EP3031885B1 - Composition for surface voltage reduction in distillate fuel - Google Patents
Composition for surface voltage reduction in distillate fuel Download PDFInfo
- Publication number
- EP3031885B1 EP3031885B1 EP15196843.5A EP15196843A EP3031885B1 EP 3031885 B1 EP3031885 B1 EP 3031885B1 EP 15196843 A EP15196843 A EP 15196843A EP 3031885 B1 EP3031885 B1 EP 3031885B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- fuel
- weight
- amount
- ranges
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims description 133
- 239000000203 mixture Substances 0.000 title claims description 94
- 230000009467 reduction Effects 0.000 title description 3
- 239000000654 additive Substances 0.000 claims description 49
- 229920002492 poly(sulfone) Polymers 0.000 claims description 40
- 229920000642 polymer Polymers 0.000 claims description 40
- 230000000996 additive effect Effects 0.000 claims description 32
- 229920001577 copolymer Polymers 0.000 claims description 30
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 22
- 229920000768 polyamine Polymers 0.000 claims description 21
- 239000003849 aromatic solvent Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 19
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 17
- 125000003342 alkenyl group Chemical group 0.000 claims description 17
- 239000007795 chemical reaction product Substances 0.000 claims description 16
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 15
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 15
- 125000001931 aliphatic group Chemical group 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- 150000004985 diamines Chemical class 0.000 claims description 11
- 239000004711 α-olefin Substances 0.000 claims description 10
- 239000002816 fuel additive Substances 0.000 claims description 9
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 230000002195 synergetic effect Effects 0.000 claims description 3
- -1 hydrocarbon radical Chemical class 0.000 description 69
- 125000004432 carbon atom Chemical group C* 0.000 description 38
- 150000001412 amines Chemical class 0.000 description 26
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 20
- 239000004215 Carbon black (E152) Substances 0.000 description 19
- 229930195733 hydrocarbon Natural products 0.000 description 19
- 239000003921 oil Substances 0.000 description 16
- 235000019198 oils Nutrition 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 125000000217 alkyl group Chemical group 0.000 description 14
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 238000009835 boiling Methods 0.000 description 12
- 239000002283 diesel fuel Substances 0.000 description 12
- 125000001183 hydrocarbyl group Chemical group 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- 229910052717 sulfur Inorganic materials 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 10
- 239000003502 gasoline Substances 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 150000001336 alkenes Chemical class 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 9
- 125000002947 alkylene group Chemical group 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 239000003760 tallow Substances 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 6
- 150000001450 anions Chemical class 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 235000021317 phosphate Nutrition 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 5
- 239000003225 biodiesel Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 150000003949 imides Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- 239000008096 xylene Substances 0.000 description 5
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 4
- SPURMHFLEKVAAS-UHFFFAOYSA-N 1-docosene Chemical compound CCCCCCCCCCCCCCCCCCCCC=C SPURMHFLEKVAAS-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- ADOBXTDBFNCOBN-UHFFFAOYSA-N 1-heptadecene Chemical compound CCCCCCCCCCCCCCCC=C ADOBXTDBFNCOBN-UHFFFAOYSA-N 0.000 description 4
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 4
- PJLHTVIBELQURV-UHFFFAOYSA-N 1-pentadecene Chemical compound CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 4
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 4
- DCTOHCCUXLBQMS-UHFFFAOYSA-N 1-undecene Chemical compound CCCCCCCCCC=C DCTOHCCUXLBQMS-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 150000008051 alkyl sulfates Chemical class 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 4
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 4
- 150000003460 sulfonic acids Chemical class 0.000 description 4
- ZDLBWMYNYNATIW-UHFFFAOYSA-N tetracos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCC=C ZDLBWMYNYNATIW-UHFFFAOYSA-N 0.000 description 4
- SJDSOBWGZRPKSB-UHFFFAOYSA-N tricos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCC=C SJDSOBWGZRPKSB-UHFFFAOYSA-N 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 3
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 3
- 150000001350 alkyl halides Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- 150000008064 anhydrides Chemical group 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KHAVLLBUVKBTBG-UHFFFAOYSA-N dec-9-enoic acid Chemical compound OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- KFYRJJBUHYILSO-YFKPBYRVSA-N (2s)-2-amino-3-dimethylarsanylsulfanyl-3-methylbutanoic acid Chemical compound C[As](C)SC(C)(C)[C@@H](N)C(O)=O KFYRJJBUHYILSO-YFKPBYRVSA-N 0.000 description 2
- 229940106006 1-eicosene Drugs 0.000 description 2
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical class C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- LTEQMZWBSYACLV-UHFFFAOYSA-N Hexylbenzene Chemical compound CCCCCCC1=CC=CC=C1 LTEQMZWBSYACLV-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- PWATWSYOIIXYMA-UHFFFAOYSA-N Pentylbenzene Chemical compound CCCCCC1=CC=CC=C1 PWATWSYOIIXYMA-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 125000002619 bicyclic group Chemical group 0.000 description 2
- PVEOYINWKBTPIZ-UHFFFAOYSA-N but-3-enoic acid Chemical compound OC(=O)CC=C PVEOYINWKBTPIZ-UHFFFAOYSA-N 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 2
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- JTOGFHAZQVDOAO-UHFFFAOYSA-N henicos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCC=C JTOGFHAZQVDOAO-UHFFFAOYSA-N 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- BXYVQNNEFZOBOZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]-n',n'-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCNCCCN(C)C BXYVQNNEFZOBOZ-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M nitrite group Chemical group N(=O)[O-] IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- NHLUYCJZUXOUBX-UHFFFAOYSA-N nonadec-1-ene Chemical compound CCCCCCCCCCCCCCCCCC=C NHLUYCJZUXOUBX-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 229960002317 succinimide Drugs 0.000 description 2
- 239000011885 synergistic combination Substances 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 150000005621 tetraalkylammonium salts Chemical group 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HGXJDMCMYLEZMJ-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOOC(=O)C(C)(C)C HGXJDMCMYLEZMJ-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- JPZYXGPCHFZBHO-UHFFFAOYSA-N 1-aminopentadecane Chemical compound CCCCCCCCCCCCCCCN JPZYXGPCHFZBHO-UHFFFAOYSA-N 0.000 description 1
- HOROZASJKPUNET-UHFFFAOYSA-N 1-chlorodec-5-yne Chemical compound CCCCC#CCCCCCl HOROZASJKPUNET-UHFFFAOYSA-N 0.000 description 1
- QUBBAXISAHIDNM-UHFFFAOYSA-N 1-ethyl-2,3-dimethylbenzene Chemical class CCC1=CC=CC(C)=C1C QUBBAXISAHIDNM-UHFFFAOYSA-N 0.000 description 1
- HYFLWBNQFMXCPA-UHFFFAOYSA-N 1-ethyl-2-methylbenzene Chemical class CCC1=CC=CC=C1C HYFLWBNQFMXCPA-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- CYSXFFUIJWHWRH-UHFFFAOYSA-N 17-Octadecenoic acid Chemical compound OC(=O)CCCCCCCCCCCCCCCC=C CYSXFFUIJWHWRH-UHFFFAOYSA-N 0.000 description 1
- BGUAPYRHJPWVEM-UHFFFAOYSA-N 2,2-dimethyl-4-pentenoic acid Chemical group OC(=O)C(C)(C)CC=C BGUAPYRHJPWVEM-UHFFFAOYSA-N 0.000 description 1
- RBPSJGKDJLPNDC-UHFFFAOYSA-N 2,3-didecylnaphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(O)(=O)=O)=C(CCCCCCCCCC)C(CCCCCCCCCC)=CC2=C1 RBPSJGKDJLPNDC-UHFFFAOYSA-N 0.000 description 1
- IILMIAKZFKOMTK-UHFFFAOYSA-N 2,3-didodecylnaphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(O)(=O)=O)=C(CCCCCCCCCCCC)C(CCCCCCCCCCCC)=CC2=C1 IILMIAKZFKOMTK-UHFFFAOYSA-N 0.000 description 1
- GANLMGLCUVHCAR-UHFFFAOYSA-N 2-(11-methyldodecyl)benzenesulfonic acid Chemical compound CC(C)CCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O GANLMGLCUVHCAR-UHFFFAOYSA-N 0.000 description 1
- WVJXTIQZZONBFX-UHFFFAOYSA-N 2-(11-methyldodecyl)naphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CCCCCCCCCCC(C)C)=CC=C21 WVJXTIQZZONBFX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FLYIRERUSAMCDQ-UHFFFAOYSA-N 2-azaniumyl-2-(2-methylphenyl)acetate Chemical compound CC1=CC=CC=C1C(N)C(O)=O FLYIRERUSAMCDQ-UHFFFAOYSA-N 0.000 description 1
- UAZLASMTBCLJKO-UHFFFAOYSA-N 2-decylbenzenesulfonic acid Chemical compound CCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O UAZLASMTBCLJKO-UHFFFAOYSA-N 0.000 description 1
- SFPDYIBRJLNRSM-UHFFFAOYSA-N 2-decylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CCCCCCCCCC)=CC=C21 SFPDYIBRJLNRSM-UHFFFAOYSA-N 0.000 description 1
- WHKKNVAGWPTSRS-UHFFFAOYSA-N 2-dodecylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CCCCCCCCCCCC)=CC=C21 WHKKNVAGWPTSRS-UHFFFAOYSA-N 0.000 description 1
- ARFIBEWONQFJSI-UHFFFAOYSA-N 2-ethylhept-6-enoic acid Chemical group CCC(C(O)=O)CCCC=C ARFIBEWONQFJSI-UHFFFAOYSA-N 0.000 description 1
- MCEBMFWJKMJTPD-UHFFFAOYSA-N 2-ethylpent-4-enoic acid Chemical group CCC(C(O)=O)CC=C MCEBMFWJKMJTPD-UHFFFAOYSA-N 0.000 description 1
- QHTJSSMHBLGUHV-UHFFFAOYSA-N 2-methylbutan-2-ylbenzene Chemical compound CCC(C)(C)C1=CC=CC=C1 QHTJSSMHBLGUHV-UHFFFAOYSA-N 0.000 description 1
- IVMUPSZAZLJPIM-UHFFFAOYSA-N 2-nonylbenzenesulfonic acid Chemical compound CCCCCCCCCC1=CC=CC=C1S(O)(=O)=O IVMUPSZAZLJPIM-UHFFFAOYSA-N 0.000 description 1
- ONUJSMYYXFLULS-UHFFFAOYSA-N 2-nonylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CCCCCCCCC)=CC=C21 ONUJSMYYXFLULS-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- KOLCFYBQZNXWET-UHFFFAOYSA-N 3-[n-(2-cyanoethyl)-3-methylanilino]propanenitrile Chemical group CC1=CC=CC(N(CCC#N)CCC#N)=C1 KOLCFYBQZNXWET-UHFFFAOYSA-N 0.000 description 1
- MHGLETCXYYNIGB-UHFFFAOYSA-N 3-ethylhept-6-enoic acid Chemical group OC(=O)CC(CC)CCC=C MHGLETCXYYNIGB-UHFFFAOYSA-N 0.000 description 1
- OZYYQTRHHXLTKX-UHFFFAOYSA-N 7-octenoic acid Chemical compound OC(=O)CCCCCC=C OZYYQTRHHXLTKX-UHFFFAOYSA-N 0.000 description 1
- AWQOXJOAQMCOED-UHFFFAOYSA-N 8-Nonenoic acid Natural products OC(=O)CCCCCCC=C AWQOXJOAQMCOED-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- MGYMHQJELJYRQS-UHFFFAOYSA-N Ascaridole Chemical compound C1CC2(C)OOC1(C(C)C)C=C2 MGYMHQJELJYRQS-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- CAMXVZOXBADHNJ-UHFFFAOYSA-N ammonium nitrite Chemical compound [NH4+].[O-]N=O CAMXVZOXBADHNJ-UHFFFAOYSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- MGYMHQJELJYRQS-ZJUUUORDSA-N ascaridole Natural products C1C[C@]2(C)OO[C@@]1(C(C)C)C=C2 MGYMHQJELJYRQS-ZJUUUORDSA-N 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- LPTWEDZIPSKWDG-UHFFFAOYSA-N benzenesulfonic acid;dodecane Chemical compound OS(=O)(=O)C1=CC=CC=C1.CCCCCCCCCCCC LPTWEDZIPSKWDG-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- JLSSEXVNHGDLNN-UHFFFAOYSA-M benzyl-methyl-dioctadecylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(CCCCCCCCCCCCCCCCCC)CC1=CC=CC=C1 JLSSEXVNHGDLNN-UHFFFAOYSA-M 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007278 cyanoethylation reaction Methods 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- XUDOZULIAWNMIU-UHFFFAOYSA-N delta-hexenoic acid Chemical compound OC(=O)CCCC=C XUDOZULIAWNMIU-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 150000005195 diethylbenzenes Chemical class 0.000 description 1
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- WDNQRCVBPNOTNV-UHFFFAOYSA-N dinonylnaphthylsulfonic acid Chemical compound C1=CC=C2C(S(O)(=O)=O)=C(CCCCCCCCC)C(CCCCCCCCC)=CC2=C1 WDNQRCVBPNOTNV-UHFFFAOYSA-N 0.000 description 1
- VPNOHCYAOXWMAR-UHFFFAOYSA-N docosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN VPNOHCYAOXWMAR-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- KAJZYANLDWUIES-UHFFFAOYSA-N heptadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCN KAJZYANLDWUIES-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- HVODZEXFHPAFHB-UHFFFAOYSA-N hexadec-15-enoic acid Chemical compound OC(=O)CCCCCCCCCCCCCC=C HVODZEXFHPAFHB-UHFFFAOYSA-N 0.000 description 1
- LGPJVNLAZILZGQ-UHFFFAOYSA-M hexadecyl(trimethyl)azanium;iodide Chemical compound [I-].CCCCCCCCCCCCCCCC[N+](C)(C)C LGPJVNLAZILZGQ-UHFFFAOYSA-M 0.000 description 1
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- BUHXFUSLEBPCEB-UHFFFAOYSA-N icosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCN BUHXFUSLEBPCEB-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910001504 inorganic chloride Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- KXUHSQYYJYAXGZ-UHFFFAOYSA-N isobutylbenzene Chemical compound CC(C)CC1=CC=CC=C1 KXUHSQYYJYAXGZ-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 125000005644 linolenyl group Chemical group 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid group Chemical group C(\C=C/C(=O)O)(=O)O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- CHWMPPNDIBLYMB-UHFFFAOYSA-N n',n'-bis(prop-2-enyl)ethane-1,2-diamine Chemical compound NCCN(CC=C)CC=C CHWMPPNDIBLYMB-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- INAMEDPXUAWNKL-UHFFFAOYSA-N nonadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCN INAMEDPXUAWNKL-UHFFFAOYSA-N 0.000 description 1
- FJDUDHYHRVPMJZ-UHFFFAOYSA-N nonan-1-amine Chemical compound CCCCCCCCCN FJDUDHYHRVPMJZ-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005064 octadecenyl group Chemical group C(=CCCCCCCCCCCCCCCCC)* 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-N pent-4-enoic acid Chemical compound OC(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-N 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005120 petroleum cracking Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- CTYRPMDGLDAWRQ-UHFFFAOYSA-N phenyl hydrogen sulfate Chemical compound OS(=O)(=O)OC1=CC=CC=C1 CTYRPMDGLDAWRQ-UHFFFAOYSA-N 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 125000004344 phenylpropyl group Chemical group 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- SFVFIFLLYFPGHH-UHFFFAOYSA-M stearalkonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 SFVFIFLLYFPGHH-UHFFFAOYSA-M 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 150000003455 sulfinic acids Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- QHKIWQPIFXRUOW-UHFFFAOYSA-N tetracosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCN QHKIWQPIFXRUOW-UHFFFAOYSA-N 0.000 description 1
- DIGWSCGMTNOSDZ-UHFFFAOYSA-N tetradec-13-enoic acid Chemical compound OC(=O)CCCCCCCCCCCC=C DIGWSCGMTNOSDZ-UHFFFAOYSA-N 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical compound CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- ASLXNOZOXWPTNG-UHFFFAOYSA-N tricosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCCN ASLXNOZOXWPTNG-UHFFFAOYSA-N 0.000 description 1
- ABVVEAHYODGCLZ-UHFFFAOYSA-N tridecan-1-amine Chemical compound CCCCCCCCCCCCCN ABVVEAHYODGCLZ-UHFFFAOYSA-N 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000005199 trimethylbenzenes Chemical class 0.000 description 1
- QFKMMXYLAPZKIB-UHFFFAOYSA-N undecan-1-amine Chemical compound CCCCCCCCCCCN QFKMMXYLAPZKIB-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
- C10L1/2225—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/236—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
- C10L1/2364—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2431—Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
- C10L1/2437—Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/24—Organic compounds containing sulfur, selenium and/or tellurium
- C10L1/2462—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds
- C10L1/2475—Organic compounds containing sulfur, selenium and/or tellurium macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon to carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/26—Organic compounds containing phosphorus
- C10L1/2633—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
- C10L1/2641—Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) oxygen bonds only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/04—Organic compounds
- C10L2200/0407—Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
- C10L2200/0438—Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
- C10L2200/0446—Diesel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2230/00—Function and purpose of a components of a fuel or the composition as a whole
- C10L2230/20—Function and purpose of a components of a fuel or the composition as a whole for improving conductivity
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/026—Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/24—Mixing, stirring of fuel components
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2300/00—Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
- C10L2300/20—Mixture of two components
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2300/00—Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
- C10L2300/40—Mixture of four or more components
Definitions
- the disclosure is directed to compositions and methods for maintaining low surface voltages of fuel as storage tanks, such as aircraft wing tanks are being filled to reduce the risk of static discharge and incendiary events.
