EP3027978B1 - Refrigerating circuit, facility comprising such a circuit and corresponding method - Google Patents

Refrigerating circuit, facility comprising such a circuit and corresponding method Download PDF

Info

Publication number
EP3027978B1
EP3027978B1 EP14750586.1A EP14750586A EP3027978B1 EP 3027978 B1 EP3027978 B1 EP 3027978B1 EP 14750586 A EP14750586 A EP 14750586A EP 3027978 B1 EP3027978 B1 EP 3027978B1
Authority
EP
European Patent Office
Prior art keywords
circuit
exchanger
path
called
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14750586.1A
Other languages
German (de)
French (fr)
Other versions
EP3027978A1 (en
Inventor
Redouane GHOUBALI
Frédéric BAZANTAY
Ludovic MEAR
Jacques MIRIEL
Paul Byrne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Association Pole Cristal
Universite de Rennes 1
Institut National des Sciences Appliquees de Rennes
Original Assignee
Association Pole Cristal
Universite de Rennes 1
Institut National des Sciences Appliquees de Rennes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Association Pole Cristal, Universite de Rennes 1, Institut National des Sciences Appliquees de Rennes filed Critical Association Pole Cristal
Publication of EP3027978A1 publication Critical patent/EP3027978A1/en
Application granted granted Critical
Publication of EP3027978B1 publication Critical patent/EP3027978B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/009Compression machines, plants or systems with reversible cycle not otherwise provided for indoor unit in circulation with outdoor unit in first operation mode, indoor unit in circulation with an other heat exchanger in second operation mode or outdoor unit in circulation with an other heat exchanger in third operation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention relates generally to installations and methods for heating and cooling fluids, in particular for a building.
  • the document US4299098 discloses a refrigeration circuit for heating or cooling a space, producing a hot liquid, or cooling a space and simultaneously producing a hot liquid.
  • the object of the present invention is to propose a new installation for heating and cooling fluids proposing an architecture allowing the heating of a fluid, for example for the production of domestic hot water and / or the heating of the building, and cooling. of another fluid, both simultaneously and independently of each other.
  • Another object of the invention is to provide a new installation for heating and cooling fluids using a minimum of refrigerant.
  • Another aim of the invention is to limit the energy consumption of the installation.
  • Another object of the invention is also to provide an installation for heating and cooling fluids making it possible to defrost, with reduced energy consumption, the part of the installation subjected to frost.
  • the balancing exchanger makes it possible to adjust the production of hot and cold by switching from one mode to another by controlling the fluid management devices so that in certain modes the balancing exchanger operates as a condenser and in other modes the balancing exchanger operates as an evaporator.
  • the four-way management devices make it possible to connect, depending on the operating mode activated, the unused exchangers from the refrigeration circuit to the low pressure part of the refrigeration circuit, while placing the exchangers used in this operating mode in communication with each other.
  • This specificity of the architecture of the refrigeration circuit which makes it possible to connect the unused exchangers to the low pressure part, acts as a vacuum in the unused parts of the refrigeration circuit and makes it possible to reintegrate the refrigerant into the useful parts of the circuit. refrigeration by avoiding the trapping of refrigerant in parts of the circuit not in use.
  • the fact of being able to connect the second channel (low pressure channel) of the first management device with the fourth channel connected to the condenser exchanger or even the third channel connected to the balancing exchanger allows, when said condenser exchanger or balancing exchanger is not active, due to the selected operating mode of the installation, to cause the refrigerant vapor, trapped in these exchangers, to migrate into the active low pressure part of the circuit refrigerated.
  • the connection of the outlet of the evaporator exchanger to the low-pressure part allows, when said evaporator exchanger is inactive, to recover in the active low-pressure part of the refrigeration circuit. the refrigerant vapors remaining in said evaporator exchanger.
  • the refrigeration circuit also comprises an exchanger, called a sub-cooler exchanger, which comprises a first heat transfer circuit arranged between the inlet channel of the second management device and the first node connection, and preferably disposed between said inlet passage and a bottle of liquid.
  • a sub-cooler exchanger comprises a first heat transfer circuit arranged between the inlet channel of the second management device and the first node connection, and preferably disposed between said inlet passage and a bottle of liquid.
  • said first fluid management device is a 4-way valve which comprises a member, called a slide, movable between two positions corresponding respectively to said first and second configurations of the first fluid management device.
  • said second fluid management device is a 4-way valve which comprises a member, called a slide, movable between two positions corresponding respectively to said first and second configurations of the second fluid management device.
  • each second channel of each management device is put at low pressure by its connection with the inlet of the anti-blow bottle of liquid.
  • the channel of the management device placed in communication with this second channel is then also brought to low pressure, and the input channel of each management device, as well as the channel with which said input channel is placed in communication , are at high pressure.
  • said circuit comprises an additional exchanger, arranged in series with the condenser exchanger, between said first link node and the fourth channel of the first management device.
  • one of the two exchangers can be used for heating domestic hot water and the other for heating a heating circuit fluid.
  • said two exchangers can be used to heat a fluid, gas or liquid, to two different temperature levels.
  • said circuit comprises a reservoir, called an anti-blow bottle of liquid, positioned between the compressor and the connection of the second channels of the management devices.
  • the invention also relates to an installation comprising a refrigeration circuit as described above, characterized in that, the condenser exchanger comprising a heat transfer circuit, said installation comprises a heating circuit which comprises said heat transfer circuit. 'condenser exchanger, a circulation pump, and preferably a fluid storage tank, called a hot water tank, and in that, the evaporator exchanger comprising a heat transfer circuit, said installation comprises a cooling circuit which comprises said evaporator exchanger transfer circuit, a circulation pump, and preferably a fluid storage tank , called cold fluid balloon.
  • the sub-cooler exchanger comprising a second transfer circuit
  • said second transfer circuit of the sub-cooler exchanger is mounted on the cooling circuit bypassing the transfer circuit of the evaporator exchanger.
  • a first solenoid valve is positioned between the inlet of the transfer circuit of the evaporator exchanger and the connection of the inlet of the second transfer circuit of the sub-cooler exchanger to the cooling circuit.
  • a second solenoid valve is positioned between the inlet of the second transfer circuit of the sub-cooler exchanger and the connection of this inlet of the second transfer circuit of the sub-cooler exchanger to the cooling circuit.
  • Such a solenoid valve arrangement makes it possible to control the passage of fluid from the cooling circuit through the sub-cooler exchanger or through the evaporator exchanger.
  • the installation comprises a control unit comprising control means for controlling the stopping and running of each of the circulation pumps, independently of one another, and of
  • control unit is configured to execute a sequence of instructions, called mode of use of the energy stored on the cooling circuit, which comprises the following steps; in deferred time and in an operating mode the installation corresponding to the simultaneous mode or to the cooling mode preferably without ventilation, activate the cooling circuit pump and control the solenoid valves so as to let the hot fluid contained in the cooling circuit tank circulate through the cooling circuit the evaporator exchanger.
  • the balancing exchanger When operating in heating mode, the balancing exchanger operates as an evaporator. When the outside temperatures are below approximately 6 ° C (and particularly when they are between 0 ° C and 6 ° C), the accumulation of frost on the balancing exchanger significantly degrades the performance of the installation. Therefore, it is useful to include an efficient defrost system in order to ensure high energy efficiency and preferably continuous hot water production.
  • the defrosting method used is similar to a cycle reversal as a means of removing frost from the balancing exchanger.
  • the balancing exchanger operates alternately either as an evaporator or as a condenser. This makes it possible, when switching to defrost mode, to directly inject the hot gases at the compressor discharge into the air exchanger.
  • the evaporator exchanger is connected to the cold fluid tank which has previously stored hot fluid.
  • the energy previously recovered and stored in the cold fluid tank is then used to ensure the evaporation of the refrigerant.
  • This method of defrosting makes it possible not to draw energy from the heating tank and in this respect constitutes an advantage over the state of the art. Indeed, calculations resulting from experimental measurement demonstrate that the seasonal efficiency (COP) is improved by 13% due to this defrost solution.
  • the operating logic of the installation corresponds to operation of the refrigeration circuit in cooling mode, preferably without ventilation. Turning off the fan helps to direct the heat transfer more towards the frost layer and saves electrical energy.
  • the invention also relates to a method for heating and / or cooling fluids using an installation as described above.
  • thermofrigopompe 1 for heating and cooling fluids, for example in a residential or tertiary building.
  • said installation makes it possible to heat the fluid of a heating circuit, to produce domestic hot water (DHW), and to cool the fluid of a heating circuit. air conditioning type cooling. Thanks to the architecture detailed below of the installation, these functions can be activated simultaneously or independently.
  • DHW domestic hot water
  • Said installation comprises a refrigerant circuit 2 with refrigerant fluid which comprises a compressor 200.
  • Said compressor 200 makes it possible to compress refrigerant vapor.
  • said installation comprises a reservoir 201 called an anti-blow bottle of liquid.
  • Said anti-blow liquid bottle 201 has an inlet and an outlet connected to the inlet of the compressor 200.
  • Said anti-blow liquid bottle 201 is configured such that the fluid leaving said bottle is in the vapor state. even if some of the incoming fluid contains drops of liquid.
  • the refrigeration circuit 2 also comprises an exchanger 21, called the DHW exchanger, which comprises a condenser circuit, that is to say a circuit capable of ensuring the condensation of the refrigerant, and a circuit, called a transfer circuit connected to a circuit. 31 for producing domestic hot water, called DHW circuit 31 to allow, by heat transfer from the condenser circuit to the transfer circuit of said exchanger 21, to heat the water of said DHW circuit 31.
  • the circuit 31 contains a fluid which may be a gas or a liquid intended to be brought to high temperature, that is to say to at least 55 ° C.
  • Said DHW circuit 31 comprises said transfer circuit of the ECS exchanger 21, a circulation pump 310, and preferably a fluid storage tank, called a domestic hot water tank 311.
  • the refrigeration circuit 2 also comprises an exchanger 22, called heating exchanger, which comprises a condenser circuit, that is to say a circuit capable of condensing the refrigerant, and a circuit, called transfer circuit, connected to a heating circuit 32 to allow, by transfer of heat from the condenser circuit to the transfer circuit of said exchanger 22, to heat the fluid of said heating circuit 32.
  • the fluid can be a gas or a liquid.
  • Said heating circuit 32 comprises said transfer circuit of the heating exchanger 22, a circulation pump 320, and preferably a fluid storage tank, called a hot water tank 321.
  • the exchangers 21, 22 are arranged in series on the same branch of the refrigeration circuit.
  • the exchanger 21 is positioned upstream of the exchanger 22.
  • Another branch of the refrigeration circuit also comprises an exchanger 25, called a balancing exchanger, which comprises a circuit, called a condenser / evaporator circuit, able to operate either as a condenser or as an evaporator depending on the operating mode of the installation as detailed below. -after.
  • a balancing exchanger which comprises a circuit, called a condenser / evaporator circuit, able to operate either as a condenser or as an evaporator depending on the operating mode of the installation as detailed below. -after.
  • the balancing exchanger 25 operates by heat exchange between said fluid flowing through the condenser / evaporator circuit and air.
  • a fan is arranged with the exchanger 25 to generate a forced convection movement around the balancing exchanger 25.
  • Said refrigeration circuit 2 has a first link node NL1 between the branch of the refrigeration circuit 2 provided with exchangers 21, 22 DHW and heating and the branch of the refrigeration circuit 2 provided with the exchanger 25 balancing.
  • Said link node NL1 is located on the outlet side of exchanger 22.
  • the circuit comprises an exchanger 23, called an evaporator exchanger, which has an evaporator circuit, that is to say a circuit capable of vaporizing the refrigerant, the outlet of which is connected to the inlet of the anti-shock bottle 201. liquid, and a transfer circuit connected to a cooling circuit 33, to allow, by heat transfer from the transfer circuit to the evaporator circuit of said evaporator exchanger 23, to cool the fluid of said cooling circuit 33.
  • Said fluid of the cooling circuit cooling 33 can be a gas or a liquid.
  • Said cooling circuit 33 comprises said evaporator exchanger transfer circuit 23, a circulation pump 330, and preferably a fluid storage tank, called a cold fluid balloon 331.
  • the presence of the balloons 311, 321, 331 makes it possible to decouple the production of cold fluid and of hot fluid, from the distribution to the corresponding networks 4.
  • the corresponding circulation pump 310, 320, 330 is placed between the exchanger 21, 22, 23 and the corresponding tank 311, 321, 331.
  • Said refrigeration circuit also comprises a second fluid management device 52 also comprising four channels, including a first channel, called the inlet channel 521, connected to said first link node NL1 by means of a liquid bottle 202. As detailed below, the connection between this input channel 521 and the first link node NL1 is made by means of a sub-cooler exchanger 24.
  • a second channel, called the low-pressure channel 522, is connected to the inlet of the anti-liquid shock bottle 201, corresponding to a low pressure part of the refrigeration circuit 2.
  • a third channel 523 is connected to the inlet of the liquid.
  • evaporator exchanger 23, and a fourth channel 524 is connected to balancing exchanger 25, between the first link node NL1 and balancing exchanger 25, via a node NL3.
  • Each fluid management device 51, 52 is a 4-way valve which comprises a member, called a slide, movable between a first position and a second position.
  • first position the input channel 511, 521 is placed in communication with the third channel 513, 523, the second channel 512, 522 being placed in communication with the fourth channel 514, 524.
  • second position the input channel 511, 521 is placed in communication with the fourth channel 514, 524, the second channel 512, 522 being placed in communication with the third channel 513, 523.
  • Said refrigeration circuit also comprises a first expansion valve 203 located between the third channel 523 of the valve 52 and the evaporator exchanger 23, and a second expansion valve 205 located between the fourth channel 524 of the valve 52 and the balancing exchanger 25.
  • Said liquid bottle 202 is a reservoir arranged on a branch of the refrigeration circuit defined between the link node NL1 and the inlet path 521 of the second management device 52.
  • the liquid bottle 202 is placed on the liquid line to optimize the refrigerant charge circulating in the refrigeration circuit in all the operating modes.
  • the sub-cooler exchanger 24 (detailed below) is located on this branch of the circuit downstream of the bottle 202.
  • the liquid bottle 202 is configured to trap the fluid in the vapor state which arrives at this level of the refrigeration circuit, that is to say the fluid present in the high pressure part of the circuit upstream of the 4-way valve. 52, so that it is ensured that the fluid which passes through the expansion valve (s) 203, 205 is indeed in the liquid phase in order to obtain efficient operation of the installation.
  • Said liquid bottle 202 in practice contains a liquid-vapor mixture of refrigerant.
  • the liquid and vapor phases are separated by gravity.
  • the outlet of this liquid bottle 202 draws refrigerant from the lower part of the reservoir which contains refrigerant in the liquid state.
  • the sub-cooler exchanger 24 comprises a first transfer circuit forming part of the refrigerating circuit 2 and arranged between the inlet passage 521 of the valve 52 and the liquid bottle 202.
  • the sub-cooler exchanger 24 also comprises a second transfer circuit allowing the fluid which passes through it to recover heat from the fluid passing through the first transfer circuit of said exchanger 24. Said second circuit transfer of the sub-cooler exchanger 24 is mounted on the cooling circuit 33 bypassing the transfer circuit of the evaporator exchanger 23.
  • a first solenoid valve 333 is positioned between the inlet of the transfer circuit of the evaporator exchanger 23 and the connection of the inlet of the recovery circuit of the sub-cooler exchanger 24 on the cooling circuit 33.
  • a second solenoid valve 334 is positioned between the inlet of the second transfer circuit of the sub-cooler exchanger 24 and the connection of this inlet of the second transfer circuit to the cooling circuit 33. Said solenoid valves make it possible to define the path traveled by the liquid in the cooling circuit 33.
  • the presence of the bottle 202 upstream of the first transfer circuit of the sub-cooler exchanger 24 makes it possible to ensure that the fluid which passes through the sub-cooler exchanger 24 is in the liquid state, which, in mode energy storage as detailed below, ensures a good significant transfer of heat between the first transfer circuit through which the refrigerant and the second transfer circuit through which the fluid of the cooling circuit.
  • the refrigeration circuit comprises a low pressure part and a high pressure part.
  • the low pressure part corresponds to the branches of the refrigeration circuit through which the fluid passes, which are located downstream of the holder (s) and upstream of the compressor.
  • the high pressure part corresponds to the branches of the refrigeration circuit through which the fluid flows, which are located upstream of the expansion valve (s) and downstream of the compressor.
  • the refrigeration circuit 2 includes a second link node NL2 between the inlet of the anti-liquid jetting bottle 201, the low pressure channel 512 of the valve 51, the low pressure channel 522 of the valve 52 and the outlet of the evaporator circuit of the exchanger 23 evaporator.
  • a non-return valve CAR1 is arranged between the outlet of the evaporator circuit of the evaporator exchanger 23 and said second connection node NL2 to prevent the fluid from entering the evaporator exchanger 23 through the outlet of the evaporator circuit of said exchanger.
  • Another non-return valve CAR2 is arranged between the first link node NL1 and the exchanger 22 to prevent a circulation of fluid from said first link node NL1 to the exchanger 22.
  • a check valve CAR3 is arranged between, on the one hand, the first link node NL1 and, on the other hand, a third link node NL3 between the second expansion valve 205 and the balancing exchanger 25, to prevent a circulation of fluid from said first link node NL1 to the third link node NL3 and therefore to the balancing exchanger 25.
  • Said circuit comprises a check valve CAR4 arranged between the fourth channel 524 of the second management device 52 and the second expansion valve 205 to prevent a flow of fluid from the expansion valve 205 to the fourth channel 524 of the valve 52.
  • Said installation comprises a control unit 7 which comprises control means making it possible to control the stopping and running of each of the circulation pumps 310, 320, 330, independently of one another.
  • the control unit is in the form of a programmable logic controller provided with a memory in which threshold values are recorded in particular as detailed below.
  • the unit is configured or comprises means for performing a given operation
  • the heating circuit 32 and the DHW circuit 31 are independent of each other.
  • the activation or stopping of each of these circuits is carried out by starting or stopping the circulation pump of the corresponding circuit.
  • heating mode There are six operating modes detailed below: heating mode, simultaneous mode, cooling mode, simultaneous DHW mode, DHW only mode, and defrost mode.
  • the PLC uses control logic to switch from one mode to another as needed.
  • the programmable controller is configured to control the engagement of the various operating modes according to the evolution of the building's needs.
  • the controller can include means for determining needs using sensors and instructions as detailed below. The different operating modes are detailed below.
  • Heating mode is activated by the installation's control unit when it identifies a single heating need.
  • activating heating mode corresponds to the following sequence of instructions.
  • the slide of each valve 51, 52 is located in the position corresponding to placing the first channel 511.521 in communication with the fourth channel 514, 524 and therefore the third channel 513, 523 with the second channel 512.522, so as to connect the balancing exchanger 25 at low pressure and the heating exchanger 22 at the discharge of the compressor 200.
  • the pump 320 of the heating circuit 32 is activated, as is the fan associated with the exchanger 25 of balancing, while the DHW circuit pump 31 is stopped.
  • the refrigerant which circulates in the refrigeration circuit thanks to the compressor 200, condenses in the condenser circuit of the heating exchanger 22 in order to yield its heat to the fluid circulating through the transfer circuit of said heating exchanger 22 in order to be stored in the tank 321 of the heating circuit 32.
  • the 21 DHW exchanger behaves like a simple pipe.
  • the fan is on and the fluid is vaporized as it passes through the evaporator circuit of said balancing exchanger 25, taking heat from the outside air, then the vapors. are sucked at the level of the anti-blow liquid bottle 201.
  • the refrigerant does not travel through the evaporator circuit to exchange it 23 evaporator, but the latter remains connected to the suction of the compressor 200 by a branch which connects it to the anti-shock bottle 201 of liquid.
  • this branch fitted with the CAR1 non-return valve, makes it possible to recover the charge trapped in the evaporator and to overcome any compressor malfunction during transitions between modes.
  • energy storage can be activated in parallel with this heating mode.
  • the pump 330 of the cooling circuit 33 is activated and the solenoid valves 333, 334 are in a position suitable for the circulation of the fluid of the cooling circuit 33 by the second transfer circuit of the exchanger 24 sub-cooler.
  • the liquid which passes through the transfer circuit of the sub-cooler exchanger 24 yields by substantial transfer of heat to the fluid which circulates thanks to the pump 330 in the second transfer circuit of the sub-cooler exchanger 24 in order to 'be stored in the tank 331.
  • the tank 331 can thus store hot water for use in deferred time as explained below.
  • this installation thus offers the possibility of storing a certain quantity of energy at low temperature on the cooling circuit 33 using the sub-cooler exchanger 24.
  • This stored energy can be used in deferred time, in simultaneous and / or defrost modes, by circulation through the evaporator exchanger 23 by reversing the opening and closing order of the two solenoid valves 333, 334 (see figure 2A ).
  • Another mode is activated by the control unit when the latter identifies a need for heating concomitant with a need for cooling.
  • the control unit is then configured to perform the following steps.
  • the spool of the valve 51 is in the position of placing the low pressure channel 512 in communication with the third channel 513 so that the input channel 511 communicates with the fourth channel 514.
  • the result is that the input of the condenser circuit of the heating exchanger 22 is connected to the discharge outlet of the compressor, and that the balancing exchanger 25 is connected to the inlet of the bottle 201.
  • the valve spool 52 is in the position of placing the low pressure channel 522 in communication with the fourth channel 524 of so that the input channel 521 communicates with the third channel 523.
  • the unit also controls the activation of the pump 320 of the heating circuit 32 and of the pump 330 of the cooling circuit 33.
  • the pump 310 of the DHW circuit 31 is stopped, so that the condenser circuit of the ECS exchanger 21 behaves like simple driving.
  • the solenoid valves 333, 334 are controlled so as to prevent the circulation of fluid by the second transfer circuit of the exchanger 24 sub-cooler and allow the circulation of said fluid by the transfer circuit of the exchanger 23 evaporator, so that the first transfer circuit of the sub-cooler exchanger 24 behaves like a simple pipe.
  • the refrigerant which circulates in the refrigeration circuit thanks to the compressor 200, condenses in the condenser circuit of the heating exchanger 22 to yield its heat to the fluid circulating through the transfer circuit of said heating exchanger 22 to be stored. in the tank 321 of the heating circuit 32.
  • the fluid in the liquid state is directed by the valve 52 to the expansion valve 203.
  • the refrigerant then passes through the evaporator circuit of the 'exchanger 23 evaporator where it is vaporized, while the fluid of the cooling circuit 33 circulating in the transfer circuit of the exchanger 23 is cooled.
  • the inlet and outlet of the condenser / evaporator circuit of the balancing exchanger 25 are found connected with the anti-liquid jetting bottle 201, which facilitates the reintegration of the charge of refrigerant trapped in the exchanger 25 d 'balancing not used in this mode.
  • cooling mode another mode, called cooling mode, is activated by the control unit when the latter identifies a need for cooling alone.
  • This refresh mode includes the following steps.
  • the slide of each valve 51, 52 is positioned for placing the fourth channel 514, 524 in communication with the low pressure channel 512, 522.
  • the balancing exchanger 25 communicates, on the side opposite to the link node NL3, with the discharge outlet of the compressor 200, and the other side of the balancing exchanger 25 communicates (via the bottle 202 ) with the inlet of the evaporator circuit of the 23 evaporator exchanger.
  • the solenoid valves 333, 334 are controlled to allow the circulation of the fluid of the cooling circuit by the transfer circuit of the evaporator exchanger 23 and the pump 330 of the cooling circuit 33 is on.
  • the refrigerant of the refrigeration circuit then passes through the evaporator circuit of the evaporator exchanger 23 where it is vaporized while the fluid of the cooling circuit circulating in the transfer circuit of the evaporator exchanger 23 is cooled.
  • the fan At the level of the balancing exchanger 25, the fan is on and the fluid leaving the compressor 200 condenses in the condenser / evaporator circuit of the balancing exchanger 25 by releasing its heat to the air.
  • the DHW and heating exchangers 21, 22 are not requested in this mode and are connected to the anti-shock liquid bottle 201 in order to facilitate the reintegration of the refrigerant charge.
  • simultaneous DHW mode another mode, called simultaneous DHW mode, is activated by the control unit when it identifies a simultaneous need for domestic hot water (DHW) and cooling.
  • the valve spool 51 is positioned to put the third channel 513 in communication with the low pressure channel 512 so that the inlet channel 511 communicates with the fourth channel 514.
  • the input of the condenser circuit of the exchanger 21 DHW is connected to the discharge outlet of the compressor 200 and the balancing exchanger is connected to low pressure through the inlet of the cylinder 201.
  • the valve spool 52 is positioned to put the fourth channel 524 in communication with the low pressure channel 522 so that the input channel 521 communicates with the third channel 523.
  • the output of the condenser circuit of the ECS exchanger 21 communicates with the input of the evaporator circuit of the evaporator exchanger 23.
  • the unit controls the activation of the pump 310 of the DHW circuit 31 and of the pump 330 of the cooling circuit 33.
  • this mode corresponds to that of the simultaneous mode with the difference that the condensation of the refrigerant takes place in the exchanger 21 ECS, and not in the heating exchanger 22 which behaves like a simple pipe.
  • DHW only mode another mode, called DHW only mode, is activated by the control unit when it identifies a single DHW domestic hot water need.
  • This mode consists of the following steps.
  • the spool of each valve 51, 52 is in the position ensuring the communication of the third channel 513, 523 with the low pressure channel 512, 522, so that each inlet channel 511, 521 communicates with the fourth channel 514, 524.
  • the input of the condenser circuit of the exchanger 21 communicates with the discharge output of the compressor 200 and the output of the condenser circuit of the exchanger 21 communicates with the input of the condenser / evaporator circuit of the exchanger 25 balancing.
  • the output of said condenser / evaporator circuit of the balancing exchanger 25 communicates with the input of the bottle 201.
  • the unit controls the activation of the pump 310 of the DHW circuit 31 and preferably of the fan associated with the exchanger. 25 balancing.
  • this mode is similar to that of the heating mode with the difference that the refrigerant condenses in the exchanger 21 DHW, while the heat exchanger 22 behaves like a simple pipe.
  • the installation according to the invention makes it possible to defrost the balancing exchanger 25 in defrost mode ( figure 9 ).
  • the unit executes a mode, called defrost mode which comprises the following steps.
  • the fourth channel 514, 524 is placed in communication with the low pressure channel 512, 522 so that the inlet channel 511, 521 communicates with the third channel 513, 523.
  • the solenoid valves 333, 334 of the cooling circuit 33 are controlled so as to prevent the circulation of fluid from the cooling circuit 33 by the second transfer circuit of the exchanger 24 sub-cooler and to allow the circulation of said fluid by the circuit transfer of the exchanger 23 evaporator.
  • the unit controls the activation of the pump 330 of the cooling circuit 33.
  • the unit controls the stopping of the fan 250 associated with the balancing exchanger 25.
  • the second transfer circuit of the sub-cooler exchanger 24 being by-passed, the hot fluid previously stored in the tank 33 during a heating mode, runs through the transfer circuit of the evaporator exchanger 23 and releases its heat. to the refrigerant circulating in the evaporator circuit of said evaporator exchanger 23, which makes it possible to vaporize it and then pass through the balancing exchanger 25 and thus defrost its circuit.
  • the energy stored in the cold fluid tank 331 can also be used in delayed time to vaporize the refrigerant in the exchanger 23 which condenses in the exchanger 21 or 22 during a simultaneous or simultaneous DHW type mode for in which the pump 330 is started to use the energy stored in the balloon 331.
  • the balancing exchanger 25 When the balancing exchanger 25 operates either as a condenser or as an evaporator, the refrigerant flows through all the tubes of the balancing exchanger.
  • each tank 31, 32, 33 is equipped with a temperature probe Tecs, Teec, Teef disposed inside said tank.
  • the compressor 200 is equipped with an inlet LP pressure sensor and an outlet HP pressure sensor.
  • the refrigeration circuit preferably comprises a Teea temperature sensor located at the inlet of the balancing exchanger 25 and a Tcross temperature sensor located on the outer surface of the condenser / evaporator circuit of the balancing exchanger 25.
  • Said control unit 7 is configured to control the passage from one operating mode of the installation to another as a function of the measured pressure and temperature values and of predefined threshold values.
  • the building's heating, cooling and domestic hot water needs are determined by value comparison operations carried out using differential thermostats and comparators.
  • the differential thermostats include a heating thermostat making it possible to define the need for heating, a cooling thermostat making it possible to define the need for cooling, and a domestic hot water thermostat making it possible to define the need for domestic hot water.
  • CECS, CCH and CRAF are setpoint temperature values
  • DIFECS, DIFCH and DIFRAF are temperature differential values.
  • the defrost mode is engaged.
  • the dew point temperature is determined from an equation with as input parameter the measurement of the LP pressure at the compressor inlet.
  • the surface temperature Tcross of the balancing exchanger 25 is greater than a certain threshold SFDGIV, the defrosting phase is stopped.
  • the figure 13 illustrates a switching control logic in simultaneous mode (“simultaneous switching”) or in heating mode (“switching heater "). Switching to simultaneous mode when operating in heating mode is managed by another differential thermostat.
  • CSR is a setpoint temperature value and DIFSR is a temperature differential value.
  • the performances are calculated from test readings in stationary mode. A 30 minute stabilization period precedes the one hour steady state acquisition period. The data acquisition step is 10 seconds. The consumption of the pumps and the fan is taken into account in the calculation of the Coefficient of Performance (COP) and the cooling energy efficiency (EER) of the heat pump.
  • COP Coefficient of Performance
  • EER cooling energy efficiency
  • the figure 14 presents the coefficient of performance (COP) of the heat pump in heating mode as a function of the air temperature for a hot water production temperature of 35 ° C ("COP 35 ° C" curve) and 45 ° C (curve "COP 45 ° C”).
  • COP 35 ° C curve
  • COP 45 ° C curve
  • the calorific power produced is 11 kW at -7 ° C outside air and 17.5 kW at 7 ° C.
  • the figure 15 presents the cooling energy efficiency (EER) of the heat pump in cooling mode for different air temperatures with production of cold water at 7 ° C ("EER SEF 7 ° C” curve) and 14 ° C ("curve” EER SEF 14 ° C ").
  • EER cooling energy efficiency
  • the cooling capacity delivered varies according to the speeds from 13.4 to 19 kW.
  • the figure 16 presents the coefficient of performance (COP) of heat pump in simultaneous mode as a function of the water temperature at the outlet of the heating exchanger and for a cold water production temperature of 7 ° C ("TFP SEF 7 ° C" curve) and 15 ° C (curve "TFP SEF 15 ° C”).

