EP3027631B1 - Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung - Google Patents

Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung Download PDF

Info

Publication number
EP3027631B1
EP3027631B1 EP14747576.8A EP14747576A EP3027631B1 EP 3027631 B1 EP3027631 B1 EP 3027631B1 EP 14747576 A EP14747576 A EP 14747576A EP 3027631 B1 EP3027631 B1 EP 3027631B1
Authority
EP
European Patent Office
Prior art keywords
group
formula
carbon atoms
chosen
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14747576.8A
Other languages
English (en)
French (fr)
Other versions
EP3027631A1 (de
Inventor
Nedumbamana Sankaran
Prashant Sukumar Shinge
Sharankumar Shetty
Girish Chandra
Haif Al-Shammari
Abdulaziz Hamad Al-Humydi
Edward Joseph Nesakumar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Saudi Basic Industries Corp
Original Assignee
SABIC Global Technologies BV
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV, Saudi Basic Industries Corp filed Critical SABIC Global Technologies BV
Priority to EP14747576.8A priority Critical patent/EP3027631B1/de
Publication of EP3027631A1 publication Critical patent/EP3027631A1/de
Application granted granted Critical
Publication of EP3027631B1 publication Critical patent/EP3027631B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • C07C211/48N-alkylated amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/52Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • the invention relates to a process to prepare a metallocene complex.
  • metallocene complexes are not well established due to difficulties faced in metallocene synthesis and polyolefin production process.
  • metallocene complexes for the synthesis of polyolefins, preferably polyethylenes in the industry.
  • Bridged metallocene complexes are known in the state of the art and are for instance described in WO94/11406A1 and in US6342622 .
  • metallocene complexes are described comprising two cyclopentadienyl or indenyl ligands that are bridged with a bridging group comprising sp3 or sp2 hybridized carbon atoms.
  • a different class of metallocene complexes comprising one cyclopentadienyl ligand connected via a bridge with a heteroatom, chosen from oxygen, sulfur, nitrogen or phosphorus. This heteroatom is also bonded to the metal in the metallocene complex.
  • the bridging group can comprise carbon atoms, silicon atoms, germanium atoms and boron atoms.
  • WO2008/084931 discloses transition metal complexes comprising a bidentate ligand having a monocyclopentadienyl group coupled to an amido group.
  • monocyclopentadienyl groups are cyclopentadienyl, 1-indenyl and fluorenyl groups.
  • Wu et al. (DOI: 10.1021/om800317v) report on CO 2 -mediated ortho-lithiation of n-alkylanilines and their use in the construction of polymerisation catalysts.
  • KR2010113336A reports on catalyst compositions for polyolefins with good heat resistance and narrow polydispersity.
  • Lee et al. (DOI:10.1016/j/jorganchem.2007.11.021) report on o-phenylene bridged Cp/amido titanium and zirconium complexes and their polymerisation reactivity.
  • WO2007078134A1 reports on half-sandwiched constraint-geometry transition metal phenylene-bridged pendant phosphido and amido complexes as alkene polymerisation and copolymerisation catalysts.
  • WO2007078133A1 reports on a catalyst composition comprising group 4 transition metal complexes.
  • Cho et al. (DOI: 10.1021/OM0601854) report on o-phenylene-bridged Cp/amido titanium complexes for ethylene/1-hexene copolymerisations.
  • KR2010083076A reports on a catalyst composition containing transition metal compounds for heat-resistant polyolefin polymerization.
  • JP2011153201A reports on a diarylaminopyrene material, organic electroluminescent device, and ink composition thereof.
  • Yang et al. (DOI: 10.1021/jp0517807) report on excited-state behavior of n-phenyl-substituted trans-3-aminostilbenes.
  • JP2012028711A reports on a material comprising polycyclic aromatic compound, organic electroluminescent device, and ink composition therefor.
  • Lensink et al. DOE: 10.1107/S16005368020
  • Suitable metallocene complexes for the synthesis of polyolefins may for example be metallocene complexes according to formula 1 wherein
  • the metallocene complex comprises a metal selected from lanthanides or transition metals from group 3, 4, 5 or 6 of the Periodic System of the Elements.
  • the Periodic System of the Elements is understood to be the Periodic System of the Elements that can be found at www.chemicool.com.
  • the metal M is preferably chosen from the group consisting of Ti, Zr, Hf, V and Sm, more preferably from Ti, Zr and Hf, most preferably the metal is Zr.
  • Q is an anionic ligand to M.
  • the Q ligands preferably are the same and are selected from the group consisting of halogen (F, CI, Br, I) and hydrocarbyl groups comprising 1 to 20 carbon atoms. More preferably the Q ligands are Cl or a methyl group.
  • k is the number of Q groups and equals the valence of M minus 2; k is an integer. Preferably, k is 2.
  • X is a cyclic bridging group.
  • X is bridging between a carbon atom of the cyclopentadienyl ligand and nitrogen.
  • X can contain both sp3 and sp2 hybridized carbon atoms.
  • the cyclic bridging group X can be monocyclic or polycyclic.
  • the cyclic bridging group X may comprise fused rings.
