EP3031983B1 - An improved method for guiding a device for inserting elements into the ground for the building of a structure; insertion device and associated vehicle - Google Patents

An improved method for guiding a device for inserting elements into the ground for the building of a structure; insertion device and associated vehicle Download PDF

Info

Publication number
EP3031983B1
EP3031983B1 EP15193853.7A EP15193853A EP3031983B1 EP 3031983 B1 EP3031983 B1 EP 3031983B1 EP 15193853 A EP15193853 A EP 15193853A EP 3031983 B1 EP3031983 B1 EP 3031983B1
Authority
EP
European Patent Office
Prior art keywords
arm
optical
insertion device
absolute
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15193853.7A
Other languages
German (de)
French (fr)
Other versions
EP3031983A1 (en
Inventor
Nicolas Rada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport Technologies SAS
Original Assignee
Alstom Transport Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport Technologies SAS filed Critical Alstom Transport Technologies SAS
Publication of EP3031983A1 publication Critical patent/EP3031983A1/en
Application granted granted Critical
Publication of EP3031983B1 publication Critical patent/EP3031983B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/32Installing or removing track components, not covered by the preceding groups, e.g. sole-plates, rail anchors
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/002Ballastless track, e.g. concrete slab trackway, or with asphalt layers
    • E01B1/004Ballastless track, e.g. concrete slab trackway, or with asphalt layers with prefabricated elements embedded in fresh concrete or asphalt
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/02Applications of measuring apparatus or devices for track-building purposes for spacing, for cross levelling; for laying-out curves
    • E01B35/04Wheeled apparatus
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2203/00Devices for working the railway-superstructure
    • E01B2203/16Guiding or measuring means, e.g. for alignment, canting, stepwise propagation

Definitions

  • the invention relates to a method for guiding a device for inserting elements into the ground, for producing a structure. More particularly, the invention relates to a guide method of a saddle insertion device for the realization of a railway track. The invention also relates to a system for implementing such a guiding method.
  • the document FR 2 812 671 discloses a guiding method.
  • the movable arm of the insertion device which makes it possible to bring a saddle into a predetermined position and orientation of implantation, then the implantation of the saddle in the concrete, is provided with a first prism and a second prism.
  • Each prism is able to reflect a beam of laser light emitted by a remote total measurement station, placed along the railroad track to achieve.
  • the guiding method then consists in installing a total measurement station near the railway track to be carried out and in determining the coordinates of the geographical point of installation of the total measuring station. These coordinates are absolute in the sense that they are given relative to an absolute reference XYZ.
  • a total measurement station includes an optical device capable of emitting a laser beam towards a reflecting target. From the reflected beam, the total measuring station is able to determine the distance between the total measuring station and the target, as well as the angle that forms the direction between the total measuring station and the target, with a plane of measurement. reference, which is a horizontal plane passing through the optical device.
  • positioning of an object in the present patent application is meant both the position of a reference point of this object (three coordinates), and the orientation of a reference segment of this object ( three angles).
  • the absolute positioning of the arm that is to say the positioning in the absolute reference XYZ, is for example given by the position of the first prism, as a reference point, and the orientation of the segment between the first prism and the second prism, as a reference segment.
  • the method consists in manually directing the total measuring station so that its laser beam points towards the first prism and to measure the distance and the angle between the total measurement station and this first one. prism, then manually steer the total measuring station so that its laser beam points to the second prism and measure the distance and angle between the total measuring station and the second prism.
  • Such a guiding method remains difficult to implement.
  • 30 seconds correspond to the actual implantation of the saddle in the fresh concrete of the railroad track, while the other 60 seconds are devoted to a single determination of the absolute positioning of the arm. That is, if the positioning of the saddle before implantation is not within the required tolerance interval, it is necessary to resume the step of determining the absolute positioning of the arm.
  • the optical device of a total measurement station has a range of only about 100 meters. It is therefore necessary to move the total measuring station as and when the vehicle 1 and the progress of the realization of the route of railway. With each movement of the total measuring station, the step of installing the total measuring station and determining its absolute position must be carried out again, before transmitting this information to the on-board computer so that a new set of stool delivery cycles can not begin.
  • the step of setting up a total measurement station is not easy. Indeed, it is necessary that the optical device is very precisely placed in a horizontal plane. If this is not the case, the optical device does not work and the total measurement station delivers erroneous measurements.
  • the invention therefore aims to overcome these problems.
  • the subject of the invention is a method of guiding an insertion device for the insertion of elements into the ground for the production of a structure, characterized in that it comprises the following steps: surveying a plurality of geographical points in proximity to the work to be performed, the position of each point being determined in an absolute reference XYZ; installing a plurality of reflectors, each reflector being placed at a geographical point of the topographic survey; measuring, with the aid of at least three optical devices, located on a movable arm of the insertion device which carries the element to be inserted, distances between reflectors and optical devices; calculating, by trilateration, the absolute positioning of the arm of the insertion device from the measured distances and the known position of each optical reflector; and moving the arm of the insertion device according to the calculated absolute positioning, so as to bring the element to be implanted, in a predetermined implantation position.
  • the invention also relates to an insertion device for inserting an element into the ground, intended to be guided by the implementation of a guiding method according to the preceding method, comprising an arm, movable in translation and rotation along three axes orthogonal to each other and carrying the element to be inserted in the ground, actuators of said arm, an automaton for controlling said actuators and a control computer of said automaton, characterized in that it comprises at least three optical devices, implanted on the arm of the insertion device, each optical device being able to measure a distance between its point of implantation on the arm and a remote optical reflector placed in the environment of the work to be performed, in one known installation position, and in that said computer is programmed to calculate an absolute positioning of said arm, by implementing a trilateration algorithm, starting from measurements transmitted by the optical devices and the known positions of the optical reflectors.
  • the invention also relates to a vehicle characterized in that it comprises an insertion device according to the preceding device.
  • a vehicle 1 equipped with an insertion device 2 of elements in the ground for the realization of a structure.
  • the structure is a portion of a railway track, for example for a tramway, metro or mainline line.
  • the elements to be inserted are then saddles 3, sealed in the concrete of the raft 4 of the track and intended to maintain rails.
  • the saddles 3 are of conventional type and respectively comprise a plate of rigid material, such as cast iron, and two anchors.
  • the saddles 3 are held in the concrete slab once it has hardened. They each have a device for fixing a rail.
  • the vehicle 1 is mounted on four wheels 5, two of which are steered and the other two are driving. It comprises propulsion and steering means (not shown in the figure) for moving the vehicle 1 in a given direction, essentially the direction D of the track to achieve.
  • the vehicle 1 is moved above the raft 4 whose concrete, just poured, has not yet hardened.
  • the insertion device 2 comprises, mounted at the rear of the vehicle 1, an arm 6. Alternatively, the insertion device comprises several arms.
  • the arm 6 has on its lower part gripping systems at the end of which are placed two saddles 2 intended to be inserted into the concrete of the raft 4 freshly poured, each saddle corresponding to a track wire of the track.
  • the arm 6 of the insertion device is movable. It is moved, in translation along three axes and in rotation along three axes, with respect to a chassis of the vehicle 1, by a set of actuators (not shown in the figure).
  • actuators are controlled by an embedded controller (not shown in the figure), itself controlled by an on-board computer.
  • the computer 10 provides in particular the calculation of the absolute positioning of the arm 6, that is to say the absolute position of a reference point P of the arm and the absolute orientation of a reference segment A associated with the arm 6
  • a reference segment is parallel to the central bar of the "H" shaped arm and derived from the reference point P.
  • the automaton as a function of the absolute positioning of the arm 6 and of an absolute position of implantation of a saddle 3 (that is to say an absolute position of implantation of a saddle and an absolute orientation of implantation of this saddle) actuates the means of propulsion and direction of the vehicle 1 to approach the absolute position of implantation, then actuates the displacement of the arm 6 to bring the saddle into the absolute positioning of implantation (to an uncertainty ready).
  • the controller is able to actuate the cylinders so as to insert the two saddles in the fresh concrete, then to release the stool implanted and to control the jacks and the arm to return to the position of rest for a next cycle.
  • the arm 6 For guiding the insertion device 2, the arm 6 carries three optical devices 12, 13 and 14.
  • the first optical device 12 is implanted at a point P1
  • the second optical device 13 is implanted at a point P2
  • the third device Optical 14 is implanted at a point P3 of the arm.
  • the points of implantation are determined by construction of the arm with great precision. In particular the segments separating each pair of points are known with great precision.
  • Each optical device is equipped with an emitting optic capable of emitting a laser beam 22, 23, 24.
  • Each optical device is equipped with a receiving optics for collecting the beam reflected by a target. From the flight time separating the emission from the reception of a laser pulse, an optical device is able to determine a distance between the implantation point of the laser device and the target.
  • the operating frequency of an optical device is high: between 200 and 100 Hz.
  • a plurality of reflective prisms such as prisms 32, 33, 34, are disposed in the environment.
  • a prism is able to reflect the laser beam emitted by an optical device, such as the devices 12, 13, 14.
  • the prisms are placed at geographical points of a topographic survey.
  • the absolute position of each prism is known.
  • the qualifier of "absoluteā€ we mean information relative to an absolute reference XYZ.
  • Each optical device 12, 13, 14 of the insertion device 2 is adapted to follow a particular target.
  • the first device 12 follows the prism 32
  • the second device 23 follows the prism 33
  • the third device 14 follows the prism 34.
  • each optical device 12, 13, 14 are equipped with a motor and a target tracking system.
  • the distance between the implantation point of a device and the prism that it follows is delivered at each instant by the optical device and transmitted to the on-board computer 10.
  • optical device having a range of only about 100 meters, it is necessary to associate the optical devices equipping the arm 6 with new prisms of the environment as the vehicle moves 1 and the advancement of the railroad track.
  • a topographic survey is performed to define the absolute position of a plurality of geographical points located successively along the profile of the railway track to achieve.
  • these geographical points are distributed at intervals of the order of 50 m to 100 m. They are marked by terminals 30 placed stably along the path to achieve.
  • the vehicle 1 is moved over the portion of the slab 4 whose concrete, just poured, is not yet hardened.
  • Prisms are then accurately placed on visible terminals 30 and within reach of the optical devices 12, 13, 14 embedded on the vehicle 1.
  • the prisms 32, 33 and 34 are thus positioned.
  • the optical devices 12, 13 and 14 are then set to follow the prisms 32, 33 and 34 respectively.
  • the identifier of the prism followed by an optical device is entered in the computer 10. From this identifier, by consulting a database of the geographical points of the topographic survey memorized by the computer 10, the latter knows the absolute position of each of the bonuses 32, 33, 34.
  • the computer 10 calculates the absolute positioning of the arm 6 in the absolute reference XYZ.
  • Trilateration is a mathematical method for determining the position of a point, in this case each point P1, P2 and P3, using the geometry of triangles, just like triangulation. But, unlike triangulation, which uses both angles and distances to determine the position of the point, trilateration uses only distances.
  • the insertion device comprises at least three optical devices, also knowing the geometry of the implantation of these devices (vectors P1 P2 and P1 P3 for example). ).
  • This absolute positioning of the arm 6 is transmitted by the computer 10 to the automaton.
  • each saddle controls the movement of the vehicle 1 to bring the arm 6, in a rest position with respect to a chassis of the vehicle 1, substantially in line with the position of implantation of the saddles 3.
  • the controller controls the actuators of the arm 6 to bring, at a ready uncertainty, the saddles 3 carried by the arm 6 in the absolute positioning of each saddle implantation.
  • the controller then controls the jacks of the arm 6 to insert the saddle 2 in the concrete raft 4.
  • the automaton controls the release by the arm 6 of the saddles 3 and brings the arm back to its rest position relative to the chassis of the vehicle 1.
  • Such a guiding method has the advantage of being very rapid, since, during a stool implantation cycle, the optical devices operate automatically and constantly follow the prism on which they perform the measurement of distance. Absolute positioning of the arm can be obtained at any time, which facilitates and improves the accuracy of the movement of the movable arm.
  • the optical devices of the present invention are able to determine only a distance measurement. Since they do not have to issue angle measurements, these optical devices do not have to be held in a horizontal plane. This is the reason why they can be embedded in the vehicle 1. Such optical device delivers a distance measurement with very good accuracy regardless of the movements of its support.
  • the present guiding method makes it possible to gain the necessary 30 seconds for the reorientation of the measuring station and the acquisition of the distance and from the angle of the other prism.
  • the stool implantation rate can be increased.
  • the positioning of prisms in the environment for the realization of a portion of the railway track can be done in parallel with the use of the insertion device for the realization of the previous portion of the track a railway.
  • the prisms placed in the environment encumber only very slightly the site. Since their use does not require the intervention of an operator, the safety of the operators is improved.

