemented as one or more computer programs or as one or more computer program modules embodied in one or more computer readable media.
- the term computer readable medium refers to any data storage device that can store data which can thereafter be input to a computer system computer readable media may be based on any existing or subsequently developed technology for embodying computer programs in a manner that enables them to be read by a computer.
- Examples of a computer readable medium include a hard drive, network attached storage (NAS), read-only memory, random-access memory (e.g., a flash memory device), a CD (Compact Discs), CD-ROM, a CD-R, or a CD-RW, a DVD (Digital Versatile Disc), a magnetic tape, and other optical and non-optical data storage devices.
- the computer readable medium can also be distributed over a network coupled computer system so that the computer readable code is stored and executed in a distributed fashion.
- virtualization systems in accordance with the various examples, implemented as hosted examples, non-hosted examples, or as examples that tend to blur distinctions between the two, are all envisioned.
- various virtualization operations may be wholly or partially implemented in hardware. For example, a hardware implementation may employ a look-up table for modification of storage access requests to secure non-disk data.
- the virtualization software can therefore include components of a host, console, or guest operating system that performs virtualization functions.
- Plural instances may be provided for components, operations or structures described herein as a single instance.
- boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of one or more examples.
- structures and functionality presented as separate components in exemplary configurations may be implemented as a combined structure or component.
- structures and functionality presented as a single component may be implemented as separate components.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Claims (14)
- Procédé dans un système informatique (100), le procédé comprenant :la fourniture d'un dispositif de stockage d'objets (116) qui stocke des objets (200, 205, 220), le dispositif de stockage d'objets (116) gérant de manière interne et accédant aux objets (200, 205, 220) à l'aide d'un espace de noms plat qui mappe des identifiants uniques sur les objets stockés (200, 205, 220), et le dispositif de stockage d'objets (116) stockant les objets (200, 205, 220) dans une pluralité de dispositifs de stockage physiques (117, 118) hébergés dans une pluralité d'ordinateurs hôtes (111), ou fixés directement à ceux-ci, qui hébergent les multiples clients (112) ; etla fourniture d'une interface de système de fichiers au dispositif de stockage d'objets (116) pour qu'il prenne en charge un accès multiple simultané par les multiples clients (112) aux objets (200, 205, 220) stockés dans le dispositif de stockage d'objets (116), comprenant la fourniture aux multiples clients (112) d'une abstraction (115) de l'espace de noms plat utilisé de manière interne par le dispositif de stockage d'objets (116), l'abstraction (115) étant un espace de noms hiérarchique ayant un répertoire racine et un ou plusieurs sous-répertoires ;la création d'un ensemble d'objets de système de fichier de niveau supérieur (205) qui apparaît sous forme de sous-répertoires du répertoire racine dans l'abstraction (115),dans lequel chaque objet de système de fichier de niveau supérieur (205) représente une abstraction séparée d'un dispositif de stockage ayant un espace de noms séparé qui est organisé en fonction d'un système de fichiers en grappes désigné, et au moins un dudit objet de système de fichier de niveau supérieur (205) possédant un système de fichiers en grappes désigné pour prendre en charge simultanément l'accès par les clients (112) jusqu'à une limite maximum ;la demande, par les multiples clients (112), d'un accès aux fichiers à l'aide du système de fichiers en grappes désigné des objets de système de fichier de niveau supérieur respectifs (205) dans l'espace de noms hiérarchique de l'abstraction (115) et, en réponse, par le biais de l'interface de système de fichiers, utiliser l'espace de noms plat pour gérer et accéder aux objets (200, 205, 220) pertinents de manière interne dans le dispositif de stockage d'objets (116).
- Procédé selon la revendication 1, comprenant en outre l'auto-montage de l'objet de système de fichier de niveau supérieur (205) en tant que sous-répertoire au niveau d'une version locale de l'abstraction (115) du répertoire racine au niveau de l'un des hôtes (111), lorsqu'un client (112) au niveau de cet hôte (111) tente d'accéder à un fichier stocké dans le système de fichiers en grappes.
- Procédé selon la revendication 1, dans lequel l'objet de système de fichier de niveau supérieur (205) est conçu pour stocker des métadonnées (210) pour les objets de fichiers (200, 220) représentant les fichiers stockés dans le système de fichiers en grappes, les objets de fichiers (200, 220) étant stockés dans le dispositif de stockage d'objets (116) séparés de l'objet de niveau supérieur (205).