- the disclosure relates to a synergistic combination of static dissipating additives and distillate fuel compositions containing the synergistic combination of additives.
- Static Dissipating additives are used in many distillate fuels, including diesel, aviation turbine (jet) fuels, and gasoline, to reduce the risk of static charges being built up in a fuel as it flows through pipes and high surface area filters.
- the built up of static charges can approach 100 kV and even with proper bonding and grounding it is possible for static discharges to occur resulting in fires and explosions.
- the energy of a discharge must be over 1 kV (or under -1kV) for a localized discharge or 30 kV (or under -30kV) for a brush discharge to be incendiary to distillate fuels.
- aviation fuels there is currently only a single approved static dissipating additive for maintaining low surface voltages and for increasing voltage relaxation rates of a fuel.
- a combination of conductivity additive is not only discouraged by regulation in aviation fuels but requires extensive testing to show that any new or additional additive to an aviation fuel does not counteract or adversely affect any other additive in the fuel. Accordingly, the only approved conductivity additive for aviation fuel is an additive that is a combination of polysulfone/amine epichlorohydrin polymer in combination with sulfonic acid, a quaternary ammonium, and an aromatic solvent.
- US 2013/0296207 A1 discloses additive formulations suitable for antistatic modification and improving the electrical conductivity of materials with very poor electrical conductivity and for preventing electrostatic charge, consisting essentially of: (A) an olefin-sulfur dioxide copolymer, (B) a compound which comprises one or more basic nitrogen atoms and has at least one relatively long-chain hydrocarbon radical having at least four carbon atoms, (C) an oil-soluble acid and (D) a high-boiling organic solvent.
- US 2005/183325 A1 describes a fuel oil containing a conductivity improving additive comprising the combination of: (a) an oil soluble succinimide dispersant comprising a functionalized hydrocarbon reacted with an alkylene polyamine and (b) a conductivity improver comprising (i) an olefin polysulfone and (ii) a polymeric polyamine reaction product of epichlorohydrin and an aliphatic primary monoamine or an N-aliphatic hydrocarbyl alkylene diamine, or the sulfonic acid salt of the polymeric polyamine reaction product or (c) the combination of an oil soluble succinimide dispersant comprising a functionalized hydrocarbon reacted with a heavy polyamine and (d) a conductivity improver comprising a hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer, wherein the copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about
- the additive composition includes: A) a mixture of (i) alkenyl polysulfone polymer, (ii) C 16 -C 24 - ⁇ -olefin maleimide copolymers having at least one basic nitrogen atom, (iii) sulfonic acid, and (iv) aromatic solvent; and B) a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C 8 -C 18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid, (iv) aromatic solvent; and (vi) a quaternary ammonium compound, wherein the additive composition comprises from 30 to 60 wt.% component (A
- a use of a mixture of components A and B for synergistically maintaining an absolute value of surface voltage of a distillate fuel below 1000 volts comprising providing a distillate fuel and adding to the fuel A) from 0.25 to 2.5 mg/L by weight based on a total volume of the fuel composition of a mixture of (i) alkenyl polysulfone polymer, (ii) C 16 -C 24 - ⁇ -olefin maleimide copolymers having at least one basic nitrogen atom obtained by reaction of ⁇ -olefin-maleic anhydride copolymers with aliphatic polyamines, (iii) sulfonic acid, and (iv) aromatic solvent; and B) from 0.25 to 2.5 mg/L by weight based on a total volume of the fuel composition of a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C 8 -C 18 aliphatic amine or diamine with epichlor
- Yet another embodiment provides a use of fuel additive (A) and fuel additive (B) for synergistically maintaining an absolute value of surface voltage of a distillate fuel below 1000 volts comprising: providing a first distillate fuel and adding to the first fuel a fuel additive (A) comprising from 0.25 to 5 mg/L by weight based on a total volume of the first fuel composition of a mixture of (i) alkenyl polysulfone polymer, (ii) C 16 -C 24 - ⁇ -olefin maleimide Copolymers having at least one basic nitrogen atom obtained by reaction of ⁇ -olefin-maleic anhydride copolymers with aliphatic polyamines, (iii) sulfonic acid, and (iv) aromatic solvent; providing a second distillate fuel and adding to the second fuel a fuel additive (B) comprising from 0.25 to 5 mg/L by weight based on a total volume of the second fuel composition of a mixture of (i) alkenyl polysulfone
- distillate fuel composition that includes a major amount of distillate fuel and an amount of an additive composition of the present invention in the range from 0.25 to 5 mg/L of a total of components (A) and (B) by weight based on a total volume of the fuel composition.
- An advantage of the embodiments of the disclosure is that a fuel, particularly an aviation or jet fuel may be maintained at a synergistically low surface voltage while not adversely affecting the conductivity or voltage relaxation time of the fuel.
- the synergistically low surface voltage achieved by the presence of two different types of amine polymers from conductivity improving additives was surprising and quite unexpected.
- a mixture of polysulfone and amine polymer effectively raises conductivity and increase charge relaxation rates, but may also increase the amount of charge generated when a fuel passes through pipes and filters.
- the magnitude and direction of the charge i.e. positive or negative is determined by pipe material, plastic versus metal, inherent fuel properties, and the additives used.
- a fuel that includes polysulfone and the two different amine polymers described herein provides a lower surface voltage than can be achieved by a conductivity additive or fuel containing only one of the amine polymers. Depending on the formulation of the additive the fuel may have an overall negative or positive net charge.
- middle distillate fuel is understood to mean one or more fuels selected from the group consisting of diesel fuel, biodiesel, biodiesel-derived fuel, synthetic fuels, jet fuels, kerosene, diesel fuel treated with oxygenates for particulate control, mixtures thereof, and other products meeting the definitions of ASTM D975.
- biodiesel is understood to mean diesel fuel comprising fuel derived from biological sources such as biomass to liquid (BTL) fuels.
- Synthetic fuels include, but are not limited to fuels produced from coal such as coal to liquid (CTL) fuels and natural gas, such as gas to liquid (GTL) fuels as well as other synthetic routes including bio-alcohols-to-jet (ATJ), and hydrogenated ester of fatty acids (HEFA) fuels.
- CTL coal to liquid
- GTL gas to liquid
- ATJ bio-alcohols-to-jet
- HEFA hydrogenated ester of fatty acids
- the middle distillate fuel can contain up to 50%, for example from about 0.5% to about 30%, such as from about 10% to about 20%, fuel derived from biological sources and/or synthetic fuel sources.
- the middle distillate fuel can be derived from biological sources such as oleaginous seeds, for example rapeseed, sunflower, soybean seeds, and the like.
- the seeds can be submitted to grinding and/or solvent extraction treatments (e.g., with n-hexane) in order to extract the oil, which comprises triglycerides of saturated and unsaturated (mono- and polyunsaturated, in mixture with each other, in proportions depending on the selected oleaginous seed) C16-C22 fatty acids.
- the oil can be submitted to a filtration and refining process, in order to remove any possible free fats and phospholipids present, and can be submitted to a transesterification reaction with methanol in order to prepare the methyl esters of the fatty acids (fatty acid methyl esters, also known as "FAME" and commonly referred to as biodiesel.)
- FAME fatty acid methyl esters
- hydrocarbyl group or “hydrocarbyl” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
- the term “major amount” is understood to mean an amount greater than or equal to 50 wt. %, for example from 80 to 98 wt % relative to the total weight of the composition.
- the term “minor amount” is understood to mean an amount less than 50 wt. % relative to the total weight of the composition.
- alkenyl polysulfone polymers often designated as olefin-sulfur dioxide copolymer, olefin polysulfones, or poly(olefin sulfone) are linear polymers wherein the structure is considered to be that of alternating copolymers of the olefins and sulfur dioxide, having a one-to-one molar ratio of the comonomers with the olefins in head to tail arrangement.
- the polysulfone polymers used herein are readily prepared by the methods known in the art.
- the weight average molecular weights of the polysulfone polymers are in the range from 10,000 to 1,500,000, with the preferred range being from 50,000 to 900,000, and the most preferred molecular weights being in the range of from 100,000 to 500,000 Daltons.
- Polysulfone polymers whose molecular weights are above 1,500,000 are difficult to produce and are more difficult to handle.
- the control of the molecular weights of the polysulfone polymers in the desired range is readily accomplished by those skilled in the art of polymer science by controlling the polymerization conditions such as the amount of initiator used, polymerization temperature and the like or by using molecular weight modifiers such as dodecyl mercaptan.
- the amount of molecular weight modifier required to obtain the desired molecular weight range will depend upon the particular 1-olefin being polymerized with sulfur dioxide, and can be determined easily with few experiments. Generally, the amount of modifier, such as dodecyl mercaptan, used to obtain the molecular weights in the range of 50,000 to 900,000 is in the range of up to about 0.007 mole per mole of 1-olefin.
- the 1-alkenes useful for the preparation of the polysulfone polymers are available commercially as pure or mixed olefins from petroleum cracking processes or from the polymerization of ethylene to a low degree. Included are 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonodecene, 1-eicosene, 1-heneicosene, 1-docosene, 1-tricosene and 1-tetracosene. Although branched-chain alkenes are useful, the straight-chain 1-alkenes are preferred whether pure or in admixture with other straight-chain 1-alkenes.
- a and B can together form a dicarboxylic anhydride group.
- the dicarboxylic anhydride group is readily converted to two carboxyl groups by simple acid hydrolysis.
- the alkylene group bridging the vinyl and the carboxyl groups can have from 1 to 17 carbon atoms or it can be absent, and such alkylene group when present can be straight chain group or branched chain.
- the useful acids are alkenoic acids of 3 to 20 carbon atoms wherein the olefinic group is a terminal group.