Description

L'invention se rapporte Ć  un procĆ©dĆ© de guidage d'un dispositif d'insertion d'Ć©lĆ©ments dans le sol, pour la rĆ©alisation d'un ouvrage. Plus particuliĆØrement, l'invention se rapporte Ć  un procĆ©dĆ© de guidage d'un dispositif d'insertion de selles pour la rĆ©alisation d'une voie de chemin de fer. L'invention se rapporte Ć©galement Ć  un systĆØme permettant la mise en oeuvre d'un tel procĆ©dĆ© de guidage.The invention relates to a method for guiding a device for inserting elements into the ground, for producing a structure. More particularly, the invention relates to a guide method of a saddle insertion device for the realization of a railway track. The invention also relates to a system for implementing such a guiding method.

On connaĆ®t, par exemple par le document EP 0 803 609 , un dispositif d'insertion de selles dans du bĆ©ton, permettant de rĆ©aliser rapidement une voie chemin de fer. Un tel dispositif d'insertion de selles nĆ©cessite toutefois, pour ĆŖtre efficace, d'ĆŖtre positionnĆ© trĆØs prĆ©cisĆ©ment, afin que la position d'implantation de chaque selle soit prĆ©cise au millimĆØtre prĆØs.We know, for example by the document EP 0 803 609 , a device for inserting saddles into concrete, making it possible to quickly make a railroad track. Such a saddle insertion device however requires, to be effective, to be positioned very precisely, so that the implantation position of each saddle is accurate to the millimeter.

Pour guider un tel dispositif d'insertion, le document FR 2 812 671 divulgue un procƩdƩ de guidage.To guide such an insertion device, the document FR 2 812 671 discloses a guiding method.

Pour cela le bras mobile du dispositif d'insertion, qui permet d'amener une selle dans une position et une orientation d'implantation prĆ©dĆ©terminĆ©es, puis l'implantation de la selle dans le bĆ©ton, est muni d'un premier prisme et d'un second prisme. Chaque prisme est propre Ć  rĆ©flĆ©chir un faisceau de lumiĆØre laser Ć©mis par une station de mesure totale distante, placĆ©e le long de la voie de chemin de fer Ć  rĆ©aliser.For this, the movable arm of the insertion device, which makes it possible to bring a saddle into a predetermined position and orientation of implantation, then the implantation of the saddle in the concrete, is provided with a first prism and a second prism. Each prism is able to reflect a beam of laser light emitted by a remote total measurement station, placed along the railroad track to achieve.

Le procĆ©dĆ© de guidage consiste alors Ć  installer une station de mesure totale Ć  proximitĆ© de la voie de chemin de fer Ć  rĆ©aliser et Ć  dĆ©terminer les coordonnĆ©es du point gĆ©ographique d'installation de la station de mesure totale. Ces coordonnĆ©es sont absolues au sens oĆ¹ elles sont donnĆ©es par rapport Ć  un rĆ©fĆ©rentiel absolu XYZ.The guiding method then consists in installing a total measurement station near the railway track to be carried out and in determining the coordinates of the geographical point of installation of the total measuring station. These coordinates are absolute in the sense that they are given relative to an absolute reference XYZ.

Une station de mesure totale comporte un dispositif optique propre Ơ Ʃmettre un faisceau laser vers une cible rƩflƩchissante. A partir du faisceau rƩflƩchi, la station de mesure totale est propre Ơ dƩterminer la distance entre la station de mesure totale et la cible, ainsi que l'angle que forme la direction entre la station de mesure totale et la cible, avec un plan de rƩfƩrence, qui est un plan horizontal passant par le dispositif optique.A total measurement station includes an optical device capable of emitting a laser beam towards a reflecting target. From the reflected beam, the total measuring station is able to determine the distance between the total measuring station and the target, as well as the angle that forms the direction between the total measuring station and the target, with a plane of measurement. reference, which is a horizontal plane passing through the optical device.

Puis, au cours de chaque cycle d'implantation d'une selle, le positionnement absolu du bras est dĆ©terminĆ© pĆ©riodiquement. Par Ā« positionnement Ā» d'un objet dans la prĆ©sente demande de brevet, on entend Ć  la fois la position d'un point de rĆ©fĆ©rence de cet objet (trois coordonnĆ©es), et l'orientation d'un segment de rĆ©fĆ©rence de cet objet (trois angles).Then, during each cycle of implantation of a saddle, the absolute positioning of the arm is determined periodically. By "positioning" of an object in the present patent application is meant both the position of a reference point of this object (three coordinates), and the orientation of a reference segment of this object ( three angles).