- Procédé selon la revendication 3, dans lequel un objet de fichier (200) est conçu pour stocker des identifiants uniques (215) utilisés par l'espace de noms plat pour trouver des emplacements d'objets de composants correspondants (220) qui représentent des parties séparées des fichiers et sont stockés dans le dispositif de stockage d'objets (116) séparés de l'objet de fichier (200).
- Procédé selon la revendication 3, dans lequel les métadonnées (210) stockées dans l'objet de niveau supérieur (205) pour un objet de fichier (200) comprennent au moins un descripteur de fichier qui comprend un identifiant unique utilisé par l'espace de noms plat afin de trouver un emplacement de l'objet de fichier (200) dans le dispositif de stockage d'objets (116) .
- Procédé selon la revendication 5, dans lequel le fichier représenté par l'objet de fichier (200) est un fichier de disque virtuel utilisé par une machine virtuelle (112) fonctionnant sur un de la pluralité d'ordinateurs hôtes (111).
- Procédé selon la revendication 6, dans lequel l'objet de niveau supérieur (205) est conçu pour stocker des métadonnées (210) pour des objets de fichiers (200) qui sont seulement utilisées par une d'une pluralité de machines virtuelles (112) pouvant être instanciée sur l'un quelconque de la pluralité d'ordinateurs hôtes (111).
- Procédé selon la revendication 2, comprenant en outre le démontage de manière automatique de l'objet de système de fichier de niveau supérieur (205) après une période de temps pendant laquelle le client (112) n'a accédé à aucun fichier stocké dans le système de fichiers en grappes.
- Procédé selon la revendication 1, dans lequel l'espace de noms plat est mis en œuvre en tant que base de données en mémoire (114, 335), dont une copie synchronisée est stockée dans la mémoire de chacun des ordinateurs hôtes (111).
- Procédé selon la revendication 1, comprenant en outre :le mappage d'un nom de trajet dans le système de fichiers désigné d'un objet de niveau supérieur (205) sur un objet (200) conçu pour représenter une abstraction séparée d'un dispositif de stockage ayant un espace de noms séparé organisé en fonction d'un système de fichiers désigné, etl'auto-montage de l'objet de niveau supérieur (205) au niveau de l'un desdits clients (112) lorsque le client (112) tente d'accéder à un fichier stocké dans le système de fichiers désigné.
- Procédé selon la revendication 1, comprenant en outre la transformation d'un nom spécifié d'administrateur pour un objet en un identifiant unique pour l'objet lorsque l'espace de noms plat rapporte un conflit avec un identifiant unique auto-généré pour l'objet.
- Procédé selon la revendication 1, dans lequel l'objet stocké (200) représente un fichier de disque virtuel utilisé par une machine virtuelle (112) lorsque l'un des clients (112) exécute l'un des ordinateurs hôtes (111), et le fichier de disque virtuel étant retourné à la fois par un premier dispositif de stockage physique (117, 118) dans l'un des ordinateurs hôtes (111) et un second dispositif de stockage physique (117, 118) dans un autre des ordinateurs hôtes (111) .
- Support de stockage lisible par ordinateur non transitoire stockant des instructions qui, lorsqu'elles sont exécutées sur un processeur, amènent le processeur à exécuter le procédé selon l'une quelconque des revendications 1 à 12.
