EP3036089B1 - Verfahren zur herstellung eines faserverstärkten kunststoffbauteils - Google Patents

Verfahren zur herstellung eines faserverstärkten kunststoffbauteils Download PDF

Info

Publication number
EP3036089B1
EP3036089B1 EP14749848.9A EP14749848A EP3036089B1 EP 3036089 B1 EP3036089 B1 EP 3036089B1 EP 14749848 A EP14749848 A EP 14749848A EP 3036089 B1 EP3036089 B1 EP 3036089B1
Authority
EP
European Patent Office
Prior art keywords
carrier web
continuous
process according
continuous carrier
areal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14749848.9A
Other languages
English (en)
French (fr)
Other versions
EP3036089A1 (de
Inventor
Armin Plath
Olaf Täger
Max Ehleben
Lothar Kroll
Hans-Jürgen Heinrich
Frank Helbig
Wolfgang Nendel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3036089A1 publication Critical patent/EP3036089A1/de
Application granted granted Critical
Publication of EP3036089B1 publication Critical patent/EP3036089B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3055Cars

Definitions

  • the invention relates to a method for producing a fiber-reinforced plastic component according to the preamble of claim 1.
  • a common process for producing a fiber-reinforced plastic component is the so-called RTM process (Resin Transfer Molding).
  • RTM process Resin Transfer Molding
  • a preform formed from flat semifinished fiber products for example fiber fabric
  • the preform is still in the dry state, that is to say without matrix material.
  • the preform is inserted as an insert part in a mold half of an RTM tool that forms a molding chamber.
  • the liquid starting component of the matrix material is then injected into the molding chamber under heat and pressure. After the matrix material has hardened, the finished plastic component can be removed from the RTM tool.
  • the above-mentioned preform can be produced as follows:
  • flat fiber semi-finished products are provided by the textile suppliers in the form of rolled goods of a defined width.
  • Woven semi-finished fiber products are manufactured with the help of high-performance weaving machines in a continuous manufacturing process from an endless fabric web.
  • the endless fabric web has a warp thread system aligned in the production direction and a weft thread system which is crossed approximately at right angles to it. Both the warp thread system and the weft thread system have reinforcing fibers, such as carbon fiber rovings.
  • Semi-finished fiber blanks are made from the rolled goods, the contour of which corresponds to the component contour.
  • the blanks are stacked on top of each other to form a layer package, with the interposition of a binder.
  • the stacked flat semifinished products can be arranged in the same and different fiber orientation.
  • the loose layer package is then solidified and preformed under pressure and heat.
  • the preform formed in this way can then be transported further to the RTM tool.
  • the binder ensures that the preform has sufficient component stability for handling up to the RTM process.
  • From the DE 199 52 443 A1 is a method of flat, dimensionally accurate and non-fraying fiber semi-finished products for the production of fiber-plastic composite components known.
  • the sheetlike structures of an endless web that simulate the component geometry are sewn onto their outer contour with the aid of a multiple seam and then cut out along this multiple seam.
  • a further method for producing a semi-finished fiber product for fiber-plastic composite components is known, in which fiber bundles are placed on a laying unit and fixed by seams of any orientation. The seams represent the final contour of the component.
  • the object of the invention is to provide a method for producing a fiber-reinforced plastic component, in which the material expenditure for the reinforcing fibers is reduced.
  • the semi-finished fiber product is produced as follows:
  • endless reinforcing threads are deposited and fixed on an endless carrier web that is continuously conveyed in a conveying direction parallel to the conveying direction.
  • the endless reinforcing threads are placed and fixed on the endless carrier web in such a way that a flat structure results, the contour of which corresponds to the final contour of the plastic component.
  • the endless carrier web can be a flexible, quasi endless web product.
  • This can consist of a textile fleece, a textile grid (with larger grid spacings, about 1-5 mm) or a film.
  • the material of the web material can be made of the same material as the reinforcing threads or it can be a thermoplastic such as polyamide, polypropylene or another.
  • the web material ensures a basic structure and fixation of the reinforcing threads placed thereon via a sewing thread which pierces the grid. If the web material is made of thermoplastic material, it can melt in the later shaping process and combine with the surrounding matrix, ideally made of the same thermoplastic.
  • the web material in the form of a fleece can serve as a flow aid for downstream injection processes.
  • the endless reinforcing threads can be made of carbon, glass, aramid and basalt fibers, or else of hybrid threads, such as thermoplastic and carbon or glass.
  • the endless reinforcing threads are firmly attached to the grid by means of stitch-forming thread systems or also by means of targeted, local or completely encapsulating embedding in plastics, so that finally a fiber scrim is created.
  • the feed and the thread feed are designed in such a way that the sequential depositing of the reinforcing threads fed alongside one another is interrupted at predefined points along the conveying direction of the endless carrier web and can be resumed at likewise predefined points.