- alkenoic acids with a terminal olefinic group include acrylic acid, 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid, 9-decenoic acid, 10-undecenoic acid, 11-dodecenoic acid, 13-tetradecenoic acid, 15-hexadecenoic acid, 17-octadecenoic acid as well as branched chain alkenoic acids with terminal olefinic groups such as 2-ethyl-4-pentenoic acid, 2,2-dimethyl-4-pentenoic acid, 3-ethyl-6-heptenoic acid, 2-ethyl-6-heptenoic acid, 2,2-dimethyl-6-heptenoic acid and the like.
- the reaction leading to polysulfone formation is the art-known free-radical polymerization process.
- radical initiators such as oxygen, ozonides, t-butylperoxypivalate, hydrogen peroxide, ascaridole, cumene peroxide, benzoyl peroxide, azobisisobutyronitrile are examples of some of the useful initiators.
- Free-radicals are generated from such radical initiators either thermally and/or by light activation in the presence of a mixture of sulfur dioxide and 1-alkene.
- the polymerization is typically carried out in liquid phase, conveniently in a solvent such as benzene, toluene or xylene to facilitate the reaction.
- Such solvent may be removed, e.g., by distillation, if desired, but it is generally more convenient to use the polysulfone copolymer as a concentrate in such solvent.
- An excess of 1-alkene may be used, however, and the excess subsequently removed as by distillation.
- the particular molar ratio of 1-alkene to sulfur dioxide appears to be immaterial since the resultant polysulfone polymer contains 1-alkene and sulfur dioxide in 1:1 molar ratio regardless of the particular molar ratio reacted. However, for efficiency in utilization of the reactants and of the equipment, a slight excess of sulfur dioxide is preferred.
- the polymerization may be carried out at atmospheric or superatmospheric pressures, the polymerization reaction being independent of the pressure.
- the polymerization temperature may be any convenient temperature below the ceiling temperature of the particular 1-alkene employed. Ceiling temperature is the temperature at which the rates of polymerization and depolymerization are equal so that no polymer formation takes place. Generally, the convenient polymerization temperature range is from about 0 to 50 °C.
- Each of the components (A) and (B) described above may contain from about 10 to about 20 % by weight of the polysulfone polymer based on a total weight of each component.
- the compound of component (ii) includes a C16-C24- ⁇ -olefin maleimide copolymer having at least one basic nitrogen atom.
- the compound of component (ii) is substantially devoid of hydroxyl groups.
- the relatively long-chain branched or linear hydrocarbon radical may be on the basic nitrogen atom or on one of the basic nitrogen atoms or on a carbon atom, especially on a carbon atom of the main polymer chain in polymeric structures.
- Suitable oligomeric or polymeric structure types for component (ii) with such relatively long-chain hydrocarbon radicals are, include, but are not limited to, reaction products of oligoethyleneamines or oligoethyleneimines with alkyl halides, polyethyleneimines with polyisobutenylsuccinic anhydrides, ethylene-vinyl acetate-amino(meth)acrylate terpolymers and especially olefin-maleic anhydride copolymers derivatized with polyamines, according to the present invention alpha-olefin-maleimide copolymers having at least one basic nitrogen atom.
- the ⁇ -olefin-maleimide copolymers with at least one basic nitrogen atom of component (ii) are described in principle in document US Patent No. 4,416,668 .
- the ⁇ -olefin-maleimide copolymers are obtainable by free-radical polymerization of one or more linear or branched ⁇ -olefins having from 6 to 24 carbon atoms with maleic anhydride and subsequent reaction with one or more polyamines.
- the ⁇ -olefin-maleic anhydride copolymers and the ⁇ -olefin-maleimide copolymers prepared therefrom are typically 1:1 copolymers alternating in the main polymer chain, in which one maleic acid unit always follows one ⁇ -olefin unit.
- comb structures generally arise.
- Useful branched and especially linear 1-olefins having from 6 to 24 carbon atoms for preparing the ⁇ -olefin-maleimide copolymers of component (ii) are, for example, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octa-decene, 1-nonadecene, 1-eicosene, 1-heneicosene, 1-docosene, 1-tricosene, 1-tetracosene,
- linear 1-olefins having from 16 to 24 carbon atoms, and mixtures thereof.
- the free-radical polymerization of the 1-olefins with maleic anhydride is performed by the customary methods.
- the customary free-radical initiators are used, especially those based on peroxides or azo compounds, for example di-tert-butyl peroxide, tert-butyl peroxypivalate or azobisisobutyronitrile, the customary temperature and pressure ranges are employed, for example from 50 to 150 °C at standard pressure, and the reactions are performed in the customary solvents, for example aromatic hydrocarbons.
- the solvents used are preferably the high-boiling organic solvents of component (iv) described below.
- the resulting ⁇ -olefin-maleic anhydride copolymers are reacted with one or more polyamines to give the corresponding imide.
- Polyamines with a primary amino group are required for the imide formation, and at least one further primary, secondary or tertiary amino group for the basic nitrogen atom.
- Suitable examples in this context are relatively short-chain diamines such as ethylenediamine, 1,3-propylenediamine, 3-(N,N-dimethylamino)propylamine (“DMAPA”) or bis[3-(N,N-dimethylamino)propyl]amine (“bis-DMAPA”) or relatively long-chain diamines such as tallow fat-1,3-diaminopropane.
- DMAPA 3-(N,N-dimethylamino)propylamine
- bis-DMAPA bis[3-(N,N-dimethylamino)propyl]amine
- relatively long-chain diamines such as tallow fat-1,3-diaminopropane.
- Typical examples of ⁇ -olefin-maleic anhydride copolymers reacted with aliphatic polyamines are the reaction products which have a comb-like structure formed from C 16/24 - ⁇ -olefin maleic anhydride copolymers and 3-(N,N-dimethylamino)propylamine (“DMAPA”) or bis[3-(N,N-dimethylamino)propyl]amine (“bis-DMAPA").
- DMAPA N,N-dimethylamino)propylamine
- bis-DMAPA bis[3-(N,N-dimethylamino)propyl]amine
- the described ⁇ -olefin-maleimide copolymers having at least one basic nitrogen atom of component (ii) typically have a weight-average molecular weight Mw of from 500 to 50,000, especially from 1000 to 10,000 Daltons.
- a typical ⁇ -olefin-maleimide copolymer is an ⁇ -olefin-maleic anhydride copolymer which has been reacted with tallow fat-1,3-diaminopropane to give the imide and has a weight-average molecular weight Mw in the range from 1000 to 10,000 Daltons.
- the amount of component (ii) in component (A) may range from 8 to 15 % by weight based on a total weight of component (A).
- the sulfonic acid component is preferably an organic sulfonic acid which, to achieve the oil solubility, appropriately has a relatively long-chain or relatively voluminous hydrocarbyl radical, especially having from 6 to 40 carbon atoms, in particular from 8 to 32 carbon atoms, more preferably having from 10 to 24 carbon atoms.
- Suitable hydrocarbyl radicals may be linear or branched alkyl or alkenyl radicals, e.g.
- cyclohexyl methyl-cyclohexyl or dimethylcyclohexyl
- aryl radicals e.g. phenyl or naphthyl
- aralkyl radicals e.g. benzyl or 2-phenylethyl
- alkaryl radicals especially phenyl or naphthyl substituted by linear or branched C 1 - to C 18 -alkyl groups, e.g.
- tolyl xylyl, n-nonylphenyl, n-decylphenyl, n-dodecylphenyl, isotridecylphenyl, n-nonylnaphthyl, di-n-nonylnaphthyl, n-decylnaphthyl, di-n-decylnaphthyl, n-dodecylnaphthyl, di-n-dodecylnaphthyl, isotridecylnaphthyl or diisotridecylnaphthyl.
- component (iii) are therefore n-nonylbenzenesulfonic acid, n-decyl-benzenesulfonic acid, n-dodecylbenzenesulfonic acid, isotridecylbenzenesulfonic acid, n-nonylnaphthylsulfonic acid, di-n-nonylnaphthylsulfonic acid, n-decylnaphthylsulfonic acid, di-n-decylnaphthylsulfonic acid, n-dodecylnaphthylsulfonic acid, di-n-dodecyl-naphthylsulfonic acid, di-n-dodecyl-naphthylsulfonic acid, di-n-dodecyl-naphthylsulfonic acid, di-n
- component (iii) for example, oil-soluble organic sulfinic acids or organic phosphonic acids which likewise appropriately have a relatively long-chain or relatively voluminous hydrocarbyl radical, especially one having from 6 to 40 carbon atoms, in particular from 8 to 32 carbon atoms, more preferably having from 10 to 24 carbon atoms.
- the polymeric polyamine be present as a salt, particularly a sulfonic acid salt, for improved resistance to precipitate formation in storage.
- a concentrate as described comprising polymeric polyamine in the free base form is stored at elevated temperatures of about 44 °C for a period of time of about 4 weeks, a small amount of precipitate sometimes forms.
- the presence of small amounts of precipitate in the concentrates has little or no effect on the usefulness of the present compositions as antistatic additives but is undesirable if only from an aesthetic point of view. It has been found that strong acids such as hydrochloric, sulfuric or a sulfonic acid can be used to limit precipitate formation in the concentrates.
- Oil-soluble sulfonic acids are preferred because they effectively inhibit precipitate formation without substantial deleterious effect upon the electrical conductivity property of the composition. Any oil-soluble sulfonic acid such as an alkanesulfonic acid or an alkarylsulfonic acid may be used. A useful sulfonic acid is petroleum sulfonic acid resulting from treating oils with sulfuric acid.
- the amount of sulfonic acid incorporated in the concentrate is an equivalent amount, that is, sufficient amount of sulfonic acid to neutralize all the amine groups of the polymeric polyamine, although lesser or greater than the equivalent amount can be used.
- Each of the components (A) and (B) described above may contain from 5 to 15 % by weight of the sulfonic acid component based on a total weight of each component.
- the aromatic solvent of component (iv) is not an active component of the additive formulation for surface voltage reduction or improving the conductivity of a fuel, but, through its interaction with components (i), (ii), (iii), (v) and (vi), promotes an enhances its action, contributes to the thermal stability of the formulation and ensures a relatively high flashpoint.
- component (iv) consists to an extent of from at least 80% by weight, in particular to an extent of at least 90% by weight, of a high-boiling aromatic hydrocarbon having from 9 to 30 carbon atoms or a mixture of such high-boiling aromatic hydrocarbons.
- component (iv) is, to an extent of at least 80% by weight, especially to an extent of at least 90% by weight, in particular to an extent of 100% by weight, a mixture of high-boiling aromatic hydrocarbons having from 9 to 20 carbon atoms, especially from 9 to 14 carbon atoms.
- aromatic hydrocarbons are in particular bicyclic, tricyclic or polycyclic aromatics, for example naphthalene, diphenyl, anthracene or phenanthrene, or mono-, bicyclic, tricyclic or polycyclic aromatics with aliphatic side chains, for example substituted benzenes with C 7 - to C 14 -alkyl side chains, especially C 7 - to C 12 -alkyl side chains, such as n-dodecylbenzene or n-tetradecylbenzene, but in particular with C 1 - to C 6 -alkyl side chains, for example n-propylbenzene, isopropylbenzene, ethylmethylbenzenes, trimethylbenzenes, ethyldimethylbenzenes, diethylbenzenes, n-butylbenzene, isobutylbenzene, sec-butylbenzene, tert-but
- component (iv) may include from 0 to less than 20% by weight of nonaromatic organic solvent components (for example long-chain paraffins and/or alicyclic compounds and/or heterocyclic compounds with boiling points of in each case more than 100 °C, in particular more than 130 °C) and/or aromatic solvent components having less than 9 carbon atoms (for example toluene or xylenes).
- the aromatic solvent may include a major amount of solvent naphtha and xylene and/or toluene.
- Each of the components (A) and (B) described above may contain from 50 to 80 % by weight of the aromatic solvent based on a total weight of each component.
- the amine polymer component (v) of component (B) of the additive composition is a polymeric reaction product of epichlorohydrin with an aliphatic primary monoamine or N-aliphatic hydrocarbyl alkylene diamine.
- the polymeric reaction products are prepared by heating an amine with eipchlorohydrin in the molar proportions of from 1:1-1.5 in the temperature range of 50 to 100 °C. Generally, with aliphatic monoamines, R 1 NH 2 , the molar ratio is about 1:1.
- the initial reaction product is believed to be an addition product of epichlorohydrin with a primary monoamine.
- the aminochlorohydrin upon reaction with an inorganic base then forms an aminoepoxide.
- the aminoepoxide which contains a reactive epoxide group and a reactive amino-hydrogen, undergoes polymerization to provide a polymeric material containing several amino groups.
- the ratio of epichlorohydrin to amine and the reaction temperature used are such that the polymeric reaction product contains from 2 to 20 recurring units derived from the aminoepoxide.
- the aliphatic primary monoamines that can be used to prepare the polymeric reaction products with epichlorohydrin can be straight chain or branched chain and include, but are not limited to, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, eicosylamine, heneicosylamine, docosylamine, tricosylamine, tetracosylamine and the corresponding alkenyl analogs.
- the aliphatic primary amine 8 to 18 carbon atoms preferably 12 to 18 carbon atoms to provide polymeric reaction products of sufficient solubility in hydrocarbon fuels. While aliphatic primary amines containing more than about 24 carbon atoms are useful, such amines are of limited availability.
- Mixtures of aliphatic primary amines may also be used, and are preferred since mixtures of primary amines derived from tall oil, tallow, soybean oil, coconut oil, cotton seed oil and other oils of vegetable and animal origin are commercially available and at lower cost than individual amines.
- the above mixtures of amines generally contain alkyl and alkenyl amines of from 12 to 18 carbon atoms, although sometimes an individual amine mixture, depending upon the source, contains small amounts of primary amines having fewer or more carbon atoms.
- a preferred example of a commercially available mixture of primary monoamines is hydrogenated tallow amine which contains predominantly hexadecyl- and octadecylamines with smaller amounts of tetradecylamine.
- N-aliphatic hydrocarbyl alkylene diamines may also be reacted with epichlorohydrin to make component (v).