- Système informatique, comprenant :un processeur, etune mémoire hébergeant un module qui, lorsqu'il est exécuté sur le processeur, amène le processeur à exécuter le procédé selon l'une quelconque des revendications 1 à 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19210692.0A EP3647966B1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée évolutive |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/010,293 US9811531B2 (en) | 2013-08-26 | 2013-08-26 | Scalable distributed storage architecture |
PCT/US2014/041761 WO2015030901A1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée extensible |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19210692.0A Division EP3647966B1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée évolutive |
EP19210692.0A Division-Into EP3647966B1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée évolutive |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3039575A1 EP3039575A1 (fr) | 2016-07-06 |
EP3039575B1 true EP3039575B1 (fr) | 2019-12-25 |
Family
ID=51134399
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14736203.2A Active EP3039575B1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée extensible |
EP19210692.0A Active EP3647966B1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée évolutive |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19210692.0A Active EP3647966B1 (fr) | 2013-08-26 | 2014-06-10 | Architecture de stockage distribuée évolutive |
Country Status (5)
Country | Link |
---|---|
US (3) | US9811531B2 (fr) |
EP (2) | EP3039575B1 (fr) |
JP (3) | JP6488296B2 (fr) |
AU (2) | AU2014311782B2 (fr) |
WO (1) | WO2015030901A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11704166B2 (en) | 2013-08-26 | 2023-07-18 | Vmware, Inc. | Load balancing of resources |
US11809753B2 (en) | 2013-08-26 | 2023-11-07 | Vmware, Inc. | Virtual disk blueprints for a virtualized storage area network utilizing physical storage devices located in host computers |
US12126536B2 (en) | 2020-10-29 | 2024-10-22 | VMware LLC | Distributed policy-based provisioning and enforcement for quality of service |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9811531B2 (en) | 2013-08-26 | 2017-11-07 | Vmware, Inc. | Scalable distributed storage architecture |
US9887924B2 (en) | 2013-08-26 | 2018-02-06 | Vmware, Inc. | Distributed policy-based provisioning and enforcement for quality of service |
US9513946B2 (en) | 2014-06-27 | 2016-12-06 | Vmware, Inc. | Maintaining high availability during network partitions for virtual machines stored on distributed object-based storage |
US9798497B1 (en) * | 2015-06-08 | 2017-10-24 | Skytap | Storage area network emulation |
US9660962B2 (en) * | 2015-09-24 | 2017-05-23 | Netapp, Inc. | Network-attached storage gateway validation |
US10303646B2 (en) | 2016-03-25 | 2019-05-28 | Microsoft Technology Licensing, Llc | Memory sharing for working data using RDMA |
US10235378B1 (en) * | 2016-09-30 | 2019-03-19 | EMC IP Holding Company LLC | Namespace performance acceleration by selective SSD caching |
US10678579B2 (en) | 2017-03-17 | 2020-06-09 | Vmware, Inc. | Policy based cross-cloud migration |
US10289315B2 (en) | 2017-03-27 | 2019-05-14 | Western Digital Technologies, Inc. | Managing I/O operations of large data objects in a cache memory device by dividing into chunks |
CN108255414B (zh) * | 2017-04-14 | 2020-04-03 | 新华三信息技术有限公司 | 固态硬盘访问方法及装置 |
US10359966B2 (en) * | 2017-05-11 | 2019-07-23 | Vmware, Inc. | Capacity based load balancing in distributed storage systems with deduplication and compression functionalities |
US10509708B2 (en) | 2017-06-13 | 2019-12-17 | Vmware, Inc. | Code block resynchronization for distributed multi-mirror erasure coding system |
US10642526B2 (en) * | 2017-08-28 | 2020-05-05 | Vmware, Inc. | Seamless fault tolerance via block remapping and efficient reconciliation |
JP7006265B2 (ja) * | 2017-12-28 | 2022-01-24 | 富士通株式会社 | 情報処理装置,制御プログラムおよび情報処理方法 |
US10802862B2 (en) | 2018-05-01 | 2020-10-13 | Vmware, Inc. | Live migration of virtual machines across heterogeneous virtual machine management domains |
US10735369B2 (en) * | 2018-06-22 | 2020-08-04 | Microsoft Technology Licensing, Llc | Hierarchical namespace service with distributed name resolution caching and synchronization |