  • cyclic bridging groups are phenylene, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclohexenylene, cyclohexadienylene, tolylene, benzylene, naphthylene, anthrylene, pyrenylene, biphenylene and binaphthylene.
  • the cyclic bridging group can be substituted with alkyl groups having 1 to 10 carbon atoms, for example the substituents may be selected from the group of methyl, ethyl, n-propyl, n-butyl, n-pentyl or n-hexyl.
  • X carries less than 10 substituents, more preferably less than 5 substituents and most preferably no substituents.
  • X preferably is chosen from the group consisting of a phenylene and a biphenylene group. Most preferably X is chosen from the group consisting of a 1,2 phenylene group and a 2,2'-biphenylene group.
  • Z 1 and Z 4 are identical or different and can be chosen from the group of hydrogen and a hydrocarbon radical with 1-20 carbon atoms.
  • Hydrocarbon radicals can be alkyl, aryl or aryl alkyl substituents.
  • alkyl groups are methyl, ethyl, propyl, butyl, hexyl and decyl.
  • aryl groups are phenyl, mesityl, tolyl, and cumenyl.
  • aryl alkyl substituents are benzyl, pentamethylbenzyl, xylyl, styryl and trityl.
  • Adjacent substituents Z 2 and Z 3 are connected to form an indenyl or tetrahydroindenyl ring system together with the carbon atoms of the Cp ring to which they are bound.
  • Z 2 and Z 3 are connected to form 6 membered ring such as phenyl, substituted phenyls, hydrogenated phenyls or substituted hydrogenated phenyls, wherein preferred substitutions are alkyl groups, as part of an indenyl or tetrahydroindenyl ring system.
  • Z 1 and Z 4 are hydrogen. Most preferably Z 1 and Z 4 are hydrogen and Z 2 and Z 3 are connected, such that a 2-indenyl ligand or a 2-tetrahydroindenyl ligand is formed.
  • R is chosen from the group of hydrogen and a hydrocarbon radical with 1-20 carbon atoms.
  • Hydrocarbon radicals can be alkyl, aryl or aryl alkyl substituents.
  • alkyl groups are methyl, ethyl, propyl, butyl, hexyl and decyl.
  • aryl groups are phenyl, mesityl, tolyl, and cumenyl.
  • aryl alkyl substituents are benzyl, pentamethylbenzyl, xylyl, styryl and trityl.
  • R is preferably an alkyl group with 1-10 carbon atoms, more preferably with 1-6 carbon atoms.
  • Preferably R is a branched alkyl, more preferably R is isopropyl or t-butyl. Most preferably R is a t-butyl group.
  • Suitable metallocene complexes for the synthesis of polyolefins may for example be according to formula 2 wherein M is chosen from the group of Ti, Zr and Hf, and wherein Z 1 and Z 4 are identical or different and can be chosen from the group consisting of hydrogen or a hydrocarbon radical with 1-20 carbon atoms;adjacent substituents Z 2 and Z 3 are connected to form an indenyl or tetrahydroindenyl ring system together with the carbon atoms of the Cp ring to which they are bound and R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably R is a t-butyl group ; Q is Cl or a methyl group; and k is the number of Q groups and equals the valence of M minus 2; k is an integer.
  • Suitable metallocene complexes may also for example be according to formula 3 wherein M is chosen from the group of Ti, Zr and Hf, and wherein Z 1 and Z 4 are identical or different and can be chosen from the group consisting of hydrogen or a hydrocarbon radical with 1-20 carbon atoms;adjacent substituents Z 2 and Z 3 are connected to form an indenyl or tetrahydroindenyl ring system together with the carbon atoms of the Cp ring to which they are bound and R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably R is a t-butyl group ; Q is Cl or a methyl group; and k is the number of Q groups and equals the valence of M minus 2; k is an integer.
  • a suitable metallocene complex may for example contain a 2-indenyl group and is represented by the formula 4 wherein M is chosen from the group of Ti, Zr and Hf, and wherein X is a cyclic bridging group, R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms ; Q is Cl or a methyl group; and k is the number of Q groups and equals the valence of M minus 2; k is an integer.
  • M is Zr
  • R is t-butyl
  • Q is Cl or methyl
  • k 2
  • X is chosen from the group consisting of phenylene, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclohexenylene, cyclohexadienylene, tolylene, benzylene, naphthylene, anthrylene, pyrenylene, biphenylene and binaphthylene, most preferably X is chosen from the group of 1,2-phenylene and 2,2'-biphenylene.
  • Another suitable metallocene complex may for example be according to formula 6 wherein M is chosen from the group of Ti, Zr and Hf, and wherein R is chosen from the group of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably R is a t-butyl group ; Q is Cl or a methyl group; and k is the number of Q groups and equals the valence of M minus 2; k is an integer.
  • M is Zr
  • R is t-butyl
  • Q is Cl or methyl
  • k 2.
  • the metallocene complex can be supported on a support.
  • the support is preferably an inert support, more preferably a porous inert support.
  • porous inert supports materials are talc and inorganic oxides.
  • the support material is in a finely divided form.
  • Suitable inorganic oxide materials include group 2A, 3A, 4A and 4B metal oxides such as silica, alumina and mixtures thereof.
  • Other inorganic oxides that may be employed either alone or in combination with the silica or alumina are magnesia, titania, zirconia and the like.