- diamines include N-octyl, N-nonyl, N-decyl, N-undecyl, N-dodecyl, N-tridecyl, N-tetradecyl, N-pentadecyl, N-hexadecyl, N-heptadecyl, N-octadecyl, N-nonadecyl, N-eicosyl, N-uneicosyl, N-docosyl, N-tricosyl, N-tetracosyl, as well as the corresponding N-alkenyl derivatives of ethylenediamine, propylenediamine, butylenediamine, pentylenediamine and hexylenediamine.
- the preferred N-aliphatic hydrocarbylalkylenediamine is N-aliphatic hydrocarbyl-1,3-propylenediamine.
- the N-aliphatic hydrocarbyl-1,3-propylenediamines are commercially available and are readily prepared from aliphatic primary monoamines such as those described above by cyanoethylation with acrylonitrile and hydrogenation of the cyanoethylated amine. Mixtures of N-aliphatic hydrocarbyl-1,3-propylenediamines can also be advantageously used.
- the preferred mixture is N-tallow-1,3-propylenediamine ,wherein "tallow” represents predominantly mixtures of alkyl and alkenyl groups of 16 to 18 carbon atoms which can contain small amounts of alkyl and alkenyl groups of 14 carbon atoms.
- the reaction between the amines (as defined above) and epichlorohydrin is advantageously carried out in the presence of a solvent such as benzene, toluene or xylene which may also contain some hydroxylic component such as ethanol, propanol, butanol and the like.
- a solvent such as benzene, toluene or xylene which may also contain some hydroxylic component such as ethanol, propanol, butanol and the like.
- the reaction mass is treated with a strong inorganic base, such as sodium, potassium or lithium hydroxide, to form an aminoepoxide, which under continued heating undergoes polymerization to yield the desired amine polymer product.
- Inorganic chloride formed in the reaction is removed by filtration.
- the solvent used to facilitate the reaction can be removed if desired, e.g. by distillation, but generally it is more convenient to use the polymeric polyamine as a solution.
- the amount of component (v) in component (B) ranges from 1 to 10 % by weight based on a total weight of component (B).
- Component (B) contains a quaternary ammonium compound having the general formula: wherein R 1 and R 2 are the same or different alkyl groups having from 1 to 22 carbon atoms; R 3 is selected from the group consisting of alkyl groups having from 1 to 22 carbon atoms and groups wherein R 5 is hydrogen or methyl and n is from 1 to 20; and R 4 is selected from the group consisting of:
- Useful quaternary ammonium compounds wherein R 1 , R 2 , R 3 , and R 4 are alkyl groups are tetraalkyl ammonium salts.
- alkyl radical and aralkyl radicals coming within the definition of R 1 , R 2 , R 3 , and R 4 include methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, eicosyl, docosyl, octadecenyl, octadecadienyl, octadecatrienyl, mixtures of hydrocarbon radicals derived from tall oil, tallow, so
- tetraalkyl quaternary ammonium salts are readily available, either commercially or by preparation by art known methods.
- certain useful tetraalkyl ammonium salts include dimethyldihydrogenated tallow quaternary ammonium chloride, dimethyldisoya quaternary ammonium chloride, dimethyldihydrogenated tallow quaternary ammonium nitrite, dicocodimethyl ammonium quaternary chloride and dicocodimethyl ammonium quaternary nitrite.
- the quaternary ammonium compounds are also readily prepared by known procedures, e.g., treating an amine with alkyl halide, aralkyl halide, alkyl sulfate and the like as exemplified by the equation, RNH 2 + 3R 1 Cl ⁇ RN(R 1 ) 3 Cl + 2HCl.
- the starting amine may be a primary amine as exemplified in the above equation, or may be a secondary or a tertiary amine. For convenience, a tertiary amine is usually preferred.
- the amines useful for the preparation of the quaternary ammonium compounds of the invention are generally available commercially. Particularly useful amines are tertiary amines derived from vegetable and animal oils.
- useful tetraalkyl quaternary ammonium salts include in addition to the above-listed dioctadecyldimethyl ammonium chloride, octadecyltrimethyl ammonium chloride, dodecyltrimethyl ammonium chloride, the C 12 -C 14 alkyl trimethyl ammonium chlorides, the di-C 12 -C 14 alkyldimethyl ammonium chlorides, hexadecyltrimethyl ammonium bromide, hexadecyltrimethyl ammonium iodide, dioctadecyldimethyl ammonium bromide, dioctadecylmethyl benzyl ammonium chloride, octadecyldimethylbenzyl ammonium chloride, oxtadecyldimethyl(phenylethyl) ammonium chloride and the like.
- nitrites, sulfates, alkylsulfates, phosphates, carboxylates corresponding to the above quaternary ammonium halides may be used.
- the preferred salt of this type is dicocodimethyl ammonium nitrite wherein "coco” is a mixture of C 8 -C 18 alkyl radicals of cocoamine.
- the useful quaternary ammonium compounds include those wherein R 3 and R 4 in the general formula given previously are groups, wherein R 5 and n are as defined above. These compounds are readily prepared by the reaction of a primary amine with 1,2-alkylene oxide such as ethylene oxide and 1,2-propylene oxide. The number of alkylene oxide units attached to the amine is readily determined by the ratio of the reactants used.
- a mixture of alkylene oxides such as that of ethylene oxide and propylene oxide may be used to obtain an amine derivative wherein the polyoxyalkylene group attached to the nitrogen atoms are composed of a random mixture of alkylene oxide units or the condensation reaction may be carried out in steps, whereby the polyoxyalkylene group is derived from one alkylene oxide and by then continuing the reaction with another alkylene oxide to obtain polyoxyalkylene substituent groups in which the polyoxyalkylene units are present as blocks.
- the amine with the polyoxyalkylene group may be quaternized by reaction with alkyl halides, alkyl sulfate, etc., as described above.
- the R 5 group may be independently hydrogen or methyl in each of the n units.
- the anion, A, of the quaternary ammonium compounds may be any anion of a salt forming acid.
- Such anions include chloride, bromide, iodide, sulfate, bisulfate, alkylsulfate, arylsulfate, alkanesulfonate, arenesulfonate, nitrate, nitrite, phosphate, monoalkyl phosphate, dialkyl phosphate, monoaryl phosphate, diaryl phosphate, borate, carboxylate and the like.
- the preferred anions are nitrites.
- the quaternary ammonium compounds wherein the R 4 group is wherein R 6 and R 7 may be the same or different alkyl groups having from about 11 to 19 carbon atoms are also useful in the present invention.
- This class of compounds known as phospholipids or lecithins are well known in the art and have been used in petroleum products as non-metallic sludge dispersants in lubricating oils.
- the ratio of olefin polysulfone to quaternary ammonium compound may be from 100:1 to 1:100, preferably in the range of from 50:1 to 1:1, most preferably in the range of from 20:1 to 1:1.
- the most preferred ratios afford compositions which are economical to use, are effective in increasing conductivity and do not adversely affect other desirable characteristics of the hydrocarbon fuels.
- the amount of quaternary ammonium compound in component (B) may range from 1 to 5 % by weight based on a total weight of component (B).
- Component (B) may include a minor amount of aliphatic alcohol having from 2 to 10 carbon atoms. In one embodiment, component (B) includes less than 5 weight percent of a C 3 to C 6 alcohol such as isopropanol.
- the normally liquid hydrocarbon fuels to which the additives are added to render such hydrocarbon fuels electrically conductive are those boiling in the range of about 20 to 375 °C and include such commonly designated fuels as aviation gasoline, motor gasoline, jet fuels, naphtha, kerosene, diesel fuel and distillate burner fuel oil.
- Aviation gasoline is a fuel developed specially for aviation engines, especially gasoline engines for propeller aircraft, which is similar to commercial gasoline fuels for operating land vehicles.
- Useful gasoline fuels include all commercial gasoline fuel compositions customarily on the market. Gasoline fuel compositions according to WO 00/47698 are also possible fields of use for the present invention. The gasoline fuels mentioned may also further comprise bioethanol.
- Diesel fuels are typically mineral oil raffinates which generally have a boiling range from 100 to 400 °C. These are usually distillates having a 95% point up to 360 °C or even higher. They may also be so-called "ultra low sulfur diesel” or "city diesel", characterized by a 95% point of, for example, not more than 345 °C and a sulfur content of not more than 0.005% by weight, or by a 95% point of, for example, 285 °C and a sulfur content of not more than 0.001% by weight.
- diesel fuels obtainable by refining, whose main constituents are relatively long-chain paraffins
- suitable diesel fuels are those which are obtainable by coal gasification ["coal to liquid” (CTL) fuels] or gas liquefaction ["gas to liquid” (GTL) fuels].
- CTL coal gasification
- GTL gas liquefaction
- mixtures of the aforementioned diesel fuels with renewable fuels such as biodiesel.
- diesel fuels with a low sulfur content i.e. with a sulfur content of less than 0.05% by weight, preferably of less than 0.02% by weight, in particular of less than 0.005% by weight and especially of less than 0.001% by weight of sulfur.
- Diesel fuels may also comprise water, for example in an amount up to 20% by weight, for example in the form of diesel-water microemulsions or as so-called "white diesel".
- Heating oils are, for example, low-sulfur or sulfur-rich mineral oil raffinates, or bituminous coal distillates or brown coal distillates, which typically have a boiling range of from 150 to 400 °C. Heating oils may be standard heating oil according to DIN 51603-1 which has a sulfur content of from 0.005 to 0.2% by weight, or they are low-sulfur heating oils having a sulfur content of from 0 to 0.005% by weight. Examples of heating oil include in particular heating oil for domestic oil-fired boilers or EL heating oil.
- jet fuels are generally those hydrocarbon fuels having boiling ranges within the limits of about 150 to 600 °F (65 to 315 °C) and are designated by such terms as JP-4, JP-5, JP-7, JP-8, Jet A, Jet A-1.
- JP-4 and JP-5 are fuels defined by U.S. military specification MIL-T-5624-N and JP-8 is defined by U.S. Military Specification MIL-T83133-D. Jet A, Jet A-1 and Jet B are defined by ASTM specification D1655.
- the additive composition can be added in any conventional manner.
- Each individual component of the composition can be added to the hydrocarbon fuel separately or a combined composition of components (A) and (B) can be added as a simple mixture or as a solution in a solvent, such as aromatic solvent, benzene, toluene, xylene, fuel oil, or in a mixture of such solvents.
- a solvent such as aromatic solvent, benzene, toluene, xylene, fuel oil, or in a mixture of such solvents.
- a solvent such as aromatic solvent, benzene, toluene, xylene, fuel oil, or in a mixture of such solvents.
- Such concentrate conveniently contains from 1 to 40% by weight of polysulfone copolymer, from 1 to 40% by weight of polymeric polyamine and from 20 to 98% by weight of a solvent or a mixture thereof as described.
- the concentrate will contain from 5 to 25% by weight of polysulfone copolymer, such as from 10 to 20 % by weight, from 1 to 25% by weight of polymeric polyamine, such as from 1 to 15 % by weight, and from 50 to 90% by weight of solvent.
- the fuel will contain from 0.1 to 10 mg/L of an additive containing components (A) and (B), such as from 0.2 to 8 mg/L, or from 0.25 to 5 mg/L of the additive based on a total volume of fuel.
- component (A) may be added to a first fuel in an amount ranging from 0.25 to 5 mg/L based on a total volume of the first fuel and component (B) may be added to a second fuel in an amount ranging from 0.25 to 5 mg/L based on a total volume of the second fuel.
- the first fuel and the second fuel may then be combined in a volume ratio of 0.1:1 to 10:1, such as from 0.25:1 to 5:1, from 0.5:1 to 2:1, or 1:1.
- compositions disclosed herein can contain antifoam agents, dispersants, detergents, antioxidants, thermal stabilizers, carrier fluids, metal deactivators, dyes, markers, corrosion inhibitors, biocides, drag reducing agents, friction modifiers, demulsifiers, emulsifiers, dehazers, anti-icing additives, antiknock additives, surfactants, cetane improvers, corrosion inhibitors, cold flow improvers, pour point depressants, solvents, demulsifiers, lubricity additives, extreme pressure agents, viscosity index improvers, seal swell agents, amine stabilizers, combustion improvers, dispersants, metal deactivators, marker dyes, organic nitrate ignition accelerators, manganese tricarbonyl compounds, and mixtures thereof.
- the fuel additive compositions described herein can contain 10 wt. % or less, or in other aspects, 5 wt. % or less, based on the total weight of the additive or fuel composition, of one or more of the above additives.
- the fuel compositions can contain suitable amounts of fuel blending components such as methanol, ethanol, dialkyl ethers, and the like.
- Conductivities of the test fuels were evaluated according to ASTM 2624 using an EMCEE conductivity meter (Model 1152) having a range of from about 1 to about 2000 picosiemens m-1 (pS/m). All conductivity values were measured within a temperature range of from about 20° C. to about 25° C. All conductivity measurements are in picosiemens m-1 (pS/m), also known as CU or Conductivity Units.
- the absolute value of the surface voltage is synergistically reduced while conductivity and charge relaxation rates are not affected in the mixture of fuels. It is believed that the synergistic reduction in surface voltage is achieved by mixing two different types of amine polymers together in the presence of a polysulfone.
- the mixture of polysulfone and amine polymers effectively raises conductivity and increase charge relaxation rates, but also increases the amount of charge generated when a fuel passes through pipes and filters.
- the magnitude and direction of the charge is determined by pipe material, plastic versus metal, inherent fuel properties, and the additives used.
- the table shows that when you mix the two additives together in fuel the absolute value of the voltage is smaller than when either additive is used alone at the same conductivity level.