US10789217B2 (en) * | 2018-06-22 | 2020-09-29 | Microsoft Technology Licensing, Llc | Hierarchical namespace with strong consistency and horizontal scalability |
US11080235B2 (en) * | 2019-01-31 | 2021-08-03 | Dashbase Llc | Incorporation of dynamic search results from a remote source into a local file system for log file analysis |
US11151093B2 (en) * | 2019-03-29 | 2021-10-19 | International Business Machines Corporation | Distributed system control for on-demand data access in complex, heterogenous data storage |
US11561976B1 (en) * | 2021-09-22 | 2023-01-24 | Sap Se | System and method for facilitating metadata identification and import |
US11803511B2 (en) * | 2021-11-05 | 2023-10-31 | Microsoft Technology Licensing, Llc | Methods and systems for ordering operations on a file system having a hierarchical namespace |
Family Cites Families (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06110766A (ja) * | 1992-09-25 | 1994-04-22 | Hitachi Ltd | 分割格納ファイルシステムのディレクトリ構成方法および計算機システム |
US5778384A (en) * | 1995-12-22 | 1998-07-07 | Sun Microsystems, Inc. | System and method for automounting and accessing remote file systems in Microsoft Windows in a networking environment |
US6032224A (en) * | 1996-12-03 | 2000-02-29 | Emc Corporation | Hierarchical performance system for managing a plurality of storage units with different access speeds |
US6314526B1 (en) | 1998-07-10 | 2001-11-06 | International Business Machines Corporation | Resource group quorum scheme for highly scalable and highly available cluster system management |
US6553389B1 (en) | 1999-09-13 | 2003-04-22 | Hewlett-Packard Company | Resource availability determination mechanism for distributed data storage system |
US6658473B1 (en) | 2000-02-25 | 2003-12-02 | Sun Microsystems, Inc. | Method and apparatus for distributing load in a computer environment |
US6985905B2 (en) | 2000-03-03 | 2006-01-10 | Radiant Logic Inc. | System and method for providing access to databases via directories and other hierarchical structures and interfaces |
JP2002108567A (ja) | 2000-09-28 | 2002-04-12 | Hitachi Ltd | 記憶制御装置 |
US6839752B1 (en) | 2000-10-27 | 2005-01-04 | International Business Machines Corporation | Group data sharing during membership change in clustered computer system |
US6915391B2 (en) | 2000-12-15 | 2005-07-05 | International Business Machines Corporation | Support for single-node quorum in a two-node nodeset for a shared disk parallel file system |
US20040136379A1 (en) | 2001-03-13 | 2004-07-15 | Liao Raymond R | Method and apparatus for allocation of resources |
US6708175B2 (en) | 2001-06-06 | 2004-03-16 | International Business Machines Corporation | Program support for disk fencing in a shared disk parallel file system across storage area network |
US20020188592A1 (en) | 2001-06-11 | 2002-12-12 | Storage Technology Corporation | Outboard data storage management system and method |
US6687701B2 (en) | 2001-09-25 | 2004-02-03 | Hewlett-Packard Development Company, L.P. | Namespace management in a distributed file system |
US7287047B2 (en) * | 2001-11-23 | 2007-10-23 | Commvault Systems, Inc. | Selective data replication system and method |
US8914429B2 (en) | 2002-02-08 | 2014-12-16 | Willaim Pitts | Method for creating global distributed namespace |
US6985914B2 (en) | 2002-02-20 | 2006-01-10 | Emc Corporation | Cluster meta file system of file system cells managed by respective data movers of a network file server |
US7035858B2 (en) | 2002-04-29 | 2006-04-25 | Sun Microsystems, Inc. | System and method dynamic cluster membership in a distributed data system |
JP4124331B2 (ja) | 2002-09-17 | 2008-07-23 | 株式会社日立製作所 | Dbms向け仮想ボリューム作成・管理方法 |
WO2004046971A1 (fr) | 2002-11-14 | 2004-06-03 | Isilon Systems, Inc. | Systemes et procedes de resegmentation de fichiers dans un systeme de fichiers distribues |
US7159093B2 (en) | 2002-12-20 | 2007-01-02 | Veritas Operating Corporation | Development of a detailed logical volume configuration from high-level user requirements |
US7277897B2 (en) | 2003-08-01 | 2007-10-02 | Oracle International Corporation | Dynamic reassignment of data ownership |
US8234517B2 (en) | 2003-08-01 | 2012-07-31 | Oracle International Corporation | Parallel recovery by non-failed nodes |
US9489150B2 (en) | 2003-08-14 | 2016-11-08 | Dell International L.L.C. | System and method for transferring data between different raid data storage types for current data and replay data |