  • Other support materials can be employed, for example finely divided functionalized polyolefins such as finely divided polyethylene.
  • the support is a silica having a surface area between 200 and 900 m 2 /g and a pore volume between 0.5 and 4 ml/g.
  • the ligands can be prepared in a multiple step process.
  • First an intermediate 1 (Formula 7) is prepared by reacting compounds in a solvent at a pH above 7 according to the following scheme:
  • LG is a leaving group.
  • Examples of LG are halides, like for example Cl or Br, or 2,2,2-trichloroacetimidate group.
  • R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably R is a t-butyl group.
  • This intermediate 1 can react with a compound LF-B(OH) 2 , in the presence of a Pd catalyst and a Lewis base (according to a Suzuki reaction), to arrive at a ligand precursor according to the following scheme:
  • LF is a ligand fragment, which is chosen from the group consisting of wherein Z 1 and Z 4 are identical or different and can be chosen from the group consisting of hydrogen or a hydrocarbon radical with 1-20 carbon atoms;adjacent substituents Z 2 and Z 3 are connected to form an indenyl or tetrahydroindenyl ring system together with the carbon atoms of the Cp ring to which they are bound and R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably R is a t-butyl group.
  • a suitable ligand precursor may have a structure according to formula 8 wherein X is a cyclic bridging group; Z 1 and Z 4 are identical or different and can be chosen from the group consisting of hydrogen or a hydrocarbon radical with 1-20 carbon atoms;adjacent substituents Z 2 and Z 3 are connected to form an indenyl or tetrahydroindenyl ring system together with the carbon atoms of the Cp ring to which they are bound; and R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably R is a t-butyl group.
  • preferred further suitable ligand precursor may have a structure according to formula 9: , wherein LF is a ligand fragment, which is chosen from the group consisting of wherein Z 1 and Z 4 are identical or different and can be chosen from the group consisting of hydrogen or a hydrocarbon radical with 1-20 carbon atoms;adjacent substituents Z 2 and Z 3 are connected to form an indenyl or tetrahydroindenyl ring system together with the carbon atoms of the Cp ring to which they are bound and R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms.
  • a further suitable ligand precursor may have a structure according to formula 10 or 11
  • R is chosen from the group consisting of hydrogen and a hydrocarbon radical with 1-20 carbon atoms, preferably a t-butyl group.
  • Metallocene complexes according to formula 1 may for example be prepared by
  • organic and inorganic bases that can be used for creating anions of the ligand precursors are methyllithium, butyllithium, sec-butyllithium, t-butyllithium, lithiumdiisopropylamide (LDA), sodiumhydride, isopropylmagnesiumchloride-lithiumchloride, s-butylmagnesiumchloride, sodiumhexamethyldisilazide, potassiumhexamethyldisilazide and combinations thereof.
  • LDA lithiumdiisopropylamide
  • Metallocene complexes according to formula 12 can be obtained when the following preferred process for the preparation is used.
  • n-BuLi was added to a cooled solution of the ligand precursor (formula 10 or 11) in freshly dried diethyl ether under N2 atmosphere at -78°C.
  • the cold bath was removed after ⁇ 30min and solution was stirred at room temperature for 4hrs.
  • the solution was now again cooled to -78°C and solid ZrCl 4 was added.
  • the solution was slowly brought to room temperature and further stirred for 2h.
  • the solvent was then removed by filtration and the residue was washed with ether.
  • the invention relates to the preparation of the metallocene complexes according to formula 5 comprising the steps of:
  • Olefin polymers may be prepared by polymerizing one or more olefins in the presence of the described metallocene complex or in the presence of the described composition, wherein the metallocene complex is present on a support and a cocatalyst
  • the cocatalyst employed include aluminium- or boron-containing cocatalysts.
  • Suitable aluminium-containing cocatalysts comprise aluminoxanes and alkyl aluminium.
  • the aluminoxanes usable are well known and preferably comprise oligomeric linear and/or cyclic alkyl aluminoxanes represented by the formula: R 3 - (AlR 3 -O) n - AlR 3 2 for oligomeric, linear aluminoxanes and (- AlR 3 - O -) m for oligomeric, cyclic aluminoxanes; wherein n is 1-40, preferably n is 10-20; m is 3-40, preferably m is 3-20 and R 3 is a C 1 to C 8 alkyl group and preferably a methyl group.
  • organoaluminum compounds can be used such as trimethylaluminum, triethylaluminium, triisopropylaluminum, tri-n-propylaluminum, triisobutylaluminum, tri-n-butylaluminum, triamylaluminium; dimethylaluminium ethoxide, diethylaluminium ethoxide, diisopropylaluminium ethoxide, di-n-propylaluminium ethoxide, diisobutylaluminium ethoxide and di-n-butylaluminium ethoxide; dimethylaluminium hydride, diethylaluminium hydride, diisopropylaluminium hydride, di-n-propylaluminium hydride, diisobutylaluminium hydride and di-n-butylaluminium hydride.
  • Suitable boron-containing cocatalysts include trialkylboranes, for example trimethylborane or triethylborane and/or perfluorophenylborane and/or a perfluorophenylborate.
  • an organoaluminum cocatalyst is present. More preferably, methylaluminoxane is used as the cocatalyst.