Description

La présente invention concerne de manière générale les installations et les procédés de chauffage et de refroidissement de fluides, notamment pour un bâtiment.The present invention relates generally to installations and methods for heating and cooling fluids, in particular for a building.

On connait de l'état de la technique des installations de chauffage et de refroidissement de fluides, de type pompe à chaleur. Ainsi, le document " La production simultanée d'eau glacée et d'eau chaude à 95°C par une thermofrigopompe d'une laiterie", rédigé en 1982 par E. Lecrivain, G. Laroche et A. Vallot , dans la Revue Internationale du Froid, décrit une installation composée de deux circuits frigorifiques en cascade permettant de fournir de l'eau à 95°C et de l'eau glacée. Une telle installation permet d'économiser une quantité d'énergie importante par comparaison avec une installation équivalente qui serait composée d'un groupe frigorifique et d'une chaudière à gaz.Heating and cooling installations of fluids, of the heat pump type, are known from the state of the art. Thus, the document " The simultaneous production of chilled water and hot water at 95 ° C by a thermofrigopump in a dairy ", written in 1982 by E. Lecrivain, G. Laroche and A. Vallot , in the Revue Internationale du Froid, describes an installation made up of two refrigeration circuits in cascade making it possible to supply water at 95 ° C and chilled water. Such an installation makes it possible to save a significant amount of energy compared with an equivalent installation which would be composed of a refrigerating unit and a gas boiler.

Le document US4299098 divulgue un circuit de réfrigération pour le chauffage ou le refroidissement d'un espace, la production d'un liquide chaud, ou le refroidissement d'un espace et simultanément la production d'un liquide chaud.The document US4299098 discloses a refrigeration circuit for heating or cooling a space, producing a hot liquid, or cooling a space and simultaneously producing a hot liquid.

Cependant, les fonctionnalités offertes par ces installations connues de l'état de la technique sont limitées et/ou leur complexité s'est avérée source de problèmes.However, the functionalities offered by these installations known from the state of the art are limited and / or their complexity has proved to be a source of problems.

Il est donc souhaitable de développer une nouvelle installation de chauffage et de refroidissement de fluides apportant un gain d'efficacité énergétique par rapport aux solutions usuelles, tout en utilisant un minimum de fluide frigorigène et en permettant l'activation de différents modes de fonctionnement pour répondre aux besoins de chauffage et de refroidissement de fluides dans un bâtiment, dans une architecture simplifiée.It is therefore desirable to develop a new installation for heating and cooling fluids providing a gain in energy efficiency compared to the usual solutions, while using a minimum of refrigerant and allowing the activation of different operating modes to respond the heating and cooling needs of fluids in a building, in a simplified architecture.

La présente invention a pour but de proposer une nouvelle installation de chauffage et de refroidissement de fluides proposant une architecture autorisant le chauffage d'un fluide, par exemple pour la production d'eau chaude sanitaire et/ou le chauffage du bâtiment, et le refroidissement d'un autre fluide, aussi bien simultanément qu'indépendamment l'un de l'autre.The object of the present invention is to propose a new installation for heating and cooling fluids proposing an architecture allowing the heating of a fluid, for example for the production of domestic hot water and / or the heating of the building, and cooling. of another fluid, both simultaneously and independently of each other.

Un autre but de l'invention est de proposer une nouvelle installation de chauffage et de refroidissement de fluides utilisant un minimum de fluide frigorigène.Another object of the invention is to provide a new installation for heating and cooling fluids using a minimum of refrigerant.

Un autre but de l'invention est de limiter la consommation en énergie de l'installation.Another aim of the invention is to limit the energy consumption of the installation.

Un autre but de l'invention est aussi de proposer une installation de chauffage et de refroidissement de fluides permettant de dégivrer, avec une consommation d'énergie réduite, la partie de l'installation soumise au givre.Another object of the invention is also to provide an installation for heating and cooling fluids making it possible to defrost, with reduced energy consumption, the part of the installation subjected to frost.