CN101566931B (zh) | 2003-08-14 | 2011-05-18 | 克姆佩棱特科技公司 | 虚拟磁盘驱动系统和方法 |
US8527541B2 (en) | 2003-11-05 | 2013-09-03 | Emc Corporation | Method for mapping a flat namespace onto a hierarchical namespace using locality of reference cues |
US20050166011A1 (en) | 2004-01-23 | 2005-07-28 | Burnett Robert J. | System for consolidating disk storage space of grid computers into a single virtual disk drive |
US20050240714A1 (en) | 2004-04-13 | 2005-10-27 | Bea Systems, Inc. | System and method for virtual content repository deployment |
US7768959B1 (en) | 2004-04-21 | 2010-08-03 | Marvell International Ltd. | All-in-one wireless network device |
US7360030B1 (en) | 2004-06-01 | 2008-04-15 | Sanbolic, Inc. | Methods and apparatus facilitating volume management |
US7613703B2 (en) | 2004-09-30 | 2009-11-03 | Microsoft Corporation | Organizing resources into collections to facilitate more efficient and reliable resource access |
US20060161753A1 (en) | 2005-01-18 | 2006-07-20 | Aschoff John G | Method, apparatus and program storage device for providing automatic performance optimization of virtualized storage allocation within a virtualized storage subsystem |
US20060218360A1 (en) | 2005-03-22 | 2006-09-28 | Burkey Todd R | Method, apparatus and program storage device for providing an optimized read methodology for synchronously mirrored virtual disk pairs |
US7617370B2 (en) * | 2005-04-29 | 2009-11-10 | Netapp, Inc. | Data allocation within a storage system architecture |
US8127059B1 (en) | 2005-09-02 | 2012-02-28 | Pmc-Sierra Us, Inc. | Apparatus for interconnecting hosts with storage devices |
US20070055703A1 (en) * | 2005-09-07 | 2007-03-08 | Eyal Zimran | Namespace server using referral protocols |
US20070214384A1 (en) * | 2006-03-07 | 2007-09-13 | Manabu Kitamura | Method for backing up data in a clustered file system |
US7716425B1 (en) | 2006-09-27 | 2010-05-11 | Hewlett-Packard Development Company, L.P. | Prefetching data in distributed storage systems |
US7739470B1 (en) | 2006-10-20 | 2010-06-15 | Emc Corporation | Limit algorithm using queue depth to control application performance |
US7669029B1 (en) | 2006-11-15 | 2010-02-23 | Network Appliance, Inc. | Load balancing a data storage system |
JP4505763B2 (ja) | 2007-01-31 | 2010-07-21 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | ノードクラスタの管理 |
JP2008210057A (ja) * | 2007-02-23 | 2008-09-11 | Hitachi Ltd | 記憶システム及びその管理方法 |
US8090792B2 (en) | 2007-03-08 | 2012-01-03 | Nec Laboratories America, Inc. | Method and system for a self managing and scalable grid storage |
JP5379956B2 (ja) * | 2007-03-19 | 2013-12-25 | 株式会社日立製作所 | ストレージ装置及び記憶領域配置方法 |
WO2008147973A2 (fr) * | 2007-05-25 | 2008-12-04 | Attune Systems, Inc. | Virtualisation de fichier éloigné dans un système de fichier commuté |
EP2248003A1 (fr) | 2007-12-31 | 2010-11-10 | Netapp, Inc. | Système et procédé pour un équilibrage de charge de stockage automatique dans des environnements de serveurs virtuels |
JP2009217475A (ja) | 2008-03-10 | 2009-09-24 | Fujitsu Ltd | ストレージシステム,ストレージ装置,ストレージシステムの制御方法および制御プログラム |
JP5098721B2 (ja) | 2008-03-14 | 2012-12-12 | オムロンヘルスケア株式会社 | 血圧測定装置、血圧導出プログラムおよび血圧導出方法 |
US8296398B2 (en) | 2008-04-29 | 2012-10-23 | Overland Storage, Inc. | Peer-to-peer redundant file server system and methods |
US8612678B2 (en) | 2008-04-30 | 2013-12-17 | Netapp, Inc. | Creating logical disk drives for raid subsystems |
JP5250869B2 (ja) | 2008-08-28 | 2013-07-31 | 株式会社日立製作所 | ストレージシステム、論理記憶領域割り当て方法及び計算機システム |
JP5026375B2 (ja) | 2008-09-09 | 2012-09-12 | 株式会社日立製作所 | ストレージ装置及びストレージ装置の制御方法 |
US8914567B2 (en) * | 2008-09-15 | 2014-12-16 | Vmware, Inc. | Storage management system for virtual machines |
US20100114826A1 (en) | 2008-10-24 | 2010-05-06 | Microsoft Corporation | Configuration management in distributed data systems |
US9396021B2 (en) | 2008-12-16 | 2016-07-19 | International Business Machines Corporation | Techniques for dynamically assigning jobs to processors in a cluster using local job tables |
US8893050B2 (en) * | 2009-01-12 | 2014-11-18 | International Business Machines Corporation | Assembly and output of user-defined groupings |
JP5180865B2 (ja) | 2009-02-10 | 2013-04-10 | 株式会社日立製作所 | ファイルサーバ、ファイル管理システムおよびファイル管理方法 |
KR101042908B1 (ko) | 2009-02-12 | 2011-06-21 | 엔에이치엔(주) | 네트워크 분리 장애 상황에서 메이저 그룹을 결정하기 위한방법, 시스템, 및 컴퓨터 판독 가능한 기록 매체 |