  • the process to produce the olefin polymers may start with the reaction of the metallocene complex with the cocatalyst. This reaction can be performed in the same vessel as the reaction vessel wherein the olefin polymers are produced or in a separate vessel, whereafter the mixture of the metallocene complex and the cocatalyst is fed to the reaction vessel. During the reaction described above an inert solvent can be used.
  • the cocatalyst is used in an amount of 10 to 100,000 mol, preferably from 10 to 10,000 mol per mol of the transition metal compound.
  • the solvent used in the process to produce olefin polymers may be any organic solvent usually used for the polymerization.
  • solvents are benzene, toluene, xylene, butane, pentane, hexane, heptane, cyclohexane and methylene chloride.
  • the olefin to be polymerized can be used as the solvent.
  • the polymerization conditions like for example temperature, time, pressure, monomer concentration can be chosen within wide limits.
  • the polymerization temperature is in the range from -100 to 300 °C, preferably 0 to 200 °C, more preferably 10 to 100 °C.
  • the polymerization time is in the range of from 10 seconds to 20 hours, preferably from 1 minute to 10 hours, more preferably from 5 minutes to 5 hours.
  • the ethylene pressure during polymerization is in the range from 1 to 3500 bar, preferably from 1 to 2500 bar, more preferably from 1 to 1000 bar, even more preferably from 1 to 500 bar, most preferably from 1 to 100 bar.
  • the molecular weight of the polymer can be controlled by use of hydrogen in the polymerization.
  • the polymerization may be conducted by a batch process, a semicontinuous process or a continuous process and may also be conducted in two or more steps of different polymerization conditions.
  • the polyolefin produced is separated from the polymerization solvent and dried by methods known to a person skilled in the art.
  • the olefin which is polymerized can be one type of olefin or can be mixtures of different olefins.
  • the polymerization thus includes homopolymerization and copolymerization.
  • olefins examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene and styrene; conjugated and non-conjugated dienes such as butadiene, 1,4-hexadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 4-methyl-1,4-hexadiene and 7-methyl-1,6-octadiene; and cyclic olefins such as cyclobutene, but is not limited thereto.
  • ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene and styrene
  • At least one of the olefins that is polymerized is ethylene.More preferably, a mixture of ethylene and at least one other olefin of 3 or more carbon atoms is polymerized.
  • a high molecular weight of the olefin polymer can be obtained.
  • the other olefin of 3 or more carbon atoms is chosen from 1-butene, 1-hexene or 1-octene, more preferably the other olefin is 1-hexene.
  • the olefin comonomer is present in an amount of about 5 to about 20 percent by weight of the ethylene-olefin copolymer, more preferably an amount of from about 7 to about 15 percent by weight of the ethylene-alpha olefin copolymer.
  • an LLDPE having a melt mass flow rate (also known as melt flow index) as determined using ASTM D1238-10 (190°C/2.16 kg) which ranges from 1 to 125 g/10 min and a density in the range from 900 kg/m 3 to less than 940 kg/m 3 as determined using ASTM D1505-10 may be obtained.
  • the density of the linear low density polyethylene ranges from about 915 kg/m 3 to less than 940 kg/m 3 , for example between 915 and 925 kg/m 3 .
  • the melt flow index of the linear low density polyethylene ranges from 0.3 to 3 g/10min, for example from 0.5 to 1.5 g/10min.
  • the polymerisation may be performed via a gas phase process or via a slurry process.
  • the production processes of polyethylene are summarised in " Handbook of Polyethylene” by Andrew Peacock (2000; Dekker; ISBN 0824795466) at pages 43-66 .
  • the catalysts can be divided in three different subclasses including Ziegler Natta catalysts, Phillips catalysts and single site catalysts.
  • the latter class is a family of different classes of compounds, metallocene catalysts being one of them.
  • a Ziegler-Natta catalysed polymer is obtained via the interaction of an organometallic compound or hydride of a Group I-III metal with a derivative of a Group IV-VIII transition metal.
  • An example of a (modified) Ziegler-Natta catalyst is a catalyst based on titanium tetra chloride and the organometallic compound triethylaluminium.
  • a difference between metallocene catalysts and Ziegler Natta catalysts is the distribution of active sites.
  • Ziegler Natta catalysts are heterogeneous and have many active sites. Consequently polymers produced with these different catalysts will be different regarding for example the molecular weight distribution and the comonomer distribution.
  • the various processes may be divided into solution polymerisation processes employing homogeneous (soluble) catalysts and processes employing supported (heterogeneous) catalysts.
  • the latter processes include both slurry and gas phase processes.
  • linear low density polyethylene the term “linear” means that the polymer lacks measurable or demonstrable long chain branches, that is, the polymer is substituted with an average of less than 0.01 long chain branch/1000 carbon atoms.