Ainsi, le positionnement absolu du bras, c'est-Ơ-dire le positionnement dans le rƩfƩrentiel absolu XYZ, est par exemple donnƩ par la position du premier prisme, en tant que point de rƩfƩrence, et l'orientation du segment entre le premier prisme et le second prisme, en tant que segment de rƩfƩrence.Thus, the absolute positioning of the arm, that is to say the positioning in the absolute reference XYZ, is for example given by the position of the first prism, as a reference point, and the orientation of the segment between the first prism and the second prism, as a reference segment.

Ainsi, pour dƩterminer le positionnement absolu du bras, le procƩdƩ consiste Ơ orienter manuellement la station de mesure totale pour que son faisceau laser pointe vers le premier prisme et Ơ mesurer la distance et de l'angle entre la station de mesure totale et ce premier prisme, puis Ơ orienter manuellement la station de mesure totale pour que son faisceau laser pointe vers le second prisme et Ơ mesurer la distance et de l'angle entre la station de mesure totale et ce second prisme.Thus, to determine the absolute positioning of the arm, the method consists in manually directing the total measuring station so that its laser beam points towards the first prism and to measure the distance and the angle between the total measurement station and this first one. prism, then manually steer the total measuring station so that its laser beam points to the second prism and measure the distance and angle between the total measuring station and the second prism.

Ces mesures, ainsi que la position absolue de la station de mesure totale, sont transmises Ć  un ordinateur du dispositif d'implantation, qui calcule le positionnement absolu du bras. Cette information permet de piloter le dĆ©placement du bras du dispositif d'insertion pour amener la selle, Ć  une incertitude prĆŖt, dans la position et l'orientation d'implantation absolues, telles que dĆ©finies par un plan thĆ©orique de rĆ©alisation de la voie de chemin de fer.These measurements, as well as the absolute position of the total measuring station, are transmitted to a computer of the implantation device, which calculates the absolute positioning of the arm. This information makes it possible to control the movement of the arm of the insertion device to bring the saddle, to a ready uncertainty, into the absolute position and orientation of implantation, as defined by a theoretical plan of realization of the pathway. of iron.

Un tel procƩdƩ de guidage reste difficile Ơ mettre en oeuvre. En effet, sur les 90 secondes que prend un cycle d'implantation d'une selle, 30 secondes correspondent Ơ l'implantation proprement dite de la selle dans le bƩton frais de la voie de chemin de fer, tandis que les 60 autres secondes sont consacrƩes Ơ une unique dƩtermination du positionnement absolu du bras. C'est-Ơ-dire que si le positionnement de la selle avant implantation n'est pas dans l'intervalle de tolƩrance requis, il est nƩcessaire de reprendre l'Ʃtape de dƩtermination du positionnement absolu du bras.Such a guiding method remains difficult to implement. In fact, over the 90 seconds that a cycle of implantation of a saddle takes, 30 seconds correspond to the actual implantation of the saddle in the fresh concrete of the railroad track, while the other 60 seconds are devoted to a single determination of the absolute positioning of the arm. That is, if the positioning of the saddle before implantation is not within the required tolerance interval, it is necessary to resume the step of determining the absolute positioning of the arm.

Au cours de la dĆ©termination du positionnement du bras, la moitiĆ© du temps est utilisĆ© pour orienter le faisceau laser d'abord vers le premier prisme, puis ensuite vers le second prisme. Ceci n'est pas pratique et augmente le risque d'erreur. De plus, dans l'environnement du chantier, la prĆ©sence d'un opĆ©rateur au voisinage immĆ©diat de l'ouvrage reste gĆŖnante et prĆ©sente des risques en termes de sĆ©curitĆ© des personnels.In determining arm positioning, half of the time is used to orient the laser beam first to the first prism and then to the second prism. This is not practical and increases the risk of error. In addition, in the environment of the construction site, the presence of an operator in the immediate vicinity of the structure remains inconvenient and presents risks in terms of personnel safety.

D'un point de vue opƩrationnel, il est nƩcessaire qu'un prisme cible soit en vision directe de la station de mesure totale. Cependant, sur un chantier, il existe de nombreux risques que le faisceau laser entre la station et le prisme soit masquƩ, ne serait-ce que par le passage des personnels autour du dispositif d'insertion.From an operational point of view, it is necessary that a target prism be in direct vision of the total measurement station. However, on a site, there are many risks that the laser beam between the station and the prism is masked, if only by the passage of personnel around the insertion device.

Enfin, le dispositif optique d'une station de mesure totale n'a une portĆ©e que de 100 mĆØtres environ. Il est donc nĆ©cessaire de dĆ©placer la station de mesure totale au fur et Ć  mesure du dĆ©placement du vĆ©hicule 1 et de l'avancement de la rĆ©alisation de la voie de chemin de fer. A chaque dĆ©placement de la station de mesure totale, il convient d'effectuer Ć  nouveau l'Ć©tape d'installation de la station de mesure totale et de dĆ©termination de sa position absolue, avant de transmettre cette information Ć  l'ordinateur embarquĆ© pour qu'un nouvel ensemble de cycles d'implantation de selles ne puisse dĆ©buter.Finally, the optical device of a total measurement station has a range of only about 100 meters. It is therefore necessary to move the total measuring station as and when the vehicle 1 and the progress of the realization of the route of railway. With each movement of the total measuring station, the step of installing the total measuring station and determining its absolute position must be carried out again, before transmitting this information to the on-board computer so that a new set of stool delivery cycles can not begin.

Il est Ć  souligner que l'Ć©tape d'implantation d'une station de mesure totale n'est pas aisĆ©e. En effet, il est nĆ©cessaire que le dispositif optique soit trĆØs prĆ©cisĆ©ment placĆ© dans un plan horizontal. Si cela n'est pas le cas, le dispositif optique ne fonctionne pas et la station de mesure totale dĆ©livre des mesures erronĆ©es.It should be emphasized that the step of setting up a total measurement station is not easy. Indeed, it is necessary that the optical device is very precisely placed in a horizontal plane. If this is not the case, the optical device does not work and the total measurement station delivers erroneous measurements.

Cela peut prendre jusqu'Ơ 20 minutes pour installer et dƩterminer la nouvelle position de la station de mesure totale.It may take up to 20 minutes to install and determine the new position of the total measurement station.

L'invention a donc pour but de pallier ces problĆØmes.The invention therefore aims to overcome these problems.

A cet effet, l'invention a pour objet un procĆ©dĆ© de guidage d'un dispositif d'insertion pour l'insertion d'Ć©lĆ©ments dans le sol pour la rĆ©alisation d'un ouvrage, caractĆ©risĆ© en ce qu'il comprend les Ć©tapes suivantes : effectuer un relevĆ© topographiques d'une pluralitĆ© de points gĆ©ographiques Ć  proximitĆ© de l'ouvrage Ć  rĆ©aliser, la position de chaque point Ć©tant dĆ©terminĆ©e dans un repĆØre absolu XYZ ; installer une pluralitĆ© de rĆ©flecteur, chaque rĆ©flecteur Ć©tant placĆ©es en un point gĆ©ographique du relevĆ© topographique ; mesurer, Ć  l'aide d'au moins trois dispositifs optiques, implantĆ©s sur un bras mobile du dispositif d'insertion qui porte l'Ć©lĆ©ment Ć  insĆ©rer, des distances entre rĆ©flecteurs et dispositifs optiques ; calculer, par trilatĆ©ration, le positionnement absolue du bras du dispositif d'insertion Ć  partir des distances mesurĆ©es et de la position connue de chaque rĆ©flecteur optique ; et dĆ©placer le bras du dispositif d'insertion en fonction du positionnement absolu calculĆ©, de maniĆØre Ć  amener l'Ć©lĆ©ment Ć  implanter, dans un positionnement d'implantation prĆ©dĆ©terminĆ©.To this end, the subject of the invention is a method of guiding an insertion device for the insertion of elements into the ground for the production of a structure, characterized in that it comprises the following steps: surveying a plurality of geographical points in proximity to the work to be performed, the position of each point being determined in an absolute reference XYZ; installing a plurality of reflectors, each reflector being placed at a geographical point of the topographic survey; measuring, with the aid of at least three optical devices, located on a movable arm of the insertion device which carries the element to be inserted, distances between reflectors and optical devices; calculating, by trilateration, the absolute positioning of the arm of the insertion device from the measured distances and the known position of each optical reflector; and moving the arm of the insertion device according to the calculated absolute positioning, so as to bring the element to be implanted, in a predetermined implantation position.