  • the positions of the thread deposit interruption or the thread reposition can be varied over the entire width of the preform (y direction), so that in the x / y plane cutouts without reinforcing threads of any contour and also edge areas without reinforcing threads of any contour in one continuous filing process can arise.
  • the threads are first laid down in individual layers parallel to the conveying direction (0 ° direction).
  • the filing of endless reinforcing fibers with any angular orientation ( ⁇ > 0 °) to the direction of conveyance of the continuously fed web material can be realized in that the component contour with all the cutouts that defines the positions for thread filing interruption and thread filing, around the corresponding angle ⁇ to the conveying direction (x or 0 ° direction). This allows funding to continue in the x direction.
  • the additional width of the textile thread deposit resulting from the rotation of the component contour must be appropriately maintained in the width of the endless carrier web.
  • the placement of the endless reinforcing threads on the support grid is controlled by a textile machine that follows a previously defined contour along the width of the web material (y direction).
  • a textile machine that follows a previously defined contour along the width of the web material (y direction).
  • different preform contours can be produced simultaneously with the reinforcing threads along the width of the endless carrier web functioning as a supporting frame.
  • the preform contours optimally in terms of area over the width of the supporting structure, various preforms can be produced at the same time with minimal waste of the supporting structure.
  • the endless carrier web as a textile supporting structure can already be made from reinforcing threads (for example glass fibers). If a different type of material (e.g. carbon fibers) is used to deposit the reinforcement threads, a two-layer hybrid reinforcement structure (e.g. glass and carbon fibers) is created over the layer thickness of the preform. If a mirror-symmetrical placement of the preform contours takes place along the width of the supporting structure (y-direction), after the placement of the reinforcement threads has ended and after the preforms have been cut out, they can be placed one on top of the other so that a hybrid, multi-layered preform is made of different materials , for example a sandwich structure.
  • a different type of material e.g. carbon fibers
  • a two-layer hybrid reinforcement structure e.g. glass and carbon fibers
  • the grids produced according to the previous description (that is, endless carrier web) with reinforcing threads placed thereon, fixed in a force-fitting or cohesive manner, can be cut out along the component contour using suitable machines. Since there are reinforcing threads only within the component contour, there is almost no waste of reinforcing threads due to the cutting out of the web material.
  • the cut component contours can either be tied up and placed on top of one another or placed on top of one another and fixed using textile technology in a subsequent “preforming” step, so that a multi-layer structure is formed from individual layers of different reinforcement thread orientations.
  • At least two or more roving sections made of carbon, glass, basalt aramid fibers etc. are simultaneously fed into a continuously or discontinuously moving carrier web made of nonwoven, woven or knitted mesh, film, etc., in line with the contour, synchronously with the carrier web, placed side by side and fixed .
  • the roving can be provided by a gate or already prepared by a disc coil.
  • the roving materials can have different finenesses (for example 12K, 24K, 50K or larger).
  • the rovings must first be spread to the respective Briton and to the respective basis weight using a spreading process.
  • Each roving of the roving coulter can be individually moved, positioned and cut to length by suitable means and can be reworked at any time depending on the component contour.
  • the place and time of the sequential separation of the individual reinforcement threads from their processing with the continuously fed web material and their sequential re-incorporation into the flow of goods is controlled as a result of the speed of the web goods via the pre-defined geometry and their respective alignment above the web goods.
  • the individual rovings are to be arranged in such a way that mutual interference is excluded and a gapless storage area can still be achieved.
  • Fixing on the carrier web can be done using glue, sewing threads, thermal etc.
  • the endless carrier web can be provided as a winding and can be moved in a tensioned state over a synchronously moving conveyor belt.
  • the roving drainage points are located above the carrier web as braked disc coils in two levels, each offset by a roving pitch.
  • Each roving has a separate traction mechanism for individual roving conveyance and a separately controllable cutting device.
  • a mechanical or pneumatic auxiliary element is arranged for each roving, which fixes the roving to the carrier web for processing under a loading roller, rod or belt.
  • the roving coulter is attached to the carrier material using sewing threads. The component sections formed in this way are then separated by means of longitudinal and transverse cutting devices by separating the carrier web.
  • hybrid fibers consisting of glass or carbon fibers and thermoplastic fibers can also be fixed by thermal joining, for example with ultrasound, laser, flame, etc.
  • a preform 1 is shown in simplified form, which is used, for example, to produce a body component for a motor vehicle, such as a fender, etc., using the RTM (Resin Transfer Molding) process or a similar process.