  • Long chain branching means a chain length longer than the short chain branch that results from the incorporation of the ⁇ -olefin(s) into the polymer backbone.
  • Each long chain branch will have the same comonomer distribution as the polymer backbones and can be as long as the polymer backbone to which it is attached.
  • the amount of incorporation of the at least one other olefin, for example an ⁇ -olefin in the polyethylene is expressed by the amount of branches per 1000 carbon atoms.
  • the number average molecular weight (Mn) of the polyolefin, for example polyethylene, for example LLDPE of the invention may vary between wide ranges and may for example be in the range from 1000 to 200000Da.
  • the Mn of the polyolefin of the invention may be at least 1500, for example at least 2000, for example at least 20,000, for example at least 50,000 and/or for example at most 150,000, for example at most 110,000, for example at most 100,000, for example at most 70,000.
  • the weight average molecular weight (Mw) of the polyolefin, for example polyethylene, for example LLDPE of the invention may also vary between wide ranges and may for example be in the range from 1500 to 500000.
  • the Mw of the polyolefin of the invention may be at least 2500, for example at least 10,000, for example at least 50,000, for example at least 100,000 and/or for example at most 400,000, for example at least 350,000, for example at most 300,000, for example at most 250,000.
  • the Mw and Mn are determined using SEC (Size Exclusion Chromatography) using 1,2,4-trichlorobenzene as an eluent, and calibrated using linear polyethylene standards.
  • the molecular weight distribution (that is Mw/Mn) of the polyolefin of the invention may for example vary from from 2 to 5, from 2.1 to 4 or from 2.5 to 3.5.
  • the crystallinity temperature (Tc) of the polyolefin of the invention may for example be in the range from 90 to 120°C.
  • the melt temperature (Tm) of the polyolefin of the invention may for example be in the range from 100 to 140°C.
  • the T m and T c are determined using Differential Scanning Calorimetry according to ASTM D 3418-08 using a scan rate of 10°C/min on a sample of 10mg and using the second heating cycle
  • the polyolefin may be mixed with suitable additives.
  • suitable additives for polyethylene include but are not limited to the additives usually used for polyethylene, for example antioxidants, nucleating agents, acid scavengers, processing aids, lubricants, surfactants, blowing agents, ultraviolet light absorbers, quenchers, antistatic agents, slip agents, anti-blocking agents, antifogging agents, pigments, dyes and fillers, and cure agents such as peroxides.
  • the additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight % based on the total composition.
  • the polyolefins and compositions comprising said polyolefins may suitably be used for the manufacture of articles.
  • the polyolefins and compositions may be manufactured into film, for example by compounding, extrusion, film blowing or casting or other methods of film formation to achieve, for example uniaxial or biaxial orientation.
  • films include blown or cast films formed by coextrusion (to form multilayer films) or by lamination and may be useful as films for packaging, for example as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc. in food-contact and non-food contact applications, agricultural films and sheets.
  • LC-MS liquid chromatograph-mass spectrometer
  • An Xterra C18 (50 mm X 4.6 mm; 5 microns) column was used for separating the components by liquid chromatography.
  • a H and 13 C NMR spectra for all the compounds were recorded on a 300 MHz Bruker NMR spectrometer.
  • CDCl3 was used as the solvent for NMR.
  • Step 1 Synthesis of 1-bromo-2-(N- tert -butyl)benzene- tert -butyl 2-bromoaniline
  • Step 2 Synthesis of 1-(N- tert butyl)-2-(2-indenyl) benzene:
  • the sample was dissolved completely in diethyl ether.
  • the solution was cooled to -78°C.
  • n-BuLi (2.49ml; 1.6N in hexanes; 0.00399 moles) was added to this solution drop wise.
  • the color gradually changed to yellow and the solution became hazy.
  • the cold bath was removed after ⁇ 30min and solution left to stir at RT for 4hrs.
  • the solution became clear and the color of the solution gradually became brown with a greenish tinch.
  • the solution was again cooled to -78°C and solid ZrCl4 (0.442g; 0.0019 moles) was added.
  • the temperature of the solution was slowly brought to RT and left the solution for stirring for 2h.
  • the color of the solution was turned to brown and solid was precipitated. Stopped the stirring and ether was taken to the other arm of the Schlenk by filtration. Solid was washed with ether and dried.
  • the color of the solution became yellow and gradually changed to brown and greenish brown in about 2h.
  • the solution was again cooled to -78oC and solid ZrCl4 (0.35 g; 0.0015 moles) was added. Immediately after the addition of ZrCI4, the color of the solution was changed to yellow.
  • the temperature of the solution was slowly brought to RT and left the solution for stirring for 2h.
  • the color of the solution was turned to brown and solid was precipitated. Stopped the stirring and ether was taken to the other arm of the Schlenk by filtration. Solid was washed with ether and dried.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Claims (4)