A cet effet, l'invention a pour objet un circuit frigorifique pour une installation, appelée thermofrigopompe, pour le chauffage et/ou le refroidissement de fluides, comprenant :

  • un compresseur,
  • un échangeur, appelé échangeur condenseur, comprenant un circuit condenseur,
  • un échangeur, appelé échangeur d'équilibrage, comprenant un circuit appelé circuit condenseur/évaporateur apte à fonctionner soit en condenseur soit en évaporateur, et de préférence un ventilateur associé audit échangeur d'équilibrage,
  • un premier nœud de liaison entre une branche du circuit frigorifique munie de l'échangeur condenseur et une branche du circuit frigorifique munie de l'échangeur d'équilibrage, ledit nœud de liaison étant situé du côté de la sortie de l'échangeur condenseur,
  • un échangeur, appelé échangeur évaporateur, comprenant un circuit évaporateur,
  • un premier dispositif de gestion de fluide comprenant quatre voies, dont une première voie, appelée voie d'entrée, raccordée à la sortie du compresseur, une deuxième voie, appelée voie basse pression, une troisième voie raccordée à l'échangeur d'équilibrage du côté opposé au premier nœud de liaison, et une quatrième voie raccordée à l'entrée dudit échangeur condenseur ;
  • un deuxième dispositif de gestion de fluide comprenant quatre voies, dont une première voie, appelée voie d'entrée, raccordée audit premier nœud de liaison, une deuxième voie, appelée voie basse pression, une troisième voie raccordée à l'entrée de l'échangeur évaporateur, et une quatrième voie raccordée à l'échangeur d'équilibrage entre le premier nœud de liaison et le circuit condenseur/évaporateur de l'échangeur d'équilibrage ;
  • un premier détendeur situé entre la troisième voie du deuxième dispositif de gestion de fluide et l'échangeur évaporateur, et
  • un deuxième détendeur situé entre la quatrième voie du deuxième dispositif de gestion de fluide et l'échangeur d'équilibrage,
les deuxièmes voies des dispositifs de gestion étant raccordées à une branche du circuit frigorifique qui s'étend entre la sortie du circuit évaporateur de l'échangeur évaporateur et l'entrée du compresseur,
chaque dispositif de gestion de fluide étant configuré pour présenter une première configuration selon laquelle la voie d'entrée est mise en communication avec la troisième voie, la voie basse pression étant mise en communication avec la quatrième voie,
et une deuxième configuration dans laquelle la voie d'entrée est mise en communication avec la quatrième voie, la voie basse pression étant mise en communication avec la troisième voie.To this end, the invention relates to a refrigeration circuit for an installation, called a thermofrigopump, for heating and / or cooling fluids, comprising:
  • a compressor,
  • an exchanger, called a condenser exchanger, comprising a condenser circuit,
  • an exchanger, called a balancing exchanger, comprising a circuit called a condenser / evaporator circuit able to operate either as a condenser or as an evaporator, and preferably a fan associated with said balancing exchanger,
  • a first connection node between a branch of the refrigeration circuit fitted with the condenser exchanger and a branch of the refrigeration circuit fitted with the balancing exchanger, said link node being located on the outlet side the condenser exchanger,
  • an exchanger, called an evaporator exchanger, comprising an evaporator circuit,
  • a first fluid management device comprising four channels, including a first channel, called the inlet channel, connected to the outlet of the compressor, a second channel, called the low pressure channel, a third channel connected to the balancing exchanger of the side opposite to the first link node, and a fourth channel connected to the inlet of said condenser exchanger;
  • a second fluid management device comprising four channels, including a first channel, called the inlet channel, connected to said first link node, a second channel, called the low pressure channel, a third channel connected to the inlet of the exchanger evaporator, and a fourth channel connected to the balancing exchanger between the first link node and the condenser / evaporator circuit of the balancing exchanger;
  • a first regulator located between the third channel of the second fluid management device and the evaporator exchanger, and
  • a second regulator located between the fourth channel of the second fluid management device and the balancing exchanger,
the second channels of the management devices being connected to a branch of the refrigeration circuit which extends between the outlet of the evaporator circuit of the evaporator exchanger and the inlet of the compressor,
each fluid management device being configured to have a first configuration according to which the inlet channel is placed in communication with the third channel, the low pressure channel being placed in communication with the fourth channel,
and a second configuration in which the inlet path is placed in communication with the fourth path, the low pressure path being placed in communication with the third path.

Comme détaillé ci-après, une telle installation permet de bénéficier d'une production simultanée ou alternée de fluide chaud et de fluide froid utilisables pour le chauffage, la production d'eau chaude sanitaire, et le rafraichissement, notamment pour un bâtiment par exemple de type résidentiel ou tertiaire.As detailed below, such an installation makes it possible to benefit from simultaneous or alternating production of hot fluid and cold fluid that can be used for heating, production of domestic hot water, and cooling, in particular for a building, for example of the residential or tertiary type.

L'échangeur d'équilibrage permet d'ajuster la production de chaud et de froid en passant d'un mode à un autre par pilotage des dispositifs de gestion de fluide de sorte que dans certains modes l'échangeur d'équilibrage fonctionne en condenseur et dans d'autres modes l'échangeur d'équilibrage fonctionne en évaporateur.The balancing exchanger makes it possible to adjust the production of hot and cold by switching from one mode to another by controlling the fluid management devices so that in certain modes the balancing exchanger operates as a condenser and in other modes the balancing exchanger operates as an evaporator.

Grâce au raccord de chaque deuxième voie (voie basse pression) à la partie du circuit frigorifique située en aval de l'échangeur évaporateur et en amont du compresseur, les dispositifs de gestion à quatre voies permettent de connecter, suivant le mode de fonctionnement activé, les échangeurs non utilisés du circuit frigorifique à la partie basse pression du circuit frigorifique, tout en mettant en communication entre eux les échangeurs utilisés dans ce mode de fonctionnement.Thanks to the connection of each second channel (low pressure channel) to the part of the refrigeration circuit located downstream of the evaporator exchanger and upstream of the compressor, the four-way management devices make it possible to connect, depending on the operating mode activated, the unused exchangers from the refrigeration circuit to the low pressure part of the refrigeration circuit, while placing the exchangers used in this operating mode in communication with each other.

Cette spécificité de l'architecture du circuit frigorifique qui permet de raccorder les échangeurs non utilisés à la partie basse pression, agit comme un tirage au vide dans les parties non utilisées du circuit frigorifique et permet de réintégrer le fluide frigorigène dans les parties utiles du circuit frigorifique en évitant le piégeage de fluide frigorigène dans les parties du circuit non utilisées.This specificity of the architecture of the refrigeration circuit which makes it possible to connect the unused exchangers to the low pressure part, acts as a vacuum in the unused parts of the refrigeration circuit and makes it possible to reintegrate the refrigerant into the useful parts of the circuit. refrigeration by avoiding the trapping of refrigerant in parts of the circuit not in use.

En particulier, le fait de pouvoir mettre en communication la deuxième voie (voie basse pression) du premier dispositif de gestion avec la quatrième voie raccordée à l'échangeur condenseur ou encore la troisième voie raccordée à l'échangeur d'équilibrage, permet, lorsque ledit échangeur condenseur ou l'échangeur d'équilibrage n'est pas actif, du fait du mode de fonctionnement sélectionné de l'installation, de faire migrer la vapeur de fluide frigorigène, emprisonnée dans ces échangeurs, dans la partie basse pression active du circuit frigorifique. De même, le raccord de la sortie de l'échangeur évaporateur à la partie basse-pression permet lorsque ledit échangeur évaporateur est inactif de récupérer dans la partie basse pression active du circuit frigorifique les vapeurs de fluide frigorigène restées dans ledit échangeur évaporateur.In particular, the fact of being able to connect the second channel (low pressure channel) of the first management device with the fourth channel connected to the condenser exchanger or even the third channel connected to the balancing exchanger, allows, when said condenser exchanger or balancing exchanger is not active, due to the selected operating mode of the installation, to cause the refrigerant vapor, trapped in these exchangers, to migrate into the active low pressure part of the circuit refrigerated. Likewise, the connection of the outlet of the evaporator exchanger to the low-pressure part allows, when said evaporator exchanger is inactive, to recover in the active low-pressure part of the refrigeration circuit. the refrigerant vapors remaining in said evaporator exchanger.

Il est ainsi possible de réduire la charge du circuit frigorifique en fluide frigorigène au minimum nécessaire au mode de fonctionnement qui demande le plus de charge.It is thus possible to reduce the refrigerant circuit charge to the minimum necessary for the operating mode which requires the most charge.

Selon un mode de réalisation préféré de l'invention, le circuit frigorifique comporte aussi un échangeur, appelé échangeur sous-refroidisseur, qui comprend un premier circuit de transfert de chaleur disposé entre la voie d'entrée du deuxième dispositif de gestion et le premier nœud de liaison, et de préférence disposé entre ladite voie d'entrée et une bouteille de liquide. Comme détaillé ci-après, l'utilisation d'un tel échangeur sous-refroidisseur permet de récupérer et de stocker de l'énergie pour l'utiliser en temps différé afin d'améliorer les performances de chauffage de fluide et/ou de dégivrer l'échangeur d'équilibrage.According to a preferred embodiment of the invention, the refrigeration circuit also comprises an exchanger, called a sub-cooler exchanger, which comprises a first heat transfer circuit arranged between the inlet channel of the second management device and the first node connection, and preferably disposed between said inlet passage and a bottle of liquid. As detailed below, the use of such a sub-cooler exchanger makes it possible to recover and store energy for use in deferred time in order to improve the heating performance of the fluid and / or to defrost the fluid. 'balancing exchanger.

Selon une caractéristique avantageuse de l'invention, ledit premier dispositif de gestion de fluide est une vanne 4-voies qui comprend un organe, appelé tiroir, déplaçable entre deux positions correspondant respectivement auxdites première et deuxième configurations du premier dispositif de gestion de fluide. Selon une caractéristique avantageuse de l'invention, ledit deuxième dispositif de gestion de fluide est une vanne 4-voies qui comprend un organe, appelé tiroir, déplaçable entre deux positions correspondant respectivement auxdites première et deuxième configurations du deuxième dispositif de gestion de fluide.According to an advantageous characteristic of the invention, said first fluid management device is a 4-way valve which comprises a member, called a slide, movable between two positions corresponding respectively to said first and second configurations of the first fluid management device. According to an advantageous characteristic of the invention, said second fluid management device is a 4-way valve which comprises a member, called a slide, movable between two positions corresponding respectively to said first and second configurations of the second fluid management device.

La conception d'une telle architecture de communication entre les échangeurs du circuit frigorifique et l'utilisation de deux vannes 4-voies permet de n'utiliser qu'un nombre réduit d'actionneurs pour commander les différents modes de fonctionnement de l'installation, et ainsi de réduire le coût et d'améliorer la fiabilité de l'installation, et de gérer de manière optimale la charge de fluide frigorigène.The design of such a communication architecture between the exchangers of the refrigeration circuit and the use of two 4-way valves makes it possible to use only a reduced number of actuators to control the different operating modes of the installation, and thus reduce the cost and improve the reliability of the installation, and optimally manage the refrigerant charge.

En effet, l'utilisation de deux vannes 4-voies pour distribuer le fluide frigorigène dans les échangeurs utilisés dans les différents modes simplifie le passage d'un mode à un autre par rapport à une solution à quatre électrovannes 2-voies. Le nombre d'actionneurs et de sorties d'automate est donc limité.Indeed, the use of two 4-way valves to distribute the refrigerant in the exchangers used in the different modes simplifies the transition from one mode to another compared to a solution with four 2-way solenoid valves. The number of actuators and PLC outputs is therefore limited.

En outre, comme détaillé ci-après, le raccordement de la deuxième voie de chaque dispositif de gestion à l'entrée d'une bouteille anti-coup de liquide dont la sortie est elle même raccordée à l'entrée du compresseur, permet d'assurer une différence de pression entre les couples de voies du dispositif de gestion mises en communication afin d'assurer un bon déplacement du tiroir du dispositif de gestion correspondant. En effet, chaque deuxième voie est mise à la basse pression par sa connexion avec l'entrée de la bouteille anti-coup de liquide. La voie du dispositif de gestion mise en communication avec cette deuxième voie est alors aussi ramenée à la basse pression, et la voie d'entrée de chaque dispositif de gestion, de même que la voie avec laquelle ladite voie d'entrée est mise en communication, sont à haute pression.In addition, as detailed below, the connection of the second channel of each management device to the inlet of an anti-blow bottle of liquid, the outlet of which is itself connected to the inlet of the compressor, makes it possible to ensure a pressure difference between the pairs of channels of the management device placed in communication in order to ensure proper movement of the drawer of the corresponding management device. Indeed, each second channel is put at low pressure by its connection with the inlet of the anti-blow bottle of liquid. The channel of the management device placed in communication with this second channel is then also brought to low pressure, and the input channel of each management device, as well as the channel with which said input channel is placed in communication , are at high pressure.

Avantageusement, ledit circuit comprend un échangeur supplémentaire, disposé en série avec l'échangeur condenseur, entre ledit premier nœud de liaison et la quatrième voie du premier dispositif de gestion.Advantageously, said circuit comprises an additional exchanger, arranged in series with the condenser exchanger, between said first link node and the fourth channel of the first management device.

Ainsi, comme détaillé ci-après, l'un des deux échangeurs peut servir au chauffage de l'eau chaude sanitaire et l'autre au chauffage d'un fluide de circuit de chauffage. En variante, lesdits deux échangeurs peuvent servir à chauffer un fluide, gaz ou liquide, à deux niveaux de températures différents.Thus, as detailed below, one of the two exchangers can be used for heating domestic hot water and the other for heating a heating circuit fluid. As a variant, said two exchangers can be used to heat a fluid, gas or liquid, to two different temperature levels.

Selon une caractéristique avantageuse de l'invention, ledit circuit comprend un réservoir, appelé bouteille anti-coup de liquide, positionné entre le compresseur et le raccord des deuxièmes voies des dispositifs de gestion.According to an advantageous characteristic of the invention, said circuit comprises a reservoir, called an anti-blow bottle of liquid, positioned between the compressor and the connection of the second channels of the management devices.

L'utilisation d'une bouteille anti-coup de liquide ainsi positionnée en amont du compresseur permet de s'assurer que le compresseur soit bien alimenté en fluide à l'état vapeur et non pas à l'état liquide. Un éventuel fluide à l'état liquide entrant dans la bouteille serait piégé dans la bouteille puis naturellement vaporisé avant aspiration par le compresseur.The use of an anti-blow bottle of liquid thus positioned upstream of the compressor makes it possible to ensure that the compressor is indeed supplied with fluid in the vapor state and not in the liquid state. Any fluid in the liquid state entering the bottle would be trapped in the bottle and then naturally vaporized before suction by the compressor.

L'invention concerne aussi une installation comprenant un circuit frigorifique tel que décrit ci-dessus, caractérisée en ce que, l'échangeur condenseur comprenant un circuit de transfert de chaleur, ladite installation comporte un circuit de chauffage qui comprend ledit circuit de transfert de l'échangeur condenseur, une pompe de circulation, et de préférence un réservoir de stockage de fluide, appelé ballon d'eau chaude,
et en ce que, l'échangeur évaporateur comprenant un circuit de transfert de chaleur, ladite installation comporte un circuit de refroidissement qui comprend ledit circuit de transfert de l'échangeur évaporateur, une pompe de circulation, et de préférence un réservoir de stockage de fluide, appelé ballon de fluide froid.
The invention also relates to an installation comprising a refrigeration circuit as described above, characterized in that, the condenser exchanger comprising a heat transfer circuit, said installation comprises a heating circuit which comprises said heat transfer circuit. 'condenser exchanger, a circulation pump, and preferably a fluid storage tank, called a hot water tank,
and in that, the evaporator exchanger comprising a heat transfer circuit, said installation comprises a cooling circuit which comprises said evaporator exchanger transfer circuit, a circulation pump, and preferably a fluid storage tank , called cold fluid balloon.

Selon une caractéristique avantageuse de l'invention, l'échangeur sous-refroidisseur comprenant un deuxième circuit de transfert, ledit deuxième circuit de transfert de l'échangeur sous-refroidisseur est monté sur le circuit de refroidissement en dérivation du circuit de transfert de l'échangeur évaporateur.According to an advantageous characteristic of the invention, the sub-cooler exchanger comprising a second transfer circuit, said second transfer circuit of the sub-cooler exchanger is mounted on the cooling circuit bypassing the transfer circuit of the evaporator exchanger.

En particulier, une première électrovanne est positionnée entre l'entrée du circuit de transfert de l'échangeur évaporateur et le raccordement de l'entrée du deuxième circuit de transfert de l'échangeur sous-refroidisseur au circuit de refroidissement. De même, une deuxième électrovanne est positionnée entre l'entrée du deuxième circuit de transfert de l'échangeur sous-refroidisseur et le raccordement de cette entrée du deuxième circuit de transfert de l'échangeur sous-refroidisseur au circuit de refroidissement.In particular, a first solenoid valve is positioned between the inlet of the transfer circuit of the evaporator exchanger and the connection of the inlet of the second transfer circuit of the sub-cooler exchanger to the cooling circuit. Likewise, a second solenoid valve is positioned between the inlet of the second transfer circuit of the sub-cooler exchanger and the connection of this inlet of the second transfer circuit of the sub-cooler exchanger to the cooling circuit.