  • the preform 1 is constructed from three stacked fiber semifinished product blanks 3 described later, the contour of which is identical to the end contour of the plastic component, not shown.
  • FIG. 2 an endless carrier web 5 is shown in a partial view.
  • the endless carrier web 5 is a slack web product made of a textile grid.
  • the endless carrier web 5 ensures a basic structure on which the endless reinforcing threads 7 are deposited and fixed parallel to the conveying direction F.
  • the endless reinforcing threads 7 are arranged so that, in their entirety, they result in flat structures 9, 10, 11, the contour of which corresponds to the final contour of the plastic component to be produced.
  • the individual fabrics 9, 10, 11 are positioned with the same area and contour, but in different orientations on the endless carrier web 5, as a result of which the reinforcing fibers 7 are deposited and fixed in the respective fabrics 9, 10, 11 in different orientations.
  • the fabrics 9, 10, 11 are viewed in the conveying direction F spaced apart from one another via surface cutouts 13 without endless reinforcing threads 7.
  • each of the flat structures 9 to 11 also has further circular surface cutouts 13 which are free from endless reinforcing threads 7.
  • the cut edges 15 are indicated by solid lines.
  • the waste surface portions 17 remaining after cutting are removed from the process cycle as material rejects.
  • the cut edges 15 of the semi-finished fiber cuts 3 run along the contour edges of the flat structures 9, 10, 11, as a result of which only the textile grid of the endless carrier web 5 is found in the cut surface portion 17, but not the endless reinforcing threads 7.
  • the fiber semi-finished blanks 3 thus obtained are in the Fig. 3 , in particular with the interposition of a binder, stacked one above the other in a mold 19 to form a layer package.
  • the stacked fiber semi-finished products have 3 different reinforcing fiber orientations.
  • the layer package which is still loosely arranged in the mold 19, is solidified under pressure and heat and, if necessary, three-dimensionally preformed.
  • the preform 1 thus formed is in the Fig. 1 shown.
  • the preform 1 has a sufficiently large component stability which ensures reliable further transport into the molding chamber of an RTM tool (not shown).
  • the preform 1 is inserted as an insert part in the molding chamber of the RTM tool.
  • a liquid starting component of the matrix material is then injected into the molding chamber under pressure and heat in a manner known per se. After the matrix material has hardened, the finished plastic component can then be removed from the RTM tool.
  • a device for producing the semi-finished fiber blanks 3 is indicated schematically.
  • the continuous carrier web 5 is conveyed in the production direction F at a continuous conveying speed in the conveying direction F, namely over a conveying path between an unwinding roll (not shown) to a winding roll.
  • a first depositing station 27 and a second depositing station 25 are roughly schematically indicated distributed over the conveying path, via which reinforcement threads 7 can be deposited on the endless carrier web 5.
  • Each of the two depositing stations 25, 27 has a series of disc spools 29 arranged transversely over the endless carrier web 5 and coaxially to one another, on each of which the endless reinforcing threads 7 are wound.
  • a cutting station 33 and a sewing unit 35 are arranged in front of the disc bobbins 29.
  • a cutting station (not shown) follows in the conveying direction F after the second depositing station 27, in which the flat structures 9, 10, 11 can be cut out of the endless carrier web 5 along the cutting edges 15.
  • the respective continuous reinforcing thread 7 unwound from the disc spool 29 is at a predefined position P1 (for example in FIG Fig. 2 shown) cut from the cutting station 33 for a thread deposit interruption.
  • the feeding of the cut-to-length endless reinforcing thread 7 is interrupted, with the continuous conveying path 5 being conveyed further at the conveying speed.
  • a thread repositioning takes place, in which the interrupted endless reinforcing thread 7 is again placed on the endless carrier web 5 and fixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Robotics (AREA)
  • Reinforced Plastic Materials (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteiles nach dem Oberbegriff des Patentanspruches 1.
  • Ein gängiges Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils ist das sogenannte RTM-Verfahren (Resin-Transfer-Moulding). Bei einem solchen gattungsgemäßen RTM-Verfahren wird zunächst ein aus flächigen Faserhalbzeugen (zum Beispiel Fasergewebe) gebildeter Vorformling bereitgestellt. Der Vorformling befindet sich noch im Trockenzustand, das heißt noch ohne Matrixmaterial. Zur Fertigstellung des Kunststoffbauteils wird der Vorformling als ein Einlegerteil in eine Formkammer ausbildende Werkzeughälften eines RTM-Werkzeugs eingelegt. Anschließend wird die flüssige Ausgangskomponente des Matrixwerkstoffes unter Wärme und Druck in die Formkammer injiziert. Nach Aushärtung des Matrixwerkstoffes kann das fertiggestellte Kunststoffbauteil aus dem RTM-Werkzeug entnommen werden.
  • Der oben genannte Vorformling kann wie folgt hergestellt werden: So werden flächige Faserhalbzeuge in gängiger Praxis in Form von Rollenware definierter Breite von den Textilzulieferern bereitgestellt. Gewebte Faserhalbzeuge werden dabei mit Hilfe von Hochleistungswebmaschinen in einem kontinuierlichen Fertigungsprozess aus einer Endlos-Gewebebahn hergestellt. Die Endlos-Gewebebahn weist ein in der Fertigungsrichtung ausgerichtetes Kettfadensystem sowie ein in etwa rechtwinklig dazu verkreuztes Schussfadensystem auf. Sowohl das Kettfadensystem als auch Schussfadensystem weisen Verstärkungsfasern, etwa Kohlenstofffaserrovings, auf.