- Conductivity is the industry standard test method for determine if a fuel is safe from electrostatic events. The surface voltage developed in a filling tank though will determine if/when a discharge could occur. Discharges can occur above +1000V or below -1000V. So the additives individually give a 2 order of magnitude improvement over the base fuel, but mixing them together unexpectedly gives another order of magnitude improvement.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Chemistry (AREA)
Description
- The disclosure is directed to compositions and methods for maintaining low surface voltages of fuel as storage tanks, such as aircraft wing tanks are being filled to reduce the risk of static discharge and incendiary events. In particular, the disclosure relates to a synergistic combination of static dissipating additives and distillate fuel compositions containing the synergistic combination of additives.
- Static Dissipating additives are used in many distillate fuels, including diesel, aviation turbine (jet) fuels, and gasoline, to reduce the risk of static charges being built up in a fuel as it flows through pipes and high surface area filters. The built up of static charges can approach 100 kV and even with proper bonding and grounding it is possible for static discharges to occur resulting in fires and explosions. In general the energy of a discharge must be over 1 kV (or under -1kV) for a localized discharge or 30 kV (or under -30kV) for a brush discharge to be incendiary to distillate fuels. In aviation fuels there is currently only a single approved static dissipating additive for maintaining low surface voltages and for increasing voltage relaxation rates of a fuel. A combination of conductivity additive is not only discouraged by regulation in aviation fuels but requires extensive testing to show that any new or additional additive to an aviation fuel does not counteract or adversely affect any other additive in the fuel. Accordingly, the only approved conductivity additive for aviation fuel is an additive that is a combination of polysulfone/amine epichlorohydrin polymer in combination with sulfonic acid, a quaternary ammonium, and an aromatic solvent.
- It is known that trace materials in hydrocarbon fuels such as acids, alcohols, amines, and mercaptans enables the fuel to be much more easily ionized to give electrically charged fragments than the pure, unadditized fuel. Unfortunately, many of the foregoing compounds and other impurities are always present in fuels, thus the overall tendency of the fuel to generate charge is not predictable and varies at least 100-fold. The magnitude of charge generated also depends on flow velocity. Thus fine filters, such as filter-coalescers can give enormous electrostatic charging because of the huge surface area compared to pipes and fittings. Static charges can also build up rapidly on the surface of fuel in tanks. Because of the unknown level of impurities in a fuel, there is a need to maintain a low fuel surface voltage without adversely affecting the conductivity or surface voltage relaxation time of the fuel.
-
US 2013/0296207 A1 discloses additive formulations suitable for antistatic modification and improving the electrical conductivity of materials with very poor electrical conductivity and for preventing electrostatic charge, consisting essentially of: (A) an olefin-sulfur dioxide copolymer, (B) a compound which comprises one or more basic nitrogen atoms and has at least one relatively long-chain hydrocarbon radical having at least four carbon atoms, (C) an oil-soluble acid and (D) a high-boiling organic solvent. -
US 2005/183325 A1 describes a fuel oil containing a conductivity improving additive comprising the combination of: (a) an oil soluble succinimide dispersant comprising a functionalized hydrocarbon reacted with an alkylene polyamine and (b) a conductivity improver comprising (i) an olefin polysulfone and (ii) a polymeric polyamine reaction product of epichlorohydrin and an aliphatic primary monoamine or an N-aliphatic hydrocarbyl alkylene diamine, or the sulfonic acid salt of the polymeric polyamine reaction product or (c) the combination of an oil soluble succinimide dispersant comprising a functionalized hydrocarbon reacted with a heavy polyamine and (d) a conductivity improver comprising a hydrocarbon soluble copolymer of an alkylvinyl monomer and a cationic vinyl monomer, wherein the copolymer has an alkylvinyl monomer unit to cationic vinyl monomer unit ratio of from about 1:1 to about 10:1, the copolymer having an average molecular weight of from about 800 to about 1,000,000. - In view of the foregoing, embodiments of the disclosure provide additive composition mixtures and methods for synergistically maintaining low surface voltages of distillate fuels. In one embodiment there is provided a synergistic conductivity improver additive composition for a distillate fuel. According to the present invention, the additive composition includes: A) a mixture of (i) alkenyl polysulfone polymer, (ii) C16-C24-α-olefin maleimide copolymers having at least one basic nitrogen atom, (iii) sulfonic acid, and (iv) aromatic solvent; and B) a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C8-C18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid, (iv) aromatic solvent; and (vi) a quaternary ammonium compound, wherein the additive composition comprises from 30 to 60 wt.% component (A) and from 30 to 60 wt.% component (B) based on a total weight of the additive composition; wherein an amount of (i) in each of components (A) and (B) ranges from 10 to 20 % by weight based on a total weight of each component; wherein an amount of (ii) in component (A) ranges from 8 to 15 % by weight of a total weight of component (A); wherein an amount of (iii) in each of components (A) and (B) ranges from 5 to 15 % by weight based on a total weight of each component; wherein an amount of (v) in component (B) ranges from 1 to 10 % by weight of a total weight of component (B).
- In another embodiment, there is provided a use of a mixture of components A and B for synergistically maintaining an absolute value of surface voltage of a distillate fuel below 1000 volts comprising providing a distillate fuel and adding to the fuel A) from 0.25 to 2.5 mg/L by weight based on a total volume of the fuel composition of a mixture of (i) alkenyl polysulfone polymer, (ii) C16-C24-α-olefin maleimide copolymers having at least one basic nitrogen atom obtained by reaction of α-olefin-maleic anhydride copolymers with aliphatic polyamines, (iii) sulfonic acid, and (iv) aromatic solvent; and B) from 0.25 to 2.5 mg/L by weight based on a total volume of the fuel composition of a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C8-C18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid, (iv) aromatic solvent; and (vi) a quaternary ammonium compound; wherein an amount of (i) in each of components (A) and (B) ranges from 10 to 20 % by weight based on a total weight of each component, an amount of (ii) in component (A) ranges from 8 to 15 % by weight of a total weight of component (A), an amount of (iii) in each of components (A) and (B) ranges from 5 to 15 % by weight based on a total weight of each component, and an amount of (v) in component (B) ranges from 1 to 10 % by weight of a total weight of component (B); wherein an amount of (vi) in component (B) ranges from 1 to 5 % by weight of a total weight of component (B).
- Yet another embodiment provides a use of fuel additive (A) and fuel additive (B) for synergistically maintaining an absolute value of surface voltage of a distillate fuel below 1000 volts comprising: providing a first distillate fuel and adding to the first fuel a fuel additive (A) comprising from 0.25 to 5 mg/L by weight based on a total volume of the first fuel composition of a mixture of (i) alkenyl polysulfone polymer, (ii) C16-C24-α-olefin maleimide Copolymers having at least one basic nitrogen atom obtained by reaction of α-olefin-maleic anhydride copolymers with aliphatic polyamines, (iii) sulfonic acid, and (iv) aromatic solvent; providing a second distillate fuel and adding to the second fuel a fuel additive (B) comprising from 0.25 to 5 mg/L by weight based on a total volume of the second fuel composition of a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C8-C18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid, (iv) aromatic solvent; and (vi) a quaternary ammonium compound; and mixing the first fuel and the second fuel in a volume ratio of 0.1:1 to 10:1; wherein an amount of (i) in each of components (A) and (B) ranges from 10 to 20 % by weight based on a total weight of each component, an amount of (ii) in component (A) ranges from 8 to 15 % by weight of a total weight of component (A), an amount of (iii) in each of components (A) and (B) ranges from 5 to 15 % by weight based on a total weight of each component, and an amount of (v) in component (B) ranges from 1 to 10 % by weight of a total weight of component (B); wherein an amount of (vi) in component (B) ranges from about 1 to about 5 % by weight of a total weight of component (B).
- Another embodiment of the disclosure provides a distillate fuel composition that includes a major amount of distillate fuel and an amount of an additive composition of the present invention in the range from 0.25 to 5 mg/L of a total of components (A) and (B) by weight based on a total volume of the fuel composition.
- An advantage of the embodiments of the disclosure is that a fuel, particularly an aviation or jet fuel may be maintained at a synergistically low surface voltage while not adversely affecting the conductivity or voltage relaxation time of the fuel. The synergistically low surface voltage achieved by the presence of two different types of amine polymers from conductivity improving additives was surprising and quite unexpected. In generally, a mixture of polysulfone and amine polymer effectively raises conductivity and increase charge relaxation rates, but may also increase the amount of charge generated when a fuel passes through pipes and filters. The magnitude and direction of the charge (i.e. positive or negative) is determined by pipe material, plastic versus metal, inherent fuel properties, and the additives used. Traditional conductivity additives contain a polysulfone and an epichlorohydrin/diamine polymer. However, a fuel that includes polysulfone and the two different amine polymers described herein provides a lower surface voltage than can be achieved by a conductivity additive or fuel containing only one of the amine polymers. Depending on the formulation of the additive the fuel may have an overall negative or positive net charge.
- As used herein, "middle distillate fuel" is understood to mean one or more fuels selected from the group consisting of diesel fuel, biodiesel, biodiesel-derived fuel, synthetic fuels, jet fuels, kerosene, diesel fuel treated with oxygenates for particulate control, mixtures thereof, and other products meeting the definitions of ASTM D975. As used herein, "biodiesel" is understood to mean diesel fuel comprising fuel derived from biological sources such as biomass to liquid (BTL) fuels. Synthetic fuels include, but are not limited to fuels produced from coal such as coal to liquid (CTL) fuels and natural gas, such as gas to liquid (GTL) fuels as well as other synthetic routes including bio-alcohols-to-jet (ATJ), and hydrogenated ester of fatty acids (HEFA) fuels. In an aspect, the middle distillate fuel can contain up to 50%, for example from about 0.5% to about 30%, such as from about 10% to about 20%, fuel derived from biological sources and/or synthetic fuel sources.
- The middle distillate fuel can be derived from biological sources such as oleaginous seeds, for example rapeseed, sunflower, soybean seeds, and the like. The seeds can be submitted to grinding and/or solvent extraction treatments (e.g., with n-hexane) in order to extract the oil, which comprises triglycerides of saturated and unsaturated (mono- and polyunsaturated, in mixture with each other, in proportions depending on the selected oleaginous seed) C16-C22 fatty acids. The oil can be submitted to a filtration and refining process, in order to remove any possible free fats and phospholipids present, and can be submitted to a transesterification reaction with methanol in order to prepare the methyl esters of the fatty acids (fatty acid methyl esters, also known as "FAME" and commonly referred to as biodiesel.)
- As used herein, the term "hydrocarbyl group" or "hydrocarbyl" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
- (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
- (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of the description herein, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
- (3) hetero-substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this description, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Hetero-atoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl, and imidazolyl. In general, no more than two, or as a further example, no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; in some embodiments, there will be no non-hydrocarbon substituent in the hydrocarbyl group.
- As used herein, the term "major amount" is understood to mean an amount greater than or equal to 50 wt. %, for example from 80 to 98 wt % relative to the total weight of the composition. Moreover, as used herein, the term "minor amount" is understood to mean an amount less than 50 wt. % relative to the total weight of the composition.
- The alkenyl polysulfone polymers often designated as olefin-sulfur dioxide copolymer, olefin polysulfones, or poly(olefin sulfone) are linear polymers wherein the structure is considered to be that of alternating copolymers of the olefins and sulfur dioxide, having a one-to-one molar ratio of the comonomers with the olefins in head to tail arrangement. The polysulfone polymers used herein are readily prepared by the methods known in the art.
- The weight average molecular weights of the polysulfone polymers are in the range from 10,000 to 1,500,000, with the preferred range being from 50,000 to 900,000, and the most preferred molecular weights being in the range of from 100,000 to 500,000 Daltons. Polysulfone polymers whose molecular weights are below about 10,000, while effective in increasing conductivity in hydrocarbon fuels, do not increase the conductivity values as much as polysulfone polymers of higher molecular weights. Polysulfone polymers whose molecular weights are above 1,500,000 are difficult to produce and are more difficult to handle.
- The control of the molecular weights of the polysulfone polymers in the desired range is readily accomplished by those skilled in the art of polymer science by controlling the polymerization conditions such as the amount of initiator used, polymerization temperature and the like or by using molecular weight modifiers such as dodecyl mercaptan. The amount of molecular weight modifier required to obtain the desired molecular weight range will depend upon the particular 1-olefin being polymerized with sulfur dioxide, and can be determined easily with few experiments. Generally, the amount of modifier, such as dodecyl mercaptan, used to obtain the molecular weights in the range of 50,000 to 900,000 is in the range of up to about 0.007 mole per mole of 1-olefin.
- The 1-alkenes useful for the preparation of the polysulfone polymers are available commercially as pure or mixed olefins from petroleum cracking processes or from the polymerization of ethylene to a low degree. Included are 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonodecene, 1-eicosene, 1-heneicosene, 1-docosene, 1-tricosene and 1-tetracosene. Although branched-chain alkenes are useful, the straight-chain 1-alkenes are preferred whether pure or in admixture with other straight-chain 1-alkenes.
- When the polysulfone polymer contains up to 10 mol percent of the olefin AHC=CHB, A and B can together form a dicarboxylic anhydride group. The dicarboxylic anhydride group is readily converted to two carboxyl groups by simple acid hydrolysis. The olefin, AHC=CH2, is a terminally unsaturated alkenoic acid represented by CH2 =CH--(Cx H2x)-COOH. The alkylene group bridging the vinyl and the carboxyl groups can have from 1 to 17 carbon atoms or it can be absent, and such alkylene group when present can be straight chain group or branched chain. The useful acids are alkenoic acids of 3 to 20 carbon atoms wherein the olefinic group is a terminal group. Representative but nonlimiting examples of alkenoic acids with a terminal olefinic group include acrylic acid, 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, 6-heptenoic acid, 7-octenoic acid, 8-nonenoic acid, 9-decenoic acid, 10-undecenoic acid, 11-dodecenoic acid, 13-tetradecenoic acid, 15-hexadecenoic acid, 17-octadecenoic acid as well as branched chain alkenoic acids with terminal olefinic groups such as 2-ethyl-4-pentenoic acid, 2,2-dimethyl-4-pentenoic acid, 3-ethyl-6-heptenoic acid, 2-ethyl-6-heptenoic acid, 2,2-dimethyl-6-heptenoic acid and the like. It should be understood that a mixture of alkenoic acids may be used.