Une telle disposition d'électrovanne permet de commander le passage de fluide du circuit de refroidissement par l'échangeur sous-refroidisseur ou par l'échangeur évaporateur.Such a solenoid valve arrangement makes it possible to control the passage of fluid from the cooling circuit through the sub-cooler exchanger or through the evaporator exchanger.

Selon une caractéristique avantageuse de l'invention, l'installation comporte une unité de pilotage comprenant des moyens de commande pour commander l'arrêt et la marche de chacune des pompes de circulation, indépendamment les unes des autres, et deAccording to an advantageous characteristic of the invention, the installation comprises a control unit comprising control means for controlling the stopping and running of each of the circulation pumps, independently of one another, and of

commander les différents composants de l'installation pour obtenir le mode de fonctionnement souhaité, et notamment :

  • le positionnement du tiroir du premier ou deuxième dispositif de gestion de fluide en première ou deuxième position ;
  • la mise en marche ou arrêt du ventilateur de l'échangeur d'équilibrage ;
  • la mise en marche ou arrêt de la pompe du circuit de chauffage ;
  • la mise en marche ou arrêt de la pompe du circuit de refroidissement ;
  • la mise en marche ou arrêt de la pompe du circuit de production d'ECS ;
  • la commande de l'électrovanne en entrée de l'échangeur sous-refroidisseur ;
  • la commande de l'électrovanne en entrée de l'échangeur évaporateur.
order the various components of the installation to obtain the desired operating mode, and in particular:
  • positioning the slide of the first or second fluid management device in the first or second position;
  • the switching on or off of the balancing exchanger fan;
  • switching the heating circuit pump on or off;
  • switching on or off the cooling circuit pump;
  • the starting or stopping of the pump of the DHW production circuit;
  • control of the solenoid valve at the inlet of the sub-cooler exchanger;
  • control of the solenoid valve at the inlet of the evaporator exchanger.

Selon une caractéristique avantageuse de l'invention, l'installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode chauffage, comprenant les étapes suivantes :

  • pour chacun des premier et deuxième dispositifs de gestion, mise en communication de la quatrième voie avec la première voie ;
  • activation de la pompe du circuit de chauffage,
  • de préférence activation du ventilateur associé à l'échangeur d'équilibrage.
According to an advantageous characteristic of the invention, the installation comprises a control unit configured to execute a sequence of instructions, called heating mode, comprising the following steps:
  • for each of the first and second management devices, placing the fourth channel in communication with the first channel;
  • activation of the heating circuit pump,
  • preferably activation of the fan associated with the balancing exchanger.

Selon une caractéristique avantageuse de l'invention, l'installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode simultané, comprenant les étapes suivantes :

  • pour le premier dispositif de gestion, mise en communication de la première voie avec la quatrième voie ;
  • pour le deuxième dispositif de gestion, mise en communication de la première voie avec la troisième voie ;
  • activation de la pompe du circuit de chauffage et de la pompe du circuit de refroidissement.
According to an advantageous characteristic of the invention, the installation comprises a control unit configured to execute a sequence of instructions, called simultaneous mode, comprising the following steps:
  • for the first management device, placing the first channel in communication with the fourth channel;
  • for the second management device, placing the first channel in communication with the third channel;
  • activation of the heating circuit pump and the cooling circuit pump.

Selon une caractéristique avantageuse de l'invention, l'installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode de stockage d'énergie, comprenant les étapes suivantes :

  • en mode chauffage, activer la pompe du circuit de refroidissement et commander les électrovannes de manière à laisser circuler le fluide du circuit de refroidissement à travers le deuxième circuit de transfert de l'échangeur sous-refroidisseur, et le ballon correspondant.
According to an advantageous characteristic of the invention, the installation comprises a control unit configured to execute a sequence of instructions, called energy storage mode, comprising the following steps:
  • in heating mode, activate the cooling circuit pump and control the solenoid valves so as to allow the cooling circuit fluid to circulate through the second transfer circuit of the sub-cooler exchanger, and the corresponding tank.

Selon une caractéristique avantageuse de l'invention, l'unité de pilotage est configurée pour exécuter une séquence d'instructions, appelée mode d'utilisation de l'énergie stockée sur le circuit de refroidissement, qui comprend les étapes suivantes ; en temps différé et dans un mode de fonctionnement de l'installation correspondant au mode simultané ou au mode rafraichissement de préférence sans ventilation, activer la pompe du circuit de refroidissement et commander les électrovannes de manière à laisser circuler le fluide chaud contenu dans le ballon du circuit de refroidissement à travers le circuit de transfert de l'échangeur évaporateur.According to an advantageous characteristic of the invention, the control unit is configured to execute a sequence of instructions, called mode of use of the energy stored on the cooling circuit, which comprises the following steps; in deferred time and in an operating mode the installation corresponding to the simultaneous mode or to the cooling mode preferably without ventilation, activate the cooling circuit pump and control the solenoid valves so as to let the hot fluid contained in the cooling circuit tank circulate through the cooling circuit the evaporator exchanger.

Selon une caractéristique avantageuse de l'invention, l'installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode rafraichissement, comprenant les étapes suivantes :

  • pour chaque dispositif de gestion, mise en communication de la première voie avec la troisième voie ;
  • activation de la pompe du circuit de refroidissement,
  • de préférence activation du ventilateur associé à l'échangeur d'équilibrage.
According to an advantageous characteristic of the invention, the installation comprises a control unit configured to execute a sequence of instructions, called refresh mode, comprising the following steps:
  • for each management device, placing the first channel in communication with the third channel;
  • activation of the cooling circuit pump,
  • preferably activation of the fan associated with the balancing exchanger.

Selon une caractéristique avantageuse de l'invention, ledit circuit de chauffage étant un circuit de chauffage d'eau chaude sanitaire, appelé circuit ECS, ladite installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode ECS simultané, comprenant les étapes suivantes :

  • pour le premier dispositif de gestion mise en communication de la première voie avec la quatrième voie ;
  • pour le deuxième dispositif de gestion mise en communication de la première voie avec la troisième voie ;
  • activation de la pompe du circuit ECS et de la pompe du circuit de refroidissement.
According to an advantageous characteristic of the invention, said heating circuit being a domestic hot water heating circuit, called DHW circuit, said installation comprises a control unit configured to execute a sequence of instructions, called simultaneous DHW mode, comprising the following steps:
  • for the first management device placing the first channel in communication with the fourth channel;
  • for the second management device placing the first channel in communication with the third channel;
  • activation of the DHW circuit pump and the cooling circuit pump.

Selon une caractéristique avantageuse de l'invention, ledit circuit de chauffage étant un circuit de chauffage d'eau chaude sanitaire, appelé circuit ECS, ladite installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode ECS seul, comprenant les étapes suivantes :

  • pour chaque dispositif de gestion, mise en communication de la première voie avec la quatrième voie ;
  • activation de la pompe du circuit ECS et de préférence du ventilateur associé à l'échangeur d'équilibrage.
According to an advantageous characteristic of the invention, said heating circuit being a domestic hot water heating circuit, called DHW circuit, said installation comprises a control unit configured to execute a sequence of instructions, called DHW only mode, comprising the following steps:
  • for each management device, communication of the first channel with the fourth way;
  • activation of the DHW circuit pump and preferably of the fan associated with the balancing exchanger.

Selon une caractéristique avantageuse de l'invention, l'installation comporte une unité de pilotage configurée pour exécuter une séquence d'instructions, appelée mode dégivrage, comprenant les étapes suivantes :

  • pour chaque dispositif de gestion, mise en communication de la première voie avec la troisième voie ;
  • les électrovannes sont commandées de manière à empêcher la circulation de fluide du circuit de refroidissement par le deuxième circuit de transfert de l'échangeur sous-refroidisseur et à permettre la circulation dudit fluide par le circuit de transfert de l'échangeur évaporateur,
  • activation de la pompe du circuit de refroidissement,
  • de préférence, arrêt du ventilateur associé à l'échangeur d'équilibrage.
According to an advantageous characteristic of the invention, the installation comprises a control unit configured to execute a sequence of instructions, called defrost mode, comprising the following steps:
  • for each management device, placing the first channel in communication with the third channel;
  • the solenoid valves are controlled so as to prevent the circulation of fluid from the cooling circuit through the second transfer circuit of the sub-cooler exchanger and to allow the circulation of said fluid through the transfer circuit of the evaporator exchanger,
  • activation of the cooling circuit pump,
  • preferably, stopping the fan associated with the balancing exchanger.

Lors d'un fonctionnement en mode chauffage, l'échangeur d'équilibrage fonctionne comme évaporateur. Lorsque les températures extérieures sont inférieures à environ 6°C (et particulièrement lorsqu'elles sont comprises entre 0°C et 6°C), l'accumulation de givre sur l'échangeur d'équilibrage dégrade sensiblement les performances de l'installation. De ce fait, il est utile d'inclure un système de dégivrage performant afin d'assurer une efficacité énergétique élevée et de préférence une production d'eau chaude continue. La méthode de dégivrage utilisée s'apparente à une inversion de cycle comme moyen d'élimination du givre de l'échangeur d'équilibrage. En effet, l'échangeur d'équilibrage fonctionne de manière alternée soit en évaporateur soit en condenseur. Cela permet, lors d'un passage en mode dégivrage, d'injecter directement les gaz chauds au refoulement du compresseur dans l'échangeur à air. Dans cette séquence, l'échangeur évaporateur est relié au ballon de fluide froid qui a précédemment stocké du fluide chaud. On utilise alors l'énergie précédemment récupérée et stockée dans le ballon de fluide froid pour assurer l'évaporation du fluide frigorigène. Cette méthode de dégivrage permet de ne pas puiser d'énergie dans le ballon de chauffage et constitue en cela un avantage par rapport à l'état de l'art. En effet, des calculs issus de mesure expérimentale démontrent que le rendement (COP) saisonnier est amélioré de 13% du fait de cette solution de dégivrage.When operating in heating mode, the balancing exchanger operates as an evaporator. When the outside temperatures are below approximately 6 ° C (and particularly when they are between 0 ° C and 6 ° C), the accumulation of frost on the balancing exchanger significantly degrades the performance of the installation. Therefore, it is useful to include an efficient defrost system in order to ensure high energy efficiency and preferably continuous hot water production. The defrosting method used is similar to a cycle reversal as a means of removing frost from the balancing exchanger. In fact, the balancing exchanger operates alternately either as an evaporator or as a condenser. This makes it possible, when switching to defrost mode, to directly inject the hot gases at the compressor discharge into the air exchanger. In this sequence, the evaporator exchanger is connected to the cold fluid tank which has previously stored hot fluid. The energy previously recovered and stored in the cold fluid tank is then used to ensure the evaporation of the refrigerant. This method of defrosting makes it possible not to draw energy from the heating tank and in this respect constitutes an advantage over the state of the art. Indeed, calculations resulting from experimental measurement demonstrate that the seasonal efficiency (COP) is improved by 13% due to this defrost solution.

En mode dégivrage, la logique de fonctionnement de l'installation correspond à un fonctionnement du circuit frigorifique en mode rafraîchissement de préférence sans ventilation. L'arrêt du ventilateur permet d'orienter davantage le transfert de chaleur vers la couche de givre et d'économiser de l'énergie électrique.In defrost mode, the operating logic of the installation corresponds to operation of the refrigeration circuit in cooling mode, preferably without ventilation. Turning off the fan helps to direct the heat transfer more towards the frost layer and saves electrical energy.

L'invention concerne aussi un procédé de chauffage et/ou de refroidissement de fluides à l'aide d'une installation telle que décrite ci-dessus.The invention also relates to a method for heating and / or cooling fluids using an installation as described above.

L'invention sera bien comprise à la lecture de la description suivante d'exemples de réalisation, en référence aux dessins annexés dans lesquels :

  • la figure 1 est une vue schématique de l'installation selon l'invention couplée à un ensemble de réseaux de distribution de fluide ;
  • la figure 2 est une vue du système de récupération de fluide chaud de l'installation selon l'invention, en configuration de stockage de fluide chaud dans un ballon ;
  • la figure 2A est une vue du système de récupération de fluide chaud de l'installation selon l'invention, en configuration de circulation du fluide chaud, précédemment stocké, à travers l'échangeur évaporateur ;
  • la figure 3 est une vue schématique de l'architecture du circuit frigorifique de l'installation selon l'invention ;
  • la figure 4 est une vue du circuit frigorifique de la figure 3 selon un premier mode de fonctionnement, appelé mode chauffage ;
  • la figure 5 est une vue du circuit frigorifique de la figure 3 selon un deuxième mode de fonctionnement, appelé mode simultané ;
  • la figure 6 est une vue du circuit frigorifique de la figure 3 selon un troisième mode de fonctionnement, appelé mode rafraichissement ;
  • la figure 7 est une vue du circuit frigorifique de la figure 3 selon un quatrième mode de fonctionnement, appelé mode ECS simultané;
  • la figure 8 est une vue du circuit frigorifique de la figure 3 selon un cinquième mode de fonctionnement, appelé mode ECS;
  • la figure 9 est une vue du circuit frigorifique de la figure 3 selon un sixième mode de fonctionnement, appelé mode dégivrage;
  • la figure 10 est une vue schématique de l'installation selon l'invention, montrant des sondes de mesure associées à différents composants de l'installation ;
  • les figures 11 à 13 présentent des schémas logiques basés sur des thermostats différentiels et comparateurs logiques exprimant des besoins en chauffage, rafraîchissement et eau chaude sanitaire et dégivrage ;
  • les figures 14 à 16 sont des graphiques illustrant des essais de performance réalisés sur un prototype de thermofrigopompe conforme à l'invention.
The invention will be clearly understood on reading the following description of exemplary embodiments, with reference to the appended drawings in which:
  • the figure 1 is a schematic view of the installation according to the invention coupled to a set of fluid distribution networks;
  • the figure 2 is a view of the hot fluid recovery system of the installation according to the invention, in hot fluid storage configuration in a balloon;
  • the figure 2A is a view of the hot fluid recovery system of the installation according to the invention, in the circulation configuration of the hot fluid, previously stored, through the evaporator exchanger;
  • the figure 3 is a schematic view of the architecture of the refrigeration circuit of the installation according to the invention;
  • the figure 4 is a view of the refrigeration circuit of the figure 3 according to a first operating mode, called heating mode;
  • the figure 5 is a view of the refrigeration circuit of the figure 3 according to a second operating mode, called simultaneous mode;
  • the figure 6 is a view of the refrigeration circuit of the figure 3 according to a third operating mode, called refresh mode;
  • the figure 7 is a view of the refrigeration circuit of the figure 3 according to a fourth operating mode, called simultaneous DHW mode;
  • the figure 8 is a view of the refrigeration circuit of the figure 3 according to a fifth operating mode, called DHW mode;
  • the figure 9 is a view of the refrigeration circuit of the figure 3 according to a sixth operating mode, called defrost mode;
  • the figure 10 is a schematic view of the installation according to the invention, showing measurement probes associated with different components of the installation;
  • the figures 11 to 13 present logic diagrams based on differential thermostats and logic comparators expressing heating, cooling and domestic hot water and defrost needs;
  • the figures 14 to 16 are graphs illustrating performance tests carried out on a prototype heat pump according to the invention.

En référence aux figures, on a représenté une installation, appelée thermofrigopompe 1, pour le chauffage et le refroidissement de fluides, par exemple dans un bâtiment résidentiel ou tertiaire. Bien entendu, des applications industrielles d'une telle installation sont aussi envisageables. Dans l'exemple illustré aux figures et comme détaillé ci-après, ladite installation permet de chauffer le fluide d'un circuit de chauffage, de produire de l'eau chaude sanitaire (ECS), et de refroidir le fluide d'un circuit de refroidissement de type climatisation. Grâce à l'architecture détaillée ci-après de l'installation, ces fonctionnalités peuvent être activées simultanément ou indépendamment.Referring to the figures, there is shown an installation, called thermofrigopompe 1, for heating and cooling fluids, for example in a residential or tertiary building. Of course, industrial applications of such an installation are also possible. In the example illustrated in the figures and as detailed below, said installation makes it possible to heat the fluid of a heating circuit, to produce domestic hot water (DHW), and to cool the fluid of a heating circuit. air conditioning type cooling. Thanks to the architecture detailed below of the installation, these functions can be activated simultaneously or independently.

Ladite installation comporte un circuit frigorifique 2 à fluide frigorigène qui comprend un compresseur 200. Ledit compresseur 200 permet de comprimer de la vapeur de fluide frigorigène. Préférentiellement, ladite installation comprend un réservoir 201 appelé bouteille anti-coup de liquide.Said installation comprises a refrigerant circuit 2 with refrigerant fluid which comprises a compressor 200. Said compressor 200 makes it possible to compress refrigerant vapor. Preferably, said installation comprises a reservoir 201 called an anti-blow bottle of liquid.

Ladite bouteille 201 anti-coup de liquide présente une entrée et une sortie raccordée à l'entrée du compresseur 200. Ladite bouteille 201 anti-coup de liquide est configurée de telle sorte que le fluide sortant de ladite bouteille est à l'état de vapeur même si une partie du fluide entrant contient des gouttes de liquide.Said anti-blow liquid bottle 201 has an inlet and an outlet connected to the inlet of the compressor 200. Said anti-blow liquid bottle 201 is configured such that the fluid leaving said bottle is in the vapor state. even if some of the incoming fluid contains drops of liquid.