US8291159B2 (en) * | 2009-03-12 | 2012-10-16 | Vmware, Inc. | Monitoring and updating mapping of physical storage allocation of virtual machine without changing identifier of the storage volume assigned to virtual machine |
US8176289B2 (en) | 2009-05-21 | 2012-05-08 | Red Hat Israel, Ltd. | Method to support sparse volumes or thin provisioned volumes in real time |
US8694578B2 (en) | 2009-05-29 | 2014-04-08 | Microsoft Corporation | Swarm-based synchronization over a network of object stores |
US8103769B1 (en) | 2009-09-03 | 2012-01-24 | Amazon Technologies, Inc. | Dynamic isolation of shared resources |
US8387060B2 (en) | 2009-10-01 | 2013-02-26 | Dell Products L.P. | Virtual machine resource allocation group policy based on workload profile, application utilization and resource utilization |
US8566520B1 (en) | 2009-10-05 | 2013-10-22 | Marvell International Ltd. | Storage space allocation for logical disk creation |
US8326799B2 (en) | 2009-10-09 | 2012-12-04 | Seagate Technology Llc | Data distribution in systems with multiple storage entities |
US8635422B1 (en) | 2009-10-29 | 2014-01-21 | Symantec Corporation | Systems and methods for reclaiming storage space from deleted volumes on thin-provisioned disks |
US8074003B1 (en) | 2009-12-28 | 2011-12-06 | Emc Corporation | Host-based storage controller providing block devices in geographically distributed storage |
WO2011092738A1 (fr) | 2010-01-28 | 2011-08-04 | 株式会社日立製作所 | Système et procédé de gestion destinés à un système de mémoire qui comporte des réserves construites à partir de groupes de domaines réels ayant des performances différentes |
US8453036B1 (en) | 2010-02-01 | 2013-05-28 | Network Appliance, Inc. | System and method for dynamically resizing a parity declustered group |
US8645750B2 (en) | 2010-03-04 | 2014-02-04 | Hitachi, Ltd. | Computer system and control method for allocation of logical resources to virtual storage areas |
US11256529B2 (en) | 2010-03-17 | 2022-02-22 | Zerto Ltd. | Methods and apparatus for providing hypervisor level data services for server virtualization |
US20110238857A1 (en) | 2010-03-29 | 2011-09-29 | Amazon Technologies, Inc. | Committed processing rates for shared resources |
JP2012008854A (ja) * | 2010-06-25 | 2012-01-12 | Hitachi Ltd | ストレージ仮想化装置 |
US10162722B2 (en) * | 2010-07-15 | 2018-12-25 | Veritas Technologies Llc | Virtual machine aware replication method and system |
EP2609510A4 (fr) * | 2010-08-25 | 2015-01-21 | Intel Corp | Procédé et système pour former des couches de mémoire cache |
US20120054264A1 (en) | 2010-08-31 | 2012-03-01 | International Business Machines Corporation | Techniques for Migrating Active I/O Connections with Migrating Servers and Clients |
WO2012042509A1 (fr) | 2010-10-01 | 2012-04-05 | Peter Chacko | Architecture infonuagique de stockage virtuel réparti et procédé associé |
WO2011110026A1 (fr) | 2010-10-29 | 2011-09-15 | 华为技术有限公司 | Procédé et appareil pour réaliser l'équilibre de charge de ressources dans un centre de données |
US8782335B2 (en) | 2010-11-08 | 2014-07-15 | Lsi Corporation | Latency reduction associated with a response to a request in a storage system |
US9032146B2 (en) | 2010-11-30 | 2015-05-12 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Dynamic use of raid levels responsive to workload requirements |
WO2012090247A1 (fr) | 2010-12-28 | 2012-07-05 | Hitachi, Ltd. | Système de mémorisation, procédé de gestion du système de mémorisation, et programme |
JP5632082B2 (ja) | 2011-02-02 | 2014-11-26 | 株式会社日立製作所 | ストレージ装置及びデータ管理方法 |
US9201677B2 (en) | 2011-05-23 | 2015-12-01 | Intelligent Intellectual Property Holdings 2 Llc | Managing data input/output operations |
US8996807B2 (en) | 2011-02-15 | 2015-03-31 | Intelligent Intellectual Property Holdings 2 Llc | Systems and methods for a multi-level cache |
JP2012173996A (ja) | 2011-02-22 | 2012-09-10 | Nec Corp | クラスタシステム、クラスタ管理方法、およびクラスタ管理プログラム |
US8904136B2 (en) | 2011-03-15 | 2014-12-02 | Symantec Corporation | Optimized shrinking of virtual disks |
WO2012147116A1 (fr) | 2011-04-25 | 2012-11-01 | Hitachi, Ltd. | Système informatique et procédé de commande de machine virtuelle |
US20120303322A1 (en) | 2011-05-23 | 2012-11-29 | Rego Charles W | Incorporating memory and io cycle information into compute usage determinations |
US8645654B1 (en) | 2011-06-29 | 2014-02-04 | Emc Corporation | Selecting physical storage in data storage systems |