  • Aus der Rollenware werden Faserhalbzeug-Zuschnitte angefertigt, deren Kontur der Bauteilkontur entspricht. Die Zuschnitte werden zu einem Lagenpaket übereinander gestapelt, und zwar unter Zwischenlage eines Binders. Die übereinandergestapelten flächigen Halbzeuge können in gleicher und unterschiedlicher Faserorientierung angeordnet sein. Anschließend wird unter Druck und Wärme das noch lose Lagenpaket verfestigt und vorgeformt. Der so gebildete Vorformling kann dann weiter zum RTM-Werkzeug transportiert werden. Mittels des Binders wird gewährleistet, dass der Vorformling eine ausreichend große Bauteilstabilität für die Handhabung bis zum RTM-Prozess aufweist.
  • Durch das maßgenaue Zuschneiden der Faserhalbzeuge aus der Rollenware (entsprechend der Preform-Kontur) ergibt sich ein erheblicher Verschnitt, der als Materialausschuss aus dem Prozesskreislauf abgeführt werden muss und sich negativ auf die Kosten- und Umweltbilanz des gesamten Fertigungsprozesses auswirkt.
  • Aus der DE 199 52 443 A1 ist ein Verfahren von ebenen, maßgenauen und nicht ausfransenden Faser-Halbzeugen für die Herstellung von Faser-Kunststoff-Verbundbauteilen bekannt. Um ein Ausfransen der Faserhalbzeuge zu vermeiden, werden die, die Bauteilgeometrie nachbildenden Flächengebilde einer Endlos-Bahn an ihrer Außenkontur mit Hilfe einer Mehrfach-Naht abgenäht und anschließend entlang dieser Mehrfach-Naht ausgeschnitten. Aus der DE 100 05 202 A1 ist ein weiteres Verfahren zur Herstellung eines Faserhalbzeugs für Faser-Kunststoff-Verbundbauteile bekannt, bei dem Faserbündel auf eine Legeeinheit abgelegt und durch beliebig orientierte Nähte fixiert werden. Die Nähte stellen die Bauteilendkontur dar.
  • Aus der DE 10 2010 044 721 A1 ist ein gattungsgemäßes Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils bekannt. Aus der EP 0 478 051 A2 ist ein weiteres Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils bekannt.
  • Die Aufgabe der Erfindung besteht darin, ein Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils bereitzustellen, bei dem der Materialaufwand bei den Verstärkungsfasern reduziert ist.
  • Die Aufgabe ist durch die Merkmale des Patentanspruches 1 gelöst. Bevorzugte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen offenbart.
  • Erfindungsgemäß wird das Faserhalbzeug wie folgt hergestellt: So werden Endlos-Verstärkungsfäden auf einer in einer Förderrichtung kontinuierlich geförderten Endlos-Trägerbahn parallel zur Förderrichtung abgelegt und fixiert. Die Endlos-Verstärkungsfäden werden derart auf der Endlos-Trägerbahn abgelegt und fixiert, dass sich ein Flächengebilde ergibt, dessen Kontur der Endkontur des Kunststoffbauteils entspricht.
  • Als Grundlage für die spätere Ablage der Verstärkungsfäden kann die Endlos-Trägerbahn eine biegeschlaffe quasi endlose Bahnware sein. Diese kann aus einem textilen Vlies, einem textilen Gitter (mit größeren Gitterabständen, etwa 1-5mm) oder auch aus einer Folie bestehen. Das Material der Bahnware kann aus dem gleichen Material wie die Verstärkungsfäden sein oder auch ein Thermoplast wie etwa Polyamid, Polypropylen oder auch ein anderes sein. Die Bahnware gewährleistet eine Grundstruktur und Fixierung der darauf abgelegten Verstärkungsfäden über einen Nähfaden, der das Gitter durchstößt. Ist die Bahnware aus thermoplastischem Material, so kann es im späteren Formgebungsprozess aufschmelzen und sich mit der umgebenden, idealerweise aus dem gleichen Thermoplast bestehenden, Matrix verbinden. Ferner kann die Bahnware in Form eines Vlieses für nachgelagerte Injektionsprozesse als Fließhilfe dienen.
  • Die Endlos-Verstärkungsfäden können aus Kohlenstoff-, Glas-, Aramid- und Basaltfasern gefertigt sein, oder auch aus hybriden Fäden, etwa aus Thermoplast und Kohlenstoff oder Glas. Die Endlos-Verstärkungsfäden werden auf dem Gitter durch maschenbildende Fadensysteme kraftschlüssig oder auch durch gezielte, lokale oder vollständig umschließende Einbettung in Kunststoffen stoffschlüssig fixiert, so dass abschließend ein Faser-Gelege entsteht. Der Vorschub und die Fadenzuführung werden dabei so gestaltet, dass die sequentielle Ablage der nebeneinander zugeführten Verstärkungsfäden an vordefinierten Stellen entlang der Förderrichtung der Endlos-Trägerbahn unterbrochen werden und an ebenfalls vordefinierten Stellen wieder aufgenommen werden kann. Die Positionen der Fadenablage-Unterbrechung bzw. der Faden-Wiederablage können über die gesamte Breite der Preform (y-Richtung) variiert werden, so dass in der x/y-Ebene Ausschnitte ohne Verstärkungsfäden beliebiger Kontur und auch Randbereiche ohne Verstärkungsfäden beliebiger Kontur in einem kontinuierlichen Ablageprozess entstehen können. Die Fäden werden dabei zunächst in Einzelschichten parallel zur Förderrichtung (0°-Richtung) abgelegt. Durch die Verwendung von Fasern unterschiedlicher Fasertiter, die vor dem Ablegen auf dem Traggitter in vorher genau definiertem Ausmaß gespreizt (Kohlenstofffasern) und entlang der Breite des Traggerüstes (y-Richtung) in variabler Form mit Fixierungsfäden versehen werden, können unterschiedliche Flächengewichte der NNP erzeugt werden.
  • Die Ablage von Endlos-Verstärkungsfasern mit einer beliebigen Winkelorientierung (ϕ >0°) zur Förderrichtung der kontinuierlich zugeführten Bahnware kann dadurch realisiert werden, dass die Bauteilkontur mit allen Ausschnitten, die die Positionen zur Fadenablage-Unterbrechnung und zur Faden-Wiederablage festlegt, um den entsprechenden Winkel ϕ zur Förderrichtung gedreht (x- bzw. 0°-Richtung) wird. Dadurch kann weiterhin in x-Richtung gefördert werden. Die durch die Drehung der Bauteilkontur entstehende zusätzliche Breite an textiler Fadenablage ist in der Breite der Endlos-Trägerbahn entsprechend vorzuhalten.