Le circuit frigorifique 2 comprend aussi un échangeur 21, appelé échangeur ECS, qui comprend un circuit condenseur, c'est-à-dire un circuit apte à assurer la condensation du fluide frigorigène, et un circuit, appelé circuit de transfert raccordé à un circuit 31 de production d'eau chaude sanitaire, appelé circuit ECS 31 pour permettre, par transfert de chaleur depuis le circuit condenseur vers le circuit de transfert dudit échangeur 21, de chauffer l'eau dudit circuit ECS 31. En variante, on peut prévoir que le circuit 31 contienne un fluide qui peut être un gaz ou un liquide destiné à être amené à haute température, c'est-à-dire à au moins 55°C.The refrigeration circuit 2 also comprises an exchanger 21, called the DHW exchanger, which comprises a condenser circuit, that is to say a circuit capable of ensuring the condensation of the refrigerant, and a circuit, called a transfer circuit connected to a circuit. 31 for producing domestic hot water, called DHW circuit 31 to allow, by heat transfer from the condenser circuit to the transfer circuit of said exchanger 21, to heat the water of said DHW circuit 31. As a variant, provision can be made that the circuit 31 contains a fluid which may be a gas or a liquid intended to be brought to high temperature, that is to say to at least 55 ° C.

Ledit circuit ECS 31 comprend ledit circuit de transfert de l'échangeur ECS 21, une pompe 310 de circulation, et de préférence un réservoir de stockage de fluide, appelé ballon 311 d'eau chaude sanitaire.Said DHW circuit 31 comprises said transfer circuit of the ECS exchanger 21, a circulation pump 310, and preferably a fluid storage tank, called a domestic hot water tank 311.

De manière similaire, le circuit frigorifique 2 comprend aussi un échangeur 22, appelé échangeur de chauffage, qui comprend un circuit condenseur, c'est-à-dire un circuit apte à assurer la condensation du fluide frigorigène, et un circuit, appelé circuit de transfert, raccordé à un circuit 32 de chauffage pour permettre, par transfert de chaleur depuis le circuit condenseur vers le circuit de transfert dudit échangeur 22, de chauffer le fluide dudit circuit de chauffage 32. Le fluide peut être un gaz ou un liquide.Similarly, the refrigeration circuit 2 also comprises an exchanger 22, called heating exchanger, which comprises a condenser circuit, that is to say a circuit capable of condensing the refrigerant, and a circuit, called transfer circuit, connected to a heating circuit 32 to allow, by transfer of heat from the condenser circuit to the transfer circuit of said exchanger 22, to heat the fluid of said heating circuit 32. The fluid can be a gas or a liquid.

Ledit circuit 32 de chauffage comprend ledit circuit de transfert de l'échangeur 22 de chauffage, une pompe 320 de circulation, et de préférence un réservoir de stockage de fluide, appelé ballon 321 d'eau chaude.Said heating circuit 32 comprises said transfer circuit of the heating exchanger 22, a circulation pump 320, and preferably a fluid storage tank, called a hot water tank 321.

Les échangeurs 21, 22 sont disposés en série sur une même branche du circuit frigorifique. L'échangeur 21 est positionné en amont de l'échangeur 22.The exchangers 21, 22 are arranged in series on the same branch of the refrigeration circuit. The exchanger 21 is positioned upstream of the exchanger 22.

Une autre branche du circuit frigorifique comprend aussi un échangeur 25, appelé échangeur d'équilibrage, qui comprend un circuit, appelé circuit condenseur/évaporateur, apte à fonctionner soit en condenseur soit en évaporateur suivant le mode de fonctionnement de l'installation comme détaillé ci-après.Another branch of the refrigeration circuit also comprises an exchanger 25, called a balancing exchanger, which comprises a circuit, called a condenser / evaporator circuit, able to operate either as a condenser or as an evaporator depending on the operating mode of the installation as detailed below. -after.

Dans l'exemple illustré aux figures, l'échangeur 25 d'équilibrage fonctionne par échange de chaleur entre ledit le fluide parcourant le circuit condenseur/évaporateur et de l'air. Préférentiellement, un ventilateur est agencé avec l'échangeur 25 pour générer un mouvement de convection forcée autour de l'échangeur 25 d'équilibrage. En variante, on peut prévoir que le milieu avec lequel échange le circuit condenseur/évaporateur dudit échangeur 25 d'équilibrage soit un autre circuit de fluide formant circuit de transfert de chaleur.In the example illustrated in the figures, the balancing exchanger 25 operates by heat exchange between said fluid flowing through the condenser / evaporator circuit and air. Preferably, a fan is arranged with the exchanger 25 to generate a forced convection movement around the balancing exchanger 25. As a variant, provision can be made for the medium with which the condenser / evaporator circuit of said balancing exchanger exchanges to be another fluid circuit forming a heat transfer circuit.

Ledit circuit frigorifique 2 présente un premier nœud de liaison NL1 entre la branche du circuit frigorifique 2 munie des échangeurs 21, 22 ECS et de chauffage et la branche du circuit frigorifique 2 munie de l'échangeur 25 d'équilibrage. Ledit nœud de liaison NL1 est situé du côté de la sortie de l'échangeur 22.Said refrigeration circuit 2 has a first link node NL1 between the branch of the refrigeration circuit 2 provided with exchangers 21, 22 DHW and heating and the branch of the refrigeration circuit 2 provided with the exchanger 25 balancing. Said link node NL1 is located on the outlet side of exchanger 22.

Le circuit comprend un échangeur 23, appelé échangeur évaporateur, qui présente un circuit évaporateur, c'est-à-dire un circuit apte à vaporiser le fluide frigorigène, dont la sortie est raccordée à l'entrée de la bouteille 201 anti-coup de liquide, et un circuit de transfert raccordé à un circuit de refroidissement 33, pour permettre par transfert de chaleur depuis le circuit de transfert vers le circuit évaporateur dudit échangeur 23 évaporateur, de refroidir le fluide dudit circuit de refroidissement 33. Ledit fluide du circuit de refroidissement 33 peut être un gaz ou un liquide.The circuit comprises an exchanger 23, called an evaporator exchanger, which has an evaporator circuit, that is to say a circuit capable of vaporizing the refrigerant, the outlet of which is connected to the inlet of the anti-shock bottle 201. liquid, and a transfer circuit connected to a cooling circuit 33, to allow, by heat transfer from the transfer circuit to the evaporator circuit of said evaporator exchanger 23, to cool the fluid of said cooling circuit 33. Said fluid of the cooling circuit cooling 33 can be a gas or a liquid.

Ledit circuit de refroidissement 33 comprend ledit circuit de transfert de l'échangeur 23 évaporateur, une pompe 330 de circulation, et de préférence un réservoir de stockage de fluide, appelé ballon 331 de fluide froid.Said cooling circuit 33 comprises said evaporator exchanger transfer circuit 23, a circulation pump 330, and preferably a fluid storage tank, called a cold fluid balloon 331.

La présence des ballons 311, 321, 331 permet de découpler la production de fluide froid et de fluide chaud, par rapport à la distribution vers les réseaux 4 correspondants.The presence of the balloons 311, 321, 331 makes it possible to decouple the production of cold fluid and of hot fluid, from the distribution to the corresponding networks 4.

Pour chaque circuit 31, 32, 33, la pompe de circulation 310, 320, 330 correspondante est placée entre l'échangeur 21, 22, 23 et le ballon 311, 321, 331 correspondant.For each circuit 31, 32, 33, the corresponding circulation pump 310, 320, 330 is placed between the exchanger 21, 22, 23 and the corresponding tank 311, 321, 331.

La thermofrigopompe 1 comprend ainsi deux ensembles :

  • Le circuit frigorifique 2 qui permet la production de l'énergie calorifique ou frigorifique simultanée ou alternée,
  • l'ensemble des circuits hydrauliques 31, 32, 33 reliés aux différents réseaux 4 de distribution, ici un réseau de fluide froid, un réseau d'eau chaude et un réseau d'eau chaude sanitaire.
The heat pump 1 thus comprises two sets:
  • The refrigeration circuit 2 which allows the production of heat or cooling simultaneously or alternately,
  • all the hydraulic circuits 31, 32, 33 connected to the various distribution networks 4, here a cold fluid network, a hot water network and a domestic hot water network.

Un premier dispositif 51 de gestion de fluide permet de diriger et/ou arrêter la circulation de fluide entre les composants, en particulier les échangeurs, du circuit frigorifique. Ledit premier dispositif 51 de gestion de fluide comprend quatre voies, dont :

  • une première voie, appelée voie d'entrée 511, raccordée à la sortie du compresseur 200,
  • une deuxième voie, appelée voie basse pression 512, raccordée à l'entrée de la bouteille 201 anti-coup de liquide, c'est-à-dire raccordée à une partie basse pression du circuit frigorifique 2,
  • une troisième voie 513 est raccordée au circuit condenseur/évaporateur de l'échangeur 25 d'équilibrage du côté dudit échangeur opposé au premier nœud de liaison NL1 ; et
  • une quatrième voie 514 est raccordée à l'entrée du circuit condenseur dudit échangeur 21 de chauffage.
A first fluid management device 51 makes it possible to direct and / or stop the circulation of fluid between the components, in particular the exchangers, of the refrigeration circuit. Said first fluid management device 51 comprises four channels, including:
  • a first channel, called the input channel 511, connected to the output of the compressor 200,
  • a second channel, called the low pressure channel 512, connected to the inlet of the anti-liquid shock bottle 201, that is to say connected to a low pressure part of the refrigeration circuit 2,
  • a third channel 513 is connected to the condenser / evaporator circuit of the balancing exchanger 25 on the side of said exchanger opposite to the first link node NL1; and
  • a fourth channel 514 is connected to the input of the condenser circuit of said heating exchanger 21.

Ledit circuit frigorifique comprend aussi un deuxième dispositif 52 de gestion de fluide comprenant aussi quatre voies, dont une première voie, appelée voie d'entrée 521, raccordée audit premier nœud de liaison NL1 par l'intermédiaire d'une bouteille de liquide 202. Comme détaillé ci-après, le raccord entre cette voie d'entrée 521 et le premier nœud de liaison NL1 est réalisé par l'intermédiaire d'un échangeur 24 sous-refroidisseur. Une deuxième voie, appelée voie basse pression 522, est raccordée à l'entrée de la bouteille 201 anti-coup de liquide, correspondant à une partie basse pression du circuit frigorifique 2. Une troisième voie 523 est raccordée à l'entrée de l'échangeur 23 évaporateur, et une quatrième voie 524 est raccordée à l'échangeur 25 d'équilibrage, entre le premier de nœud de liaison NL1 et l'échangeur 25 d'équilibrage, via un nœud NL3.Said refrigeration circuit also comprises a second fluid management device 52 also comprising four channels, including a first channel, called the inlet channel 521, connected to said first link node NL1 by means of a liquid bottle 202. As detailed below, the connection between this input channel 521 and the first link node NL1 is made by means of a sub-cooler exchanger 24. A second channel, called the low-pressure channel 522, is connected to the inlet of the anti-liquid shock bottle 201, corresponding to a low pressure part of the refrigeration circuit 2. A third channel 523 is connected to the inlet of the liquid. evaporator exchanger 23, and a fourth channel 524 is connected to balancing exchanger 25, between the first link node NL1 and balancing exchanger 25, via a node NL3.

Chaque dispositif de gestion de fluide 51, 52 est une vanne 4-voies qui comprend un organe, appelé tiroir, déplaçable entre une première position et une deuxième position. Dans ladite première position la voie d'entrée 511, 521 est mise en communication avec la troisième voie 513, 523, la deuxième voie 512, 522 étant mise en communication avec la quatrième voie 514, 524. Dans ladite deuxième position, la voie d'entrée 511, 521 est mise en communication avec la quatrième voie 514, 524, la deuxième voie 512, 522 étant mise en communication avec la troisième voie 513, 523.Each fluid management device 51, 52 is a 4-way valve which comprises a member, called a slide, movable between a first position and a second position. In said first position, the input channel 511, 521 is placed in communication with the third channel 513, 523, the second channel 512, 522 being placed in communication with the fourth channel 514, 524. In said second position, the input channel 511, 521 is placed in communication with the fourth channel 514, 524, the second channel 512, 522 being placed in communication with the third channel 513, 523.

Ledit circuit frigorifique comprend aussi un premier détendeur 203 situé entre la troisième voie 523 de la vanne 52 et l'échangeur 23 évaporateur, et un deuxième détendeur 205 situé entre la quatrième voie 524 de la vanne 52 et l'échangeur 25 d'équilibrage.Said refrigeration circuit also comprises a first expansion valve 203 located between the third channel 523 of the valve 52 and the evaporator exchanger 23, and a second expansion valve 205 located between the fourth channel 524 of the valve 52 and the balancing exchanger 25.

Ladite bouteille de liquide 202 est un réservoir agencé sur une branche du circuit frigorifique définie entre le nœud de liaison NL1 et la voie d'entrée 521 du deuxième dispositif 52 de gestion. La bouteille 202 de liquide est placée sur la ligne liquide pour optimiser la charge en fluide frigorigène circulant dans le circuit frigorifique dans tous les modes de fonctionnement. Dans l'exemple illustré aux figures, l'échangeur sous-refroidisseur 24 (détaillé ci-après) est situé sur cette branche du circuit en aval de la bouteille 202.Said liquid bottle 202 is a reservoir arranged on a branch of the refrigeration circuit defined between the link node NL1 and the inlet path 521 of the second management device 52. The liquid bottle 202 is placed on the liquid line to optimize the refrigerant charge circulating in the refrigeration circuit in all the operating modes. In the example illustrated in the figures, the sub-cooler exchanger 24 (detailed below) is located on this branch of the circuit downstream of the bottle 202.

La bouteille de liquide 202 est configurée pour piéger le fluide à l'état vapeur qui arrive à ce niveau du circuit frigorifique, c'est-à-dire le fluide présent dans la partie haute pression du circuit en amont de la vanne 4-voies 52, de sorte que l'on s'assure que le fluide qui passe à travers le ou les détendeurs 203, 205 est bien en phase liquide afin d'obtenir un fonctionnement efficace de l'installation.The liquid bottle 202 is configured to trap the fluid in the vapor state which arrives at this level of the refrigeration circuit, that is to say the fluid present in the high pressure part of the circuit upstream of the 4-way valve. 52, so that it is ensured that the fluid which passes through the expansion valve (s) 203, 205 is indeed in the liquid phase in order to obtain efficient operation of the installation.

Ladite bouteille de liquide 202 contient en pratique un mélange liquide-vapeur de fluide frigorigène. Une séparation des phases liquide et vapeur s'effectue par gravité. La sortie de cette bouteille de liquide 202 puise du fluide frigorigène en partie basse du réservoir qui contient du fluide frigorigène à l'état liquide.Said liquid bottle 202 in practice contains a liquid-vapor mixture of refrigerant. The liquid and vapor phases are separated by gravity. The outlet of this liquid bottle 202 draws refrigerant from the lower part of the reservoir which contains refrigerant in the liquid state.

L'échangeur 24 sous-refroidisseur comprend un premier circuit de transfert formant partie du circuit frigorifique 2 et disposé entre la voie d'entrée 521 de la vanne 52 et la bouteille de liquide 202. L'échangeur 24 sous-refroidisseur comprend aussi un deuxième circuit de transfert permettant au fluide qui le traverse de récupérer de la chaleur du fluide traversant le premier circuit de transfert dudit échangeur 24. Ledit deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur est monté sur le circuit de refroidissement 33 en dérivation du circuit de transfert de l'échangeur 23 évaporateur.The sub-cooler exchanger 24 comprises a first transfer circuit forming part of the refrigerating circuit 2 and arranged between the inlet passage 521 of the valve 52 and the liquid bottle 202. The sub-cooler exchanger 24 also comprises a second transfer circuit allowing the fluid which passes through it to recover heat from the fluid passing through the first transfer circuit of said exchanger 24. Said second circuit transfer of the sub-cooler exchanger 24 is mounted on the cooling circuit 33 bypassing the transfer circuit of the evaporator exchanger 23.

Une première électrovanne 333 est positionnée entre l'entrée du circuit de transfert de l'échangeur 23 évaporateur et le raccordement de l'entrée du circuit de récupération de l'échangeur 24 sous-refroidisseur sur le circuit de refroidissement 33. Une deuxième électrovanne 334 est positionnée entre l'entrée du deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur et le raccordement de cette entrée du deuxième circuit de transfert sur le circuit de refroidissement 33. Lesdites électrovannes permettent de définir le chemin parcouru par le liquide dans le circuit de refroidissement 33.A first solenoid valve 333 is positioned between the inlet of the transfer circuit of the evaporator exchanger 23 and the connection of the inlet of the recovery circuit of the sub-cooler exchanger 24 on the cooling circuit 33. A second solenoid valve 334 is positioned between the inlet of the second transfer circuit of the sub-cooler exchanger 24 and the connection of this inlet of the second transfer circuit to the cooling circuit 33. Said solenoid valves make it possible to define the path traveled by the liquid in the cooling circuit 33.