Suivant des modes particuliers de rƩalisation, le procƩdƩ comporte une ou plusieurs des caractƩristiques suivantes, prise(s) isolƩment ou suivant toutes les combinaisons techniquement possibles :

  • chaque dispositif optique est propre Ć  suivre un rĆ©flecteur placĆ© dans l'environnement du dispositif d'insertion, le dispositif optique correspondant Ć©tant propre Ć  mesurer la distance entre son point d'implantation sur le bras du dispositif d'insertion et le rĆ©flecteur qui lui est associĆ© ;
  • un dispositif optique ayant une portĆ©e limitĆ©e, au fur et Ć  mesure de l'avancement de l'ouvrage, de nouveau rĆ©flecteurs sont installĆ©s et associĆ©s Ć  chaque dispositif optique dont est muni le dispositif d'insertion ;
  • l'actionnement du bras du dispositif d'insertion est rĆ©alisĆ© par des actionneurs, pilotĆ©s par un automate embarquĆ©, lui-mĆŖme commandĆ© par un ordinateur, l'ordinateur effectuant le calcul du positionnement absolu du bras Ć  partir des donnĆ©es qui lui sont communiquĆ©es, Ć  chaque instant, parles dispositifs optiques dont est Ć©quipĆ© le dispositif d'insertion ;
  • le bras est motorisĆ© en translation et en rotation suivant trois axes orthogonaux entre eux, le mouvement du bras Ć©tant pilotĆ© par l'automate de maniĆØre Ć  amener l'Ć©lĆ©ment Ć  implanter dans le positionnement absolu d'implantation Ć  partir du positionnement absolue du bras qui lui est transmis par l'ordinateur ; et
  • l'ouvrage Ć  rĆ©aliser Ć©tant une voie de chemin de fer, l'Ć©lĆ©ment Ć  insĆ©rer est une selle destinĆ©e Ć  supporter un rail, la selle Ć©tant insĆ©rĆ©e dans une dalle de bĆ©ton non encore durci.
According to particular embodiments, the method comprises one or more of the following characteristics, taken separately or in any technically possible combination:
  • each optical device is adapted to follow a reflector placed in the environment of the insertion device, the corresponding optical device being able to measure the distance between its point of implantation on the arm of the insertion device and the reflector which is partner;
  • an optical device having a limited range, as and when advancement of the structure, new reflectors are installed and associated with each optical device which is provided with the insertion device;
  • the actuation of the arm of the insertion device is performed by actuators, controlled by an onboard automaton, itself controlled by a computer, the computer performing the calculation of the absolute positioning of the arm from the data communicated to it, at every moment, by the optical devices of which the insertion device is equipped;
  • the arm is motorized in translation and in rotation along three axes orthogonal to each other, the movement of the arm being controlled by the automaton so as to bring the element to be implanted in the absolute positioning of implantation from the absolute positioning of the arm which it is transmitted by the computer; and
  • the work to be done is a railroad track, the element to be inserted is a saddle for supporting a rail, the saddle being inserted into a concrete slab not yet hardened.

L'invention a Ć©galement pour objet un dispositif d'insertion pour l'insertion d'un Ć©lĆ©ment dans le sol, destinĆ© Ć  ĆŖtre guidĆ© par la mise en oeuvre d'un procĆ©dĆ© de guidage conforme au procĆ©dĆ© prĆ©cĆ©dent, comportant un bras, mobile en translation et en rotation suivant trois axes orthogonaux entre eux et portant l'Ć©lĆ©ment Ć  insĆ©rer dans le sol, des actionneurs dudit bras, un automate pour piloter lesdits actionneurs et un ordinateur de commande dudit automate, caractĆ©risĆ© en ce qu'il comporte au moins trois dispositifs optiques, implantĆ©s sur le bras du dispositif d'insertion, chaque dispositif optique Ć©tant propre Ć  mesurer une distances entre son point d'implantation sur le bras et un rĆ©flecteur optique distant placĆ© dans l'environnement de l'ouvrage Ć  rĆ©aliser, en une position d'installation connue, et en ce que ledit ordinateur est programmĆ© pour calculer un positionnement absolu dudit bras, par mise en oeuvre d'un algorithme de trilatĆ©ration, Ć  partir des mesures transmises par les dispositifs optiques et les positions connues des rĆ©flecteurs optiques.The invention also relates to an insertion device for inserting an element into the ground, intended to be guided by the implementation of a guiding method according to the preceding method, comprising an arm, movable in translation and rotation along three axes orthogonal to each other and carrying the element to be inserted in the ground, actuators of said arm, an automaton for controlling said actuators and a control computer of said automaton, characterized in that it comprises at least three optical devices, implanted on the arm of the insertion device, each optical device being able to measure a distance between its point of implantation on the arm and a remote optical reflector placed in the environment of the work to be performed, in one known installation position, and in that said computer is programmed to calculate an absolute positioning of said arm, by implementing a trilateration algorithm, starting from measurements transmitted by the optical devices and the known positions of the optical reflectors.

Suivant des modes particuliers de rƩalisation, le dispositif comporte une ou plusieurs des caractƩristiques suivantes, prise(s) isolƩment ou suivant toutes les combinaisons techniquement possibles :

  • chaque dispositif optique est propre Ć  suivre une cible, de maniĆØre Ć  pouvoir associer chaque dispositif optique Ć  un rĆ©flecteur optique de l'environnement.
  • l'Ć©lĆ©ment est une selle destinĆ©e Ć  supporter un rail de chemin de fer, la selle Ć©tant insĆ©rĆ©e dans une dalle de bĆ©ton non encore durci.
According to particular embodiments, the device comprises one or more of the following characteristics, taken separately or in any technically possible combination:
  • each optical device is adapted to follow a target, so that each optical device can be associated with an optical reflector of the environment.
  • the element is a saddle for supporting a railway rail, the saddle being inserted in a concrete slab not yet hardened.

L'invention a Ʃgalement pour objet un vƩhicule caractƩrisƩ en ce qu'il comporte un dispositif d'insertion conforme au dispositif prƩcƩdent.The invention also relates to a vehicle characterized in that it comprises an insertion device according to the preceding device.

L'invention sera mieux comprise Ć  la lecture de la description qui va suivre d'un mode de rĆ©alisation particulier, donnĆ© uniquement Ć  titre illustratif et non limitatif, et faite en se rĆ©fĆ©rant au dessin annexĆ© sur lequel est reprĆ©sentĆ©, de maniĆØre schĆ©matique, un systĆØme pour la mise en oeuvre du procĆ©dĆ© de guidage d'un dispositif d'insertion d'Ć©lĆ©ments dans le sol selon l'invention.The invention will be better understood on reading the following description of a particular embodiment, given solely for illustrative and nonlimiting purposes, and with reference to the appended drawing in which is schematically represented a system for carrying out the method of guiding a device for inserting elements into the ground according to the invention.

Sur la figure, est reprƩsentƩ un vƩhicule 1 ƩquipƩ d'un dispositif d'insertion 2 d'ƩlƩments dans le sol pour la rƩalisation d'un ouvrage. Dans le cas prƩsent, l'ouvrage est une portion de voie de chemin de fer, par exemple pour une ligne de tramway, de mƩtro ou de train grande ligne. Les ƩlƩments Ơ insƩrer sont alors des selles 3, scellƩes dans le bƩton du radier 4 de la voie et destinƩes Ơ maintenir des rails.In the figure, there is shown a vehicle 1 equipped with an insertion device 2 of elements in the ground for the realization of a structure. In the present case, the structure is a portion of a railway track, for example for a tramway, metro or mainline line. The elements to be inserted are then saddles 3, sealed in the concrete of the raft 4 of the track and intended to maintain rails.

Les selles 3 sont de type classique et comportent respectivement une plaque en matiĆØre rigide, telle que de la fonte, et deux ancrages. Les selles 3 sont maintenues dans la dalle de bĆ©ton une fois que celui-ci a durci. Elles ont chacune un dispositif permettant de fixer un rail.The saddles 3 are of conventional type and respectively comprise a plate of rigid material, such as cast iron, and two anchors. The saddles 3 are held in the concrete slab once it has hardened. They each have a device for fixing a rail.