- The reaction leading to polysulfone formation is the art-known free-radical polymerization process. Nearly all types of radical initiators are effective in initiating polysulfone formation. Radical initiators such as oxygen, ozonides, t-butylperoxypivalate, hydrogen peroxide, ascaridole, cumene peroxide, benzoyl peroxide, azobisisobutyronitrile are examples of some of the useful initiators. Free-radicals are generated from such radical initiators either thermally and/or by light activation in the presence of a mixture of sulfur dioxide and 1-alkene. The polymerization is typically carried out in liquid phase, conveniently in a solvent such as benzene, toluene or xylene to facilitate the reaction. Such solvent may be removed, e.g., by distillation, if desired, but it is generally more convenient to use the polysulfone copolymer as a concentrate in such solvent. Generally, it is preferable to use an excess of sulfur dioxide since any unreacted sulfur dioxide is readily removed, as by passing nitrogen gas into the polymer solution. An excess of 1-alkene may be used, however, and the excess subsequently removed as by distillation.
- The particular molar ratio of 1-alkene to sulfur dioxide appears to be immaterial since the resultant polysulfone polymer contains 1-alkene and sulfur dioxide in 1:1 molar ratio regardless of the particular molar ratio reacted. However, for efficiency in utilization of the reactants and of the equipment, a slight excess of sulfur dioxide is preferred. The polymerization may be carried out at atmospheric or superatmospheric pressures, the polymerization reaction being independent of the pressure. The polymerization temperature may be any convenient temperature below the ceiling temperature of the particular 1-alkene employed. Ceiling temperature is the temperature at which the rates of polymerization and depolymerization are equal so that no polymer formation takes place. Generally, the convenient polymerization temperature range is from about 0 to 50 °C.
- Each of the components (A) and (B) described above may contain from about 10 to about 20 % by weight of the polysulfone polymer based on a total weight of each component.
- The compound of component (ii) includes a C16-C24-α-olefin maleimide copolymer having at least one basic nitrogen atom.
- The compound of component (ii) is substantially devoid of hydroxyl groups.
- The relatively long-chain branched or linear hydrocarbon radical may be on the basic nitrogen atom or on one of the basic nitrogen atoms or on a carbon atom, especially on a carbon atom of the main polymer chain in polymeric structures. Suitable oligomeric or polymeric structure types for component (ii) with such relatively long-chain hydrocarbon radicals are, include, but are not limited to, reaction products of oligoethyleneamines or oligoethyleneimines with alkyl halides, polyethyleneimines with polyisobutenylsuccinic anhydrides, ethylene-vinyl acetate-amino(meth)acrylate terpolymers and especially olefin-maleic anhydride copolymers derivatized with polyamines, according to the present invention alpha-olefin-maleimide copolymers having at least one basic nitrogen atom.
- The structure and the preparation process for the α-olefin-maleimide copolymers with at least one basic nitrogen atom of component (ii) are described in principle in document
US Patent No. 4,416,668 . In a one embodiment, the α-olefin-maleimide copolymers are obtainable by free-radical polymerization of one or more linear or branched α-olefins having from 6 to 24 carbon atoms with maleic anhydride and subsequent reaction with one or more polyamines. The α-olefin-maleic anhydride copolymers and the α-olefin-maleimide copolymers prepared therefrom are typically 1:1 copolymers alternating in the main polymer chain, in which one maleic acid unit always follows one α-olefin unit. As a result of the relatively long-chain branched or linear hydrocarbon radicals, comb structures generally arise. - Useful branched and especially linear 1-olefins having from 6 to 24 carbon atoms for preparing the α -olefin-maleimide copolymers of component (ii) are, for example, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octa-decene, 1-nonadecene, 1-eicosene, 1-heneicosene, 1-docosene, 1-tricosene, 1-tetracosene,
- Particular preference is given to linear 1-olefins having from 16 to 24 carbon atoms, and mixtures thereof.
- The free-radical polymerization of the 1-olefins with maleic anhydride is performed by the customary methods. For this purpose, the customary free-radical initiators are used, especially those based on peroxides or azo compounds, for example di-tert-butyl peroxide, tert-butyl peroxypivalate or azobisisobutyronitrile, the customary temperature and pressure ranges are employed, for example from 50 to 150 °C at standard pressure, and the reactions are performed in the customary solvents, for example aromatic hydrocarbons. The solvents used are preferably the high-boiling organic solvents of component (iv) described below.
- On completion of polymerization, the resulting α-olefin-maleic anhydride copolymers are reacted with one or more polyamines to give the corresponding imide. Polyamines with a primary amino group are required for the imide formation, and at least one further primary, secondary or tertiary amino group for the basic nitrogen atom. Suitable examples in this context are relatively short-chain diamines such as ethylenediamine, 1,3-propylenediamine, 3-(N,N-dimethylamino)propylamine ("DMAPA") or bis[3-(N,N-dimethylamino)propyl]amine ("bis-DMAPA") or relatively long-chain diamines such as tallow fat-1,3-diaminopropane. The customary reaction conditions for this imide formation are known to those skilled in the art. When solvents are additionally used for this imide formation, preference is given to using the high-boiling organic solvents of component (iv).
- Typical examples of α-olefin-maleic anhydride copolymers reacted with aliphatic polyamines are the reaction products which have a comb-like structure formed from C16/24-α-olefin maleic anhydride copolymers and 3-(N,N-dimethylamino)propylamine ("DMAPA") or bis[3-(N,N-dimethylamino)propyl]amine ("bis-DMAPA").
- The described α-olefin-maleimide copolymers having at least one basic nitrogen atom of component (ii) typically have a weight-average molecular weight Mw of from 500 to 50,000, especially from 1000 to 10,000 Daltons. A typical α-olefin-maleimide copolymer is an α-olefin-maleic anhydride copolymer which has been reacted with tallow fat-1,3-diaminopropane to give the imide and has a weight-average molecular weight Mw in the range from 1000 to 10,000 Daltons.
- The amount of component (ii) in component (A) may range from 8 to 15 % by weight based on a total weight of component (A).
- The sulfonic acid component is preferably an organic sulfonic acid which, to achieve the oil solubility, appropriately has a relatively long-chain or relatively voluminous hydrocarbyl radical, especially having from 6 to 40 carbon atoms, in particular from 8 to 32 carbon atoms, more preferably having from 10 to 24 carbon atoms. Suitable hydrocarbyl radicals may be linear or branched alkyl or alkenyl radicals, e.g. n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, n-nonyl, n-decyl, 2-propylheptyl, n-undecyl, n-dodecyl, n-tridecyl, isotridecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecyl, n-eicosyl, n-heneicosyl, n-docosyl, n-tricosyl, n-tetracosyl, oleyl, linolyl or linolenyl, cycloalkyl radicals, e.g. cyclohexyl, methyl-cyclohexyl or dimethylcyclohexyl, aryl radicals, e.g. phenyl or naphthyl, aralkyl radicals, e.g. benzyl or 2-phenylethyl, or more preferably alkaryl radicals, especially phenyl or naphthyl substituted by linear or branched C1- to C18-alkyl groups, e.g. tolyl, xylyl, n-nonylphenyl, n-decylphenyl, n-dodecylphenyl, isotridecylphenyl, n-nonylnaphthyl, di-n-nonylnaphthyl, n-decylnaphthyl, di-n-decylnaphthyl, n-dodecylnaphthyl, di-n-dodecylnaphthyl, isotridecylnaphthyl or diisotridecylnaphthyl. In the latter monosubstituted phenyl radicals, the alkyl groups may be in the ortho, meta or para position to the sulfonic acid group, preference being given to para orientation. Typical examples of component (iii) are therefore n-nonylbenzenesulfonic acid, n-decyl-benzenesulfonic acid, n-dodecylbenzenesulfonic acid, isotridecylbenzenesulfonic acid, n-nonylnaphthylsulfonic acid, di-n-nonylnaphthylsulfonic acid, n-decylnaphthylsulfonic acid, di-n-decylnaphthylsulfonic acid, n-dodecylnaphthylsulfonic acid, di-n-dodecyl-naphthylsulfonic acid, isotridecylnaphthylsulfonic acid and diisotridecylnaphthylsulfonic acid.
- In addition to the organic sulfonic acids mentioned, it is also possible in principle to use, as component (iii), for example, oil-soluble organic sulfinic acids or organic phosphonic acids which likewise appropriately have a relatively long-chain or relatively voluminous hydrocarbyl radical, especially one having from 6 to 40 carbon atoms, in particular from 8 to 32 carbon atoms, more preferably having from 10 to 24 carbon atoms.
- When formulating concentrates, it is preferred that the polymeric polyamine be present as a salt, particularly a sulfonic acid salt, for improved resistance to precipitate formation in storage. For example, when a concentrate as described comprising polymeric polyamine in the free base form is stored at elevated temperatures of about 44 °C for a period of time of about 4 weeks, a small amount of precipitate sometimes forms. The presence of small amounts of precipitate in the concentrates has little or no effect on the usefulness of the present compositions as antistatic additives but is undesirable if only from an aesthetic point of view. It has been found that strong acids such as hydrochloric, sulfuric or a sulfonic acid can be used to limit precipitate formation in the concentrates. Oil-soluble sulfonic acids are preferred because they effectively inhibit precipitate formation without substantial deleterious effect upon the electrical conductivity property of the composition. Any oil-soluble sulfonic acid such as an alkanesulfonic acid or an alkarylsulfonic acid may be used. A useful sulfonic acid is petroleum sulfonic acid resulting from treating oils with sulfuric acid.
- Generally, the amount of sulfonic acid incorporated in the concentrate is an equivalent amount, that is, sufficient amount of sulfonic acid to neutralize all the amine groups of the polymeric polyamine, although lesser or greater than the equivalent amount can be used.
- Each of the components (A) and (B) described above may contain from 5 to 15 % by weight of the sulfonic acid component based on a total weight of each component.
- The aromatic solvent of component (iv) is not an active component of the additive formulation for surface voltage reduction or improving the conductivity of a fuel, but, through its interaction with components (i), (ii), (iii), (v) and (vi), promotes an enhances its action, contributes to the thermal stability of the formulation and ensures a relatively high flashpoint.
- In a one embodiment, component (iv) consists to an extent of from at least 80% by weight, in particular to an extent of at least 90% by weight, of a high-boiling aromatic hydrocarbon having from 9 to 30 carbon atoms or a mixture of such high-boiling aromatic hydrocarbons. Most preferably, component (iv) is, to an extent of at least 80% by weight, especially to an extent of at least 90% by weight, in particular to an extent of 100% by weight, a mixture of high-boiling aromatic hydrocarbons having from 9 to 20 carbon atoms, especially from 9 to 14 carbon atoms. Such aromatic hydrocarbons are in particular bicyclic, tricyclic or polycyclic aromatics, for example naphthalene, diphenyl, anthracene or phenanthrene, or mono-, bicyclic, tricyclic or polycyclic aromatics with aliphatic side chains, for example substituted benzenes with C7- to C14-alkyl side chains, especially C7- to C12-alkyl side chains, such as n-dodecylbenzene or n-tetradecylbenzene, but in particular with C1- to C6-alkyl side chains, for example n-propylbenzene, isopropylbenzene, ethylmethylbenzenes, trimethylbenzenes, ethyldimethylbenzenes, diethylbenzenes, n-butylbenzene, isobutylbenzene, sec-butylbenzene, tert-butylbenzene, n-pentylbenzene, tert-pentylbenzene, n-hexylbenzene, methylnaphthalenes, di methylnaphthalenes or C2- to C6-alkyl-naphthalenes. All aromatic hydrocarbons mentioned have boiling points above 150 °C at standard pressure, generally in the range of from 156 to 167 °C at standard pressure.
- In addition to the aromatic hydrocarbons mentioned with 9 or more carbon atoms, component (iv) may include from 0 to less than 20% by weight of nonaromatic organic solvent components (for example long-chain paraffins and/or alicyclic compounds and/or heterocyclic compounds with boiling points of in each case more than 100 °C, in particular more than 130 °C) and/or aromatic solvent components having less than 9 carbon atoms (for example toluene or xylenes). In one embodiment, the aromatic solvent may include a major amount of solvent naphtha and xylene and/or toluene.
- Each of the components (A) and (B) described above may contain from 50 to 80 % by weight of the aromatic solvent based on a total weight of each component.
- The amine polymer component (v) of component (B) of the additive composition is a polymeric reaction product of epichlorohydrin with an aliphatic primary monoamine or N-aliphatic hydrocarbyl alkylene diamine. The polymeric reaction products are prepared by heating an amine with eipchlorohydrin in the molar proportions of from 1:1-1.5 in the temperature range of 50 to 100 °C. Generally, with aliphatic monoamines, R1NH2, the molar ratio is about 1:1. The initial reaction product is believed to be an addition product of epichlorohydrin with a primary monoamine. The aminochlorohydrin upon reaction with an inorganic base then forms an aminoepoxide. The aminoepoxide, which contains a reactive epoxide group and a reactive amino-hydrogen, undergoes polymerization to provide a polymeric material containing several amino groups. The ratio of epichlorohydrin to amine and the reaction temperature used are such that the polymeric reaction product contains from 2 to 20 recurring units derived from the aminoepoxide.