La présence de la bouteille 202 en amont du premier circuit de transfert de l'échangeur sous-refroidisseur 24 permet de s'assurer que le fluide qui traverse l'échangeur sous-refroidisseur 24 est à l'état liquide, ce qui, en mode de stockage d'énergie comme détaillé ci-après, permet d'assurer un bon transfert sensible de chaleur entre le premier circuit de transfert parcouru par le fluide frigorigène et le deuxième circuit de transfert parcouru par le fluide du circuit de refroidissement.The presence of the bottle 202 upstream of the first transfer circuit of the sub-cooler exchanger 24 makes it possible to ensure that the fluid which passes through the sub-cooler exchanger 24 is in the liquid state, which, in mode energy storage as detailed below, ensures a good significant transfer of heat between the first transfer circuit through which the refrigerant and the second transfer circuit through which the fluid of the cooling circuit.

Le circuit frigorifique comprend une partie basse pression et une partie haute pression. La partie basse pression correspond aux branches du circuit frigorifique parcourues par le fluide qui sont situées en aval du ou des détenteurs et en amont du compresseur. La partie haute pression correspond aux branches du circuit frigorifique parcourues par le fluide qui sont situées en amont du ou des détendeurs et en aval du compresseur.The refrigeration circuit comprises a low pressure part and a high pressure part. The low pressure part corresponds to the branches of the refrigeration circuit through which the fluid passes, which are located downstream of the holder (s) and upstream of the compressor. The high pressure part corresponds to the branches of the refrigeration circuit through which the fluid flows, which are located upstream of the expansion valve (s) and downstream of the compressor.

Comme illustré plus particulièrement à la figure 3, le circuit frigorifique 2 comprend un deuxième nœud de liaison NL2 entre l'entrée de la bouteille 201 anti-coup de liquide, la voie 512 basse pression de la vanne 51, la voie basse pression 522 de la vanne 52 et la sortie du circuit évaporateur de l'échangeur 23 évaporateur.As illustrated more particularly in figure 3 , the refrigeration circuit 2 includes a second link node NL2 between the inlet of the anti-liquid jetting bottle 201, the low pressure channel 512 of the valve 51, the low pressure channel 522 of the valve 52 and the outlet of the evaporator circuit of the exchanger 23 evaporator.

Un clapet anti-retour CAR1 est agencé entre la sortie du circuit évaporateur de l'échangeur 23 évaporateur et ledit deuxième nœud de liaison NL2 pour empêcher le fluide de rentrer dans l'échangeur 23 évaporateur par la sortie du circuit évaporateur dudit échangeur.A non-return valve CAR1 is arranged between the outlet of the evaporator circuit of the evaporator exchanger 23 and said second connection node NL2 to prevent the fluid from entering the evaporator exchanger 23 through the outlet of the evaporator circuit of said exchanger.

Un autre clapet anti-retour CAR2 est agencé entre le premier nœud de liaison NL1 et l'échangeur 22 pour empêcher une circulation de fluide depuis ledit premier nœud de liaison NL1 vers l'échangeur 22.Another non-return valve CAR2 is arranged between the first link node NL1 and the exchanger 22 to prevent a circulation of fluid from said first link node NL1 to the exchanger 22.

Un clapet anti-retour CAR3 est agencé entre, d'une part, le premier nœud de liaison NL1 et, d'autre part, un troisième nœud NL3 de liaison entre le deuxième détendeur 205 et l'échangeur d'équilibrage 25, pour empêcher une circulation de fluide depuis ledit premier nœud de liaison NL1 vers le troisième nœud NL3 de liaison et donc vers l'échangeur d'équilibrage 25.A check valve CAR3 is arranged between, on the one hand, the first link node NL1 and, on the other hand, a third link node NL3 between the second expansion valve 205 and the balancing exchanger 25, to prevent a circulation of fluid from said first link node NL1 to the third link node NL3 and therefore to the balancing exchanger 25.

Ledit circuit comprend un clapet anti-retour CAR4 agencé entre la quatrième voie 524 du deuxième dispositif de gestion 52 et le deuxième détendeur 205 pour empêcher une circulation de fluide depuis le détendeur 205 vers la quatrième voie 524 de la vanne 52.Said circuit comprises a check valve CAR4 arranged between the fourth channel 524 of the second management device 52 and the second expansion valve 205 to prevent a flow of fluid from the expansion valve 205 to the fourth channel 524 of the valve 52.

Ladite installation comporte une unité de pilotage 7 qui comprend des moyens de commande permettant de commander l'arrêt et la marche de chacune des pompes 310, 320, 330 de circulation, indépendamment les unes des autres.Said installation comprises a control unit 7 which comprises control means making it possible to control the stopping and running of each of the circulation pumps 310, 320, 330, independently of one another.

L'unité de pilotage se présente sous la forme d'un automate programmable muni d'une mémoire dans laquelle sont enregistrées notamment des valeurs seuil comme détaillé ci-après.The control unit is in the form of a programmable logic controller provided with a memory in which threshold values are recorded in particular as detailed below.

Lorsque dans la suite de la description, il est précisé que l'unité est configurée ou comprend des moyens pour réaliser une opération donnée, cela signifie que l'automate correspondant comprend des instructions permettant de réaliser ladite opération.When, in the remainder of the description, it is specified that the unit is configured or comprises means for performing a given operation, this means that the corresponding automaton includes instructions making it possible to perform said operation.

Le circuit de chauffage 32 et le circuit d'ECS 31 sont indépendants l'un de l'autre. L'activation ou l'arrêt de chacun de ces circuits est réalisé par commande de marche ou d'arrêt de la pompe de circulation du circuit correspondant.The heating circuit 32 and the DHW circuit 31 are independent of each other. The activation or stopping of each of these circuits is carried out by starting or stopping the circulation pump of the corresponding circuit.

On distingue six modes de fonctionnement détaillés ci-après : mode chauffage, mode simultané, mode rafraichissement, mode ECS simultané, mode ECS seul, et mode dégivrage. L'automate utilise une logique de contrôle commande pour le passage d'un mode à un autre en fonction des besoins.There are six operating modes detailed below: heating mode, simultaneous mode, cooling mode, simultaneous DHW mode, DHW only mode, and defrost mode. The PLC uses control logic to switch from one mode to another as needed.

L'automate programmable est configuré pour contrôler l'enclenchement des différents modes de fonctionnement selon l'évolution des besoins du bâtiment. L'automate peut comprendre des moyens de détermination des besoins utilisant des capteurs et des consignes comme détaillé ci-après. Les différents modes de fonctionnement sont détaillés ci-dessous.The programmable controller is configured to control the engagement of the various operating modes according to the evolution of the building's needs. The controller can include means for determining needs using sensors and instructions as detailed below. The different operating modes are detailed below.

Le mode chauffage est activé par l'unité de pilotage de l'installation lorsque celle-ci identifie un besoin de chauffage seul. Comme illustré à la figure 4, l'activation du mode chauffage correspond à la séquence d'instructions suivantes. Le tiroir de chaque vanne 51, 52 est situé dans la position correspondant à une mise en communication de la première voie 511,521 avec la quatrième voie 514, 524 et donc de la troisième voie 513, 523 avec la deuxième voie 512,522, de manière à connecter l'échangeur d'équilibrage 25 à la basse pression et l'échangeur 22 de chauffage au refoulement du compresseur 200. Parallèlement, la pompe 320 du circuit de chauffage 32 est activée, de même que le ventilateur associé à l'échangeur 25 d'équilibrage, tandis que la pompe du circuit ECS 31 est arrêtée.Heating mode is activated by the installation's control unit when it identifies a single heating need. As shown in figure 4 , activating heating mode corresponds to the following sequence of instructions. The slide of each valve 51, 52 is located in the position corresponding to placing the first channel 511.521 in communication with the fourth channel 514, 524 and therefore the third channel 513, 523 with the second channel 512.522, so as to connect the balancing exchanger 25 at low pressure and the heating exchanger 22 at the discharge of the compressor 200. At the same time, the pump 320 of the heating circuit 32 is activated, as is the fan associated with the exchanger 25 of balancing, while the DHW circuit pump 31 is stopped.

Ainsi, le fluide frigorigène, qui circule dans le circuit frigorifique grâce au compresseur 200, condense dans le circuit condenseur de l'échangeur 22 de chauffage pour céder sa chaleur au fluide circulant à travers le circuit de transfert dudit échangeur 22 de chauffage afin d'être stocké dans le ballon 321 du circuit de chauffage 32. L'échangeur 21 ECS se comporte comme une simple conduite. Au niveau de l'échangeur 25 d'équilibrage, le ventilateur est en marche et le fluide est vaporisé lors de son passage par le circuit évaporateur dudit échangeur 25 d'équilibrage, en prélevant de la chaleur à l'air extérieur, puis les vapeurs sont aspirées au niveau de la bouteille 201 anti-coup de liquide.Thus, the refrigerant, which circulates in the refrigeration circuit thanks to the compressor 200, condenses in the condenser circuit of the heating exchanger 22 in order to yield its heat to the fluid circulating through the transfer circuit of said heating exchanger 22 in order to be stored in the tank 321 of the heating circuit 32. The 21 DHW exchanger behaves like a simple pipe. At the level of the balancing exchanger 25, the fan is on and the fluid is vaporized as it passes through the evaporator circuit of said balancing exchanger 25, taking heat from the outside air, then the vapors. are sucked at the level of the anti-blow liquid bottle 201.

Dans ce mode de fonctionnement le fluide frigorigène ne parcourt pas le circuit évaporateur de l'échanger 23 évaporateur, mais ce dernier reste connecté à l'aspiration du compresseur 200 par une branche qui le relie à la bouteille 201 anti-coup de liquide. Comme rappelé ci-dessus, cette branche, munie du clapet anti retour CAR1, permet de récupérer la charge piégée dans l'évaporateur et de s'affranchir d'un éventuel dysfonctionnement du compresseur, lors des transitions entre modes.In this operating mode, the refrigerant does not travel through the evaporator circuit to exchange it 23 evaporator, but the latter remains connected to the suction of the compressor 200 by a branch which connects it to the anti-shock bottle 201 of liquid. As recalled above, this branch, fitted with the CAR1 non-return valve, makes it possible to recover the charge trapped in the evaporator and to overcome any compressor malfunction during transitions between modes.

Comme détaillé ci-après, le stockage d'énergie peut être activé en parallèle de ce mode chauffage. Pour ce stockage, comme illustré à la figure 2, la pompe 330 du circuit de refroidissement 33 est activée et les électrovannes 333, 334 sont en position adaptée à la circulation du fluide du circuit de refroidissement 33 par le deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur. Ainsi, le liquide qui traverse le circuit de transfert de l'échangeur 24 sous-refroidisseur cède par transfert sensible de la chaleur au fluide qui circule grâce à la pompe 330 dans le deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur afin d'être stocké dans le ballon 331. Le ballon 331 peut ainsi stocker de l'eau chaude pour une utilisation en temps différé comme expliqué ci-après.As detailed below, energy storage can be activated in parallel with this heating mode. For this storage, as shown in figure 2 , the pump 330 of the cooling circuit 33 is activated and the solenoid valves 333, 334 are in a position suitable for the circulation of the fluid of the cooling circuit 33 by the second transfer circuit of the exchanger 24 sub-cooler. Thus, the liquid which passes through the transfer circuit of the sub-cooler exchanger 24 yields by substantial transfer of heat to the fluid which circulates thanks to the pump 330 in the second transfer circuit of the sub-cooler exchanger 24 in order to 'be stored in the tank 331. The tank 331 can thus store hot water for use in deferred time as explained below.

En période de chauffage, cette installation offre ainsi la possibilité de stocker une certaine quantité d'énergie à basse température sur le circuit 33 de refroidissement à l'aide de l'échangeur 24 sous-refroidisseur. Cette énergie stockée peut être utilisée en temps différé, dans les modes simultané et/ou dégivrage, par circulation à travers l'échangeur 23 évaporateur en inversant l'ordre d'ouverture et de fermeture des deux électrovannes 333, 334 (voir figure 2A).During the heating period, this installation thus offers the possibility of storing a certain quantity of energy at low temperature on the cooling circuit 33 using the sub-cooler exchanger 24. This stored energy can be used in deferred time, in simultaneous and / or defrost modes, by circulation through the evaporator exchanger 23 by reversing the opening and closing order of the two solenoid valves 333, 334 (see figure 2A ).

Ceci permet d'améliorer les performances de l'installation dans un mode simultané par un relèvement de la température d'évaporation ou si nécessaire de dégivrer l'échangeur 25 d'équilibrage sans avoir à puiser de chaleur dans le milieu à chauffer. En effet, la logique de dégivrage de la thermofrigopompe ne puise pas d'énergie dans le ballon de chauffage et ne consomme pas d'énergie pour le ventilateur. Comme expliqué ci-dessus, le dégivrage est effectué dans un mode spécial correspondant au mode rafraîchissement sans ventilation. L'énergie utilisée pour le dégivrage provient d'un stockage d'énergie dans le ballon ce qui permet d'améliorer les performances par rapport au mode habituel par inversion de cycle selon l'état de l'art des pompes à chaleur dites « air/eau ».This makes it possible to improve the performance of the installation in a simultaneous mode by raising the evaporation temperature or if necessary to defrost the balancing exchanger without having to draw heat from the medium to be heated. Indeed, the heat pump defrost logic does not draw energy from the heating tank and does not consume energy for the fan. As explained above, defrost is carried out in a special mode corresponding to cooling mode without ventilation. The energy used for defrosting comes from energy storage in the tank, which improves performance compared to the usual mode by cycle inversion according to the state of the art of so-called "air" heat pumps. / water ”.

Comme illustré à la figure 5, un autre mode, appelé mode simultané, est activé par l'unité de pilotage lorsque celle-ci identifie un besoin de chauffage concomitant à un besoin de rafraichissement. L'unité de pilotage est alors configurée pour exécuter les étapes suivantes. Le tiroir de la vanne 51 est en position de mise en communication de la voie basse pression 512 avec la troisième voie 513 de sorte que la voie d'entrée 511 communique avec la quatrième voie 514. Il en résulte que l'entrée du circuit condenseur de l'échangeur 22 de chauffage est raccordée à la sortie de refoulement du compresseur, et que l'échangeur 25 d'équilibrage est raccordé à l'entrée de la bouteille 201. De même, le tiroir de la vanne 52 est en position de mise en communication de la voie basse pression 522 avec la quatrième voie 524 de sorte que la voie d'entrée 521 communique avec la troisième voie 523.As shown in figure 5 , another mode, called simultaneous mode, is activated by the control unit when the latter identifies a need for heating concomitant with a need for cooling. The control unit is then configured to perform the following steps. The spool of the valve 51 is in the position of placing the low pressure channel 512 in communication with the third channel 513 so that the input channel 511 communicates with the fourth channel 514. The result is that the input of the condenser circuit of the heating exchanger 22 is connected to the discharge outlet of the compressor, and that the balancing exchanger 25 is connected to the inlet of the bottle 201. Likewise, the valve spool 52 is in the position of placing the low pressure channel 522 in communication with the fourth channel 524 of so that the input channel 521 communicates with the third channel 523.

L'unité commande aussi l'activation de la pompe 320 du circuit de chauffage 32 et de la pompe 330 du circuit de refroidissement 33. La pompe 310 du circuit ECS 31 est arrêtée, de sorte que le circuit condenseur de l'échangeur 21 ECS se comporte comme une simple conduite.The unit also controls the activation of the pump 320 of the heating circuit 32 and of the pump 330 of the cooling circuit 33. The pump 310 of the DHW circuit 31 is stopped, so that the condenser circuit of the ECS exchanger 21 behaves like simple driving.

Les électrovannes 333, 334 sont commandées de manière à empêcher la circulation de fluide par le deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur et permettre la circulation dudit fluide par le circuit de transfert de l'échangeur 23 évaporateur, de sorte que le premier circuit de transfert de l'échangeur 24 sous-refroidisseur se comporte comme une simple conduite. Ainsi, le fluide frigorigène, qui circule dans le circuit frigorifique grâce au compresseur 200, condense dans le circuit condenseur de l'échangeur 22 de chauffage pour céder sa chaleur au fluide circulant à travers le circuit de transfert dudit échangeur 22 de chauffage pour être stocké dans le ballon 321 du circuit de chauffage 32. En sortie de l'échangeur 22 de chauffage, le fluide à l'état liquide est dirigé par la vanne 52 vers le détendeur 203. Le fluide frigorigène passe alors à travers le circuit évaporateur de l'échangeur 23 évaporateur où il est vaporisé, tandis que le fluide du circuit de refroidissement 33 circulant dans le circuit de transfert de l'échangeur 23 est refroidi.The solenoid valves 333, 334 are controlled so as to prevent the circulation of fluid by the second transfer circuit of the exchanger 24 sub-cooler and allow the circulation of said fluid by the transfer circuit of the exchanger 23 evaporator, so that the first transfer circuit of the sub-cooler exchanger 24 behaves like a simple pipe. Thus, the refrigerant, which circulates in the refrigeration circuit thanks to the compressor 200, condenses in the condenser circuit of the heating exchanger 22 to yield its heat to the fluid circulating through the transfer circuit of said heating exchanger 22 to be stored. in the tank 321 of the heating circuit 32. At the outlet of the heating exchanger 22, the fluid in the liquid state is directed by the valve 52 to the expansion valve 203. The refrigerant then passes through the evaporator circuit of the 'exchanger 23 evaporator where it is vaporized, while the fluid of the cooling circuit 33 circulating in the transfer circuit of the exchanger 23 is cooled.