  • Die Ablage der Endlos-Verstärkungsfäden auf dem Traggitter (das heißt der Endlosträgerbahn) wird über eine Textilmaschine gesteuert, die eine vorher definierte Kontur entlang der Breite der Bahnware (y-Richtung) abfährt. Durch Variation der Fadenablage-Unterbrechung und Faden-Wiederablage in der Querrichtung können so entlang der Breite der als Traggerüst fungierenden Endlos-Trägerbahn gleichzeitig verschiedene Preform-Konturen mit den Verstärkungsfäden erzeugt werden. Durch eine flächenoptimale Anordnung der Preform-Konturen über der Traggerüstbreite können so gleichzeitig verschiedene Preformen mit minimalem Verschnitt des Traggerüstes hergestellt werden.
  • Die Endlos-Trägerbahn als textiles Traggerüst kann bereits aus Verstärkungsfäden (zum Beispiel Glasfasern) ausgeführt sein. Wird für die Ablage der Verstärkungsfäden eine andere Art von Material (zum Beispiel Kohlenstofffasern) verwendet, entsteht über der Schichtdicke der Preform eine zweischichte hybride Verstärkungsstruktur (zum Beispiel Glas- und Kohlenstofffasern). Wenn entlang der Traggerüstbreite (y-Richtung) eine spiegelsymmetrische Ablage der Preform-Konturen erfolgt, können nach Beendigung der Ablage der Verstärkungsfäden und nach Ausschneiden der Preformen diese übereinandergelegt werden, so dass eine über der Schichtdicke hybride, mehrschichtige Gesamt-Preform aus verschiedenen Materialien entsteht, zum Beispiel eine Sandwichstruktur.
  • Die gemäß Vorbeschreibung hergestellten Gitter (das heißt Endlos-Trägerbahn) mit darauf abgelegten, kraft- oder stoffschlüssig fixierten Verstärkungsfäden können mit geeigneten Maschinen jeweils entlang der Bauteilkontur ausgeschnitten werden. Da sich nur innerhalb der Bauteilkontur auch Verstärkungsfäden befinden, entsteht durch das Ausschneiden aus der Bahnware nahezu kein Abfall an Verstärkungsfäden. Die ausgeschnittenen Bauteilkonturen können in einem nachgelagerten "Preforming"-Schritt entweder bebindert und aufeinandergelegt oder aufeinandergelegt und textiltechnisch fixiert werden, so dass ein Mehrlagenaufbau aus Einzellagen verschiedener Verstärkungsfaden-Orientierungen entsteht.
  • Auf eine sich kontinuierlich oder diskontinuierlich bewegte Trägerbahn aus Vlies, Gewebe- oder Gewirkegitter, Folie etc. werden gleichzeitig konturgerecht mindestens zwei oder mehrere Rovingabschnitte aus Carbon-, Glas-, Basalt- Aramid-Fasern etc. synchron zur Trägerbahn zugeführt, nebeneinander abgelegt und fixiert.
  • Der Roving kann dabei von einem Gatter oder bereits vorbereitet von einer Scheibenspule bereitgestellt werden.
  • Die Rovingmaterialien können dabei unterschiedliche Feinheiten aufweisen (zum Beispiel 12K, 24K, 50K oder größer).
  • Bei der Direktverarbeitung von Rovings sind diese auf ein vorbestimmtes Flächengewicht und eine vorbestimmte Breite aufzuspreizen. Dieser Vorgang erfolgt online mit dem Verlegeprozess.
  • Wird mit Scheibenspulen gearbeitet, sind die Rovings vorher durch einen Aufspreizprozess auf die jeweilige Brite und auf das jeweilige Flächengewicht zu bringen.
  • Jeder Roving der Rovingschar ist dabei durch geeignete Mitteln einzeln zueinander bewegbar, positionierbar und ablängbar und zu jedem Zeitpunkt wieder anarbeitbar je nach Bauteilkontur. Ort- und Zeitpunkt des sequentiellen Trennens der einzelnen Verstärkungsfäden aus ihrer Verarbeitung mit der kontinuierlich zugeführten Bahnware sowie deren sequentieller Wiedereinarbeitung in den Warenfluss erfolgt gesteuert resultierend aus der Geschwindigkeit der Bahnware über die jeweils vorgegebene Preformgeometrie und deren jeweiliger Ausrichtung über der Bahnware. Die einzelnen Rovings sind dabei so anzuordnen, dass eine gegenseitige Beeinflussung ausgeschlossen wird und dennoch eine lückenlose Ablagefläche erreicht werden kann.
  • Das Fixieren auf der Trägerbahn kann dabei über Kleber, Nähfäden, thermisch etc. erfolgen.
  • Gemäß einer Ausführungsform kann die Endlos-Trägerbahn als Wickel bereitgestellt und im gespannten Zustand über ein synchron mitlaufendes Transportband bewegt werden. Oberhalb der Trägerbahn befinden sich die Rovingablaufstellen als gebremste Scheibenspulen in zwei Ebenen, jeweils um eine Rovingteilung versetzt. Jeder Roving besitzt ein separates Zugwerk zur Einzelrovingförderung und eine separat ansteuerbare Schneideinrichtung.
  • Je Roving ist ein mechanisches oder pneumatisches Hilfselement angeordnet, das den Roving zum Anarbeiten unter einer Belastungswalze, Stab oder Band auf die Trägerbahn fixiert. An einer nachgeschalteten Vielnadelnähstelle wird die aufgelegte Rovingschar mittels Nähfäden auf dem Trägermaterial fixiert. Anschließend werden die so gebildeten Bauteilabschnitte mittels Längs- und Querschneideinrichtungen durch Trennen der Trägerbahn vereinzelt.
  • Bei Verwendung einer thermoplastischen Bahnware ist eine Fixierung von Hybridfasern, bestehend aus Glas- oder Kohlenstofffasern und thermoplastischen Fasern, auch durch ein thermisches Fügen, zum Beispiel mit Ultraschall, Laser, Flamme etc. möglich.
  • Die vorstehend erläuterten und/oder in den Unteransprüchen wiedergegebenen vorteilhaften Aus- und/oder Weiterbildungen der Erfindung können - außer zum Beispiel in den Fällen eindeutiger Abhängigkeiten oder unvereinbarer Alternativen - einzeln oder aber auch in beliebiger Kombination miteinander zur Anwendung kommen.
  • Die Erfindung und ihre vorteilhaften Aus- und Weiterbildungen sowie deren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert.
    Es zeigen:
  • Fig. 1
    in einer perspektivischen Ansicht einen Vorformling für ein flächiges Faser-Verbundkunststoff-Bauteil;
    Fig. 2
    in einer Teilansicht von oben eine Endlos-Trägerbahn mit darauf abgelegten Endlos-Verstärkungsfäden, die jeweils Flächengebilde unterschiedlicher Faserorientierung bilden;
    Fig. 3
    in einer weiteren schematischen Explosionsdarstellung ein angedeutetes Formwerkzeug, in das die aus der Endlos-Trägerbahn zugeschnittenen Faser-Halbzeuge zur Bildung eines Lagenpaketes gestapelt werden; und