US9489396B2 (en) * | 2011-07-01 | 2016-11-08 | V3 Systems Holdings, Inc. | Intermediation of hypervisor file system and storage device models |
US9244967B2 (en) * | 2011-08-01 | 2016-01-26 | Actifio, Inc. | Incremental copy performance between data stores |
US8954979B1 (en) | 2011-08-15 | 2015-02-10 | Netapp, Inc. | Method and system for managing resources in a network |
WO2013024485A2 (fr) | 2011-08-17 | 2013-02-21 | Scaleio Inc. | Procédés et systèmes de gestion d'une mémoire partagée à base de répliques |
US9116633B2 (en) * | 2011-09-30 | 2015-08-25 | Commvault Systems, Inc. | Information management of virtual machines having mapped storage devices |
US8276140B1 (en) | 2011-11-14 | 2012-09-25 | Google Inc. | Adjustable virtual network performance |
US9336061B2 (en) | 2012-01-14 | 2016-05-10 | International Business Machines Corporation | Integrated metering of service usage for hybrid clouds |
US20140130055A1 (en) | 2012-02-14 | 2014-05-08 | Aloke Guha | Systems and methods for provisioning of storage for virtualized applications |
US9020912B1 (en) | 2012-02-20 | 2015-04-28 | F5 Networks, Inc. | Methods for accessing data in a compressed file system and devices thereof |
US9298715B2 (en) * | 2012-03-07 | 2016-03-29 | Commvault Systems, Inc. | Data storage system utilizing proxy device for storage operations |
US9348724B2 (en) | 2012-05-21 | 2016-05-24 | Hitachi, Ltd. | Method and apparatus for maintaining a workload service level on a converged platform |
US9612966B2 (en) | 2012-07-03 | 2017-04-04 | Sandisk Technologies Llc | Systems, methods and apparatus for a virtual machine cache |
US9244846B2 (en) | 2012-07-06 | 2016-01-26 | International Business Machines Corporation | Ensuring causality of transactional storage accesses interacting with non-transactional storage accesses |
US20140115579A1 (en) | 2012-10-19 | 2014-04-24 | Jonathan Kong | Datacenter storage system |
US9453740B2 (en) | 2012-10-30 | 2016-09-27 | Alpine Electronics, Inc. | Method of displaying objects on navigation map |
US9448883B1 (en) | 2012-12-04 | 2016-09-20 | Cadence Design Systems, Inc. | System and method for allocating data in memory array having regions of varying storage reliability |
US9092161B2 (en) | 2012-12-05 | 2015-07-28 | Red Hat Israel, Ltd. | Selection of allocation policy and format for virtual machine disk images |
US8924664B2 (en) | 2012-12-13 | 2014-12-30 | Infinidat Ltd. | Logical object deletion |
US9122528B2 (en) | 2012-12-13 | 2015-09-01 | Telefonaktiebolaget L M Ericsson (Publ) | Energy conservation and hardware usage management for data centers |
US20140201151A1 (en) * | 2013-01-11 | 2014-07-17 | Commvault Systems, Inc. | Systems and methods to select files for restoration from block-level backup for virtual machines |
US9239730B2 (en) | 2013-01-11 | 2016-01-19 | Red Hat Israel, Ltd. | Managing connections in a distributed virtualization environment |
US9015123B1 (en) * | 2013-01-16 | 2015-04-21 | Netapp, Inc. | Methods and systems for identifying changed data in an expandable storage volume |
US8984243B1 (en) | 2013-02-22 | 2015-03-17 | Amazon Technologies, Inc. | Managing operational parameters for electronic resources |
GB2526031B (en) | 2013-05-08 | 2020-07-29 | Hitachi Ltd | Storage system and data management method |
US9015650B2 (en) | 2013-06-03 | 2015-04-21 | Microsoft Technology Licensing, Llc | Unified datacenter storage model |
US8850455B1 (en) * | 2013-06-28 | 2014-09-30 | Emc Corporation | Method and system for parent backup application monitoring of children backup applications |
US9088501B2 (en) | 2013-07-31 | 2015-07-21 | Citrix Systems, Inc. | Systems and methods for least connection load balancing by multi-core device |
US9672115B2 (en) | 2013-08-26 | 2017-06-06 | Vmware, Inc. | Partition tolerance in cluster membership management |
US11018988B2 (en) | 2013-08-26 | 2021-05-25 | Vmware, Inc. | Translating high level requirements policies to distributed configurations |
US9811531B2 (en) | 2013-08-26 | 2017-11-07 | Vmware, Inc. | Scalable distributed storage architecture |
US9887924B2 (en) | 2013-08-26 | 2018-02-06 | Vmware, Inc. | Distributed policy-based provisioning and enforcement for quality of service |