  1. Prozess zur Herstellung der Metallocenkomplexe gemäß Formel 5
    Figure imgb0034
    umfasst die folgenden Schritte:
    a) Reagieren von 2-Bromphenyl-Boronsäure mit 1,8-Diaminonaphthalen, um eine geschützte Verbindung (Formel 13) zu bilden
    Figure imgb0035
    b) Reagieren der geschützten Verbindung (13) mit einer Verbindung der Formel 14
    Figure imgb0036
    in Anwesenheit eines Pd-Katalysators und in Anwesenheit einer Base (mit einer Reaktion, die als Suzuki-Reaktion bekannt ist), wodurch eine geschützte Verbindung gemäß Formel 15 gebildet wird
    Figure imgb0037
    c) Entschützen der geschützten Verbindung durch eine Reaktion mit einer Säure, um die Verbindung gemäß Formel 16 zu erreichen
    Figure imgb0038
    d) Reagieren der Verbindung (16) mit N-substituiertem 2-Bromanilin (Formel 7)
    Figure imgb0039
    in Anwesenheit eines Pd-Katalysators in Anwesenheit einer Base (gemäß der Suzuki-Reaktion), um einen Ligandenvorläufer (Formel 11) zu bilden
    Figure imgb0040
    wobei der Substituent R des N in 2-Bromanilin ausgewählt ist aus der Gruppe aus Wasserstoff und einem Kohlenwasserstoffrest mit 1-20 Kohlenstoffatomen, bevorzugt t-Butyl,
    e) Erzeugen von Anionen der Ligandenvorläufer (11) mit einer organischen oder anorganischen Base
    f) Reagieren des Anions des Ligandenvorläufers mit (Me2N)aMQk, wobei Me Methyl ist; M ein Metall ist, ausgewählt aus Lanthaniden oder Übergangsmetallen aus Gruppe 3, 4, 5 oder 6 des Periodensystems der Elemente, bevorzugt M Zr ist; Q ein anionischer Ligand für M ist, bevorzugt Q Cl oder Methyl ist; k die Anzahl von Q-Gruppen ist und der Valenz von M minus 2 gleicht; und a der Valenz von M minus k gleicht, um einen Metallocenkomplex gemäß Formel 5 zu ergeben.
  2. Prozess nach Anspruch 1, wobei R t-Butyl ist.
  3. Prozess nach einem der Ansprüche 1-2, wobei M Zr ist.
  4. Prozess nach einem der Ansprüche 1-3, wobei Q Cl oder Methyl ist.
EP14747576.8A 2013-08-01 2014-07-29 Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung Active EP3027631B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14747576.8A EP3027631B1 (de) 2013-08-01 2014-07-29 Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP13178970.3A EP2832739A1 (de) 2013-08-01 2013-08-01 Verbrückter Metallocenkomplex für Olefinpolymerisierung
US201461929291P 2014-01-20 2014-01-20
EP14747576.8A EP3027631B1 (de) 2013-08-01 2014-07-29 Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung
PCT/EP2014/066265 WO2015014832A1 (en) 2013-08-01 2014-07-29 Bridged metallocene complex for olefin polymerization