    Fig. 4
    in einer schematischen perspektivischen Darstellung eine Vorrichtung zur Erzeugung von Faserhalbzeugen.
  • In der Fig. 1 ist vereinfacht ein Vorformling 1 gezeigt, der beispielsweise zur Herstellung eines Karosseriebauteils für ein Kraftfahrzeug, wie etwa einem Kotflügel, etc. nach dem RTM-Verfahren (Resin Transfer Moulding) oder einem ähnlichen Verfahren verwendet wird. Der Vorformling 1 ist aus drei übereinandergestapelten, später beschriebenen Faserhalbzeug-Zuschnitten 3 aufgebaut, deren Kontur mit der Endkontur des nicht dargestellten Kunststoffbauteils identisch ist.
  • Anhand der nachfolgenden Figuren 2 bis 4 ist die Herstellung des Vorformlings 1 erläutert: So ist in der Fig. 2 in einer Teilansicht eine Endlos-Trägerbahn 5 gezeigt. Die Endlos-Trägerbahn 5 ist im gezeigten Ausführungsbeispiel eine biegeschlaffe Bahnware aus einem textilen Gitter. Die Endlos-Trägerbahn 5 gewährleistet eine Grundstruktur, auf der die Endlos-Verstärkungsfäden 7 parallel zur Förderrichtung F abgelegt und fixiert sind. Die Endlos-Verstärkungsfäden 7 sind dabei so angeordnet, dass sie in ihrer Gesamtheit Flächengebilde 9, 10, 11 ergeben, deren Kontur der Endkontur des herzustellenden Kunststoffbauteils entspricht.
  • Wie aus der Fig. 2 hervorgeht, sind die einzelnen Flächengebilde 9, 10, 11 flächen- und konturgleich, jedoch in unterschiedlicher Ausrichtung auf der Endlos-Trägerbahn 5 positioniert, wodurch die Verstärkungsfasern 7 in unterschiedlicher Ausrichtung im jeweiligen Flächengebilde 9, 10, 11 abgelegt und fixiert sind. Die Flächengebilde 9, 10, 11 sind in der Förderrichtung F betrachtet über Flächenausschnitte 13 ohne Endlos-Verstärkungsfäden 7 voneinander beabstandet. Zudem weist auch jedes der Flächengebilde 9 bis 11 weitere kreisförmige Flächenausschnitte 13 auf, die frei von Endlosverstärkungsfäden 7 sind.
    Nach Erzeugung der Flächengebilde 9 bis 11 auf der Endlos-Trägerbahn 5 erfolgt ein Zuschneiden, bei dem die Flächengebilde 9 bis 11 als Faserhalbzeug-Zuschnitte 3 aus der Endlos-Trägerbahn 5 geschnitten werden. In der Fig. 2 sind die Zuschnittkanten 15 mit durchgezogenen Linien angedeutet. Die nach dem Zuschneiden verbleibenden Verschnittflächenanteile 17 werden als Materialausschuss aus dem Prozesskreislauf abgeführt. Die Zuschnittkanten 15 der Faser-Halbzeug-Zuschnitte 3 verlaufen entlang der Konturkanten der Flächengebilde 9, 10, 11, wodurch sich im Verschnittflächenanteil 17 ausschließlich das textile Gitter der Endlos-Trägerbahn 5 wiederfindet, nicht jedoch die Endlos-Verstärkungsfäden 7.
  • Die so erhaltenen Faserhalbzeug-Zuschnitte 3 werden in der Fig. 3, insbesondere unter Zwischenlage eines Binders, in ein Formwerkzeug 19 zu einem Lagenpaket übereinandergestapelt. In dem Lagenpaket weisen die übereinandergestapelten FaserHalbzeuge 3 unterschiedliche Verstärkungsfaser-Orientierungen auf.
  • Anschließend wird unter Druck und Wärme das noch lose im Formwerkzeug 19 angeordnete Lagenpaket verfestigt und gegebenenfalls dreidimensional vorgeformt. Der so gebildete Vorformling 1 ist in der Fig. 1 gezeigt. Nach der Druck- und Wärmebeaufschlagung weist der Vorformling 1 eine ausreichend große Bauteilstabilität auf, die einen prozesssicheren Weitertransport in die Formkammer eines nicht dargestellten RTM-Werkzeugs gewährleistet. In der Formkammer des RTM-Werkzeugs wird der Vorformling 1 als ein Einlegerteil eingelegt. Anschließend wird in an sich bekannter Weise eine flüssige Ausgangskomponente des Matrixwerkstoffes unter Druck und Wärme in die Formkammer eingespritzt. Nach Aushärtung des Matrixwerkstoffes kann dann das fertiggestellte Kunststoffbauteil aus dem RTM-Werkzeug entnommen werden.
  • In der Fig. 4 ist eine Vorrichtung zur Herstellung der Faserhalbzeug-Zuschnitte 3 schematisch angedeutet. Demzufolge wird die Träger-Endlosbahn 5 in der Fertigungsrichtung F mit einer kontinuierlichen Fördergeschwindigkeit in der Förderrichtung F gefördert, und zwar über eine Förderstrecke zwischen einer nicht dargestellten Abwickelrolle bis zu einer Aufwickelrolle. In der Förderrichtung F hintereinandergeschaltet sind über die Förderstrecke verteilt eine erste Ablagestation 27 und eine zweite Ablagestation 25 grob schematisch angedeutet, über die jeweils Verstärkungsfäden 7 auf der Endlos-Trägerbahn 5 ablegbar sind. Jeder der beiden Ablagestationen 25, 27 weist eine Reihe von quer über die Endlos-Trägerbahn 5 sowie koaxial zueinander angeordneten Scheibenspulen 29 auf, auf denen jeweils die Endlos-Verstärkungsfäden 7 aufgewickelt sind. Diese werden über ein Rollensystem 31 mit einer vorgegebenen Ablagegeschwindigkeit auf die Endlos-Trägerbahn 5 abgelegt. Die Ablagegeschwindigkeit ist dabei in etwa identisch mit der Fördergeschwindigkeit der Endlos-Trägerbahn 5. Den Scheibenspulen 29 vorgelagert ist eine Schneidstation 33 sowie ein Nähwerk 35. In der Förderrichtung F nach der zweiten Ablagestation 27 folgt eine nicht dargestellte Zuschnittstation, in der die Flächengebilde 9, 10, 11 entlang der Zuschnittkanten 15 aus der Endlos-Trägerbahn 5 ausgeschnitten werden.
  • Zur Bildung der oben erwähnten Flächenausschnitte 13 ohne die Endlos-Verstärkungsfäden 7 wird der jeweilige, von der Scheibenspule 29 abgewickelte Endlos-Verstärkungsfaden 7 an einer vordefinierten Position P1 (beispielhaft in der Fig. 2 gezeigt) für eine Fadenablage-Unterbrechung von der Schneidstation 33 abgelängt. Gleichzeitig wird die Zuführung des abgelängten Endlos-Verstärkungsfaden 7 unterbrochen, und zwar unter Weiterförderung der Endlos-Trägerbahn 5 mit der Fördergeschwindigkeit. An einer vordefinierten, in der Förderrichtung F nacheilenden Position P2 (beispielhaft in der Fig. 2 gezeigt) erfolgt dann eine Faden-Wiederablage, bei der der unterbrochene Endlos-Verstärkungsfaden 7 wieder auf die Endlos-Trägerbahn 5 abgelegt und fixiert wird.