Le vƩhicule 1 est montƩ sur quatre roues 5, dont deux sont directrices et les deux autres sont motrices. Il comporte des moyens de propulsion et de direction (non reprƩsentƩs sur la figure) permettant le dƩplacement du vƩhicule 1 suivant une direction donnƩe, essentiellement la direction D de la voie Ơ rƩaliser.The vehicle 1 is mounted on four wheels 5, two of which are steered and the other two are driving. It comprises propulsion and steering means (not shown in the figure) for moving the vehicle 1 in a given direction, essentially the direction D of the track to achieve.

Le vĆ©hicule 1 est dĆ©placĆ© au-dessus du radier 4 dont le bĆ©ton, venant d'ĆŖtre coulĆ©, n'a pas encore durci.The vehicle 1 is moved above the raft 4 whose concrete, just poured, has not yet hardened.

Le dispositif d'insertion 2 comporte, montĆ© Ć  l'arriĆØre du vĆ©hicule 1, un bras 6. En variante, le dispositif d'insertion comporte plusieurs bras.The insertion device 2 comprises, mounted at the rear of the vehicle 1, an arm 6. Alternatively, the insertion device comprises several arms.

Le bras 6, comporte sur sa partie infĆ©rieure des systĆØmes de prĆ©hension Ć  l'extrĆ©mitĆ© desquels sont placĆ©es deux selles 2 destinĆ©es Ć  ĆŖtre insĆ©rĆ©es dans le bĆ©ton du radier 4 fraĆ®chement coulĆ©, chaque selle correspondant Ć  un fil de rails de la voie.The arm 6 has on its lower part gripping systems at the end of which are placed two saddles 2 intended to be inserted into the concrete of the raft 4 freshly poured, each saddle corresponding to a track wire of the track.

Le bras 6 du dispositif d'insertion est mobile. Il est dĆ©placĆ©, en translation selon trois axes et en rotation selon trois axes, par rapport Ć  un chĆ¢ssis du vĆ©hicule 1, par un ensemble d'actionneurs (non reprĆ©sentĆ© sur la figure).The arm 6 of the insertion device is movable. It is moved, in translation along three axes and in rotation along three axes, with respect to a chassis of the vehicle 1, by a set of actuators (not shown in the figure).

Ces actionneurs sont pilotĆ©s par un automate embarquĆ© (non reprĆ©sentĆ© sur la figure), lui-mĆŖme commandĆ© par un ordinateur 10 embarquĆ©.These actuators are controlled by an embedded controller (not shown in the figure), itself controlled by an on-board computer.

L'ordinateur 10 assure notamment le calcul du positionnement absolu du bras 6, c'est-Ć -dire la position absolue d'un point de rĆ©fĆ©rence P du bras et l'orientation absolue d'un segment de rĆ©fĆ©rence A associĆ© au bras 6. Par exemple, un segment de rĆ©fĆ©rence est parallĆØle Ć  la barre centrale du bras en forme de Ā« H Ā» et issu du point P de rĆ©fĆ©rence.The computer 10 provides in particular the calculation of the absolute positioning of the arm 6, that is to say the absolute position of a reference point P of the arm and the absolute orientation of a reference segment A associated with the arm 6 For example, a reference segment is parallel to the central bar of the "H" shaped arm and derived from the reference point P.

L'automate, en fonction du positionnement absolu du bras 6 et d'un positionnement absolu d'implantation d'une selle 3 (c'est-Ć -dire une position absolue d'implantation d'une selle et une orientation absolue d'implantation de cette selle) actionne les moyens de propulsion et de direction du vĆ©hicule 1 pour s'approcher de la position absolue d'implantation, puis actionne le dĆ©placement du bras 6 pour amener la selle dans le positionnement absolu d'implantation (Ć  une incertitude prĆŖt). Une fois la selle dans ce positionnement, l'automate est propre Ć  actionner les vĆ©rins de maniĆØre Ć  insĆ©rer les deux selles dans le bĆ©ton frais, puis Ć  libĆ©rer les selles implantĆ©es et Ć  commander les vĆ©rins et le bras pour revenir dans la position de repos pour un cycle suivant.The automaton, as a function of the absolute positioning of the arm 6 and of an absolute position of implantation of a saddle 3 (that is to say an absolute position of implantation of a saddle and an absolute orientation of implantation of this saddle) actuates the means of propulsion and direction of the vehicle 1 to approach the absolute position of implantation, then actuates the displacement of the arm 6 to bring the saddle into the absolute positioning of implantation (to an uncertainty ready). Once the saddle in this position, the controller is able to actuate the cylinders so as to insert the two saddles in the fresh concrete, then to release the stool implanted and to control the jacks and the arm to return to the position of rest for a next cycle.

Pour le guidage du dispositif d'insertion 2, le bras 6 porte trois dispositifs optiques 12, 13 et 14. Le premier dispositif optique 12 est implantĆ© en un point P1, le second dispositif optique 13 est implantĆ© en un point P2 et le troisiĆØme dispositif optique 14 est implantĆ© en un point P3 du bras. Les points d'implantation sont dĆ©terminĆ©s par construction du bras avec une grande prĆ©cision. En particulier les segments sĆ©parant chaque paire de points sont connus avec une grande prĆ©cision.For guiding the insertion device 2, the arm 6 carries three optical devices 12, 13 and 14. The first optical device 12 is implanted at a point P1, the second optical device 13 is implanted at a point P2 and the third device Optical 14 is implanted at a point P3 of the arm. The points of implantation are determined by construction of the arm with great precision. In particular the segments separating each pair of points are known with great precision.

Chaque dispositif optique est ƩquipƩ d'une optique Ʃmettrice propre Ơ Ʃmettre un faisceau laser 22, 23, 24. Chaque dispositif optique est ƩquipƩ d'une optique rƩceptrice permettant de collecter le faisceau rƩflƩchie par une cible. A partir du temps de vol sƩparant l'Ʃmission de la rƩception d'une impulsion laser, un dispositif optique est propre Ơ dƩterminer une distance entre le point d'implantation du dispositif laser et la cible.Each optical device is equipped with an emitting optic capable of emitting a laser beam 22, 23, 24. Each optical device is equipped with a receiving optics for collecting the beam reflected by a target. From the flight time separating the emission from the reception of a laser pulse, an optical device is able to determine a distance between the implantation point of the laser device and the target.

La frƩquence de fonctionnement d'un dispositif optique est ƩlevƩe : entre 200 et 100 Hz.The operating frequency of an optical device is high: between 200 and 100 Hz.

Pour la mise en oeuvre du procƩdƩ de guidage, une pluralitƩ de prismes rƩflecteurs, tels que les prismes 32, 33, 34, sont disposƩs dans l'environnement. Un prisme est propre Ơ rƩflƩchir le faisceau laser Ʃmis par un dispositif optique, tel que les dispositifs 12, 13, 14.For carrying out the guiding method, a plurality of reflective prisms, such as prisms 32, 33, 34, are disposed in the environment. A prism is able to reflect the laser beam emitted by an optical device, such as the devices 12, 13, 14.

Les prismes sont placĆ©s en des points gĆ©ographiques d'un relevĆ© topographique. Ainsi, la position absolue de chaque prisme est connue. Par le qualificatif d'Ā« absolu Ā», on entend une information par rapport Ć  un repĆØre absolu XYZ.The prisms are placed at geographical points of a topographic survey. Thus, the absolute position of each prism is known. By the qualifier of "absolute", we mean information relative to an absolute reference XYZ.

Chaque dispositif optique 12, 13, 14 du dispositif d'insertion 2 est propre Ć  suivre une cible particuliĆØre. Par exemple, le premier dispositif 12 suit le prisme 32, le second dispositif 23 suit le prisme 33 et le troisiĆØme dispositif 14 suit le prisme 34. Pour ce faire, chaque dispositif optique 12, 13, 14 sont Ć©quipĆ©es d'une motorisation et d'un systĆØme de suivi de cible.Each optical device 12, 13, 14 of the insertion device 2 is adapted to follow a particular target. For example, the first device 12 follows the prism 32, the second device 23 follows the prism 33 and the third device 14 follows the prism 34. To do this, each optical device 12, 13, 14 are equipped with a motor and a target tracking system.

La distance entre le point d'implantation d'un dispositif et le prisme qu'il suit est dƩlivrƩes Ơ chaque instant par le dispositif optique et transmis Ơ l'ordinateur embarquƩ 10.The distance between the implantation point of a device and the prism that it follows is delivered at each instant by the optical device and transmitted to the on-board computer 10.