Publications (2)

Publication Number Publication Date
EP3027631A1 EP3027631A1 (de) 2016-06-08
EP3027631B1 true EP3027631B1 (de) 2022-08-24

Family

ID=48900876

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13178970.3A Withdrawn EP2832739A1 (de) 2013-08-01 2013-08-01 Verbrückter Metallocenkomplex für Olefinpolymerisierung
EP14747576.8A Active EP3027631B1 (de) 2013-08-01 2014-07-29 Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13178970.3A Withdrawn EP2832739A1 (de) 2013-08-01 2013-08-01 Verbrückter Metallocenkomplex für Olefinpolymerisierung

Country Status (5)

Country Link
US (1) US9868797B2 (de)
EP (2) EP2832739A1 (de)
KR (1) KR20160036620A (de)
CN (1) CN105408338A (de)
WO (1) WO2015014832A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA032159B1 (ru) * 2013-08-20 2019-04-30 Сауди Бейсик Индастриз Корпорейшн Способ получения 2,2'-бис-инденилбифенильных лигандов и их металлоценовых комплексов
EP4028437A1 (de) * 2019-09-10 2022-07-20 SABIC Global Technologies, B.V. Verbindungen zur verwendung in katalysatorzusammensetzungen zur herstellung von polyolefinen
WO2021052797A1 (en) * 2019-09-20 2021-03-25 Sabic Global Technologies B.V. Compounds for use in catalyst compositions for the production of polyolefins