Claims (8)

  1. Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils, bei dem ein Vorformling (1) aus zumindest einem Faserhalbzeug (3) bereitgestellt wird und bei dem Endlos-Verstärkungsfäden (7) auf einer in einer Förderrichtung (F) kontinuierlich geförderten Endlos-Trägerbahn (5) parallel zur Förderrichtung (F) abgelegt und fixiert werden, wobei die Endlos-Verstärkungsfäden (7) derart auf der Endlos-Trägerbahn (5) abgelegt und fixiert werden, dass sich eine Reihe von Flächengebilden (9, 10, 11) ergibt, deren Kontur der Endkontur des Kunststoffbauteils entspricht, dadurch gekennzeichnet, dass nach der Herstellung des jeweiligen Flächengebildes (9, 10, 11) ein Zuschneiden erfolgt, bei dem jedes Flächengebilde (9, 10, 11) als ein Faserhalbzeug-Zuschnitt (3) aus der Endlos-Trägerbahn (5) geschnitten wird, und zwar unter Abführung eines verbleibenden Verschnittflächenanteils (17) als Materialausschuss, und dass die Zuschnittkanten (15) des jeweiligen Faserhalbzeug-Zuschnitts (3) konturangepasst entlang des Randes des jeweiligen Flächengebildes (9, 10, 11) verlaufen, so dass sich im Verschnittflächenanteil (17) ausschließlich das textile Gitter der Endlos-Trägerbahn (5) wiederfindet, nicht jedoch die Endlos-Verstärkungsfäden (7), und dass die Reihe von Flächengebilden (9, 10, 11) zu einem Lagenpaket gestapelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Bildung eines Flächenausschnittes (13) ohne Endlos-Verstärkungsfäden (7) der jeweilige Verstärkungsendlosfaden (7) an einer vordefinierten Position (P1) für eine Fadenablage-Unterbrechung abgelängt wird, und an einer vordefinierten, in der Förderrichtung (F) nacheilenden Position (P2) für eine Faden-Wiederablage wieder auf der Endlos-Trägerbahn (5) abgelegt und fixiert wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Endlos-Verstärkungsfäden (7) durch maschenbildende Fadensysteme (5) fixiert werden, oder dass die Endlos-Verstärkungsfäden (7) durch gezielte, lokale oder vollständig umschließende thermische Einbettung oder Verklebung in der Endlos-Trägerbahn (5) stoffschlüssig fixiert werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Anpassung des Flächengewichts des Faserhalbzeugs (3) Endlos-Verstärkungsfäden (7) mit unterschiedlichen Faserdurchmessern verwendet werden, und/oder dass die Endlos-Verstärkungsfäden (7) vor dem Ablegen auf der Endlos-Trägerbahn (5) definiert gespreizt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die übereinandergestapelten Flächengebilde (9, 10, 11) unterschiedliche Verstärkungsfaden-Orientierungen aufweisen.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Flächengebilde (9, 10, 11) zur Bereitstellung unterschiedlicher Verstärkungsfaden-Orientierungen in unterschiedlicher Ausrichtung auf der Endlos-Trägerbahn (5) abgelegt werden, und/oder dass das noch lose Lagenpaket unter Druck und Wärme verfestigt und vorgeformt wird, und insbesondere der so gebildete Vorformling (1) weiter in eine Formkammer eines Injektionswerkzeugs (19) eingelegt, und anschließend ein Matrixmaterial unter Wärme und Druck in die Formkammer injiziert und ausgehärtet wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Endlos-Trägerbahn (5) ein textiles Vlies, ein textiles Gitter oder eine Folie ist, und/oder dass die Endlos-Trägerbahn (5) aus Thermoplast, etwa Polyamid oder Polypropylen, gefertigt ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Endlos-Trägerbahn (5) ebenfalls Verstärkungsfäden (7) aufweist, etwa aus Glasfasern, wodurch nach der Ablage der Endlos-Verstärkungsfäden eine zweischichtige Verstärkungsstruktur entsteht.
EP14749848.9A 2013-08-23 2014-08-11 Verfahren zur herstellung eines faserverstärkten kunststoffbauteils Active EP3036089B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013216835.7A DE102013216835B4 (de) 2013-08-23 2013-08-23 Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
PCT/EP2014/067159 WO2015024806A1 (de) 2013-08-23 2014-08-11 Verfahren zur herstellung eines faserverstärkten kunststoffbauteils