US10747475B2 (en) | 2013-08-26 | 2020-08-18 | Vmware, Inc. | Virtual disk blueprints for a virtualized storage area network, wherein virtual disk objects are created from local physical storage of host computers that are running multiple virtual machines |
US11016820B2 (en) | 2013-08-26 | 2021-05-25 | Vmware, Inc. | Load balancing of resources |
US9582198B2 (en) | 2013-08-26 | 2017-02-28 | Vmware, Inc. | Compressed block map of densely-populated data structures |
US9609058B2 (en) * | 2014-10-13 | 2017-03-28 | Commvault Systems, Inc. | Storage management operations based on executable files served on demand to storage management components |
-
2013
- 2013-08-26 US US14/010,293 patent/US9811531B2/en active Active
-
2014
- 2014-06-10 EP EP14736203.2A patent/EP3039575B1/fr active Active
- 2014-06-10 AU AU2014311782A patent/AU2014311782B2/en active Active
- 2014-06-10 WO PCT/US2014/041761 patent/WO2015030901A1/fr active Application Filing
- 2014-06-10 JP JP2016529768A patent/JP6488296B2/ja active Active
- 2014-06-10 EP EP19210692.0A patent/EP3647966B1/fr active Active
-
2017
- 2017-09-06 AU AU2017225042A patent/AU2017225042B2/en active Active
- 2017-10-27 JP JP2017208059A patent/JP6607901B2/ja active Active
- 2017-11-01 US US15/800,872 patent/US10614046B2/en active Active
-
2019
- 2019-09-04 JP JP2019161221A patent/JP2019212330A/ja active Pending
-
2020
- 2020-02-04 US US16/781,673 patent/US11249956B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11704166B2 (en) | 2013-08-26 | 2023-07-18 | Vmware, Inc. | Load balancing of resources |
US11809753B2 (en) | 2013-08-26 | 2023-11-07 | Vmware, Inc. | Virtual disk blueprints for a virtualized storage area network utilizing physical storage devices located in host computers |
US12126536B2 (en) | 2020-10-29 | 2024-10-22 | VMware LLC | Distributed policy-based provisioning and enforcement for quality of service |
Also Published As
Publication number | Publication date |
---|---|
EP3647966B1 (fr) | 2023-06-07 |
AU2014311782B2 (en) | 2017-06-15 |
US11249956B2 (en) | 2022-02-15 |
JP6607901B2 (ja) | 2019-11-20 |
US10614046B2 (en) | 2020-04-07 |
EP3039575A1 (fr) | 2016-07-06 |
US20150058384A1 (en) | 2015-02-26 |
AU2017225042B2 (en) | 2019-06-06 |
AU2017225042A1 (en) | 2017-09-28 |
JP2019212330A (ja) | 2019-12-12 |
JP2018022529A (ja) | 2018-02-08 |
JP6488296B2 (ja) | 2019-03-20 |
JP2016530619A (ja) | 2016-09-29 |
US9811531B2 (en) | 2017-11-07 |
WO2015030901A1 (fr) | 2015-03-05 |
US20180095991A1 (en) | 2018-04-05 |
EP3647966A1 (fr) | 2020-05-06 |
US20200174974A1 (en) | 2020-06-04 |
AU2014311782A1 (en) | 2016-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11249956B2 (en) | Scalable distributed storage architecture | |
US11809753B2 (en) | Virtual disk blueprints for a virtualized storage area network utilizing physical storage devices located in host computers | |
US11704166B2 (en) | Load balancing of resources | |
US11729113B2 (en) | Translating high level requirements policies to distributed storage configurations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170725 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602014058913 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G06F0017300000 Ipc: G06F0016270000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G06F 16/27 20190101AFI20190625BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190719 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1217919 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014058913 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200326 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200520 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200425 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014058913 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1217919 Country of ref document: AT Kind code of ref document: T Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
26N | No opposition filed |
Effective date: 20200928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200610 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200610 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191225 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230418 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602014058913 Country of ref document: DE Owner name: VMWARE LLC, PALO ALTO, US Free format text: FORMER OWNER: VMWARE, INC., PALO ALTO, CALIF., US |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 11 |