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
NL9201970A (nl) 1992-11-11 1994-06-01 Dsm Nv Indenylverbindingen en katalysatorcomponenten voor de polymerisatie van olefinen.
FI945958A (fi) * 1993-12-21 1995-06-22 Hoechst Ag Menetelmä polyolefiinien valmistamiseksi
US6342622B1 (en) 1999-06-11 2002-01-29 Dsm B.V. Indenyl compounds for the polymerization of olefins
DE10003581A1 (de) * 2000-01-28 2001-08-02 Bayer Ag Metallorganische Verbindungen mit anellierten Indenyl Liganden
US7807762B2 (en) * 2005-12-30 2010-10-05 Lg Chem, Ltd. Catalyst composition comprising Group 4 transition metal complexes and method for preparing polyolefins using the same
KR100976131B1 (ko) * 2007-01-10 2010-08-16 주식회사 엘지화학 전이금속 화합물의 제조 방법, 상기 방법으로 제조된전이금속 화합물 및 상기 전이금속 화합물을 포함하는 촉매조성물
KR101217268B1 (ko) * 2009-04-13 2012-12-31 주식회사 엘지화학 올레핀 중합용 촉매 조성물 및 이를 이용하여 제조된 올레핀 중합체
US9000200B2 (en) * 2011-12-19 2015-04-07 Saudi Basic Industries Corporation Process for the preparation of metallocene complexes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; LENSINK, CORNELIS ET AL: "Dichloro{N-[2-(.eta.5-indenyl)ethyl]-p-tolylsulfonamido-.kappa.N}titanium", retrieved from STN Database accession no. 2002:411896 *
JYE-SHANE YANG ET AL: "Excited-State Behavior of N -Phenyl-Substituted trans- 3-Aminostilbenes: Where the " m -Amino Effect" Meets the "Amino-Conjugation Effect"", JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY,KINETICS, ENVIRONMENT AND GENERAL THEORY, vol. 109, no. 29, 1 July 2005 (2005-07-01), US, pages 6450 - 6456, XP055676336, ISSN: 1089-5639, DOI: 10.1021/jp0517807 *

Also Published As

Publication number Publication date
EP2832739A1 (de) 2015-02-04
KR20160036620A (ko) 2016-04-04
CN105408338A (zh) 2016-03-16
EP3027631A1 (de) 2016-06-08
WO2015014832A1 (en) 2015-02-05
US20160168280A1 (en) 2016-06-16
US9868797B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
CN108473520B (zh) 包含金属茂络合物和助催化剂的催化剂
EP3191497B1 (de) Boronüberbrückte 2-indenyl-metallocenkomplexe zur olefinpolymerisierung
US10513569B2 (en) Bridged metallocene complex for olefin polymerization
EP3606967B1 (de) Dimethyl-silyl-verbrückte 1-phenyl-2-indenylmetallocenkomplexe zur olefinpolymerisierung
WO2018185176A1 (en) Dihydrocarbyl-silyl-bridged-substituted cyclopentadienyl metallocene complexes for olefin polymerization
EP2970348A1 (de) Bis-(2-indenyl)-metallocen-komplex
EP3303354B1 (de) Katalysator mit einem metallocenkomplex und einem cokatalysator
EP3027631B1 (de) Prozess zur herstellung von verbrückten metallocenkomplexen geeignet für die olefinpolymerisierung
CN110650965B (zh) 用于烯烃聚合的二烃基-甲硅烷基-桥连-1,3二取代-2-茚基茂金属络合物
WO2019145371A1 (en) 1,2-phenylene bridged 1-indenyl-2-indenyl metallocene complexes for olefin polymerisation
EP1641841A1 (de) Verfahren zur herstellung bimodaler polyolefine mit metallocenen komplexen mit zwei reaktionszonen
KR102667176B1 (ko) 메탈로센 착체 및 조촉매를 포함하는 촉매
EP3524612A1 (de) Ligandverbindung, übergangsmetallverbindung und katalysatorzusammensetzung mit der übergangsmetallverbindung
KR20170073139A (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAUDI BASIC INDUSTRIES CORPORATION

Owner name: SABIC GLOBAL TECHNOLOGIES B.V.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180703

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014084723

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C07F0017000000

Ipc: C07C0211520000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C08F 10/02 20060101ALI20220601BHEP

Ipc: C08F 4/659 20060101ALI20220601BHEP

Ipc: C07F 5/02 20060101ALI20220601BHEP

Ipc: C07C 211/48 20060101ALI20220601BHEP

Ipc: C07F 17/00 20060101ALI20220601BHEP

Ipc: C07C 211/52 20060101AFI20220601BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20220627

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014084723

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1513574

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1513574

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014084723

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 10

26N No opposition filed

Effective date: 20230525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230608

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230607

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220824

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230729

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731