Il est Ć  noter qu'un dispositif optique n'ayant une portĆ©e que de 100 mĆØtres environ, il est nĆ©cessaire d'associer aux dispositifs optiques Ć©quipant le bras 6 de nouveaux prismes de l'environnement au fur et Ć  mesure du dĆ©placement du vĆ©hicule 1 et de l'avancement de la voie de chemin de fer.It should be noted that an optical device having a range of only about 100 meters, it is necessary to associate the optical devices equipping the arm 6 with new prisms of the environment as the vehicle moves 1 and the advancement of the railroad track.

Le procĆ©dĆ© de guidage pour l'insertion d'une paire de selles 3 par le dispositif 2 va maintenant ĆŖtre dĆ©crit en dĆ©tail.The guiding method for the insertion of a pair of saddles 3 by the device 2 will now be described in detail.

PrƩalablement Ơ la rƩalisation de la voie de chemin de fer, un relevƩ topographique est effectuƩ permettant de dƩfinir la position absolue d'une pluralitƩ de points gƩographiques situƩs successivement le long du profil de la voie de chemin de fer Ơ rƩaliser.Prior to the completion of the railroad track, a topographic survey is performed to define the absolute position of a plurality of geographical points located successively along the profile of the railway track to achieve.

Compte tenu de la portĆ©e des dispositifs optiques 12, 13, 14, ces points gĆ©ographiques sont rĆ©partis Ć  intervalles de l'ordre de 50 m Ć  100 m. Ils sont marquĆ©s par des bornes 30 placĆ©es de maniĆØre stable au long de la voie Ć  rĆ©aliser.Given the range of the optical devices 12, 13, 14, these geographical points are distributed at intervals of the order of 50 m to 100 m. They are marked by terminals 30 placed stably along the path to achieve.

Pour la rĆ©alisation d'une portion de la voie de chemin de fer, le vĆ©hicule 1 est dĆ©placĆ© au-dessus de la portion du radier 4 dont le bĆ©ton, venant d'ĆŖtre coulĆ©, n'est pas encore durci.For the realization of a portion of the railway track, the vehicle 1 is moved over the portion of the slab 4 whose concrete, just poured, is not yet hardened.

Des prismes sont alors placƩs avec prƩcision sur des bornes 30 visibles et Ơ portƩe des dispositifs optiques 12, 13, 14 embarquƩs sur le vƩhicule 1. Les prismes 32, 33 et 34 sont ainsi positionnƩs.Prisms are then accurately placed on visible terminals 30 and within reach of the optical devices 12, 13, 14 embedded on the vehicle 1. The prisms 32, 33 and 34 are thus positioned.

Les dispositifs optiques 12, 13 et 14 sont ensuite paramƩtrƩs pour suivre les prismes 32, 33 et 34 respectivement. L'identifiant du prisme suivi par un dispositif optique est saisie dans l'ordinateur 10. A partir de cet identifiant, en consultant une base de donnƩes des points gƩographiques du relevƩ topographique mƩmorisƩ par l'ordinateur 10, celui-ci connait la position absolue de chacun des primes 32, 33, 34.The optical devices 12, 13 and 14 are then set to follow the prisms 32, 33 and 34 respectively. The identifier of the prism followed by an optical device is entered in the computer 10. From this identifier, by consulting a database of the geographical points of the topographic survey memorized by the computer 10, the latter knows the absolute position of each of the bonuses 32, 33, 34.

Puis, un cycle d'implantation de deux selles 3 est rĆ©alisĆ© par le dispositif d'insertion 2 de la maniĆØre suivante.Then, an implantation cycle of two saddles 3 is performed by the insertion device 2 in the following manner.

A chaque instant du cycle, chaque dispositif optique dƩlivre Ơ l'ordinateur 10 la distance instantanƩe entre le point d'implantation de ce dispositif sur le bras 6, et le prisme que ce dispositif suit. Ainsi, Ơ chaque instant, l'ordinateur 10 reƧoit :

  • du premier dispositif optique 12, une premiĆØre distance d1 entre le point P1 et le prisme 32.
  • du second dispositif optique 13, une seconde distance d2 entre le point P2 et le prisme 33.
  • du troisiĆØme dispositif optique 14, une troisiĆØme distance d3 entre le point P3 et le prisme 34.
At each instant of the cycle, each optical device delivers to the computer 10 the instantaneous distance between the point of implantation of this device on the arm 6, and the prism that this device follows. Thus, at every moment, the computer 10 receives:
  • of the first optical device 12, a first distance d1 between the point P1 and the prism 32.
  • second optical device 13, a second distance d2 between the point P2 and the prism 33.
  • of the third optical device 14, a third distance d3 between the point P3 and the prism 34.

GrĆ¢ce Ć  ces mesures de distance instantanĆ©e, et la position absolue de chaque prisme, l'ordinateur 10 calcule alors le positionnement absolu du bras 6 dans le repĆØre absolu XYZ.Thanks to these instantaneous distance measurements, and the absolute position of each prism, the computer 10 then calculates the absolute positioning of the arm 6 in the absolute reference XYZ.

Le calcul effectuƩ par l'ordinateur 10 est du type calcul par trilatƩration. La trilatƩration est une mƩthode mathƩmatique permettant de dƩterminer la position d'un point, en l'occurrence de chaque point P1, P2 et P3, en utilisant la gƩomƩtrie des triangles, tout comme la triangulation. Mais, contrairement Ơ la triangulation, qui utilise Ơ la fois des angles et des distances pour dƩterminer la position du point, la trilatƩration utilise uniquement les distances.The calculation made by the computer 10 is of the trilateration calculation type. Trilateration is a mathematical method for determining the position of a point, in this case each point P1, P2 and P3, using the geometry of triangles, just like triangulation. But, unlike triangulation, which uses both angles and distances to determine the position of the point, trilateration uses only distances.

Pour la dƩtermination du positionnement absolu du bras (six degrƩs de libertƩs) il est nƩcessaire que le dispositif d'insertion comporte au moins trois dispositifs optiques, connaissant Ʃgalement la gƩomƩtrie de l'implantation de ces dispositifs (vecteurs P1 P2 et P1 P3 par exemple).For the determination of the absolute positioning of the arm (six degrees of freedom) it is necessary that the insertion device comprises at least three optical devices, also knowing the geometry of the implantation of these devices (vectors P1 P2 and P1 P3 for example). ).

Ce positionnement absolu du bras 6 est transmis par l'ordinateur 10 Ć  l'automate.This absolute positioning of the arm 6 is transmitted by the computer 10 to the automaton.

En fonction du positionnement absolu d'implantation de chaque selle, mentionnĆ©e dans une base de donnĆ©es stockĆ©e dans la mĆ©moire de l'automate, celui-ci commande le dĆ©placement du vĆ©hicule 1 pour amener le bras 6, dans une position de repos par rapport Ć  un chĆ¢ssis du vĆ©hicule 1, sensiblement Ć  l'aplomb de la position d'implantation des selles 3.According to the absolute positioning position of each saddle, mentioned in a database stored in the memory of the automaton, it controls the movement of the vehicle 1 to bring the arm 6, in a rest position with respect to a chassis of the vehicle 1, substantially in line with the position of implantation of the saddles 3.

Une fois le vĆ©hicule 1 arrĆŖtĆ© dans cette position, l'automate commande les actionneurs du bras 6 pour amener, Ć  une incertitude prĆŖt, les selles 3 portĆ©es par le bras 6 dans le positionnement absolu d'implantation de chaque selle.Once the vehicle 1 stopped in this position, the controller controls the actuators of the arm 6 to bring, at a ready uncertainty, the saddles 3 carried by the arm 6 in the absolute positioning of each saddle implantation.

Une fois dans cette position, l'automate commande alors les vƩrins du bras 6 pour insƩrer les selles 2 dans le bƩton du radier 4.Once in this position, the controller then controls the jacks of the arm 6 to insert the saddle 2 in the concrete raft 4.

Une fois les deux selles 2 insĆ©rĆ©es, l'automate commande la libĆ©ration par le bras 6 des selles 3 et ramĆØne le bras dans sa position de repos par rapport au chĆ¢ssis du vĆ©hicule 1.Once both saddles 2 have been inserted, the automaton controls the release by the arm 6 of the saddles 3 and brings the arm back to its rest position relative to the chassis of the vehicle 1.

Deux nouvelles selles sont alors placƩes aux extrƩmitƩs des vƩrins du bras 6 et le cycle suivant d'implantation de ces deux nouvelles selles est exƩcutƩ.Two new saddles are then placed at the ends of the jacks of the arm 6 and the next cycle of implantation of these two new saddles is executed.