L'entrée et la sortie du circuit condenseur/évaporateur de l'échangeur 25 d'équilibrage se retrouvent connectées avec la bouteille 201 anti-coup de liquide, ce qui facilite la réintégration de la charge de fluide frigorigène piégée dans l'échangeur 25 d'équilibrage non utilisé dans ce mode.The inlet and outlet of the condenser / evaporator circuit of the balancing exchanger 25 are found connected with the anti-liquid jetting bottle 201, which facilitates the reintegration of the charge of refrigerant trapped in the exchanger 25 d 'balancing not used in this mode.

Comme illustré à la figure 6, un autre mode, appelé mode rafraichissement, est activé par l'unité de pilotage lorsque celle-ci identifie un besoin de refroidissement seul. Ce mode rafraichissement comprend les étapes suivantes. Le tiroir de chaque vanne 51, 52 est positionné pour la mise en communication de la quatrième voie 514, 524 avec la voie basse pression 512, 522. Ainsi, l'échangeur 25 d'équilibrage communique, du côté opposé au nœud de liaison NL3, avec la sortie de refoulement du compresseur 200, et l'autre côté de l'échangeur 25 d'équilibrage communique (par la bouteille 202) avec l'entrée du circuit évaporateur de l'échangeur 23 évaporateur.As shown in figure 6 , another mode, called cooling mode, is activated by the control unit when the latter identifies a need for cooling alone. This refresh mode includes the following steps. The slide of each valve 51, 52 is positioned for placing the fourth channel 514, 524 in communication with the low pressure channel 512, 522. Thus, the balancing exchanger 25 communicates, on the side opposite to the link node NL3, with the discharge outlet of the compressor 200, and the other side of the balancing exchanger 25 communicates (via the bottle 202 ) with the inlet of the evaporator circuit of the 23 evaporator exchanger.

Les électrovannes 333, 334 sont commandées pour permettre la circulation du fluide du circuit de refroidissement par le circuit de transfert de l'échangeur 23 évaporateur et la pompe 330 du circuit de refroidissement 33 est en marche. Le fluide frigorigène du circuit frigorifique passe alors à travers le circuit évaporateur de l'échangeur 23 évaporateur où il est vaporisé tandis que le fluide du circuit de refroidissement circulant dans le circuit de transfert de l'échangeur 23 évaporateur est refroidi.The solenoid valves 333, 334 are controlled to allow the circulation of the fluid of the cooling circuit by the transfer circuit of the evaporator exchanger 23 and the pump 330 of the cooling circuit 33 is on. The refrigerant of the refrigeration circuit then passes through the evaporator circuit of the evaporator exchanger 23 where it is vaporized while the fluid of the cooling circuit circulating in the transfer circuit of the evaporator exchanger 23 is cooled.

Au niveau de l'échangeur 25 d'équilibrage, le ventilateur est en marche et le fluide sortant du compresseur 200 condense dans le circuit condenseur/évaporateur de l'échangeur 25 d'équilibrage en cédant sa chaleur à l'air.At the level of the balancing exchanger 25, the fan is on and the fluid leaving the compressor 200 condenses in the condenser / evaporator circuit of the balancing exchanger 25 by releasing its heat to the air.

Les échangeurs 21, 22 d'ECS et de chauffage ne sont pas sollicités dans ce mode et sont connectés à la bouteille 201 anti-coup de liquide afin de faciliter la réintégration de la charge en fluide frigorigène.The DHW and heating exchangers 21, 22 are not requested in this mode and are connected to the anti-shock liquid bottle 201 in order to facilitate the reintegration of the refrigerant charge.

Comme illustré à la figure 7, un autre mode, appelé mode ECS simultané, est activé par l'unité de pilotage lorsque celle-ci identifie un besoin simultané d'eau chaude sanitaire (ECS) et de refroidissement. Le tiroir de la vanne 51 est positionné pour mettre la troisième voie 513 en communication avec la voie basse pression 512 de sorte que la voie d'entrée 511 communique avec la quatrième voie 514. Ainsi, l'entrée du circuit condenseur de l'échangeur 21 ECS est raccordée à la sortie de refoulement du compresseur 200 et l'échangeur d'équilibrage est raccordé à la basse pression par l'entrée de la bouteille 201. De manière similaire, le tiroir de la vanne 52 est positionné pour mettre la quatrième voie 524 en communication avec la voie basse pression 522 de sorte que la voie d'entrée 521 communique avec la troisième voie 523. Ainsi, la sortie du circuit condenseur de l'échangeur 21 ECS communique avec l'entrée du circuit évaporateur de l'échangeur 23 évaporateur. L'unité commande l'activation de la pompe 310 du circuit ECS 31 et de la pompe 330 du circuit de refroidissement 33.As shown in figure 7 , another mode, called simultaneous DHW mode, is activated by the control unit when it identifies a simultaneous need for domestic hot water (DHW) and cooling. The valve spool 51 is positioned to put the third channel 513 in communication with the low pressure channel 512 so that the inlet channel 511 communicates with the fourth channel 514. Thus, the input of the condenser circuit of the exchanger 21 DHW is connected to the discharge outlet of the compressor 200 and the balancing exchanger is connected to low pressure through the inlet of the cylinder 201. Similarly, the valve spool 52 is positioned to put the fourth channel 524 in communication with the low pressure channel 522 so that the input channel 521 communicates with the third channel 523. Thus, the output of the condenser circuit of the ECS exchanger 21 communicates with the input of the evaporator circuit of the evaporator exchanger 23. The unit controls the activation of the pump 310 of the DHW circuit 31 and of the pump 330 of the cooling circuit 33.

Le fonctionnement de ce mode correspondant à celui du mode simultané à la différence près que la condensation du fluide frigorigène s'effectue dans l'échangeur 21 ECS, et non pas dans l'échangeur 22 de chauffage qui se comporte comme une simple conduite.The operation of this mode corresponds to that of the simultaneous mode with the difference that the condensation of the refrigerant takes place in the exchanger 21 ECS, and not in the heating exchanger 22 which behaves like a simple pipe.

Comme illustré à la figure 8, un autre mode, appelé mode ECS seul, est activé par l'unité de pilotage lorsque celle-ci identifie un besoin seul d'eau chaude sanitaire ECS. Ce mode comprend les étapes suivantes. Le tiroir de chaque vanne 51, 52 est en position assurant la mise en communication de la troisième voie 513, 523 avec la voie basse pression 512, 522, de sorte que chaque voie d'entrée 511, 521 communique avec la quatrième voie 514, 524. Ainsi, l'entrée du circuit condenseur de l'échangeur 21 communique avec la sortie de refoulement du compresseur 200 et la sortie du circuit condenseur de l'échangeur 21 communique avec l'entrée du circuit condenseur/évaporateur de l'échangeur 25 d'équilibrage. La sortie dudit circuit condenseur/évaporateur de l'échangeur 25 d'équilibrage communique avec l'entrée de la bouteille 201. L'unité commande l'activation de la pompe 310 du circuit ECS 31 et de préférence du ventilateur associé à l'échangeur 25 d'équilibrage.As shown in figure 8 , another mode, called DHW only mode, is activated by the control unit when it identifies a single DHW domestic hot water need. This mode consists of the following steps. The spool of each valve 51, 52 is in the position ensuring the communication of the third channel 513, 523 with the low pressure channel 512, 522, so that each inlet channel 511, 521 communicates with the fourth channel 514, 524. Thus, the input of the condenser circuit of the exchanger 21 communicates with the discharge output of the compressor 200 and the output of the condenser circuit of the exchanger 21 communicates with the input of the condenser / evaporator circuit of the exchanger 25 balancing. The output of said condenser / evaporator circuit of the balancing exchanger 25 communicates with the input of the bottle 201. The unit controls the activation of the pump 310 of the DHW circuit 31 and preferably of the fan associated with the exchanger. 25 balancing.

Le fonctionnement de ce mode est similaire à celui du mode chauffage à la différence près que le fluide frigorigène condense dans l'échangeur 21 ECS, tandis que l'échangeur 22 de chauffage se comporte comme une simple conduite.The operation of this mode is similar to that of the heating mode with the difference that the refrigerant condenses in the exchanger 21 DHW, while the heat exchanger 22 behaves like a simple pipe.

Comme évoqué ci-avant, l'installation selon l'invention permet de procéder au dégivrage de l'échangeur 25 d'équilibrage en mode dégivrage (figure 9). A cet effet, l'unité exécute un mode, appelé mode dégivrage qui comprend les étapes suivantes. Pour chaque vanne 51, 52, la quatrième voie 514, 524 est mise en communication avec la voie basse pression 512, 522 de sorte que la voie d'entrée 511, 521 communique avec la troisième voie 513, 523. Comme illustré à la figure 2A, les électrovannes 333, 334 du circuit de refroidissement 33 sont commandées de manière à empêcher la circulation de fluide du circuit de refroidissement 33 par le deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur et à permettre la circulation dudit fluide par le circuit de transfert de l'échangeur 23 évaporateur. L'unité commande l'activation de la pompe 330 du circuit de refroidissement 33.As mentioned above, the installation according to the invention makes it possible to defrost the balancing exchanger 25 in defrost mode ( figure 9 ). In this In effect, the unit executes a mode, called defrost mode which comprises the following steps. For each valve 51, 52, the fourth channel 514, 524 is placed in communication with the low pressure channel 512, 522 so that the inlet channel 511, 521 communicates with the third channel 513, 523. As illustrated in figure figure 2A , the solenoid valves 333, 334 of the cooling circuit 33 are controlled so as to prevent the circulation of fluid from the cooling circuit 33 by the second transfer circuit of the exchanger 24 sub-cooler and to allow the circulation of said fluid by the circuit transfer of the exchanger 23 evaporator. The unit controls the activation of the pump 330 of the cooling circuit 33.

L'unité commande l'arrêt du ventilateur 250 associé à l'échangeur 25 d'équilibrage. Le deuxième circuit de transfert de l'échangeur 24 sous-refroidisseur étant by-passé, le fluide chaud précédemment stocké dans le ballon 33 au cours d'un mode chauffage, parcourt le circuit de transfert de l'échangeur 23 évaporateur et cède sa chaleur au fluide frigorigène circulant dans le circuit évaporateur dudit échangeur 23 évaporateur, ce qui permet de le vaporiser pour ensuite passer à travers l'échangeur 25 d'équilibrage et ainsi dégivrer son circuit.The unit controls the stopping of the fan 250 associated with the balancing exchanger 25. The second transfer circuit of the sub-cooler exchanger 24 being by-passed, the hot fluid previously stored in the tank 33 during a heating mode, runs through the transfer circuit of the evaporator exchanger 23 and releases its heat. to the refrigerant circulating in the evaporator circuit of said evaporator exchanger 23, which makes it possible to vaporize it and then pass through the balancing exchanger 25 and thus defrost its circuit.

L'énergie stockée dans le ballon 331 de fluide froid peut aussi être utilisée en temps différé pour vaporiser le fluide frigorigène dans l'échangeur 23 qui condense dans l'échangeur 21 ou 22 au cours d'un mode de type simultané ou ECS simultané pour lesquels la pompe 330 est mise en marche pour utiliser l'énergie stockée dans le ballon 331.The energy stored in the cold fluid tank 331 can also be used in delayed time to vaporize the refrigerant in the exchanger 23 which condenses in the exchanger 21 or 22 during a simultaneous or simultaneous DHW type mode for in which the pump 330 is started to use the energy stored in the balloon 331.

Lorsque l'échangeur d'équilibrage 25 fonctionne soit en condenseur soit en évaporateur, le fluide frigorigène parcourt l'ensemble des tubes de l'échangeur d'équilibrage.When the balancing exchanger 25 operates either as a condenser or as an evaporator, the refrigerant flows through all the tubes of the balancing exchanger.

Comme illustré à la figure 10, chaque ballon 31, 32, 33 est équipé d'une sonde de température Tecs, Teec, Teef disposée à l'intérieur dudit ballon. Le compresseur 200 est équipé d'un capteur de pression BP en entrée et d'un capteur de pression HP en sortie. Le circuit frigorifique comprend de préférence une sonde de température Teea située à l'entrée de l'échangeur 25 d'équilibrage et une sonde de température Tcross située sur la surface extérieure du circuit condenseur/évaporateur de l'échangeur 25 d'équilibrage. Ladite unité de pilotage 7 est configurée pour commander le passage d'un mode de fonctionnement de l'installation à un autre en fonction des valeurs de pression et de température mesurées et de valeurs seuils prédéfinies.As shown in figure 10 , each tank 31, 32, 33 is equipped with a temperature probe Tecs, Teec, Teef disposed inside said tank. The compressor 200 is equipped with an inlet LP pressure sensor and an outlet HP pressure sensor. The refrigeration circuit preferably comprises a Teea temperature sensor located at the inlet of the balancing exchanger 25 and a Tcross temperature sensor located on the outer surface of the condenser / evaporator circuit of the balancing exchanger 25. Said control unit 7 is configured to control the passage from one operating mode of the installation to another as a function of the measured pressure and temperature values and of predefined threshold values.

Dans une des applications de l'invention, les besoins en chauffage, rafraîchissement et eau chaude sanitaire du bâtiment sont déterminés par des opérations de comparaisons de valeurs réalisées à l'aide de thermostats différentiels et de comparateurs. Comme illustré à la figure 11, les thermostats différentiels comprennent un thermostat de chauffage permettant de définir le besoin de chauffage, un thermostat de rafraîchissement permettant de définir le besoin de rafraîchissement, et un thermostat d'eau chaude sanitaire permettant de définir le besoin en eau chaude sanitaire. CECS, CCH et CRAF sont des valeurs de température de consigne, et DIFECS, DIFCH et DIFRAF sont des valeurs de différentiel de température.In one of the applications of the invention, the building's heating, cooling and domestic hot water needs are determined by value comparison operations carried out using differential thermostats and comparators. As shown in figure 11 , the differential thermostats include a heating thermostat making it possible to define the need for heating, a cooling thermostat making it possible to define the need for cooling, and a domestic hot water thermostat making it possible to define the need for domestic hot water. CECS, CCH and CRAF are setpoint temperature values, and DIFECS, DIFCH and DIFRAF are temperature differential values.

Comme illustré à la figure 12, lorsque la différence entre la température de rosée Trosée du fluide frigorigène calculée à partir de la pression BP à l'aspiration du compresseur, et la température Teea mesurée à l'entrée de l'échangeur 25 d'équilibrage dépasse un certain seuil, noté SDGIV, le mode dégivrage est enclenché. La température de rosée est déterminée à partir d'une équation avec comme paramètre d'entrée la mesure de la pression BP en entrée du compresseur. Lorsque la température Tcross de surface de l'échangeur 25 d'équilibrage est supérieure à un certain seuil SFDGIV, la phase de dégivrage est arrêtée.As shown in figure 12 , when the difference between the dew point temperature Trosée of the refrigerant calculated from the LP pressure at the compressor suction, and the temperature Teea measured at the inlet of the balancing exchanger 25 exceeds a certain threshold, noted SDGIV, the defrost mode is engaged. The dew point temperature is determined from an equation with as input parameter the measurement of the LP pressure at the compressor inlet. When the surface temperature Tcross of the balancing exchanger 25 is greater than a certain threshold SFDGIV, the defrosting phase is stopped.

La figure 13 illustre une logique de commande de basculement en mode simultané (« basculement simultané ») ou en mode chauffage (« basculement chauffage »). Le basculement en mode simultané lors du fonctionnement en mode chauffage est géré par un autre thermostat différentiel. CSR est une valeur de température de consigne et DIFSR une valeur de différentiel de température.The figure 13 illustrates a switching control logic in simultaneous mode (“simultaneous switching”) or in heating mode (“switching heater "). Switching to simultaneous mode when operating in heating mode is managed by another differential thermostat. CSR is a setpoint temperature value and DIFSR is a temperature differential value.

A titre d'exemple, des essais de performances selon la norme EN14511 ont été réalisés sur un prototype de thermofrigopompe conforme à l'invention en utilisant du propane comme fluide frigorigène. Les résultats d'essais sont présentés ci-après en liens avec les figures 14 à 16.By way of example, performance tests according to standard EN14511 were carried out on a prototype heat pump in accordance with the invention using propane as refrigerant. The test results are presented below in connection with the figures 14 to 16 .

Les performances sont calculées à partir de relevés d'essais en régime stationnaire. Une période de stabilisation des conditions de 30 minutes précède la période d'une heure d'acquisition en régime établi. Le pas d'acquisition des données est de 10 secondes. La consommation des pompes et du ventilateur est prise en compte dans le calcul du Coefficient de Performance (COP) et de l'efficacité énergétique de rafraichissement (EER) de la thermofrigopompe.The performances are calculated from test readings in stationary mode. A 30 minute stabilization period precedes the one hour steady state acquisition period. The data acquisition step is 10 seconds. The consumption of the pumps and the fan is taken into account in the calculation of the Coefficient of Performance (COP) and the cooling energy efficiency (EER) of the heat pump.