- The aliphatic primary monoamines that can be used to prepare the polymeric reaction products with epichlorohydrin can be straight chain or branched chain and include, but are not limited to, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, nonadecylamine, eicosylamine, heneicosylamine, docosylamine, tricosylamine, tetracosylamine and the corresponding alkenyl analogs. The aliphatic primary amine
8 to 18 carbon atoms, preferably 12 to 18 carbon atoms to provide polymeric reaction products of sufficient solubility in hydrocarbon fuels. While aliphatic primary amines containing more than about 24 carbon atoms are useful, such amines are of limited availability. - Mixtures of aliphatic primary amines may also be used, and are preferred since mixtures of primary amines derived from tall oil, tallow, soybean oil, coconut oil, cotton seed oil and other oils of vegetable and animal origin are commercially available and at lower cost than individual amines. The above mixtures of amines generally contain alkyl and alkenyl amines of from 12 to 18 carbon atoms, although sometimes an individual amine mixture, depending upon the source, contains small amounts of primary amines having fewer or more carbon atoms. A preferred example of a commercially available mixture of primary monoamines is hydrogenated tallow amine which contains predominantly hexadecyl- and octadecylamines with smaller amounts of tetradecylamine.
- Likewise, N-aliphatic hydrocarbyl alkylene diamines may also be reacted with epichlorohydrin to make component (v). Such diamines include N-octyl, N-nonyl, N-decyl, N-undecyl, N-dodecyl, N-tridecyl, N-tetradecyl, N-pentadecyl, N-hexadecyl, N-heptadecyl, N-octadecyl, N-nonadecyl, N-eicosyl, N-uneicosyl, N-docosyl, N-tricosyl, N-tetracosyl, as well as the corresponding N-alkenyl derivatives of ethylenediamine, propylenediamine, butylenediamine, pentylenediamine and hexylenediamine. The preferred N-aliphatic hydrocarbylalkylenediamine is N-aliphatic hydrocarbyl-1,3-propylenediamine. The N-aliphatic hydrocarbyl-1,3-propylenediamines are commercially available and are readily prepared from aliphatic primary monoamines such as those described above by cyanoethylation with acrylonitrile and hydrogenation of the cyanoethylated amine. Mixtures of N-aliphatic hydrocarbyl-1,3-propylenediamines can also be advantageously used. The preferred mixture is N-tallow-1,3-propylenediamine ,wherein "tallow" represents predominantly mixtures of alkyl and alkenyl groups of 16 to 18 carbon atoms which can contain small amounts of alkyl and alkenyl groups of 14 carbon atoms.
- The reaction between the amines (as defined above) and epichlorohydrin is advantageously carried out in the presence of a solvent such as benzene, toluene or xylene which may also contain some hydroxylic component such as ethanol, propanol, butanol and the like. After the initial reaction between the amine and epichlorohydrin to form an aminochlorohydrin intermediate, the reaction mass is treated with a strong inorganic base, such as sodium, potassium or lithium hydroxide, to form an aminoepoxide, which under continued heating undergoes polymerization to yield the desired amine polymer product. Inorganic chloride formed in the reaction is removed by filtration. The solvent used to facilitate the reaction can be removed if desired, e.g. by distillation, but generally it is more convenient to use the polymeric polyamine as a solution.
- The amount of component (v) in component (B) ranges from 1 to 10 % by weight based on a total weight of component (B).
- Component (B) contains a quaternary ammonium compound having the general formula:
- a. an alkyl group having from 1 to 22 carbon atoms;
- b. an aralkyl group having from 7 to 22 carbon atoms;
-
- e. an --R8 --CO2 - group wherein R8 is a hydrocarbyl group having from 1 to 17 carbon atoms;
with the proviso that when R1, R2, R3, and R4 are each alkyl groups, at least one of R1, R2, R3 and R4 is an alkyl group having at least 8 carbon atoms; A is an anion; z is 0 or 1 and when R4 is (d) or (e), z is 0; y is at least one and when z is 1, y is numerically equal to the ionic valence of anion A. - Useful quaternary ammonium compounds wherein R1, R2, R3, and R4 are alkyl groups are tetraalkyl ammonium salts. Examples of alkyl radical and aralkyl radicals coming within the definition of R1, R2, R3, and R4 include methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, eicosyl, docosyl, octadecenyl, octadecadienyl, octadecatrienyl, mixtures of hydrocarbon radicals derived from tall oil, tallow, soy bean oil, coconut oil, cottonseed oil and other oils of vegetable and animal origin as well as aryl-substituted alkyl radicals such as benzyl, phenylethyl, phenylpropyl and the like. The tetraalkyl quaternary ammonium salts are readily available, either commercially or by preparation by art known methods. For example, certain useful tetraalkyl ammonium salts include dimethyldihydrogenated tallow quaternary ammonium chloride, dimethyldisoya quaternary ammonium chloride, dimethyldihydrogenated tallow quaternary ammonium nitrite, dicocodimethyl ammonium quaternary chloride and dicocodimethyl ammonium quaternary nitrite.
- The quaternary ammonium compounds are also readily prepared by known procedures, e.g., treating an amine with alkyl halide, aralkyl halide, alkyl sulfate and the like as exemplified by the equation, RNH2 + 3R1Cl→ RN(R1)3Cl + 2HCl. The starting amine may be a primary amine as exemplified in the above equation, or may be a secondary or a tertiary amine. For convenience, a tertiary amine is usually preferred. The amines useful for the preparation of the quaternary ammonium compounds of the invention are generally available commercially. Particularly useful amines are tertiary amines derived from vegetable and animal oils.
- Representative but non-limiting examples of useful tetraalkyl quaternary ammonium salts include in addition to the above-listed dioctadecyldimethyl ammonium chloride, octadecyltrimethyl ammonium chloride, dodecyltrimethyl ammonium chloride, the C12-C14 alkyl trimethyl ammonium chlorides, the di-C12-C14 alkyldimethyl ammonium chlorides, hexadecyltrimethyl ammonium bromide, hexadecyltrimethyl ammonium iodide, dioctadecyldimethyl ammonium bromide, dioctadecylmethyl benzyl ammonium chloride, octadecyldimethylbenzyl ammonium chloride, oxtadecyldimethyl(phenylethyl) ammonium chloride and the like. Similarly, nitrites, sulfates, alkylsulfates, phosphates, carboxylates corresponding to the above quaternary ammonium halides may be used. The preferred salt of this type is dicocodimethyl ammonium nitrite wherein "coco" is a mixture of C8-C18 alkyl radicals of cocoamine.
- The useful quaternary ammonium compounds include those wherein R3 and R4 in the general formula given previously are
- The anion, A, of the quaternary ammonium compounds may be any anion of a salt forming acid. Such anions include chloride, bromide, iodide, sulfate, bisulfate, alkylsulfate, arylsulfate, alkanesulfonate, arenesulfonate, nitrate, nitrite, phosphate, monoalkyl phosphate, dialkyl phosphate, monoaryl phosphate, diaryl phosphate, borate, carboxylate and the like. The preferred anions are nitrites.
- The quaternary ammonium compounds wherein the R4 group is
- The ratio of olefin polysulfone to quaternary ammonium compound may be from 100:1 to 1:100, preferably in the range of from 50:1 to 1:1, most preferably in the range of from 20:1 to 1:1. The most preferred ratios afford compositions which are economical to use, are effective in increasing conductivity and do not adversely affect other desirable characteristics of the hydrocarbon fuels. Accordingly, the amount of quaternary ammonium compound in component (B) may range from 1 to 5 % by weight based on a total weight of component (B).
- Component (B) may include a minor amount of aliphatic alcohol having from 2 to 10 carbon atoms. In one embodiment, component (B) includes less than 5 weight percent of a C3 to C6 alcohol such as isopropanol.
- The normally liquid hydrocarbon fuels to which the additives are added to render such hydrocarbon fuels electrically conductive are those boiling in the range of about 20 to 375 °C and include such commonly designated fuels as aviation gasoline, motor gasoline, jet fuels, naphtha, kerosene, diesel fuel and distillate burner fuel oil.
- Aviation gasoline is a fuel developed specially for aviation engines, especially gasoline engines for propeller aircraft, which is similar to commercial gasoline fuels for operating land vehicles.
- Useful gasoline fuels include all commercial gasoline fuel compositions customarily on the market. Gasoline fuel compositions according to
WO 00/47698 - Useful middle distillate fuels include all commercial diesel fuel and heating oil compositions customarily on the market. Diesel fuels are typically mineral oil raffinates which generally have a boiling range from 100 to 400 °C. These are usually distillates having a 95% point up to 360 °C or even higher. They may also be so-called "ultra low sulfur diesel" or "city diesel", characterized by a 95% point of, for example, not more than 345 °C and a sulfur content of not more than 0.005% by weight, or by a 95% point of, for example, 285 °C and a sulfur content of not more than 0.001% by weight. In addition to the diesel fuels obtainable by refining, whose main constituents are relatively long-chain paraffins, suitable diesel fuels are those which are obtainable by coal gasification ["coal to liquid" (CTL) fuels] or gas liquefaction ["gas to liquid" (GTL) fuels]. Also suitable are mixtures of the aforementioned diesel fuels with renewable fuels such as biodiesel. Also suitable are diesel fuels obtained by biomass ["biomass to liquid" (BTL) fuels]. Of particular interest are diesel fuels with a low sulfur content, i.e. with a sulfur content of less than 0.05% by weight, preferably of less than 0.02% by weight, in particular of less than 0.005% by weight and especially of less than 0.001% by weight of sulfur. Diesel fuels may also comprise water, for example in an amount up to 20% by weight, for example in the form of diesel-water microemulsions or as so-called "white diesel".
- Heating oils are, for example, low-sulfur or sulfur-rich mineral oil raffinates, or bituminous coal distillates or brown coal distillates, which typically have a boiling range of from 150 to 400 °C. Heating oils may be standard heating oil according to DIN 51603-1 which has a sulfur content of from 0.005 to 0.2% by weight, or they are low-sulfur heating oils having a sulfur content of from 0 to 0.005% by weight. Examples of heating oil include in particular heating oil for domestic oil-fired boilers or EL heating oil.
- The disclosed additive is particularly useful for the formulation of turbine combustion fuel oils (jet fuels) which are generally those hydrocarbon fuels having boiling ranges within the limits of about 150 to 600 °F (65 to 315 °C) and are designated by such terms as JP-4, JP-5, JP-7, JP-8, Jet A, Jet A-1. JP-4 and JP-5 are fuels defined by U.S. military specification MIL-T-5624-N and JP-8 is defined by U.S. Military Specification MIL-T83133-D. Jet A, Jet A-1 and Jet B are defined by ASTM specification D1655.
- The additive composition can be added in any conventional manner. Each individual component of the composition can be added to the hydrocarbon fuel separately or a combined composition of components (A) and (B) can be added as a simple mixture or as a solution in a solvent, such as aromatic solvent, benzene, toluene, xylene, fuel oil, or in a mixture of such solvents. It is convenient to prepare both the polysulfone copolymer and the polymeric polyamine in a solvent, such as one or more of those mentioned above. Thus, it is preferred to use such solutions of polysulfone and polymeric polyamine and to combine them. The combination, which can be termed a concentrate, can then be added to the hydrocarbon fuel. Such concentrate conveniently contains from 1 to 40% by weight of polysulfone copolymer, from 1 to 40% by weight of polymeric polyamine and from 20 to 98% by weight of a solvent or a mixture thereof as described. Preferably, the concentrate will contain from 5 to 25% by weight of polysulfone copolymer, such as from 10 to 20 % by weight, from 1 to 25% by weight of polymeric polyamine, such as from 1 to 15 % by weight, and from 50 to 90% by weight of solvent. Accordingly, the fuel will contain from 0.1 to 10 mg/L of an additive containing components (A) and (B), such as from 0.2 to 8 mg/L, or from 0.25 to 5 mg/L of the additive based on a total volume of fuel.
- In one embodiment, component (A) may be added to a first fuel in an amount ranging from 0.25 to 5 mg/L based on a total volume of the first fuel and component (B) may be added to a second fuel in an amount ranging from 0.25 to 5 mg/L based on a total volume of the second fuel. The first fuel and the second fuel may then be combined in a volume ratio of 0.1:1 to 10:1, such as from 0.25:1 to 5:1, from 0.5:1 to 2:1, or 1:1.
- One or more additional optional additives can be present in the compositions disclosed herein. For example, the compositions can contain antifoam agents, dispersants, detergents, antioxidants, thermal stabilizers, carrier fluids, metal deactivators, dyes, markers, corrosion inhibitors, biocides, drag reducing agents, friction modifiers, demulsifiers, emulsifiers, dehazers, anti-icing additives, antiknock additives, surfactants, cetane improvers, corrosion inhibitors, cold flow improvers, pour point depressants, solvents, demulsifiers, lubricity additives, extreme pressure agents, viscosity index improvers, seal swell agents, amine stabilizers, combustion improvers, dispersants, metal deactivators, marker dyes, organic nitrate ignition accelerators, manganese tricarbonyl compounds, and mixtures thereof. In some aspects, the fuel additive compositions described herein can contain 10 wt. % or less, or in other aspects, 5 wt. % or less, based on the total weight of the additive or fuel composition, of one or more of the above additives. Similarly, the fuel compositions can contain suitable amounts of fuel blending components such as methanol, ethanol, dialkyl ethers, and the like.
- The following example is illustrative of exemplary embodiments of the disclosure. In this example as well as elsewhere in this application, all parts and percentages are by weight unless otherwise indicated. It is intended that these example is being presented for the purpose of illustration only and are not intended to limit the scope of the invention disclosed herein.
- Conductivities of the test fuels were evaluated according to ASTM 2624 using an EMCEE conductivity meter (Model 1152) having a range of from about 1 to about 2000 picosiemens m-1 (pS/m). All conductivity values were measured within a temperature range of from about 20° C. to about 25° C. All conductivity measurements are in picosiemens m-1 (pS/m), also known as CU or Conductivity Units.