De proche en proche, les selles de la portion de la voie de chemin de fer sont implantƩes.Gradually, the saddles of the portion of the railway track are established.

Un tel procĆ©dĆ© de guidage prĆ©sente l'avantage d'ĆŖtre trĆØs rapide, puisque, au cours d'un cycle d'implantation de selles, les dispositifs optiques fonctionnent de maniĆØre automatique et suivent en permanence le prisme sur lequel ils effectuent la mesure de distance. Un positionnement absolu du bras peut ĆŖtre obtenu Ć  chaque instant, ce qui facilite et amĆ©liore la prĆ©cision du dĆ©placement du bras mobile.Such a guiding method has the advantage of being very rapid, since, during a stool implantation cycle, the optical devices operate automatically and constantly follow the prism on which they perform the measurement of distance. Absolute positioning of the arm can be obtained at any time, which facilitates and improves the accuracy of the movement of the movable arm.

Avec le prĆ©sent procĆ©dĆ©, on s'affranchit de l'utilisation d'une station de mesure totale. Les problĆØmes liĆ©s Ć  l'installation d'une telle station sont notamment Ć©vitĆ©s. En particulier, une telle station de mesure totale devant dĆ©livrer une mesure d'angle par rapport Ć  un plan horizontal, il est nĆ©cessaire qu'elle soit parfaitement installĆ©e. C'est d'ailleurs pourquoi une telle station de mesure totale n'est jamais embarquĆ©e Ć  bord d'un vĆ©hicule.With the present method, it eliminates the use of a total measuring station. Problems related to the installation of such a station are avoided. In particular, such a total measuring station to deliver a measurement of angle with respect to a horizontal plane, it is necessary that it is perfectly installed. This is also why such a total measurement station is never on board a vehicle.

Au contraire, les dispositifs optiques de la prĆ©sente invention sont propres Ć  dĆ©terminer uniquement une mesure de distance. Puisqu'ils n'ont pas Ć  dĆ©livrer de mesures d'angle, ces dispositifs optiques n'ont pas Ć  ĆŖtre maintenus dans un plan horizontal. C'est la raison pour laquelle, ils peuvent ĆŖtre embarquĆ©s Ć  bord du vĆ©hicule 1. Un tel dispositif optique dĆ©livre une mesure de distance avec une trĆØs bonne prĆ©cision quels que soient les mouvements de son support.In contrast, the optical devices of the present invention are able to determine only a distance measurement. Since they do not have to issue angle measurements, these optical devices do not have to be held in a horizontal plane. This is the reason why they can be embedded in the vehicle 1. Such optical device delivers a distance measurement with very good accuracy regardless of the movements of its support.

Par rapport Ơ l'Ʃtat de la technique, sur un cycle qui prend en gƩnƩral environ 90 secondes, le prƩsent procƩdƩ de guidage permet de gagner les 30 secondes nƩcessaires Ơ la rƩorientation de la station de mesure et Ơ l'acquisition de la distance et de l'angle de l'autre prisme.Compared to the state of the art, on a cycle which generally takes about 90 seconds, the present guiding method makes it possible to gain the necessary 30 seconds for the reorientation of the measuring station and the acquisition of the distance and from the angle of the other prism.

En raccourcissant le temps nƩcessaire pour une dƩtermination du positionnement absolu du bras, Ơ prƩcision d'implantation Ʃquivalente, on peut augmenter la cadence d'implantation des selles.By shortening the time required for determining the absolute positioning of the arm, with equivalent implantation accuracy, the stool implantation rate can be increased.

De plus, le positionnement des prismes dans l'environnement en vue de la rĆ©alisation d'une portion de la voie de chemin de fer peut se faire parallĆØlement Ć  l'utilisation du dispositif d'insertion pour la rĆ©alisation de la portion prĆ©cĆ©dente de la voie de chemin de fer.In addition, the positioning of prisms in the environment for the realization of a portion of the railway track can be done in parallel with the use of the insertion device for the realization of the previous portion of the track a railway.

Pour la rĆ©alisation d'une portion de voie de chemin de fer, les prismes placĆ©s dans l'environnement n'encombre que trĆØs faiblement le chantier. Leur utilisation ne nĆ©cessitant pas l'intervention d'un opĆ©rateur, la sĆ©curitĆ© des opĆ©rateurs est amĆ©liorĆ©e.For the realization of a portion of railroad track, the prisms placed in the environment encumber only very slightly the site. Since their use does not require the intervention of an operator, the safety of the operators is improved.

Bien entendu, l'invention n'est nullement limitƩe au mode de rƩalisation dƩcrit ci-dessus et de nombreuses variantes sont envisageables par l'homme du mƩtier.Of course, the invention is not limited to the embodiment described above and many variations are possible by the skilled person.

Claims (10)

  1. A method for guiding an insertion device (2) for inserting elements (3) into the ground for building a structure, characterized in that it comprises the following steps:
    - taking a topographical survey of a plurality of geographical points near the structure to be built, the position of each point being determined in an absolute frame of reference XYZ;
    - installing a plurality of reflectors (32, 33, 34), each reflector being placed at a geographical point of the topographical survey;
    - measuring, using at least three optical devices (12, 13, 14), fixed on a moving arm (6) of the insertion device that bears the element (3) to be inserted, distances between the reflectors and the optical devices;
    - computing, by trilateration, an absolute position of the arm of the insertion device from the distances measured and from the known position of each optical reflector; and
    - moving the arm of the insertion device based on the absolute position computed, so as to bring the element to be inserted into a predetermined insertion position.
  2. The method according to claim 1, wherein, each optical device (12, 13, 14) is capable of tracking a reflector (32, 33, 34) placed in the environment of the insertion device (2), the corresponding optical device measuring the distance between its fixation point (P1, P2, P3) on the arm (6) of the insertion device and the reflector associated with it.
  3. The method according to claim 2, wherein, an optical device having a limited range, over the course of the advancement of the structure, new reflectors are installed and associated with each optical device with which the insertion device (2) is provided.
  4. The method according to claim 1, wherein the actuation of the arm (6) of the insertion device (2) is done by actuators, controlled by an onboard automaton, which in turn is controlled by a computer (10), the computer computing the absolute position of the arm (6) from data sent to it, at each moment, by the optical devices (12, 13, 14) with which the insertion device is equipped.
  5. The method according to claim 4, wherein said arm (6) is motorized in translation and rotation along three axes orthogonal to one another, the movement of the arm (6) being controlled by the automaton so as to bring the element (3) to be inserted into the absolute implantation position, based on the absolute position of the arm sent to the automaton by the computer (10).
  6. The method according to claim 1, wherein the structure to be built being a railroad track, the element to be inserted is a tie rod (3) designed to support a rail, the tie rod being inserted into a concrete slab (4) not yet hardened.
  7. An insertion device (2) for inserting an element (3) into the ground, designed to be guided by the implementation of a method according to any one of claims 1 to 6, including an arm (6), translatable and rotatable along three axes orthogonal to one another, bearing the element (3) to be inserted into the ground, actuators of said arm, an automaton for controlling said actuators and a computer for commanding said automaton, characterized in that it includes at least three optical devices (12, 13, 14), fixed on the arm (6) of the insertion device, each optical device being able to measure a distance between its fixation point (P1, P2, P3) on the arm (6) and a remote optical reflector placed in the environment of the structure to be built, at a known installation position, and in that said computer is programmed to compute an absolute position of said arm, by implementing a trilateration algorithm, from measurements sent by the optical devices and the known positions of the optical reflectors.
  8. The device according to claim 7, wherein each optical device tracks a target, so as to be able to associate each optical device with an optical reflector in the environment.
  9. The device according to claim 7 or claim 8, characterized in that said element (3) is a tie rod designed to support a railroad rail, the tie rod (3) being inserted into a concrete slab (10) not yet hardened.
  10. A vehicle (1), characterized in that it includes an insertion device (2) according to any one of claims 7 to 9.
EP15193853.7A 2014-11-10 2015-11-10 An improved method for guiding a device for inserting elements into the ground for the building of a structure; insertion device and associated vehicle Active EP3031983B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1460850A FR3028267B1 (en) 2014-11-10 2014-11-10 IMPROVED METHOD FOR GUIDING A DEVICE FOR INSERTING ELEMENTS INTO THE GROUND FOR PRODUCING A WORK; INSERTION DEVICE AND VEHICLE THEREFOR.