La figure 14 présente le coefficient de performance (COP) de la thermofrigopompe en mode chauffage en fonction de la température d'air pour une température de production d'eau chaude de 35°C (courbe "COP 35°C") et 45°C (courbe "COP 45°C"). A un régime de production d'eau chaude de 35°C, la puissance calorifique produite est de 11 kW à -7°C d'air extérieur et 17,5kW à 7°C.The figure 14 presents the coefficient of performance (COP) of the heat pump in heating mode as a function of the air temperature for a hot water production temperature of 35 ° C ("COP 35 ° C" curve) and 45 ° C (curve "COP 45 ° C"). At a hot water production regime of 35 ° C, the calorific power produced is 11 kW at -7 ° C outside air and 17.5 kW at 7 ° C.

La figure 15 présente l'efficacité énergétique de rafraichissement (EER) de la thermofrigopompe en mode rafraichissement pour différentes températures d'air avec une production d'eau froide à 7°C (courbe "EER SEF 7°C") et 14°C (courbe "EER SEF 14°C"). La puissance frigorifique délivrée varie suivant les régimes de 13,4 à 19 kW.The figure 15 presents the cooling energy efficiency (EER) of the heat pump in cooling mode for different air temperatures with production of cold water at 7 ° C ("EER SEF 7 ° C" curve) and 14 ° C ("curve" EER SEF 14 ° C "). The cooling capacity delivered varies according to the speeds from 13.4 to 19 kW.

La figure 16 présente le coefficient de performance (COP) de thermofrigopompe en mode simultané en fonction de la température d'eau en sortie de l'échangeur de chauffage et pour une température de production d'eau froide de 7°C (courbe "TFP SEF 7°C") et 15°C (courbe "TFP SEF 15°C"). Ces essais montrent que la puissance calorifique varie entre 23 et 16 kW et la puissance frigorifique entre 10 et 18 kW.The figure 16 presents the coefficient of performance (COP) of heat pump in simultaneous mode as a function of the water temperature at the outlet of the heating exchanger and for a cold water production temperature of 7 ° C ("TFP SEF 7 ° C" curve) and 15 ° C (curve "TFP SEF 15 ° C"). These tests show that the calorific power varies between 23 and 16 kW and the cooling capacity between 10 and 18 kW.

La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés, mais l'homme du métier saura y apporter toute variante en restant dans le cadre de l'invention telle que définie par les revendications.The present invention is in no way limited to the embodiments described and shown, but those skilled in the art will know how to make any variant thereto while remaining within the scope of the invention as defined by the claims.

Claims (18)

  1. A refrigerating circuit (2) for a facility, called thermorefrigerating pump (1), for the heating and/or cooling of fluids, comprising:
    - a compressor (200),
    - an exchanger (21, 22), called condenser exchanger, comprising a condenser circuit,
    - an exchanger (25), called balancing exchanger, comprising a circuit called condenser/evaporator circuit able to operate either as a condenser or as an evaporator, and preferably a fan associated with said balancing exchanger,
    - a first connecting node (NL1) between a branch of the refrigerating circuit (2) provided with the condenser exchanger (21, 22) and a branch of the refrigerating circuit (2) provided with the balancing exchanger (25), said connecting node being located on the side of the outlet of the condenser exchanger (21, 22),
    - an exchanger (23), called evaporator exchanger, comprising an evaporator circuit,
    - a first fluid management device (51) comprising four paths, including:
    - a first path, called inlet path (511), connected to the outlet of the compressor,
    - a second path, called low pressure path (512),
    - a third path (513) connected to the balancing exchanger (25) on the side opposite the first connecting node (NL1), and
    - a fourth path (514) connected to the inlet of said condenser exchanger;
    - a second fluid management device (52) comprising four paths, including:
    - a first path, called inlet path (521), connected to said first connecting node (NL1),
    - a second path, called low pressure path (522),
    - a third path (523) connected to the inlet of the evaporator exchanger (23), and
    - a fourth path (524) connected to the balancing exchanger (25), between the first connecting node (NL1) and the condenser/evaporator circuit of the balancing exchanger (25);
    - a first expansion valve (203) located between the third path (523) of the second fluid management device (52) and the evaporator exchanger (23), and
    - a second expansion valve (205) located between the fourth path (524) of the second fluid management device (52) and the balancing exchanger (25),
    the second paths (512, 522) of the management devices being connected (NL2) to a branch of the refrigerating circuit that extends between the outlet of the evaporator circuit of the evaporator exchanger (23) and the inlet of the compressor (200);
    each fluid management device (51, 52) being configured to selectively assume a first configuration in which the inlet path (511, 521) is placed in communication with the third path (513, 523), the low pressure path (512, 522) being placed in communication with the fourth path (514, 524),
    and a second configuration in which the inlet path (511, 521) is placed in communication with the fourth path (514, 524), the low pressure path (512, 522) being placed in communication with the third path (513, 523).
  2. The refrigerating circuit (2) according to claim 1, characterized in that the refrigerating circuit also includes an exchanger (24), called subcooler exchanger, that comprises a first heat transfer circuit arranged between the inlet path (521) of the second management device (52) and the first connecting node (NL1), and preferably arranged between said inlet path (521) and a liquid canister (202).
  3. The refrigerating circuit (2) according to one of the preceding claims, characterized in that said first fluid management device (51) is a four-way valve that comprises a member, called slide valve, movable between two positions respectively corresponding to said first and second configurations of the first fluid management device.
  4. The refrigerating circuit (2) according to one of the preceding claims, characterized in that said second fluid management device (52) is a four-way valve that comprises a member, called slide valve, movable between two positions respectively corresponding to said first and second configurations of the second fluid management device.
  5. The refrigerating circuit (2) according to one of the preceding claims, characterized in that said circuit comprises a reservoir (201), called shockproof liquid canister, positioned between the compressor (200) and the connector (NL2) of the second management device paths (51, 52).
  6. A facility comprising a refrigerating circuit (2) according to one of the preceding claims, characterized in that, the condenser exchanger (21, 22) comprising a heat transfer circuit, said facility includes a heating circuit (31, 32) that comprises said transfer circuit of said condenser exchanger (21, 22), a circulation pump (310, 320), and preferably a fluid storage reservoir, called hot water tank;
    and in that, the evaporator exchanger (23) comprising a heat transfer circuit, said facility includes a cooling circuit (33) that comprises said transfer circuit of the evaporator exchanger (23), a circulation pump (330), and preferably a fluid storage reservoir, called cold water tank (331).
  7. The facility according to claim 6, the refrigerating circuit of which is according to claim 2, characterized in that, the subcooler exchanger (24) comprising a second transfer circuit, said second transfer circuit of the subcooler exchanger (24) is mounted on the cooling circuit (33) on a bypass from the transfer circuit of the evaporator exchanger (23).
  8. The facility according to claim 7, characterized in that a first solenoid valve (333) is positioned between the inlet of the transfer circuit of the evaporator exchanger (23) and the connection of the inlet of the second transfer circuit of the subcooler exchanger (24) to the cooling circuit (33).
  9. The facility according to claim 7 or 8, characterized in that a second solenoid valve (334) is positioned between the inlet of the second transfer circuit of the subcooler exchanger (24) and the connection of this inlet to the second transfer circuit of the subcooler exchanger (24) to the cooling circuit (33).
  10. The facility according to one of claims 6 to 9, characterized in that it includes a control unit (7) configured to carry out a sequence of instructions, called heating mode, comprising the following steps:
    - for each of the first and second management devices (51, 52), placing the fourth path (514, 524) in communication with the first path (511, 521);
    - activating the pump (320) of the heating circuit (32),
    - preferably activating the fan associated with the balancing exchanger (25).
  11. The facility according to one of claims 6 to 10, characterized in that it includes a control unit (7) configured to carry out a sequence of instructions, called simultaneous mode, comprising the following steps:
    - for the first management device (51), placing the first path in communication with the fourth path;
    - for the second management device (52), placing the first path in communication with the third path;
    - activating the pump (320) of the heating circuit (32) and the pump (330) of the cooling circuit (33).
  12. The facility according to any one of claims 6 to 11 combined with claim 7, characterized in that it includes a control unit (7) configured to carry out a sequence of instructions, called energy storage mode, comprising the following steps: in heating mode, activating the pump (330) of the cooling circuit and commanding the solenoid valves (333, 334) so as to allow the fluid from the cooling circuit (33) to circulate through the second transfer circuit of the subcooler exchanger (24), and the corresponding tank (331).
  13. The facility according to one of claims 6 to 12, characterized in that it includes a control unit (7) configured to carry out a sequence of instructions, called refresh mode, comprising the following steps:
    - for each management device (51, 52), placing the first path in communication with the third path;
    - activating the pump (330) of the cooling circuit (33),
    - preferably activating the fan (250) associated with the balancing exchanger (25).
  14. The facility according to one of claims 12 or 13, combined with claims 8 and 9, characterized in that the control unit (7) is configured to carry out a sequence of instructions, called usage mode of the energy stored in the cooling circuit, which comprises the following steps: in delayed time relative to the performance of the energy storage mode and in an operating mode of the facility corresponding to the simultaneous mode or the refresh mode preferably without fan, activating the pump (330) of the cooling circuit and commanding the solenoid valves (333, 334) so as to allow the hot fluid contained in the tank (331) of the cooling circuit (33) to circulate through the transfer circuit of the evaporator exchanger (23).
  15. The facility according to one of claims 6 to 14, characterized in that, said heating circuit (31) being a hot domestic supply water heating circuit, called ECS circuit (31), said facility includes a control unit (7) configured to carry out a sequence of instructions, called simultaneous ECS mode, comprising the following steps:
    - the first management device (51), placing the first path in communication with the fourth path;
    - for the second management device (52), placing the first path in communication with the third path;
    - activating the pump (310) of the ECS circuit (31) and the pump (330) of the cooling circuit (33).
  16. The facility according to one of claims 6 to 15, characterized in that, said heating circuit (31) being a hot domestic supply water heating circuit, called ECS circuit (31), said facility includes a control unit (7) configured to carry out a sequence of instructions, called ECS mode only, comprising the following steps:
    - for each management device (51, 52), placing the first path in communication with the fourth path;
    - activating the pump (310) of the ECS circuit (31) and preferably the fan associated with the balancing exchanger.
  17. The facility according to one of claims 6 to 16, characterized in that it includes a control unit (7) configured to carry out a sequence of instructions, called deicing mode, comprising the following steps:
    - for each management device (51, 52), placing the first path in communication with the third path;
    - the solenoid valves are commanded so as to prevent the fluid from circulating from the cooling circuit (33) through the second transfer circuit of the subcooler exchanger (24) and to allow said fluid to circulate through the transfer circuit of the evaporator exchanger (23),
    - activating the pump (330) of the cooling circuit (33),
    - preferably stopping the fan (250) associated with the balancing exchanger (25).
  18. A method for heating and/or cooling fluids using a facility (1) according to one of claims 10 to 17, characterized in that said method comprises the performance by the control unit (7) of said sequence of instructions.
EP14750586.1A 2013-07-29 2014-07-28 Refrigerating circuit, facility comprising such a circuit and corresponding method Active EP3027978B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1357482A FR3009071B1 (en) 2013-07-29 2013-07-29 REFRIGERATIVE CIRCUIT, INSTALLATION COMPRISING SUCH CIRCUIT AND CORRESPONDING METHOD
PCT/FR2014/051948 WO2015015104A1 (en) 2013-07-29 2014-07-28 Refrigerating circuit, facility comprising such a circuit and corresponding method

Publications (2)

Publication Number Publication Date
EP3027978A1 EP3027978A1 (en) 2016-06-08
EP3027978B1 true EP3027978B1 (en) 2020-09-30

Family

ID=49510318

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14750586.1A Active EP3027978B1 (en) 2013-07-29 2014-07-28 Refrigerating circuit, facility comprising such a circuit and corresponding method

Country Status (3)

Country Link
EP (1) EP3027978B1 (en)
FR (1) FR3009071B1 (en)
WO (1) WO2015015104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124586A1 (en) * 2021-06-23 2022-12-30 Muller Et Cie Thermal installation comprising a heat pump with a reduced quantity of refrigerant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132564B1 (en) * 2022-02-08 2024-02-23 Commissariat Energie Atomique Method for controlling the operation of a heat pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299098A (en) * 1980-07-10 1981-11-10 The Trane Company Refrigeration circuit for heat pump water heater and control therefor
DE202006010412U1 (en) * 2006-07-05 2006-09-14 Kroll, Markus Heat-pump-based device for temperature control has additional feed line to evaporator connected in parallel with expansion valve
FR2932553B1 (en) * 2008-06-12 2013-08-16 Jean Luc Maire REVERSIBLE SYSTEM FOR RECOVERING CALORIFIC ENERGY BY REMOVING AND TRANSFERING CALORIES FROM ONE OR MORE MEDIA IN ANOTHER OR OTHER OTHER MEDIA.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124586A1 (en) * 2021-06-23 2022-12-30 Muller Et Cie Thermal installation comprising a heat pump with a reduced quantity of refrigerant

Also Published As

Publication number Publication date
EP3027978A1 (en) 2016-06-08
FR3009071A1 (en) 2015-01-30
FR3009071B1 (en) 2015-08-07
WO2015015104A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
EP2643643B2 (en) Device for the thermal conditioning of a passenger compartment of a vehicle
FR2715211A1 (en) Method of operating a refrigeration system and refrigeration system operating according to this method.
FR2589560A1 (en) REFRIGERATION CIRCUIT AND HEAT PUMP CIRCUIT, AND DEFROSTING METHOD
FR2715213A1 (en) Method and apparatus for operating a refrigeration system, characterized by regulating the maximum operating pressure.
FR2894014A1 (en) Refrigeration-generation solar unit for air-conditioning system in e.g. dwelling premise, has automaton varying operational delivery rate of circulation pump according to temperature recorded by sensor at outlet of solar collectors
FR2834778A1 (en) THERMAL MANAGEMENT DEVICE, PARTICULARLY FOR A MOTOR VEHICLE EQUIPPED WITH A FUEL CELL
FR2715212A1 (en) Method and apparatus for operating a refrigeration system, characterized by regulation of the engine coolant.
EP3172499B1 (en) Cold production apparatus, including means for condensation by air and water simultaneously, and the method for implementing said facility
FR3076600A1 (en) THERMODYNAMIC SYSTEM FOR HEATING, AIR CONDITIONING AND HOT WATER PRODUCTION
EP3027978B1 (en) Refrigerating circuit, facility comprising such a circuit and corresponding method
FR3022989A1 (en) THERMODYNAMIC WATER HEATER
FR3001768A1 (en) GAS TURBINE INSTALLATION AND METHOD OF CONTROLLING THE SAME
EP2629023B1 (en) Thermal plant and method providing thermal conditioning of premises and domestic hot water production
EP2739918B1 (en) System and method for optimising the operation of a heat pump system
WO2021053227A1 (en) Air conditioning unit for an aircraft
EP2863130B1 (en) Method for the regulation of a thermal system for a building
FR2778970A1 (en) Deicing evaporators of refrigeration equipment and/or heat pumps
WO2010043829A2 (en) Heat pump
FR2469679A1 (en) AIR CONDITIONING APPARATUS, PARTICULARLY HEAT PUMP
FR2934890A1 (en) Thermodynamic heat pump installation for heating room, has secondary compressor in which secondary heat transfer fluid is reheated by compression before ceding fluid by condensing calories of secondary fluid accumulated by compression
EP3872420A1 (en) Absorption machine for recovering low-pressure steam and associated system
EP3171101B1 (en) Improved system for servicing a heat pump
FR2937410A1 (en) Heat pump for transporting e.g. refrigerant, in e.g. building, has compressor protection kit collecting excess energy to protect movement setting unit, with temperature of fluid at suction compatible with characteristics of compressor
BE830860A (en) HEATING SYSTEM
FR2999281A1 (en) Refrigeration system i.e. refrigerator, for building, has control unit controlling ventilator so that ventilator operates when difference between measured temperature of fluid and measured temperature of air is higher than preset value

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BYRNE, PAUL

Inventor name: MIRIEL, JACQUES

Inventor name: GHOUBALI, REDOUANE

Inventor name: MEAR, LUDOVIC

Inventor name: BAZANTAY, FREDERIC

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1319199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014070744

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1319199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200930

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014070744

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

26N No opposition filed

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230728

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230727

Year of fee payment: 10

Ref country code: GB

Payment date: 20230728

Year of fee payment: 10

Ref country code: CH

Payment date: 20230804

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231019 AND 20231025

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: UNIVERSITE DE RENNES; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), MERGE; FORMER OWNER NAME: UNIVERSITE RENNES 1

Effective date: 20231017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230727

Year of fee payment: 10

Ref country code: DE

Payment date: 20230728

Year of fee payment: 10

Ref country code: BE

Payment date: 20230727

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014070744

Country of ref document: DE

Owner name: UNIVERSITE DE RENNES, FR

Free format text: FORMER OWNERS: ASSOCIATION POLE CRISTAL, DINAN, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES, RENNES, FR; UNIVERSITE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014070744

Country of ref document: DE

Owner name: INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE R, FR

Free format text: FORMER OWNERS: ASSOCIATION POLE CRISTAL, DINAN, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES, RENNES, FR; UNIVERSITE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014070744

Country of ref document: DE

Owner name: ASSOCIATION POLE CRISTAL, FR

Free format text: FORMER OWNERS: ASSOCIATION POLE CRISTAL, DINAN, FR; INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE RENNES, RENNES, FR; UNIVERSITE RENNES 1, RENNES, FR