TABLE 1 Test Additive treat rate mg/L Conductivity (pS/m) Surface Voltage (volts) Surface Voltage Relaxtion Time (sec) Fuel 1 - Base 0.0 0 90821 57.19 Fuel 2 - Base with Component (A) 0.6 53 703 1.1 Fuel 3 - Base with Component (B) 0.4 55 -193 1.3 Fuel 2 and Fuel 3 Mixed 50/50 0.5 50 42 1.1 - As shown by the results in the above table, the absolute value of the surface voltage is synergistically reduced while conductivity and charge relaxation rates are not affected in the mixture of fuels. It is believed that the synergistic reduction in surface voltage is achieved by mixing two different types of amine polymers together in the presence of a polysulfone. The mixture of polysulfone and amine polymers effectively raises conductivity and increase charge relaxation rates, but also increases the amount of charge generated when a fuel passes through pipes and filters. The magnitude and direction of the charge (i.e. positive or negative) is determined by pipe material, plastic versus metal, inherent fuel properties, and the additives used. Traditional conductivity additives use a polysulfone, 1-decene/SO2, with an epichlorohydrin/tallow diamine polymer, that charge oppositely in fuels. Depending on the amount of component (A) and (B) in the fuel, the fuel can have an overall negative or positive net charge.
- The table shows that when you mix the two additives together in fuel the absolute value of the voltage is smaller than when either additive is used alone at the same conductivity level. Conductivity is the industry standard test method for determine if a fuel is safe from electrostatic events. The surface voltage developed in a filling tank though will determine if/when a discharge could occur. Discharges can occur above +1000V or below -1000V. So the additives individually give a 2 order of magnitude improvement over the base fuel, but mixing them together unexpectedly gives another order of magnitude improvement.
- It is noted that, as used in this specification and the appended claims, the singular forms "a," "an," and "the," include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to "a dispersant" includes two or more different dispersants. As used herein, the term "include" and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items
- Each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Claims (6)
- A synergistic conductivity improver additive composition for a distillate fuel said additive composition comprising:A) a mixture of (i) alkenyl polysulfone polymer, (ii) C16-C24-α-olefin maleimide copolymers having at least one basic nitrogen atom, (iii) sulfonic acid, and (iv) aromatic solvent; andB) a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C8-C18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid, (iv) aromatic solvent; and (vi) a quaternary ammonium compound,wherein the additive composition comprises from 30 to 60 wt.% component (A) and from 30 to 60 wt.% component (B) based on a total weight of the additive composition;wherein an amount of (i) in each of components (A) and (B) ranges from 10 to 20 % by weight based on a total weight of each component;wherein an amount of (ii) in component (A) ranges from 8 to 15 % by weight of a total weight of component (A);wherein an amount of (iii) in each of components (A) and (B) ranges from 5 to 15 % by weight based on a total weight of each component;wherein an amount of (v) in component (B) ranges from 1 to 10 % by weight of a total weight of component (B).
- The additive composition of claim 1, wherein component (B) includes from 1 to 5 % by weight of (vi) based on a total weight of component (B).
- The additive composition of any of claims 1 to 2, wherein (iv) comprises a mixture of aromatic solvent.
- A distillate fuel composition comprising a major amount of distillate fuel and an amount of an additive composition of claims 1 to 3 in the range from 0.25 to 5 mg/L of a total of components (A) and (B) by weight based on a total volume of the fuel composition.
- A use of a mixture of components A and B for synergistically maintaining an absolute value of surface voltage of a distillate fuel below 1000 volts comprising providing a distillate fuel and adding to the fuel 62 710 VA) from 0.25 to 2.5 mg/L by weight based on a total volume of the fuel composition of a mixture of (i) alkenyl polysulfone polymer, (ii) C16-C24-α-olefin maleimide copolymers having at least one basic nitrogen atom obtained by reaction of α-olefin-maleic anhydride copolymers with aliphatic polyamines, (iii) sulfonic acid, and (iv) aromatic solvent; andB) from 0.25 to 2.5 mg/L by weight based on a total volume of the fuel composition of a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C8-C18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid,
(iv) aromatic solvent; and (vi) a quaternary ammonium compound;
wherein an amount of (i) in each of components (A) and (B) ranges from 10 to 20 % by weight based on a total weight of each component, an amount of (ii) in component (A) ranges from 8 to 15 % by weight of a total weight of component (A), an amount of (iii) in each of components (A) and (B) ranges from 5 to 15 % by weight based on a total weight of each component, and an amount of (v) in component (B) ranges from 1 to 10 % by weight of a total weight of component (B); wherein an amount of (vi) in component (B) ranges from 1 to 5 % by weight of a total weight of component (B). - A use of fuel additive (A) and fuel additive (B) for synergistically maintaining an absolute value of surface voltage of a distillate fuel below 1000 volts comprising:providing a first distillate fuel and adding to the first fuel a fuel additive (A) comprising from 0.25 to 5 mg/L by weight based on a total volume of the first fuel composition of a mixture of (i) alkenyl polysulfone polymer, (ii) C16-C24-α-olefin maleimide copolymers having at least one basic nitrogen atom obtained by reaction of α-olefin-maleic anhydride copolymers with aliphatic polyamines, (iii) sulfonic acid, and (iv) aromatic solvent;providing a second distillate fuel and adding to the second fuel a fuel additive (B) comprising from 0.25 to 5 mg/L by weight based on a total volume of the second fuel composition of a mixture of (i) alkenyl polysulfone polymer, (v) polymeric reaction product of a C8-C18 aliphatic amine or diamine with epichlorohydrin; (iii) sulfonic acid, (iv) aromatic solvent; and (vi) a quaternary ammonium compound; andmixing the first fuel and the second fuel in a volume ratio of 0.1:1 to 10:1;
wherein an amount of (i) in each of components (A) and (B) ranges from 10 to 20 % by weight based on a total weight of each component, an amount of (ii) in component (A) ranges from 8 to 15 % by weight of a total weight of component (A), an amount of (iii) in each of components (A) and (B) ranges from 5 to 15 % by weight based on a total weight of each component, and an amount of (v) in component (B) ranges from 1 to 10 % by weight of a total weight of component (B); wherein an amount of (vi) in component (B) ranges from about 1 to about 5 % by weight of a total weight of component (B).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462089299P | 2014-12-09 | 2014-12-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3031885A1 EP3031885A1 (en) | 2016-06-15 |
EP3031885B1 true EP3031885B1 (en) | 2022-08-17 |
Family
ID=54782471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15196843.5A Active EP3031885B1 (en) | 2014-12-09 | 2015-11-27 | Composition for surface voltage reduction in distillate fuel |
Country Status (7)
Country | Link |
---|---|
US (1) | US9688929B2 (en) |
EP (1) | EP3031885B1 (en) |
JP (1) | JP6097813B2 (en) |
KR (1) | KR101813337B1 (en) |
SA (1) | SA115370117B1 (en) |
SG (1) | SG10201510120TA (en) |
ZA (1) | ZA201508932B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020008477A1 (en) * | 2018-07-04 | 2020-01-09 | Hindustan Petroleum Corporation Limited | A neutralizing amine formulation and process of preparation thereof |
RS65269B1 (en) | 2021-04-15 | 2024-03-29 | Basf Se | New compositions for reducing crystallization of paraffin crystals in fuels |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1985685A1 (en) * | 2007-04-19 | 2008-10-29 | Afton Chemical Corporation | Middle distillate fuels with a sustained conductivity benefit |
US20100005706A1 (en) * | 2008-07-11 | 2010-01-14 | Innospec Fuel Specialties, LLC | Fuel composition with enhanced low temperature properties |
US20100031559A1 (en) * | 2006-09-12 | 2010-02-11 | Burgazli Cenk R | Synergistic additive composition for petroleum fuels |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3578421A (en) | 1968-07-26 | 1971-05-11 | Mobil Oil Corp | Liquid hydrocarbon compositions containing reaction products of an amine and methyl vinyl ether-maleic anhydride copolymers as anti-static agents |
US3811848A (en) | 1972-06-30 | 1974-05-21 | Du Pont | Antistatic additive compositions |
US3917466A (en) | 1974-10-29 | 1975-11-04 | Du Pont | Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels |
US4416668A (en) | 1978-10-25 | 1983-11-22 | Petrolite Corporation | Antistatic agents for organic liquids |
DE19905211A1 (en) | 1999-02-09 | 2000-08-10 | Basf Ag | Fuel composition |
ATE471362T1 (en) | 2003-07-03 | 2010-07-15 | Infineum Int Ltd | FUEL COMPOSITION |
US20050183325A1 (en) * | 2004-02-24 | 2005-08-25 | Sutkowski Andrew C. | Conductivity improving additive for fuel oil compositions |
US20070220803A1 (en) | 2006-03-24 | 2007-09-27 | Henry Cyrus P Jr | Enhanced antistatic additives for hydrocarbon fuels & solvents |
ATE490299T1 (en) * | 2007-03-02 | 2010-12-15 | Basf Se | ADDITIVE FORMULATION SUITABLE FOR ANTI-STATIC FINISH AND IMPROVE THE ELECTRICAL CONDUCTIVITY OF INLIVIANT ORGANIC MATERIAL |
WO2009013536A2 (en) * | 2007-07-20 | 2009-01-29 | Innospec Limited | Improvements in or relating to hydrocarbon compositions |
GB201111799D0 (en) | 2011-07-08 | 2011-08-24 | Innospec Ltd | Improvements in fuels |
-
2015
- 2015-11-12 US US14/938,899 patent/US9688929B2/en active Active
- 2015-11-27 EP EP15196843.5A patent/EP3031885B1/en active Active
- 2015-12-02 SA SA115370117A patent/SA115370117B1/en unknown
- 2015-12-08 KR KR1020150173807A patent/KR101813337B1/en active IP Right Grant
- 2015-12-08 ZA ZA2015/08932A patent/ZA201508932B/en unknown
- 2015-12-09 SG SG10201510120TA patent/SG10201510120TA/en unknown
- 2015-12-09 JP JP2015240648A patent/JP6097813B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100031559A1 (en) * | 2006-09-12 | 2010-02-11 | Burgazli Cenk R | Synergistic additive composition for petroleum fuels |
EP1985685A1 (en) * | 2007-04-19 | 2008-10-29 | Afton Chemical Corporation | Middle distillate fuels with a sustained conductivity benefit |
US20100005706A1 (en) * | 2008-07-11 | 2010-01-14 | Innospec Fuel Specialties, LLC | Fuel composition with enhanced low temperature properties |
Also Published As
Publication number | Publication date |
---|---|
EP3031885A1 (en) | 2016-06-15 |
ZA201508932B (en) | 2017-02-22 |
KR20160070016A (en) | 2016-06-17 |
SG10201510120TA (en) | 2016-07-28 |
JP2016108569A (en) | 2016-06-20 |
SA115370117B1 (en) | 2017-05-02 |
US20160160140A1 (en) | 2016-06-09 |
KR101813337B1 (en) | 2017-12-28 |
US9688929B2 (en) | 2017-06-27 |
JP6097813B2 (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2579852T3 (en) | Quaternized nitrogen compounds and their use as additives in fuels and lubricants | |
AU2007263066B2 (en) | Mixture from polar oil-soluble nitrogen compounds and acid amides as paraffin dispersant for fuels | |
ES2356029T3 (en) | ADDITIVE FORMULATION APPROPRIATE FOR ANTI-STATIC FINISHING AND IMPROVEMENT OF THE ELECTRICAL CONDUCTIVITY OF INANIMATED ORGANIC MATERIAL. | |
US6793696B2 (en) | Enhanced lubricity fuel oil compositions comprising salts of fatty acids with short chain oil-soluble amines | |
EP3158030B1 (en) | Use of additives for improving oxidation stability of paraffinic diesel fuel compositions | |
BRPI0808949A2 (en) | USE OF A MIX, AND, FUEL. | |
US20070039239A1 (en) | Low temperature operable fatty acid ester fuel composition and method thereof | |
CN111218305B (en) | Ion-resistant corrosion inhibitor and inhibitor combination for fuel | |
CA2869714A1 (en) | Use of cold flow improver compositions for fuels, blends thereof with biofuels and formulations thereof | |
JP2005023321A (en) | Fuel oil composition | |
US6610111B2 (en) | Fuel oils having improved lubricity comprising mixtures of fatty acids with paraffin dispersants, and a lubrication-improving additive | |
EP3031885B1 (en) | Composition for surface voltage reduction in distillate fuel | |
US20070220803A1 (en) | Enhanced antistatic additives for hydrocarbon fuels & solvents | |
KR102281693B1 (en) | Improvements to additive compositions and to fuel oils | |
SG182499A1 (en) | Synergistic biofuel blends and related methods | |
WO2013114107A2 (en) | Improvements in or relating to fuels | |
WO2024033645A1 (en) | Improvements in fuels | |
EP2196520B1 (en) | Method of improving oil compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190718 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10L 1/26 20060101ALI20211130BHEP Ipc: C10L 1/222 20060101ALI20211130BHEP Ipc: C10L 10/00 20060101ALI20211130BHEP Ipc: C10L 1/238 20060101ALI20211130BHEP Ipc: C10L 1/236 20060101ALI20211130BHEP Ipc: C10L 1/22 20060101ALI20211130BHEP Ipc: C10L 1/16 20060101ALI20211130BHEP Ipc: C10L 1/14 20060101ALI20211130BHEP Ipc: C10L 1/24 20060101ALI20211130BHEP Ipc: C10L 1/2383 20060101AFI20211130BHEP |
|
INTG | Intention to grant announced |
Effective date: 20211217 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: REGRUT, JON A. |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20220322 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015080353 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1512179 Country of ref document: AT Kind code of ref document: T Effective date: 20220915 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221219 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221117 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1512179 Country of ref document: AT Kind code of ref document: T Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221217 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015080353 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20230519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231127 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231122 Year of fee payment: 9 Ref country code: FR Payment date: 20231127 Year of fee payment: 9 Ref country code: DE Payment date: 20231129 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231127 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220817 |