Publications (2)

Publication Number Publication Date
EP3031983A1 EP3031983A1 (en) 2016-06-15
EP3031983B1 true EP3031983B1 (en) 2017-07-19

Family

ID=52423889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15193853.7A Active EP3031983B1 (en) 2014-11-10 2015-11-10 An improved method for guiding a device for inserting elements into the ground for the building of a structure; insertion device and associated vehicle

Country Status (3)

Country Link
US (1) US9909263B2 (en)
EP (1) EP3031983B1 (en)
FR (1) FR3028267B1 (en)

Families Citing this family (2)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
EP3169973A1 (en) * 2014-07-16 2017-05-24 Politecnico Di Torino Mobile unit for measuring running paths for handling means, system and process for measuring through such mobile unit
FR3055907B1 (en) * 2016-09-12 2018-10-05 Metrolab TOWER INSTALLATION VEHICLE AND CORRESPONDING METHOD

Family Cites Families (22)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
FI80790C (en) * 1988-02-22 1990-07-10 Matti Henttinen FOERFARANDE OCH ANORDNING FOER BESTAEMNING AV ETT SPAORS LAEGE.
DE4038860A1 (en) * 1990-11-30 1992-06-04 Verkehrswesen Hochschule Control system for track and road construction machine - has laser measurement of height and position to generate curved path
CH683703A5 (en) * 1991-09-26 1994-04-29 Mueller J Ag Method for track surveying.
FR2747698B1 (en) 1996-04-23 2003-11-14 Cegelec PROCESS FOR PRECISION PLACING AN INSERT INTO CONCRETE, DEVICE FOR IMPLEMENTING THIS PROCESS, AND RAIL TRACK OBTAINED BY THIS PROCESS
DK1028325T3 (en) * 1999-02-12 2010-01-04 Plasser Bahnbaumasch Franz Procedure for measuring a track
FR2812671B1 (en) 2000-08-01 2006-07-14 Alstom METHOD FOR GUIDING A DEVICE FOR INSERTING ELEMENTS IN THE SOIL FOR PRODUCING A WORK, AND DEVICE FOR INSERTING AT LEAST ONE ELEMENT IN THE SOIL USING SUCH A METHOD OF GUIDING
FR2833023B1 (en) * 2001-12-05 2004-05-21 Alstom METHOD OF CONSTRUCTING A RAIL TRACK IN WHICH A CONCRETE TRACK SLAB IS MADE AND INSERTION ELEMENTS OF THE RAIL TRACK ARE INSERTED IN THE TRACK SLAB
DE10321749B4 (en) * 2003-05-09 2018-05-30 Trimble Jena Gmbh Method and arrangement for determining the spatial position and position of a reflector rod in relation to a stopping point
US20060198700A1 (en) * 2005-03-04 2006-09-07 Jurgen Maier Method and system for controlling construction machine
EP1734336A1 (en) * 2005-06-13 2006-12-20 Leica Geosystems AG Surveying target and surveying system
FR2897079B1 (en) * 2006-02-09 2008-05-02 Alstom Transport Sa DEVICE AND METHOD FOR INSERTING ELEMENTS IN THE SOIL, MECHANISM FOR THIS DEVICE AND SYSTEM USING THE DEVICE
FR2897622B1 (en) * 2006-02-23 2008-05-30 Alstom Transport Sa METHOD AND SYSTEM FOR INSERTING ELEMENTS IN THE SOIL, INFORMATION RECORDING MEDIUM FOR THIS METHOD
EP2006448A1 (en) * 2007-06-21 2008-12-24 Leica Geosystems AG Paving machine for applying a cover layer made of concrete or asphalt material
JP5166087B2 (en) * 2008-03-21 2013-03-21 ę Ŗ式会ē¤¾ćƒˆćƒ—ć‚³ćƒ³ Surveying device and surveying system
EP2226610A1 (en) * 2009-03-06 2010-09-08 Leica Geosystems AG Geodesic measuring system and method for identifying a target unit with a geodesic measuring device
ES2364635B8 (en) * 2011-03-24 2015-01-08 Tecsa Empresa Constructora, S.A AUTOMATIC LEVELING AND ALIGNMENT MACHINE OF RAILWAY IN PLATE, PRIOR TO CONCRETE.
CN103827631B (en) * 2011-09-27 2016-11-16 čŽ±å”åœ°ēƒē³»ē»Ÿå…¬å¼€č‚”ä»½ęœ‰é™å…¬åø The measurement system and method that impact point known in coordinate system is marked
US8615110B2 (en) * 2012-03-01 2013-12-24 Herzog Railroad Services, Inc. Automated track surveying and ditching
US8788154B2 (en) * 2012-09-12 2014-07-22 Kabushiki Kaisha Topcon Construction machine control method and construction machine control system
US9279679B2 (en) * 2012-09-12 2016-03-08 Kabushiki Kaisha Topcon Construction machine control method and construction machine control system
EP2789739A1 (en) * 2013-04-10 2014-10-15 Leica Geosystems AG Automatic track alignment control kit and method for automated track alignment
TWI498580B (en) * 2013-11-29 2015-09-01 Wistron Corp Length measuring method and length measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3031983A1 (en) 2016-06-15
US20160130767A1 (en) 2016-05-12
US9909263B2 (en) 2018-03-06
FR3028267A1 (en) 2016-05-13
FR3028267B1 (en) 2016-12-23

Similar Documents

Publication Publication Date Title
FR2678962A1 (en) METHOD FOR DETERMINING THE DISTANCES OF THE ACTUAL POSITION OF A TRUNK OF RAILWAY.
CN1970369A (en) Direction determination utilizing vehicle yaw rate and change in steering position
CA2354411C (en) Process for guiding a device for inserting elements into the ground in preparation for a work and device for inserting at least one element into the ground using such a guidance process
CA2873161A1 (en) System and method for measuring the position of the contact wire of an overhead power line relative to a railway track
EP3031983B1 (en) An improved method for guiding a device for inserting elements into the ground for the building of a structure; insertion device and associated vehicle
EP1027636B1 (en) Method and device for locating and guiding a mobile unit equipped with a linear camera
FR2559541A1 (en) METHOD AND DEVICE FOR MONITORING AND / OR CONTROLLING A CRUSHING MACHINE AND IN PARTICULAR A PUNCTUAL MACHINE
FR2495797A1 (en) Laser-optic automatic positioning for electric vehicle - uses fixed reference of three retro-reflectors and measures angle of reflected light to position vehicle
EP1418273B1 (en) Method of tamping railway tracks
FR2755760A1 (en) Measuring correction for position of equipment aboard aircraft
FR2949578A1 (en) METHOD AND DEVICE FOR GUIDING A VEHICLE IN RELATION TO A CATENARY
EP1375249B1 (en) Device and method for adjusting the orientation of at least one vehicle headlamp
CA2573645C (en) Process and system for inserting elements into the ground, medium for storing data for this process
EP0774545B1 (en) Method and apparatus for adjusting the transverse position of a mobile construction machine
FR2478507A1 (en) WELDING METHOD AND APPARATUS WITH AUTOMATIC FOLLOW-UP OF WELDING JOINT
FR2941973A1 (en) Method for laser guiding of rail bearing plate insertion device for forming railway track, involves calculating position of arm from known position of arm relative to portion and position of portion relative to measurement station
EP3631090B1 (en) Method for controlling a measuring system, method for guiding a railway construction machine, and associated guide system
FR3042035A1 (en) MOBILE SYSTEM FOR MEASURING HIGH OR HIGH BEARING LIGHTS PER LIGHT AIR VEHICLE
EP3414040B1 (en) Device for automatically welding a seam, in particular a v-groove seam joint
EP3977038A1 (en) Sighting system comprising a sighting device that can be oriented relative to a base, the system being capable of implementing a simple and rapid on-site calibration method
EP2326999B1 (en) Navigation method and system for implementing such a method
FR3082792A1 (en) MEASURING DEVICE FOR THE CATENARIES OF A SWITCH
WO1997008429A1 (en) Method and apparatus for measuring position and attitude of tunnel boring machine
FR2540801A1 (en) Device for hooking up a trolley bus with at least one catenary
EP1861756B1 (en) Method for guiding a robot and corresponding device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TRANSPORT TECHNOLOGIES

17P Request for examination filed

Effective date: 20161215

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E01B 29/32 20060101ALI20170112BHEP

Ipc: E01C 19/00 20060101ALI20170112BHEP

Ipc: E01B 1/00 20060101ALI20170112BHEP

Ipc: E01B 35/04 20060101AFI20170112BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 910515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015003648

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 910515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015003648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015003648

Country of ref document: DE

26N No opposition filed

Effective date: 20180420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221118

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 9

Ref country code: FR

Payment date: 20231120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231120

Year of fee payment: 9