Publications (2)

Publication Number Publication Date
EP3036089A1 EP3036089A1 (de) 2016-06-29
EP3036089B1 true EP3036089B1 (de) 2020-07-08

Family

ID=51300767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14749848.9A Active EP3036089B1 (de) 2013-08-23 2014-08-11 Verfahren zur herstellung eines faserverstärkten kunststoffbauteils

Country Status (3)

Country Link
EP (1) EP3036089B1 (de)
DE (1) DE102013216835B4 (de)
WO (1) WO2015024806A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016111080B4 (de) 2016-06-17 2020-06-18 Cetex Institut gGmbH Verfahren zum Herstellen von Halbzeugen für Faser-Kunststoff-Verbundbauteile
DE102017209099A1 (de) * 2017-05-31 2018-12-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bearbeiten oder Herstellen eines textilen Halbzeugs für eine Fahrzeugkomponente, Textiles Halbzeug und Vorrichtung
DE102019125531A1 (de) * 2019-09-23 2021-03-25 Newcycle Kunststofftechnik Gmbh Verfahren zur Herstellung von Carbonfaserstrangabschnitten, Verfahren zum Verstärken von Bauteilen, Carbonfaserstrangabschnittherstellungsvorrichtung und Bauteilherstellungsvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478051B1 (de) * 1990-09-24 1995-03-15 AMP-Akzo LinLam VOF Verfahren zum kontinuierlichen Herstellen von Trägern für gebündelte Schaltungen und so hergestelltes Erzeugnis
DE19624912C2 (de) * 1995-07-17 2002-07-11 Liba Maschf Maschine zur Herstellung vorkonfektionierter Verstärkungsgelege
DE19726831C5 (de) * 1997-06-24 2005-02-17 Liba Maschinenfabrik Gmbh Multiaxial-Maschine mit Portalaufbau
DE19952443A1 (de) 1999-10-30 2001-05-03 Inst Verbundwerkstoffe Gmbh Verfahren zur Erzeugung von ebenen, maßgenauen und nicht ausfransenden Faser-Halbzeugen für die Herstellung von Faser-Kunststoff-Verbundbauteilen
DE10005202B4 (de) 2000-02-03 2007-03-01 Institut Für Verbundwerkstoffe Gmbh Verfahren und Vorrichtung zur kontinuierlichen bauteil- und prozessorientierten Herstellung von Verstärkungsstruktur-Halbzeugen für Faser-Kunststoff-Verbundwerkstoffe
DE10060379B4 (de) * 2000-12-05 2004-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von multidirektionalen Faden- oder Fasergelegen
DE10252671C1 (de) * 2002-11-11 2003-12-04 Mayer Malimo Textilmaschf Verfahren zur Herstellung von faserverstärkten, dreidimensionalen Kunststoffteilen
EP2138615B1 (de) * 2008-06-23 2013-04-24 Liba Maschinenfabrik GmbH Verfahren zum Herstellen eines multiaxialen Fadengeleges, unidirektionale Faserlagen und Verfahren zu ihrer Herstellung, multiaxiales Fadengelege und Kompositteil mit einer Matrix
DE102010044721A1 (de) * 2010-09-08 2012-03-08 Daimler Ag Verfahren und Vorrichtung zum Herstellen eines Faserhalbzeugs
DE102012206404B4 (de) * 2011-08-29 2014-01-02 Liba Maschinenfabrik Gmbh Multiaxiales Fadengelege, Verfahren zum Herstellen eines multiaxialen Fadengeleges, Multiaxialmaschine und Einrichtungen zum Herstellen von unidirektionalen Fadenlagen und von multiaxialen Fadengelegen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102013216835B4 (de) 2017-01-05
DE102013216835A1 (de) 2015-02-26
EP3036089A1 (de) 2016-06-29
WO2015024806A1 (de) 2015-02-26

Similar Documents

Publication Publication Date Title
DE10005202B4 (de) Verfahren und Vorrichtung zur kontinuierlichen bauteil- und prozessorientierten Herstellung von Verstärkungsstruktur-Halbzeugen für Faser-Kunststoff-Verbundwerkstoffe
EP2694263B1 (de) Vorrichtung und verfahren zur herstellung von faservorformlingen, die insbesondere eine vorstufe bei der herstellung von faserverstärkten kunststoff-bauteilen darstellen
DE102005000115B4 (de) Verfahren zur Herstellung einer multidirektionalen Gelegebahn
EP2694262B1 (de) Vorrichtung und verfahren zur herstellung von faservorformlingen, die insbesondere eine vorstufe bei der herstellung von faserverstärkten kunststoff-bauteilen darstellen
EP2822754B1 (de) Querablegen von fasern
WO2009127456A1 (de) Verfahren zur herstellung von faservorformlingen
DE19624912C2 (de) Maschine zur Herstellung vorkonfektionierter Verstärkungsgelege
EP2181217B1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung einer multiaxialen gelegebahn
DE102011007021A1 (de) Vorrichtung und Verfahren zur Herstellung von Faservorformlingen, die insbesondere eine Vorstufe bei der Herstellung von faserverstärkten Kunststoff-Bauteilen darstellen
EP3036089B1 (de) Verfahren zur herstellung eines faserverstärkten kunststoffbauteils
DE102013104609B4 (de) Nestingablage
DE112011101704B4 (de) Fertigungsvorrichtungen für Faser-Vorformlinge und Faser-Kunststoff-Verbund-Bauteile
EP0754794A2 (de) Maschine zur Herstellung vorkonfektionierter Verstärkungsgelege
WO2003041948A1 (de) Dreidimensionale verstärkungsstruktur für faser-kunststoff-verbundwerkstoffe und verfahren zu deren herstellung aus einer ebenen struktur
DE102011007022A1 (de) Vorrichtung und Verfahren zur Herstellung von Faservorformlingen, die insbesondere eine Vorstufe bei der Herstellung von faserverstärkten Kunststoff-Bauteilen darstellen
EP2844455B1 (de) Querablegen von fasern
EP3257663B1 (de) Verfahren zum herstellen von halbzeugen für faser-kunststoff-verbundbauteile
DE102016208687B4 (de) Verfahren zur Herstellung eines Faser-Halbzeugs und eines Faserverbundbauteils, Faserverbundbauteil sowie Werkzeug
DE102013221176B4 (de) Verfahren zur Herstellung von maschenfreien multiaxialen Gelegen
WO2013139451A2 (de) Verfahren und vorrichtung zur herstellung eines endkonturnahen geleges
DE102013011580B4 (de) Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
DE102012016720A1 (de) Garnabschnitt, Verfahren zur Herstellung eines Funktionsgarns und Vorrichtung
DE102014225334A1 (de) Verfahren zur Herstellung eines textilen Halbzeugs, textiles Halbzeug sowie Vorrichtung zur Herstellungeines textilen Halbzeugs
DE102021203656A1 (de) Verfahren zur Herstellung eines dreidimensionalen Bauteils aus einem Faserverbund und Kraftfahrzeug mit einem mit diesem Verfahren hergestellten Bauteil
DE102017209099A1 (de) Verfahren zum Bearbeiten oder Herstellen eines textilen Halbzeugs für eine Fahrzeugkomponente, Textiles Halbzeug und Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PLATH, ARMIN

Inventor name: NENDEL, WOLFGANG

Inventor name: KROLL, LOTHAR

Inventor name: HEINRICH, HANS-JUERGEN

Inventor name: TAEGER, OLAF

Inventor name: HELBIG, FRANK

Inventor name: EHLEBEN, MAX

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1287991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014424

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201009

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201008

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014424

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

26N No opposition filed

Effective date: 20210409

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201008

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1287991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220824

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014014424

Country of ref document: DE